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Abstract 

Increased intracellular iron spurs mitochondrial biogenesis and respiration to satisfy high-energy 

demand during osteoclast differentiation and bone-resorbing activities. Transferrin receptor 1 

(TFR1) mediates cellular iron uptake through endocytosis of iron-loaded transferrin and its 

expression increases during osteoclast differentiation. Nonetheless, the precise functions of TFR1 

and TFR1-mediated iron uptake in osteoclast biology and skeletal homeostasis remain 

incompletely understood. To investigate the role of TFR1 in osteoclast lineage cells, we 

conditionally deleted Tfr1 gene in myeloid precursors or mature osteoclasts by crossing Tfr1-

floxed mice with LysM-Cre and Ctsk-Cre mice, respectively. Skeletal phenotyping by µCT and 

histology unveiled that loss of Tfr1 in osteoclast progenitor cells resulted in a three-fold increase 

in trabecular bone mass in the long bones of 10-week old female but not male mice. Although high 

trabecular bone volume in long bones was seen in both male and female mice with deletion of Tfr1 

in mature osteoclasts, this phenotype was more pronounced in female knockout mice. 

Mechanistically, disruption of Tfr1 expression attenuated mitochondrial metabolism and 

cytoskeletal organization in mature osteoclasts, leading to decreased bone resorption with no 

impact on osteoclastogenesis. These results indicate that Tfr1-mediated iron uptake is specifically 

required for osteoclast function and is indispensable for bone remodeling. 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2021. ; https://doi.org/10.1101/2021.09.12.459964doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.12.459964
http://creativecommons.org/licenses/by/4.0/


Introduction 

Bone mass and structure in adults are maintained by constant bone remodeling with balanced bone 

formation by osteoblasts and bone resorption by osteoclasts (Zaidi, 2007; Raggatt and Partridge, 

2010). Under pathological conditions, however, excessive bone resorption caused by either 

increased number or exaggerated activities of osteoclasts leads to bone loss which is a hallmark of 

many metabolic bone diseases such as osteoporosis, rheumatoid arthritis, Paget’s disease of bone, 

periodontal disease, and tumor bone metastasis (Mbalaviele et al, 2017; Novack and Teitelbaum, 

2008). Osteoclasts are multinucleated cells formed by fusion of mononuclear precursors that are 

differentiated from the monocyte/macrophage lineage of myeloid hematopoietic cells (Walker, 

1975; Xiao et al, 2017). The signaling cascades triggered by M-CSF (macrophage colony-

stimulating factor) and RANKL (receptor activator of NF-κB ligand) together with intracellular 

calcium oscillation stimulated by immunoglobulin-like receptors eventually induce and activate 

NFATc1 (nuclear factor of activated T cells 1), a master transcription factor of osteoclast 

differentiation (Boyle et al, 2003; Nakashima et al, 2012). Upon attachment to bone, osteoclasts 

organize their actin cytoskeleton to form actin-rings that seal the resorptive microenvironment 

(Väänänen et al, 2000; Teitelbaum, 2011). The dissolution of bone minerals and digestion of 

organic bone matrix mainly type I collagen are executed by hydrochloric acid and acidic hydrolase 

cathepsin K, respectively, via lysosome secretion (Zhao, 2012; Fujiwara et al, 2016). Both 

osteoclast formation and bone-resorbing activity of mature osteoclasts demand high energy. 

However, the pathways and molecular mechanisms regulating osteoclast energy metabolism in 

osteoclasts remain largely unknown. 

 Both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) increase during 

osteoclast differentiation (Kubatzky et al, 2018; Arnett and Orriss, 2018; Kim et al, 2007; Indo et 

al, 2013; Li et al, 2020). Osteoclasts contain numerous mitochondria (Chuan, 1931; Holtrop and 

King, 1977). The mitochondrial respiratory complex I and the key mitochondria transcriptional 
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regulator PGC1β (peroxisome proliferator-activated receptor γ coactivator 1β) are crucial for 

osteoclast differentiation (Jin et al, 2014; Ishii et al, 2009). Mitochondrial ROS (reactive oxygen 

species) stimulates osteoclast differentiation (Srinivasan et al, 2010; Kim et al, 2013; Kim H et al, 

2017). On the contrary, it has been reported that decreased mitochondrial biogenesis and activity 

by PGC-1β-deletion in osteoclast lineage cells disrupt osteoclast cytoskeletal organization and 

function but not osteoclastogenesis (Zhang et al, 2018). Loss of G-protein Gα13 in osteoclast 

progenitors promotes mitochondrial respiration and cytoskeleton organization but has little effects 

on osteoclastogenesis in cultures and in mice (Nakano et al, 2019). Heretofore, the role of energy 

metabolism in osteoclast differentiation and function remain unclear and controversial. 

 Iron is a nutritional element that plays a fundamental role in mitochondrial metabolism and 

the biosynthesis of heme and Fe-S clusters which are critical components of the mitochondrial 

respiratory complexes (supplemental Figure 1A) (Xu et al, 2013). Mammalian cells acquire iron 

through the uptake of transferrin (Tf), heme, ferritins, and non-transferrin bound iron (NTBI) 

(supplemental Figure 1B) (Pantopoulos et al, 2012). In Tf-dependent pathway, ferric iron (Fe3+)-

loaded Tf (holo-Tf) binds to Tf receptors (TFRs) on cell surface and the complex is then 

internalized via endocytosis. Fe3+ is released from Tf in endosomes and is reduced to ferrous iron 

(Fe2+) by the STEAP (six-transmembrane epithelial antigen of the prostate) family of 

metaloreductases before being transported to the cytoplasm via DMT1 (divalent metal transporter 

1) (Gammella et al, 2017). Cellular iron that is not utilized is either stored in ferritins or is exported 

via ferroportin (FPN) (Donovan et al, 2006; Hentze et al, 2010).  

 Both systemic and cellular iron homeostasis play a pivotal role in bone remodeling (Balogh 

et al, 2018). Osteoporosis and pathological bone fractures are commonly associated with the 

hereditary iron-overload disease hemochromatosis and the acquired iron-overload conditions in 

treatment of thalassemia and sickle cell disease (Jandl et al, 2020; Almeida A and Roberts, 2005; 
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Dede et al, 2016). Moreover, increased bone resorption and/or decreased bone formation have 

been observed in genetic mouse models of iron overload diseases and in mice fed with excessive 

iron (Tsay et al, 2010; Guggenbuhl et al, 2011; Xiao et al, 2015). We have previously reported that 

excess cellular iron caused by Fpn-deletion in murine myeloid cells stimulates mitochondria and 

promotes osteoclast number in vitro and in vivo (Wang et al, 2018). In contrast to iron overload, 

much less is known about the influence of iron-deficiency on bone cells and bone homeostasis. 

Severe iron deficiency impairs both bone resorption and bone formation and causes osteopenia in 

rats (Katsumata et al, 2009; Díaz-Castro et al, 2012), whereas iron chelation inhibits 

osteoclastogenesis and bone resorption in vitro and in vivo and attenuates estrogen-deficiency 

induced bone loss in mice (Ishii et al, 2009; Guo et al, 2015).  

 There are two TFRs in mammalian cells (Kawabata, 2019). TFR1, encoded by TFRC gene, is 

ubiquitously expressed with high affinity to holo-Tf. Germline deletion of Tfrc gene in mice leads 

to early embryonic lethality due to severe defects in erythroid and neuronal development (Levy et 

al, 1999). A missense mutation in TFRC causes combined immunodeficiency in human (Jabara et 

al, 2016). The specific deletion of Tfrc gene in neurons, skeletal muscles, cardiomyocytes, 

hematopoietic stem cells, and adipocytes in mice disrupts cellular iron homeostasis and cause 

severe metabolic defects in these tissues (Matak et al, 2016; Barrientos et al, 2015; Xu et al, 2015; 

Wang et al, 2020; Li et al, 2020). In contrast to TFR1, TFR2 has lower affinity to holo-Tf and is 

predominantly expressed in liver and erythroid precursor cells. Mutations of TFR2 in human and 

germline or hepatocyte-specific deletion of Tfr2 in mice cause type 3 hemochromatosis 

(Camaschella et al, 2000; Fleming et al, 2002). More recently, Tfr2 has been reported to regulate 

osteoblastic bone formation and bone mass in mice, independent of its function in iron homeostasis 

(Rauner et al, 2019). Nevertheless, the cell autonomous functions of TFR1 and TFR2 in osteoclast 

lineage cells remain unknown.  
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 To elucidate the role of Tfr1 and Tfr1-mediated iron uptake in osteoclast lineage cells, we 

generated Tfr1 conditional knockout mice in myeloid osteoclast precursors and mature osteoclasts 

by crossing Tfr1-floxed mice with LysM-Cre and Ctsk-Cre mice, respectively, and used them for 

comprehensive skeletal phenotyping and mechanistic studies.  
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Results 

Tfr1-mediated iron uptake is the major route for iron acquiring in murine osteoclasts 

It has been reported that Tf stimulates osteoclastogenesis whereas iron chelation inhibits this 

process (Ishii et al, 2009). In this study, we first set out to determine which of the four cellular iron 

uptake pathways in mammalian cells (i.e. Tf-dependent, heme, ferritin, and NTBI) function in 

osteoclasts. For this purpose, we quantified the mRNA level of genes encoding the major 

transporters along each iron acquiring pathway (supplemental Figure 1B) by real-time PCR in 

three different stages of murine osteoclast lineage cells: bone marrow monocytes, mononuclear 

osteoclast precursors, and multinucleated mature osteoclasts. By this assay, we observed that genes 

participated in Tf/Tfr-mediated iron uptake: Tfrc (encoding Tfr1), Tfr2, Slc11a2 (encoding Dmt1) 

were upregulated in mature osteoclasts (Figure 1A). We have previously reported that Steap4, a 

ferrireductase with a critical role in the Tf-dependent pathway, is highly expressed in mature 

osteoclasts and plays an important role in cellular iron homeostasis in osteoclasts in vitro (Zhou et 

al, 2013). Together, all key mediators of Tf-dependent iron uptake pathway are up-regulated 

during osteoclast differentiation. By contrast, the mRNA expression of Slc39a14 (encoding Zip14, 

a transporter mediating cellular iron entrance via NTBI) was decreased during osteoclast 

differentiation. The expression of Slc46a1, which encodes heme transporter Hcp1, was slightly 

increased in mature osteoclasts and the mRNA level of Flvcr2, which encodes another heme 

transporter, was low (Figure 1A). The mRNAs of Timd2 and Scara5, which encode two plasma 

membrane transporters of ferritin, were undetectable in osteoclast lineage cells (data not shown).  

 Although both Tfr1 and Tfr2 mRNA expression increase during osteoclastogenesis, the level 

of Tfr2 mRNA was much lower than that of Tfrc (Figure 1A). Moreover, deletion of Tfr1 

completely eliminated the uptake of Tf-59Fe in mature osteoclasts, indicating that Tfr1 is the 

predominant receptor for Tf-uptake and its deficiency is not compensated by Tfr2 in osteoclasts 

(left panel in Figure 1B). There was a dramatic increase in cellular iron level in mature osteoclasts 
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compared to monocytes and pre-osteoclasts. Loss of Tfr1 in osteoclasts led to more than 50% 

decrease in total intracellular iron content (right panel in Figure 1B), suggesting that Tf-dependent 

iron uptake is a major route for iron acquirement in mature osteoclasts. We and others have 

previously found that the expression of Fpn, the only iron exporter identified so far in mammalian 

cells, decreases during osteoclast differentiation (Gu et al, 2015; Wang et al, 2018) and loss of Fpn 

in myeloid osteoclast precursors increases cellular iron and stimulates osteoclastogenesis in vitro 

and in vivo (Wang et al, 2018). Therefore, by transcriptional upregulation of Tf-dependent iron 

uptake pathway and concomitant downregulation of iron exporter Fpn, osteoclasts augment their 

cellular iron level to meet high energy demand during osteoclast differentiation and bone 

resorption. Nevertheless, the role of Tfr1 and Tf-dependent iron uptake in osteoclast biology and 

bone remodeling has not been elucidated using genetically modified mouse models. 

 

Loss of Tfr1 in myeloid osteoclast precursors increases trabecular bone mass of long bones in 

female mice 

The homozygous Tfr1 germline knockout mice are embryonically lethal (Levy et al, 1999). To 

elucidate the role of Tfr1 in osteoclast differentiation and bone resorption during postnatal bone 

modeling and remodeling, we generated Tfr1 myeloid-specific conditional knockout mice on 

C57BL6 background by crossing Tfr1-floxed mice, in which the exons 3-6 of murine Tfrc gene 

were flanked by two loxP sites (Chen et al, 2015), with LysM-Cre mice. Our pilot study 

demonstrated that the single allele of LysM-Cre (Tfr1flox/flox;LysMCre/+) only led to partial deletion 

of Tfr1 in osteoclast lineage cells whereas two copies of LysM-Cre (Tfr1flox/flox;LysMCre/Cre ) 

completely eliminated Tfr1 expression in osteoclasts (data not shown). Moreover, trabecular bone 

mass and structure in Tfr1 Tfr1flox/flox;LysMCre/+ mice evaluated by µCT were indistinguishable 

from their littermate control mice (supplemental Figure 2). Therefore, we used Tfr1flox/flox;+/+ and 
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Tfr1flox/flox;LysMCre/Cre mice as control and Tfr1 myeloid conditional knockout (Tfr1ΔlysM) mice, 

respectively, for further in vivo and in vitro studies.  

 Both male and female Tfr1ΔlysM mice were born at the expected Mendelian ratio and developed 

normally with similar size and body weight compared to their littermate controls at 10 weeks old 

of age (Figure 2A). The µCT analysis of femurs revealed 2-fold more trabecular bone mass 

(BV/TV) with significant increase in trabecular number (Tb.N), trabecular thickness (Tb.Th), bone 

mineral density (BMD), connective density (Conn-Dens), and the decreased trabecular spacing 

(Tb.Sp) in femurs of female Tfr1ΔlysM mice compared to controls. There was no difference in any 

of trabecular bone parameters in the male Tfr1ΔlysM mice compared to their gender-matched 

controls (Figure 2B to 2H). Loss of Tfr1 in both male and female mice at this age had no effects 

on femoral cortical bone thickness (Figure 2I). The µCT analysis of tibias showed similar 

trabecular bone mass increase in female but not male Tfr1ΔlysM mice (data not shown). 

Unexpectedly, this increased trabecular bone mass in the long bones of female Tfr1ΔlysM mice was 

not observed in vertebral bones of 10-week old mice (supplemental Figure 3). Taken together, 

these results indicate that Tfr1-deletion in osteoclast precursors leads to increased trabecular bone 

mass and density in long bones of female mice. 

To determine the cellular processes that contribute to increased trabecular bone mass caused 

by deletion of Tfr1 in myeloid cells, we performed histology and histomorphometry analysis of 

distal femurs from 10-week old male and female Tfr1ΔlysM mice and their corresponding controls. 

Consistent with the µCT data, fast green and TRAP-staining of decalcified paraffin-embedded 

sections (Figure 3A) demonstrated increased trabecular mass, number, thickness, and decreased 

trabecular spacing in female but not male Tfr1ΔlysM mice compared to their control littermates 

(Figure 3B to 3E). While the TRAP stained osteoclast surface adjusted for bone surface (Oc.S/BS), 

a histological parameter for osteoclast density, was the same in Tfr1ΔlysM mice of either genders as 

in control mice (Figure 3F), the total Oc.S which reflects the number of osteoclasts was increased 
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in female Tfr1ΔlysM mice due to expansion of trabecular bone mass in these mice (Figure 3G). The 

systemic bone resorption level as measured by serum levels of bone resorption markers, TRAP5b 

and CTx-I, were similar in all genotypes of male and female mice (Figure 3H and 3I). Due to the 

increased total number of osteoclasts in female Tfr1ΔlysM mice, the function of individual 

osteoclasts in female Tfr1ΔlysM mice was decreased in vivo.  

Since osteoclast-mediated bone resorption and osteoblast-mediated bone formation are 

coupled and regulate each other, we also examined bone formation activities in control and 

Tfr1ΔlysM mice by dynamic bone histomorphometry analysis of tetracycline-labeled plastic-

embedded tissue sections. As shown in Figure 3J and 3K, bone formation rate (BFR) and osteoblast 

mineral apposition rate (MAR) in trabecular bone were similar between control and Tfr1ΔlysM male 

and female mice. The total tetracycline-labeled surface (sL.Pm) in female Tfr1ΔlysM mice was 

higher than their control mice, likely due to increased trabecular bone mass/surface (Figure 3L). 

The increased serum level of P1NP (Figure 3M), a systemic bone formation marker, in female 

knockout mice may be caused by increased trabecular bone and total number of osteoblasts in 

these mice because the differentiation and bone formation activity of Tfr1-dificient osteoblasts 

cultured in vitro were the same as control cells (data not shown).  

 

Deletion of Tfr1 in mature osteoclasts increases trabecular bone mass of long bones in both 

male and female mice 

To determine the role of Tfr1 in mature osteoclasts during bone remodeling, we crossed Tfr1-flox 

mice with Ctsk-Cre knock-in mice, a Cre-driver that has been extensively used to disrupt genes of 

interest in mature osteoclasts (Fujiwara et al, 2016; Wang et al, 2018; Nakamura et al, 2007). The 

progeny of Tfr1+/+;CtskCre/+ and Tfr1flox/flox;CtskCre/+) congenic mice on a C57BL6/129 mixed 

background were used as control and osteoclast conditional knockout (Tfr1ΔCTSK) mice, 

respectively. Both male and female Tfr1ΔCTSK mice were born and developed normally. The body 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2021. ; https://doi.org/10.1101/2021.09.12.459964doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.12.459964
http://creativecommons.org/licenses/by/4.0/


size and weight of 10-week old male and female Tfr1ΔCTSK mice were similar to their littermate 

control mice (Figure 4A). The µCT examination of femurs unveiled a more than two-fold increase 

of trabecular BV/TV with increased trabecular number, thickness, and decreased trabecular 

spacing in both male and female Tfr1ΔCTSK mice compared to their littermate controls (Figure 4B 

to 4F). A slight increase in cortical bone thickness was only observed in female Tfr1ΔCTSK mice 

(Figure 4G). Similar to Tfr1ΔlysM mice, loss of Tfr1 in mature osteoclasts had little effects on 

trabecular bone mass and structure in vertebral bones of male and female Tfr1ΔCTSK mice 

(supplemental Figure 4). 

Histology and histomorphometry analysis of paraffin-embedded femoral sections 

demonstrated dramatic increase in trabecular BV/TV in both male and female Tfr1ΔCTSK mice 

relative to their control mice (Figure 5A and 5B). These data are consistent with the µCT results 

shown in Figure 4. The number of TRAP-positive osteoclasts per bone perimeter (N.OC/Pm) as 

well as the percentage of osteoclast-covered bone surface (OC.Pm) in Tfr1ΔCTSK mice of either 

genders were not different from control mice (Figure 5C and 5D). These results indicate that loss 

of Tfr1 in Ctsk-Cre expressing osteoclasts increases trabecular bone mass but has no effects on 

osteoclastogenesis in vivo.  

 

Tfr1-mediated iron uptake is dispensable for osteoclastogenesis but plays an important role in 

mature osteoclast actin cytoskeletal organization and bone resorption in vitro  

To further identify the cellular and molecular mechanisms by which Tfr1 and Tfr1-mediated iron 

uptake regulate osteoclasts, we isolated bone marrow cells from C57BL6 male and female control 

and Tfr1ΔlysM mice and cultured them with either M-CSF alone to generate bone marrow 

monocytes or M-CSF plus RANKL to induce mononuclear osteoclast precursor cells and 

multinucleated mature osteoclasts in vitro. As shown in Figure 6A, the complete deletion of Tfr1 

by two copies of LysM-Cre in both male and female osteoclast lineage cells had little effects on 
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the protein level of osteoclast transcription factor Nfatc1 and the induction of osteoclast acidic 

hydrolase Ctsk. Accordingly, the number of TRAP+ multinucleated osteoclasts was not different 

in Tfr1ΔlysM cultures of either genders compared to their respective controls. However, the Tfr1-

deficient osteoclasts displayed dramatic defect in mature osteoclast spreading (Figure 6B and 6C).  

 Since actin cytoskeleton organization plays an essential role in osteoclast spreading and the 

formation of podosome-belts in osteoclasts cultured on plastic dishes and actin-rings in osteoclasts 

cultured on bone matrix, we next stained actin filaments with Alexa-488 conjugated Phalloidin in 

control and Tfr1-deficient male and female osteoclasts cultured on plastic and bone. While the 

podosome-belts and actin-rings formed normally in control osteoclasts, these actin-based 

structures were dysregulated in Tfr1-deficient male and female osteoclasts (Figure 7A-7D). Since 

formation of actin-rings is a hallmark of osteoclast activation and function, these results indicate 

that loss of Tfr1 in osteoclast suppresses osteoclast function. Corroborating this hypothesis, we 

found that Tfr1-deficient osteoclasts resorbed less bone than controls as revealed by the resorption-

pit staining on cortical bovine bone slices (Figure 7E and 7F).  

 Besides regulating iron-uptake, Tfr1 also plays noncanonical roles in regulation of intestinal 

epithelial homeostasis and mitochondrial morphology and function (Chen et al, 2015; Senyilmaz 

et al, 2015). To determine whether the defects in cytoskeleton organization and resorptive function 

of Tfr1-deficient osteoclasts were caused by lower intracellular iron content, we treated control 

and Tfr1ΔlysM osteoclast cultures with increased doses of hemin and ferric ammonium citrate 

(FAC), which are transported into cells via heme transporters Hcp1 (Slc46a1) and NTBI 

transporter Zip14 (Slc39a14), respectively (supplemental Figure 1). While 10µM of hemin slightly 

stimulated osteoclast spreading, cytoskeleton organization, and bone resorption in control 

osteoclasts, hemin dose-dependently increased number of spreading osteoclasts in Tfr1-deficient 

osteoclasts (Figure 8A). In contrast, FAC had no effects on control or Tfr1-deficient osteoclasts 

(Figure 8B). At 10µM concentration, hemin significantly rescued the phenotypes of Tfr1-depleted 
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osteoclasts (Figure 8C to 8E) Together with the data of mRNA expression of Hcp1 and Zip14 

(Figure 1), these results suggest that heme but not NTBI and ferritin pathways is an alternative 

iron acquiring mechanism in osteoclasts in addition to Tfr1. Therefore, both our in vivo and in 

vitro findings unveil a critical role of Tfr1-mediated cellular iron homeostasis in osteoclast 

activation/function. 

 

Depletion of Tfr1 in osteoclast lineage cells attenuates mitochondrial biogenesis, ROS 

production, and OXPHOS predominantly in mature osteoclasts 

To determine which intracellular pathways are most affected by loss of Tfr1 in osteoclast lineage 

cells, we did quantitative proteomic analysis to identify proteins that are up- and down-regulated 

in Tfr1-deficient bone marrow monocytes, mononuclear precursors, and multinucleated mature 

osteoclasts. The heatmaps were generated using the ‘heatmap’ function in the R-package (Figure 

9A). By a 1.2-fold cut-off, we found that a total of 135, 497, and 2562 proteins were influenced 

by loss of Tfr1 in monocytes, pre-osteoclasts, and mature osteoclasts, respectively (supplemental 

Tables 1 to 3). The abundance of proteins involved in Tf-dependent iron uptake pathway, including 

Tfr1, Steap3/4, DMT1 (Slc11a1), were all decreased in Tfr1-deficient cells (supplemental Table 1 

to 3). The greater number of affected proteins in mature osteoclasts correlated with a high level of 

Tfr1 and Tfr1-mediated iron uptake in osteoclasts (Figure 1). By Ingenuity Pathway Analysis 

(IPA) analysis, we identified that the mitochondrial OXPHOS pathway and sirtuin signaling 

pathway were the most significantly down-and up-regulated pathways in mature osteoclasts, 

respectively (Figure 9B and supplemental Table 4). Among the mitochondrial proteins affected by 

loss of Tfr1 and Tf-dependent iron uptake in osteoclasts, the levels of proteins functioning in 

mitochondrial respiratory complex I to complex III decreased whereas the proteins participating 

in complex V, that lack heme and Fe-S clusters (supplemental Figure 1A), were increased probably 
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by a compensate mechanism. The proteins in the complex IV were not affected by iron-deficiency 

(Figure 9C and supplemental Table 4).  

 To further characterize how iron-deficiency modulates mitochondrial biogenesis and 

metabolism in osteoclast lineage cells, we first stained the control and Tfr1ΔlysM osteoclast lineage 

cells with fluorescence-labelled Mito Tracker. Manual quantification of Mito Tracker fluorescent 

intensity of individual cells showed a small decrease in mitochondrial mass in Tfr1-deficient 

mature osteoclasts but not in monocytes and pre-osteoclasts (Figure 10A). Next, we examined the 

mitochondrion-derived ROS by MitoSOX-staining of control and Tfr1ΔlysM cultured cells. As 

demonstrated in Figure 10B, loss of Tfr1significantly decreased mitochondrial ROS production in 

monocytes and osteoclasts which was more pronounced in mature OCs. Insufficient iron in 

Tfr1ΔlysM osteoclasts also resulted in a mild decrease in mitochondrial membrane potential (Figure 

10C).  

Lastly, we measured mitochondrial respiration using the Seahorse Extracellular Flux Analyzer 

in control and Tfr1-deficient osteoclast lineage cells isolated. As depicted in Figure 11A, the basal 

mitochondrial respiration is the direct measure of oxygen consumption rate (OCR) attributed to 

the mitochondrial electron transport chain (ETC). The maximum respiration is induced by 

incubating cells with the uncoupler, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone 

(FCCP). The ATP-linked respiration is measured by exposing cells to oligomycin, an inhibitor of 

ATP synthase complex V. The nonmitochondrial respiration, which is the remaining OCR when 

the ETC activity is completely abolished by a mixture of rotenone/antimycin A. This parameter 

reflects the portion of cellular respiration by oxygen-consuming enzymes such as NADPH 

oxidases, heme oxygenases, and/or lipoxygenases. The residual OCR after inhibition by 

oligomycin is the measure of the protons pumped through ETC, which consumes oxygen without 

generating any ATP (due to inhibited ATP synthase activity by the drug) and is referred to the H+ 

leak. As shown in Figure 11B-11H, all these mitochondrial respiratory parameters increased 
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dramatically in control and TfR1-null mature osteoclasts compared to their respective precursors. 

However, there were > 2-fold decreases of these measures in Tfr1-deficient mature osteoclasts 

relative to control osteoclasts. Furthermore, we calculated the reserve respiratory capacity, which 

is the difference between the maximum and basal respiration that can be utilized in the event of a 

sudden energy demand in cells. We reported this as a percentage for each group of cells by using 

the formula of [(maximum OCR - basal OCR)/maximum OCR × 100]. Again, the reserve 

respiratory capacity in Tfr1-null osteoclasts was greatly reduced when compared to control cells 

(Figure 11E). By contrast, there was no difference in the coupling efficiency (the ratio of ATP-

linked OCR to basal OCR) of control and Tfr1ΔlysM osteoclast lineage cells (Figure 11G). 

 

TfR1-mediated iron uptake modulates osteoclast actin cytoskeleton through the WAVE 

regulatory complex 

To identify the mechanisms by which cellular iron and energy metabolism regulate osteoclast 

cytoskeleton, we turned to analyze the level of key osteoclast cytoskeleton regulating proteins 

(Blangy et al, 2020) in Tfr1-deficient osteoclast lineage cells relative to their control cells in our 

quantitative proteomic data bases (supplemental Table 1-3). More cytoskeleton proteins in mature 

osteoclasts were affected by Tfr1-dificiency than those in osteoclast precursors (supplemental 

Table 5). Among them, 25 cytoskeleton proteins were down-regulated whereas 17 proteins were 

up-regulated by more than 1.2-fold in Tfr1-dificient osteoclasts compared to control cells. 15 

osteoclast cytoskeleton-regulatory proteins remained the same between control and Tfr1-dificient 

osteoclasts. IPA analysis of the cytoskeleton-regulating pathways affected by Tfr1-deficiency in 

osteoclasts (Figure 12A) unveiled that the protein level of several molecules involved in activation 

of β3-integrin pathway, which is critical for osteoclast cytoskeleton organization and bone 

resorption (Teitelbaum, 2011), were decreased in Tfr1-null osteoclasts including β3-integrin 

(Itgb3), c-Src, Rap1a/b, Rap2b, Rapgef1, Rap1gds (supplemental Table 5). A few actin-bundling 
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and regulating proteins such as myosin heavy chain 14 (Myh14), α-actinin 1 and 4 (Actn1 and 

Actn4), and filamin A (Flna) were also down-regulated in Tfr1-depleted osteoclasts. The 

branching and polymerization of filamentous actin in eukaryotic cells is mediated by the Arp2/3 

complex which is controlled by the WAVE regulatory complex (WRC). Mammalian WRC 

contains five subunits of Cyfip1/2, Hem1/2 (encoded by Nckap1l and Nckap1, respectively), 

Abi1/2/3, HSPC300, and WAVE1/2/3 (Rottner et al, 2021). The WRC is activated by the small 

GTPases Rac1 and Arf1 through their direct binding to Cyfip1/2 and Hem1/2. Strikingly, 12 out 

of 25 down-regulated cytoskeletal proteins in Tfr1-null osteoclasts (supplemental Table 5) are the 

components of the Rac1/Arf-WRC-Arp2/3 axis. These data indicate that Tfr1-mediated iron 

uptake regulates osteoclast actin cytoskeleton organization, at least in part, through modulating the 

stability of the WRC-Arp2/3 actin-regulating module. To test this hypothesis, we constructed a 

recombinant retroviral vector expressing murine Hem1. After retroviral transduction in Tfr1-

deleting bone marrow monocytes, we confirmed the expression of recombinant Hem1 in osteoclast 

lineage cells by western blotting (Figure 12B). The overexpression of Hem1 partially rescued the 

cytoskeleton organization defect in Tfr1-null osteoclasts as demonstrated by a significant increase 

in the number of well-spreading, podosome-belt containing osteoclasts compared to non-

transduced and empty vector transduced Tfr1-null osteoclasts (Figure 12C).  
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Discussion 

Energy metabolism plays a pivotal role in osteoclast differentiation and function in vitro and in 

vivo (Kubatzky et al, 2018; Arnett and Orriss, 2018). Increased iron uptake coupled with the 

elevated expression of PGC1-β, a transcriptional coactivator of genes involved in energy 

metabolism, stimulate mitochondrial biogenesis and respiration to meet high energy demand 

during osteoclast differentiation and bone resorption activities (Ishii et al, 2009). Although Tf has 

been reported to promote osteoclastogenesis and bone resorption in vitro and iron chelation by 

desferrioxamine (DFO) has been shown to inhibit osteoclasts and prevent bone loss induced by 

estrogen deficiency in ovariectomized mice (Ishii et al, 2009), the precise functions of Tfr1 and 

Tfr1-mediated iron uptake in osteoclast biology and skeletal homeostasis remain incompletely 

understood. To fill in this knowledge gap, we have generated two lines of Tfr1 conditional 

knockout mice in which Tfr1 expression is disrupted in myeloid osteoclast precursors and mature 

osteoclasts, respectively. Our in vivo skeletal phenotyping and in vitro mechanistic studies unveil 

a critical role of TfR1-mediated iron uptake in regulating osteoclast mitochondrial metabolism and 

cytoskeleton organization/bone resorption but not osteoclast differentiation. Our findings provide 

the experimental evidence that disruption of Tfr1 expression in osteoclast lineage cells in mice 

leads to a dramatic increase in trabecular bone mass in long bones of female mice. 

 The real-time qPCR detection of mRNA expression of transporters and regulators in four 

mammalian iron-acquiring pathways (Tf-dependent, heme, ferritins, and NTBI) in osteoclast 

precursor and mature cells demonstrated that the key molecules involved in Tf/TFR-mediated iron 

uptake are significantly up-regulated during osteoclast differentiation. The expression of heme 

transporter Hcp1 is also increased in mature osteoclasts whereas the level of NTBI iron transporter 

Zip14 and ferritin transporter (Scara-5 and Tim-2) is either decreased in osteoclasts or undetectable 

in osteoclast lineage cells (Figure 1). These results indicate that osteoclasts obtain extracellular 

iron largely through uptake of Tf and heme. This notion is further supported by the evidence that 
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high dose of hemin but not FAC is able to rescue the Tfr1-deficient osteoclast phenotypes (Figure 

8). Furthermore, loss of Tfr1 in osteoclasts completely abolishes the uptake of Tf while Tfr2-

deletion in monocytes has no effects on iron homeostasis (Rishi et al, 2016), indicating that Tfr1 

is the major receptor for Tf and Tf-dependent iron uptake in osteoclast lineage cells. 

 At post pubertal age of 10 weeks, loss of Tfr1 in osteoclast precursors causes a two to three-

fold increase in trabecular bone parameters in female but not male mice (Figure 2 and Figure 3), 

although both male and female Tfr1-null osteoclasts exhibit similar defects in vitro (Figure 6 and 

Figure 7). In contrast, disruption of Tfr1 expression in cathepsin K-expressing mature osteoclasts 

causes significant increase of trabecular bone mass in both genders of mice at 10 weeks, albeit the 

phenotype is more pronounced in female knockout mice (Figure 4 and Figure 5). The exact 

mechanisms underlying the gender difference in the trabecular bone phenotype of mice with Tfr1-

deficiency in osteoclasts are unknown. A similar finding has been recently reported in Glut1 

myeloid conditional knockout mice (Li et al, 2020). While deletion of Glut1 in LysM-expressing 

myeloid cells in mice inhibits osteoclastogenesis and leads to increased trabecular bone mass in 

female but not male mice, Glut1-depleted bone marrow monocytes cultured from both male and 

female knockout mice have similar degree of blunted osteoclast differentiation in vitro. Estrogen 

has been reported to regulate systemic and cellular iron homeostasis by inhibiting the expression 

of hepcidin, a liver-derived iron regulating hormone that binds to and induces degradation of iron 

exporter Fpn (Hou et al, 2012; Yang et al, 2012; Ikeda et al, 2012). Thus, estrogen may 

synergistically reduce cellular iron content with Tfr1-deficiency in osteoclast lineage cells by 

enhancing iron export through hepcidin/ferroportin axis in vivo. In addition, we have recently 

shown that estrogen attenuates mitochondrial OXPHOS and ATP production in precursors but not 

mature osteoclasts (Kim et al, 2020). Therefore, it is likely that estrogen and Tfr1-deletion 

additively inhibit mitochondria metabolism in osteoclast precursor cells. This may explain why 
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the sexual dimorphism of skeletal phenotype is more obvious in Tfr1 myeloid knockout mice than 

in Tfr1 mature osteoclast knockout mice. Nevertheless, the effects of estrogen on Tfr1 expression 

and cellular iron homeostasis in osteoclast precursor and mature osteoclasts need further 

investigation. Furthermore, little is known about how androgen directly modulates Tfr1 and iron 

status in vivo and in vitro. 

 Up-regulation of glycolysis and mitochondrial OXPHOS bioenergetic pathways are required 

for osteoclast differentiation and function (Kubatzky et al, 2018; Arnett and Orriss et al, 2018). In 

this study, we have demonstrated that both mRNA and protein of Tfr1 are most abundant in mature 

osteoclasts (Figure 1 and Figure 6). Disruption of Tfr1 expression in myeloid osteoclast precursor 

cells attenuates mitochondria biogenesis and respiration in mature but not progenitor osteoclasts, 

leading to defective osteoclast cytoskeleton organization and impeded bone-resorbing activities 

with little influence on osteoclast differentiation in vitro and in vivo (Figure 6 to 12). These results 

indicate that energy metabolism regulated by Tf11-mediated iron uptake is specifically 

indispensable for osteoclast activation and function but not for osteoclastogenesis. In contrast, Ishii 

et al have reported that in vitro knock-down of Tfr1 expression in bone marrow monocytes by 

short-hairpin RNA (shRNA) inhibits osteoclast differentiation (Ishii et al, 2009). This discrepant 

finding may be caused by the off-target effects of Tfr1 shRNA on expression of genes essential 

for osteoclast differentiation or by the distinct effects of short-term Tfr1 down-regulation by 

shRNA and long-term genetic deletion of Tfr1 on osteoclast lineage cells. 

 It has been recently reported that deletion of mitochondria coactivator PGC-1β in myeloid 

osteoclast precursor cells by LysM-Cre diminishes mitochondrial biogenesis and function in 

osteoclasts, leading to cytoskeletal disorganization and bone resorption retardation with normal 

osteoclasts differentiation (Zhang et al, 2018). The PGC-1β-stimulated osteoclast cytoskeleton 

activation is mediated by GIT1 (G protein coupled receptor kinase 2 interacting protein 1), an 
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upstream activator of small GTPases Rac1 and Cdc42 that are indispensable for osteoclast 

cytoskeletal organization and function (Jones and Katan, 2007; Menon et al, 2010). Another report 

by Nakano et al has shown that deletion of G-protein Gα13 in myeloid cells augments mitochondrial 

biogenesis and metabolism in osteoclasts. The gain-of-function of mitochondrial pathway induced 

by Gα13-deletion in osteoclasts promotes actin cytoskeleton dynamic and bone resorption via 

activation of cytoskeleton regulators c-Src, Pyk2, and RhoA-Rock2. Again, Gα13-deletion in 

osteoclast lineage cells has minimum effects on osteoclastogenesis in vivo and in vitro (Nakano et 

al, 2019). These reports are consistent with our findings in that energy metabolism regulated by 

Tfr1-mediate iron uptake is primary for osteoclast cytoskeleton organization rather than osteoclast 

differentiation. Intriguingly, Tfr1 regulates osteoclast cytoskeleton probably via a distinct 

mechanism. The level of GIT1, Rac1, Cdc42, and Rock2 remains unchanged in Tfr1-null 

osteoclasts (supplemental Table 5). However, the components of the actin-regulating complex 

WRC and the isoforms of small GTPases Arf family members are mostly down-regulated, 

indicating that Tfr1 modulates osteoclast cytoskeleton through promoting the stability of WRC 

complex. In supporting of this premise, overexpression of Hem1 (also known as Nckap1l) rescues 

the cytoskeletal defects in Tfr1-deficient osteoclasts (Figure 12).  

 In summary, we have provided evidence demonstrating that Tfr1-mediated iron uptake is a 

major iron acquisition pathway in osteoclast lineage cells that differentially regulates trabecular 

bone remodeling in perpendicular and axial bones of female and male mice. The increased 

intracellular iron facilitated by Tfr1 is specifically required for osteoclast mitochondrial energy 

metabolism and cytoskeletal organization. 
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Materials and Methods 

Mice and genotyping. Tfr1-flox congenic mice on a 129Sv background were kindly provided by 

Dr. Nancy C Andrews (Duke University). Tfr1-flox mice on a homogeneous C57BL6 background 

were generated by backcrossing 129Sv Tfr1-flox mice with C57BL6 mice for more than 10 

generations. LysM-Cre mice on a C57BL6 background (B6.129P2tm1/cre, stock number 004781) 

were purchased from The Jackson Laboratory (Bar Harbor, Maine, USA). Ctsk-Cre congenic mice 

on a C57BL6 background were obtained from Dr. Takashi Nakamura (Keio University, Tokyo, 

Japan). The primers and PCR protocols for genotyping Tfr1-flox and LysM-Cre mice followed 

those provided by The Jackson Laboratory. The following primers for genotyping Ctsk-Cre mice 

were used: P1N (5’-CCTAATTATTCCTTCCGCCAGGATG-3’), P2N (5’-

CCAGGTTATGGGCAGAGATTTGCTT-3’), and P3N (5’-

CACCGGCATCAACGTTTTCTTTTCG-3’). In vivo analyses of skeletal phenotypes were 

performed on F2 mice of mixed and homogeneous backgrounds.  

 

Reagents and antibodies. Alexa Fluor-488 Phalloidin (catalog no. A12379), alpha-MEM (catalog 

no. 78-5077EB), Hoechst 33342 (catalog no. H3570), and 10 × Trypsin/EDTA (catalog no. 15400-

054) were purchased from Thermo-Fisher Scientific. cOmplete EDTA-free protease inhibitor 

cocktail (catalog no. 4693159001); 3,3’-diaminobenzidine (DAB) tablets (D-5905), High glucose 

DMEM (catalog no. D-5648), enhanced chemiluminescent detection reagents (ECL, catalog no. 

WBKLS0100), ferric ammonium citrate (FAC, catalog no. F5879), 30% H2O2 (catalog no. 

216763), hemin (catalog no. H9039), NaK tartrate (catalog no. S6170), Napthol AS-BI phosphoric 

acid solution (catalog no. 1802), 10 × penicillin–streptomycin-l-glutamine (PSG) (catalog no. 

G1146), peroxidase-conjugated WGA (Wheat germ agglutinin) lectin (catalog no. L-7017), 

polyvinylidene difluoride membrane (PVDF, catalog no. IPVH00010), 1 × RIPA buffer (catalog 

no. R-0278), and mouse apo-transferrin (catalog no. T0523) were obtained from MilliporeSigma. 
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Fetal bovine serum (FBS) was purchased from Hyclone. Blasticidin (catalog no. 203350) was 

bought from EMD Chemicals/Millipore. TransIT-LT1 transfect reagent (catalog no. MIR2300) 

was obtained from Mirus Bio LLC. Fe59 in ferric chloride form was purchased from PerkinElmer 

Inc. All other chemical compounds were from MilliporeSigma. 

The antibodies used in this study were obtained from the following resources: mouse 

monoclonal anti-cathepsin K (clone 182-12G5, catalog no. MAB3324, MilliporeSigma); mouse 

monoclonal anti-HA.11 antibody (clone 16B12, catalog no. 901513, Biolegend); mouse 

monoclonal anti-NFATc1 (catalog no. sc-7294, Santa Cruz Biotechnology); mouse monoclonal 

anti-transferrin receptor (clone H68.4 catalog no. 13-6800, Thermo-Fisher Scientific); mouse 

monoclonal anti-tubulin (clone DM1A, catalog no. T9026, MilliporeSigma); horseradish 

peroxidase conjugated anti-mouse secondary antibody (catalog no. 7074, Cell Signaling 

Technology); and horseradish peroxidase conjugated anti-rabbit secondary antibody (catalog no. 

7076, Cell Signaling Technology). 

 

µCT. The left femurs, tibias, and L4 vertebrae were cleaned of soft tissues and fixed in 4% 

paraformaldehyde in PBS for overnight at 4ºC. After washing with PBS for three times, the bones 

were stored in PBS with 0.02% sodium azide. The bones were loaded into a 12.3-mm diameter 

scanning tube and were imaged in a μCT (model μCT40, Scanco Medical).We integrated the scans 

into 3-D voxel images (1024 x 1024 pixel matrices for each individual planar stack) and used a 

Gaussian filter (sigma = 0.8, support = 1) to reduce signal noise. A threshold of 200 was applied 

to all scans, at medium resolution (E = 55kVp, I = 145μA, integration time = 200ms). 

 

Histology and bone histomorphometry. The left femurs were embedded undecalcified in methyl 

methacrylate. The dynamic histomorphometric examination of trabecular bone formation was 

done on 5μm longitudinal sections with a digitizer tablet (OsteoMetrics, Inc., Decatur, GA, USA) 
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interfaced to a Zeiss Axioscope (Carl Zeiss, Thornwood, NY, USA) with a drawing tube 

attachment. The right femurs fixed and decalcified in 14% EDTA for 7-10 days. The bones were 

embedded in paraffin before obtaining 5-μm longitudinal sections. After removal of paraffin and 

rehydration, sections were stained for TRAP activity and counter-stained with fast green and 

osteoclasts were enumerated on the trabecular bone surface using Osteomeasure 

histomorphometric software (OsteoMetrics, Inc., Decatur, GA, USA). 

 

Serum TRAcP-5b, CTx-I, and PINP ELISA. Blood were collected retro-orbitally under 

inhalation of a 2% isoflurane/oxygen mix anesthesia immediately prior to sacrifice. Serum was 

obtained by centrifugation of blood in a MiniCollect tube (catalogue no. 450472, Greiner Bio-one 

GmbH, Austria). The serum levels of TRAcP-5b, CTx-I, and PINP were measured by a mouse 

TRAP (TRAcP 5b) kit (SB-TR103), RatLaps (CTx-I) EIA (AC-06F1), and rat/mouse PINP EIA 

kit (AC-33F1) from Immunodiagnostic Systems following their instructions. 

 

In vitro osteoclast cultures. Whole bone marrow was extracted from tibia and femurs of 6- to 8-

week-old control and conditional knockout male and female mice. Red blood cells were lysed in 

buffer (150 mM NH4Cl, 10 mM KNCO3, 0.1 mM EDTA, pH 7.4) for 5 minutes at room 

temperature. 5 × 106 bone marrow cells were plated onto a 100mm petri-dish and cultured in α-10 

medium (α-MEM, 10% heat-inactivated FBS, 1 × PSG) containing 1/10 volume of CMG 14–12 

(conditioned medium supernatant containing recombinant M-CSF at 1μg/ml) for 4 to 5 days. Bone 

marrow monocytes were lifted by 1 × Trypsin/EDTA and replated at density of 160/mm2 onto 

tissue culture plates or dishes with 1/100 vol of CMG 14–12 culture supernatant along for 

monocytes or cultured with 1/100 vol of CMG 14–12 culture supernatant plus 100 ng/ml of 

recombinant RANKL for 2 and 4 days to generate mononuclear pre-osteoclasts and mature 

osteoclasts, respectively. 
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Retroviral transduction. A total of 3μg of pMX retroviral vector or recombinant pMX vector 

expressing HA-tagged murine Hem1 were transfected into Plat E retroviral packing cells using 

TransIT-LT1 transfection reagent. Virus supernatants were collected at 48 hours after transfection. 

5 × 106 bone marrow cells isolated from TfR1 myeloid conditional knockout mice were plated 

onto a 100mm petri-dish and cultured in α-10 medium (α-MEM, 10% heat-inactivated FBS, 1 × 

PSG) containing 1/10 volume of CMG 14–12 supernatant for two days. Bone marrow monocytes 

were transduced with viruses for 24 h in α-10 medium containing 1/10 volume of CMG 14–12 

supernatant and 20μg/ml of protamine. Cells were then lifted by 1 × Trypsin/EDTA and replated 

at 2 × 106 density onto a 100mm petri-dish. The positively transduced cells were selected in α-10 

medium containing M-CSF and 1.5μg/ml of blasticidin (203350, EMD Chemicals) for 3 days. 

 

TRAP staining. Osteoclasts cultured on 48-well tissue culture plate were fixed with 4% 

paraformaldehyde/PBS for 20 min at room temperature. After washing with PBS for 5 min twice, 

TRAP was stained with NaK tartrate and naphthol AS-BI phosphoric acid. Photomicrographs were 

taken with a stereomicroscope with a digital camera (Discovery V12 and AxioCam; Carl Zeiss, 

Inc.). The number of osteoclasts with more than three nuclei was counted and analyzed by 

GraphPad Prism 6 in a double-blinded manner. 

 

Resorption pit staining. Mature osteoclasts grown on cortical bovine bone slices were fixed with 

4% paraformaldehyde/PBS for 20 minutes. After washing in PBS for 5 min twice, cells were 

removed from bone slices with a soft brush. The slices were then incubated with 20µg/ml 

peroxidase-conjugated WGA lectin for 60 min at room temperature. After washing in PBS twice, 

bone chips were incubated with 0.52 mg/ml 3,3_-diaminobenzidine and 0.03% H2O2 for 30 min. 

Samples were mounted with 80% glycerol/PBS and photographed with Zeiss AxioPlan2 

microscope equipped with an Olympus DP73 digital camera. The resorbed area/bone slice was 
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quantified by ImageJ software (National Institutes of Health), and the percentage of pit area versus 

that of the whole bone slice was calculated and analyzed by GraphPad Prism 6. 

 

Fluorescent staining of actin filaments and nuclei. Osteoclasts cultured on glass coverslips or 

bone slices were fixed with 4% paraformaldehyde in PBS for 20min and permeabilized with 0.1% 

Triton X-100/PBS for 10min at room temperature. The filament actin and nuclei were labeled by 

Alexa-488 conjugated phalloidin (1:100 from a 1mg/ml stock) and Hoechst 33342 (1:4000 from a 

10mg/ml stock), respectively, for 15min at room temperature. After two times 5min-wash with 

PBS, samples were mounted with 80% glycerol/PBS and photographed under a Zeiss AxioImager 

Z1 fluorescent microscope equipped with Zeiss AxioCam MRm monochromatic and MR5c color 

cameras with a set of fluorescent filters. The percentage of active osteoclasts (podosome-belt 

bearing osteoclasts on glass coverslips and actin-ring bearing osteoclasts on bone slices) out of 

total osteoclasts was calculated and analyzed by GraphPad Prism 6. 

 

RNA isolation and real-time qPCR. Total RNA was purified using RNeasy mini kit (Qiagen) 

according to the manufacture’s protocol. First-strand cDNAs were synthesized from 0.5-1μg of 

total RNA using the High Capacity cDNA Reverse Transcription kits (Thermo-Fisher Scientific) 

following the manufacturer’s instructions. TaqMan quantitative real-time PCR was performed 

using the following primers from Thermo-Fisher Scientific: Acp5 (Mm00475698_m1); Nfatc1 

(Mm00479445_m1); Mfsd7c (Flvcr2, Mm01302920_m1); Mrps2 (Mm00475529_m1); Ppargc1b 

(Mm00504720_m1); Slc11a2 (Mm00435363_m1); Slc39a14 (Mm01317439); Slc46a1 

(Mm00546630_m1); Tfrc (Mm00441941_m1); Tfr2 (Mm00443703_m1). Samples were 

amplified using the StepOnePlus real-time PCR system (Life Technologies) with an initial 

denaturation at 95 ºC for 10 min, followed by 40 cycles of 95 ºC for 15 s and 60 ºC for 1 min. The 
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relative cDNA amount was calculated by normalizing to that of the mitochondrial gene Mrps2, 

which is steadily expressed in both BMMs and osteoclasts, using the ΔCt method. 

 

Immunoblotting. Cells were washed with ice-cold PBS twice and lysed in 1 x RIPA buffer 

containing cOmplete Mini EDTA-free protease inhibitor cocktail. After incubation on ice for 30 

min, cell lysates were clarified by centrifugation at 14,000 rpm for 15 min at 4°C. 10 to 30μg of 

total protein were subjected to 8% or 10% SDS-PAGE gels and transferred electrophoretically 

onto PVDF membrane by a semi-dry blotting system (Bio-Rad). The membrane was blocked in 

5% fat-free milk/Tris-buffered saline for 1 hour and incubated with primary antibodies at 4°C 

overnight followed by horseradish peroxidase conjugated secondary antibodies. After rinsing 3 

times with Tris-buffered saline containing 0.1% Tween 20, the membrane was incubated with ECL 

for 5 min. 

 

59Fe-transferrin uptake and colorimetric total cellular iron measurement. Mouse apo-

transferrin was labeled with 59Fe and gel-filtered on a Sephadex G-50 column. For Tf-dependent 

59Fe influx measurements, 25µg of 59Fe-labeled Tf was added to each well of a 6-well plate with 

3 ml of medium and incubated in a CO2 incubator (37°C, 5% CO2) with rotation at 80 rpm. At 

various times after adding labeled Tf, the medium was aspirated, and cells were washed gently 

three times with 2 ml of cold PBS. Wells were extracted with 1 ml of 0.1 N NaOH; radioactivity 

was determined on a 0.5-ml aliquot by a gamma counter. Protein (Bio-Rad) was determined on 

25µl of the extract.  

To measure cellular iron, cells cultured in 6-well plates were collected in 50µl of the Iron Assay 

Buffer provided in an Iron Assay kit (catalog no. ab83366, Abcam) and were homogenized with 

pellet pestles associated with a motor. The cells lysates were centrifuged at 15,000 rpm for 10 min. 
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The supernatants proceeded to measure the total iron (Fe2+ and Fe3+) concentration following the 

manufacturer’s protocol. 

 

Quantitative proteomic and mass-spectrometry. Cells were harvest and lysed in 2% SDS lysis 

buffer. A total of 100µg of proteins in each cell lysate were reduced, alkylated, and digested using 

filter-aided sample preparation (FASP). Tryptic peptides were cleaned by solid phase extraction 

(SPE), normalized and labeled using a TMTsixplexTM isobaric Mass Tagging kit (catalog no. 

90064, Thermo-Fisher Scientific). The labeled peptides were cleaned by SPE and mixed. The 

mixed peptides from each cell culture were separated into 36  fractions on a 100 x 1.0 mm Acquity 

BEH C18 column (Waters) using an UltiMate 3000 UHPLC system (Thermo-Fisher Scientific) 

with a 40 min gradient from 99:1 to 60:40 buffer A:B (Buffer A contains 0.5% acetonitrile and 10 

mM ammonium hydroxide. Buffer B contains 10 mM ammonium hydroxide in acetonitrile) ratio 

under basic (pH 10) conditions and then consolidated into 13 super-fractions. 

 Each super-fraction was then further separated by reverse phase XSelect CSH C18 2.5 mm 

resin (Waters) on an in-line 150 x 0.075 mm column using an UltiMate 3000 RSLCnano system 

(Thermo). Peptides were eluted using a 60 min gradient from 97:3 to 60:40 buffer A : B ratio. 

Here, buffer A contains 0.1% formic acid and 0.5% acetonitrile and buffer B contains 0.1% formic 

acid and 99.9% acetonitrile. Eluted peptides were ionized by electrospray (2.15 kV) followed by 

mass spectrometric analysis on an Orbitrap Fusion Lumos mass spectrometer (Thermo) using 

multi-notch MS3 parameters. MS data were acquired using the FTMS analyzer in top-speed profile 

mode at a resolution of 120 000 over a range of 375 to 1500 m/z. Following CID activation with 

normalized collision energy of 35.0, MS/MS data were acquired using the ion trap analyzer in 

centroid mode and normal mass range. Using synchronous precursor selection, up to 10 MS/MS 

precursors were selected for HCD activation with normalized collision energy of 65.0, followed 
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by acquisition of MS3 reporter ion data using the FTMS analyzer in profile mode at a resolution 

of 50 000 over a range of 100–500 m/z. 

 Proteins were identified and reporter ions quantified by searching the UniprotKB Mouse 

database using MaxQuant (version 1.6.10.43, Max Planck Institute) with a parent ion tolerance of 

3 ppm, a fragment ion tolerance of 0.5 Da, a reporter ion tolerance of 0.001 Da, trypsin/P enzyme 

with 2 missed cleavages, variable modifications including oxidation on M and acetyl on protein 

N-term, and fixed modification of carbamidomethyl on C. Protein identifications were accepted if 

they could be established with less than 1.0% false discovery. Proteins identified only by modified 

peptides were removed. Protein probabilities were assigned by the Protein Prophet algorithm. 

TMT MS3 reporter ion intensity values were analyzed for changes in total protein. 

 

Mitochondrial mass, ROS production, and membrane potential measurements. 

Mitochondrial content, mitochondria-derived ROS, and mitochondrial membrane potential were 

measured using MitoTracker Green fluorescence (catalog no. M7514), MitoSOXTM Red 

Mitochondrial Superoxide Indicator (catalog no. M36008), and JC-1 Dye (catalog no. T3168) from 

Thermo-Fisher Scientific, respectively, using fluorescence microscopy. Briefly, cells cultured onto 

glass-bottom imaging dishes (catalog no. P35G-1.5-14-C, MatTek) were incubated with 

MitoTracker Green (50nM), MitoSOX (5µM), or JC-1 (5µg/ml), respectively, for 15 min at 37 °C. 

The probes were then washed off, and cells were examined under fluorescent microscope. Images 

were analyzed using ImageJ software. 

 

Seahorse mitochondrial flux analysis. Bone marrow monocytes were plated in wells of Seahorse 

XF96 cell culture plates. The cells were cultured with 10ng/ml M-CSF alone or 10ng/ml M-CSF 

plus 100 ng/ml recombinant RANKL for 2 days to generate monocytes and pre-osteoclasts or 4 

days for mature osteoclasts. On the day of respiratory function measurements, the media in the 
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wells were changed to unbuffered Dulbecco’s modified Eagle’s medium supplemented with 4 mM 

glutamate and incubated in a non-CO2 incubator for 1 hour at 37°C. Three baseline measurements 

were acquired before injection of mitochondrial inhibitors or uncouplers. OCR measurements were 

taken after sequential addition of oligomycin (10µM), FCCP (5µM), and rotenone/antimycin A 

mixture (10µM). Oxygen consumption rates were calculated by the Seahorse XF-96 software and 

represent an average of three measurements on 18–24 different wells. The rate of measured oxygen 

consumption was reported as fmol of O2 consumed per min per cell. 

 

Statistics. Based on power analysis using standard deviation (SD) and the population variance 

estimated from our previous studies and reports by others, the required sample size of mice for  

= 0.05 (two-sided) and a power of 0.95 is ≥ 6 animals per group. The in vivo biological replicates 

are defined as an individual mouse for each experiment. All in vitro data were representatives of 

individual biologic replicates from independent experiments and not technical replicates (repeated 

measurements of the same sample). For all graphs, data are represented as the mean ± SD. For 

comparison of 2 groups, data were analyzed using a 2-tailed Student’s t test. For comparison of 

more than 2 groups, data were analyzed using 1-way ANOVA, and the Bonferroni procedure was 

used for Tukey comparison. For all statistical tests, the analysis was performed using Prism 6 

(GraphPad Software, La Jolla, CA) and a P value of less than 0.05 was considered significant. 

 

Study approval. All animal protocols and procedures used in animal studies were approved by 

the Institutional Animal Care and Use Committees of the University of Arkansas for Medical 

Sciences, Long Beach VA Healthcare System, and Loma Linda VA Healthcare System. The 

protocols for generation and use of recombinant DNAs and retroviruses were approved by 

Institutional Biosafety Committee of the University of Arkansas for Medical Sciences. 
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Figures and Figure Legends 

Figure 1. Tfr1 is a major transferrin transporter and regulates cellular iron homeostasis in 

osteoclasts. (A) Detection of mRNA expression of genes involved in iron uptake and export 

pathways in bone marrow monocytes (BMM), mono-nuclear pre-osteoclasts (pOC), and mature 

osteoclasts (OC) by real-time quantitative PCR. Tfrc encodes Tfr1; Slc11a1 encodes DMT1 

(divalent metal ion transporter 1); Slc39a14 encodes Zip14; Slc46a1 encodes Heme transporter 

HCP1. (B) Measurement of 59Fe-labeled transferrin (Tf-59Fe) uptake in control (con) and Tfr1 

myeloid conditional knockout (Tfr1ΔLysM) osteoclasts by a gamma counter. (C) Measurement of 

intracellular total iron by a colorimetric iron assay kit in control and Tfr1-deficient osteoclast 

lineage cells. * p < 0.05, ** p < 0.01, *** p < 0.001 vs BMM (A) and vs control OC (C) by one-

way ANOVA and Student’s t-test. 
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Figure 2. Tfr1 myeloid conditional knockout mice develop normally and display increased trabecular 

bone mass in femurs of 10-week old female mice. (A) Body weight of 10-week old male and female 

control (con) and conditional knockout (Tfr1ΔLysM) mice in C57BL6J background. (B) Representative µCT 

images of distal femurs of male and female con and Tfr1ΔLysM mice. (C) – (I) µCT analysis of trabecular 

and cortical bone mass and structure of distal femurs. Tb, trabecular bone; BV/TV, bone volume/tissue 

volume; Tb.N, trabecular number; Tb. Th, trabecular thickness; Tb.Sp, trabecular spacing; BMD, bone 

mineral density; Conn-Dens, connective density; Cort, cortical bone. *** p < 0.001; **** p < 0.0001 vs 

con by one-way ANOVA. n = 7-13. 
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Figure 3. Loss of Tfr1 in myeloid osteoclast precursors has no impacts on osteoclast number and bone 

formation in mice. (A) Images of Fast green and TRAP staining (10 × objective) and (B) – (G) 

Histomorphometric analysis of the metaphysis of decalcified distal femur histological sections of 10-week 

old male and female control (con) and Tfr1ΔLysM mice. (J) – (L) Dynamic histomorphometry analysis of 

tetracycline-labeled sections from undecalcified distal femurs. (H), (I), and (M) quantitative measurements 

of serum markers for bone resorption and bone formation by ELISA. Tb, trabecular bone; BV/TV, bone 

volume/tissue volume; Tb.N, trabecular number; Tb. Th, trabecular thickness; Tb.Sp, trabecular spacing; 

OC.S/BS, osteoclast surface/bone surface; BFR, bone formation rate; MAR, mineral apposition rate; 

sL.Pm, single tetracycline labeled surface. * p < 0.05, ** p < 0.01, *** p < 0.001 vs con by one-way 

ANOVA. n = 4-13. 
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Figure 4. Deletion of Tfr1 in cathepsin K-Cre expressing osteoclasts results in increased trabecular 

bone mass in distal femurs of 10-week old male and female mice. (A) Body weight of 10-week old male 

and female control (con) and conditional knockout (Tfr1ΔCTSK) mice in 129 × C57BL6J mixed background. 

(B) Representative µCT images of distal femurs of male and female con and Tfr1ΔCTSK mice. (C) – (G) µCT 

analysis of trabecular and cortical bone mass and structure of distal femurs. Tb, trabecular bone; BV/TV, 

bone volume/tissue volume; Tb.N, trabecular number; Tb. Th, trabecular thickness; Tb.Sp, trabecular 

spacing; Cort, cortical bone. * p < 0.05, *** p < 0.001 vs con by one-way ANOVA. n = 7-10. 
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Figure 5. Deletion of Tfr1 in late stage of osteoclast lineage cells increases trabecular bone mass 

without influence on osteoclastogenesis in vivo. (A) The low (12.5 ×) and high (100 ×) magnification of 

images of TRAP staining of histological sections of decalcified distal femurs of 10-week old control (con) 

and Tfr1 conditional knockout (Tfr1ΔCTSK) mice. (B) – (D) Histomorphometric analysis of trabecular bone 

mass and osteoclast number. BV/TV, Trabecular bone volume/tissue volume; N.OC, osteoclast 

number/mm bone surface; OC.Pm, percentage of osteoclast surface/bone surface. *** p < 0.001 vs control 

by one-way ANOVA. n = 5-10. 
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Figure 6. The complete deletion of Tfr1 by two alleles of LysM-Cre has no effects on osteoclast 

differentiation but induces spreading defect in mature osteoclasts. (A) The protein level of Tfr1 and 

osteoclast markers, Nfatc1and cathepsin K (Ctsk), in bone marrow monocytes (m), mono-nuclear pre-

osteoclasts (p), and mature osteoclasts (c) was detected by western blotting. Tubulin served as loading 

control. (B) and (C) TRAP staining (4 × objective) and quantification of numbers of total and spreading 

osteoclasts (OCs). **** p < 0.0001 vs control (f/f;+/+) by one-way ANOVA. n = 6.  
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Figure 7. Loss of Tfr1 in osteoclast lineage cells attenuates actin cytoskeleton organization and inhibits bone 

resorption. (A) The actin filaments and nuclear were stained by Alexa-488 conjugated Phalloidin and Hoechst 33258, 

respectively, in control (con) and Tfr1ΔLysM
 osteoclasts cultured on glass coverslips (20 × objective). (B) 

Quantification of the number of osteoclasts with podosome-belt from (A). (C) The actin filaments and nuclear were 

stained by Alexa-488 conjugated Phalloidin and Hoechst 33342, respectively, in osteoclasts cultured on cortical 

bovine bone slices (20 × objective). (D) Quantification of the number of osteoclasts with actin-rings from (C). (E) 

Resorption pits were stained by horseradish peroxidase conjugated wheat-germ agglutinin (10 × objective). (F) 

Quantification of resorbed area from (E). * p < 0.05, ** p < 0.01, *** p < 0.001 vs con by one-way ANOVA. n = 3. 
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Figure 8. High dose of Hemin but not ferric ammonium citrate rescues the phenotypes of Tfr1-deficient 

osteoclasts. (A) and (B) TRAP staining and quantification of the number of spreading osteoclasts in control (con) and 

Tfr1ΔLysM
 osteoclast cultures. n = 6. (C) and (D) Staining of actin filaments and nuclear and quantification of the 

number of podosome-belt and actin-ring osteoclasts cultured on glass coverslips and bone slices, respectively. n = 4. 

(E) resorption pit staining in con and cKO cultures. n = 4. * p < 0.05, *** p < 0.001 vs 0 µM control; # p < 0.05, ## p 

< 0.01, ### p < 0.001 vs con by one-way ANOVA. 
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Figure 9. The mitochondrial oxidative phosphorylation is mostly affected by Tfr1-deficiency in mature 

osteoclasts. (A) Heat-maps of proteins that are differentially regulated in control (con) and Tfr1ΔLysM
 bone marrow 

monocytes (BMM), mono-nuclear pre-osteoclasts (pOC), and mature osteoclasts (OC) identified by quantitative 

proteomics. (B) The signaling pathways that are affected by Tfr1-deficiency in mature osteoclasts identified by 

Ingenuity Pathway Analysis (IPA). (C) The changes of proteins along the mitochondrial respiration chain that are 

regulated by Tfr1 in mature osteoclasts. C-I to C-V, mitochondrial respiratory complex-I to complex-V. 
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Figure 10. Loss of Tfr1 inhibits mitochondrial mass, ROS production, and membrane potential in mature 

osteoclasts. (A) Quantification of mitochondrial mass by MitoTracker Green staining in control (con) and Tfr1ΔLysM
 

bone marrow monocytes (BMM), mono-nuclear pre-osteoclasts (pOC), and mature osteoclasts (OC). (B) 

Measurement of mitochondria-derived ROS by Mitosox staining in con and cKO osteoclast lineage cells. (C) 

Measurement of mitochondrial membrane potential by JC-1 cationic carbocyanine dye staining in con and cKO 

osteoclast lineage cells. ** p < 0.01, *** p < 0.001, **** p < 0.0001 vs con by unpaired Student’s t-test. MFI, mean 

fluorescence intensity per cell in arbitrary units. 
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Figure 11. Tfr1-deletion in osteoclast lineage cells impairs mitochondrial and non-mitochondrial 

respirations in mature osteoclasts. (A) A graphic illustration of oxygen consumption measured by a 

Seahorse Extracellular Flux analyzer. FCCP, carbonyl cyanide p-trifluoro-methoxyphenyl hydrazone, 

a synthetic mitochondrial uncoupler. (B) – (H) Different fractions of mitochondrial and non-
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mitochondrial respirations per cell of control (blue) and Tfr1ΔLysM (orange) bone marrow monocytes 

(BMM), mono-nuclear pre-osteoclasts (pOC), and mature osteoclasts (OC). #### p < 0.0001 vs BMM 

and pOC; **** p < 0.0001 vs control OC by unpaired Student’s t-test. 
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Figure 12. Loss of Tfr1 in osteoclasts reduces the level of cytoskeleton-regulating proteins and overexpression 

of Hem1 recuses the cytoskeletal organization defect in Tfr1-null osteoclasts. (A) A schematic map of cytoskeletal 

pathways generated by Ingenuity Pathway Analysis (IPA). The down-regulated proteins are shown in green and up-

regulated proteins are marked in red orange. (B) Detection of HA-tagged Hem1 (encoded by Nckap1l) by western 

blotting in retroviral transduced Tfr1ΔLysM
 bone marrow monocytes (m), mononuclear pre-osteoclasts (p), and 

mature osteoclasts (oc) expressing empty vector (vec) and recombinant Hem1. Tubulin served as loading control. (C) 

The staining of actin filaments and nuclear in osteoclasts cultured on glass coverslips and quantification of the number 

of osteoclasts with podosome-belt. ** p < 0.01 vs Tfr1ΔLysM
 and Tfr1ΔLysM

/vec by one-way ANOVA. n = 4. 
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Supplemental Figure 1. Graphic diagrams of iron in energy metabolism in mammalian cells (A) and 

cellular iron-uptake pathways (B). C-I to C-V, mitochondrial respiration chain complex-I to complex-V; 

DMT1, divalent metal ion transporter 1; GLUT1, glucose transporter 1; ROS, reactive oxygen species; Slc1a5, 

glutamine transporter; Steap, metalloreductase of the six transmembrane epithelial antigen of the prostate family 

proteins; Tf, transferrin; TfR1, transferrin receptor 1. 
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Supplemental Figure 2. Partial deletion of Tfr1 by one-allele of LysM-Cre has no effects on bone mass and 

structure in C57BL6/J male and female mice. µCT analysis of trabecular bone mass and structure of distal 

femurs from C57BL6/J background mice. Tb, trabecular bone; BV/TV, bone volume/tissue volume; Tb.N, 

trabecular number; Tb. Th, trabecular thickness; Tb.Sp, trabecular spacing. n = 4-13. 
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Supplemental Figure 3. Loss of Tfr1 in myeloid osteoclast precursor cells had little effects on trabecular 

bone mass and density of lumber vertebrae of 10-week old female mice. µCT analysis of lumber vertebrae. 

Tb, trabecular bone; BV/TV, bone volume/tissue volume; Tb.N, trabecular number; Tb. Th, trabecular thickness; 

Tb.Sp, trabecular spacing; BMD, bone mineral density; Cort, cortical bone. * p < 0.05 vs con by one-way 

ANOVA. n = 7-8. 
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Supplemental Figure 4. Deletion of Tfr1 in mature osteoclasts slightly increases trabecular thickness of 

lumber vertebrae of 10-week old mice in mixed background. (A) Representative µCT images of L4 lumber 

vertebra of male and female control (con) and conditional knockout (Tfr1ΔCTSK) mice. (B) µCT analysis of bone 

mass and structure of L4 lumber vertebra. Tb, trabecular bone; BV/TV, bone volume/tissue volume; Tb.N, 

trabecular number; Tb. Th, trabecular thickness; Tb.Sp, trabecular spacing. ** p < 0.01, *** p < 0.001 vs con by 

one-way ANOVA. n = 7-11. 
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