

1 **Fine-tuning functional syndromes for stressful environments: lessons**
2 **on survival from the South African resurrection plant *Myrothamnus***
3 ***flabellifolia***

4

5 **Authors:** Rose A. Marks^{1,2,3,*}, Mpho Mbobe⁴, Marilize Greyling⁵, Jennie Pretorius⁶, D. Nicholas
6 McLetchie⁷, Robert VanBuren^{1,2}, and Jill M. Farrant³

7

8 1. Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
9 2. Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
10 3. Department of Molecular and Cell Biology, University of Cape Town, Western Cape, South Africa
11 4. Welgevonden Environmental Awareness Program, Vaalwater, Limpopo, South Africa
12 5. Fertile Footsteps (PTY) Ltd, Waterberg, Vaalwater, Limpopo, South Africa
13 6. Buffelskloof Nature Preserve, Lydenburg, Mpumalanga, South Africa
14 7. Department of Biology, University of Kentucky, Lexington, KY 40506, USA

15

16 * **Correspondence:** Rose A. Marks, Department of Horticulture, Michigan State University, East Lansing, MI 48824,
17 USA; Email: marksr49@gmail.com; Phone: (603) 852-3190; ORCID iD: <https://orcid.org/0000-0001-7102-5959>

18

19 **ABSTRACT**

20 Resilience to abiotic stress is associated with a suite of functional traits related to
21 defense and longevity. Stress tolerant plants are generally slow growing with extended leave
22 lifespans and reduced allocation to reproduction. Resurrection plants are ideal systems to test
23 for trade-offs associated with stress tolerance due to their extreme resiliency. While, growth
24 defense trade-offs are well-characterized, few studies have tested for natural variation
25 associated with tolerating the harshest environments. Here, we surveyed a suite of functional
26 traits related to stress tolerance, leaf economics, and reproductive allocation in natural
27 populations of the South African resurrection plant *Myrothamnus flabellifolia*. We selected three
28 distinct field sites in South Africa ranging from mesic to xeric. Despite considerable
29 environmental variation across the study area, *M. flabellifolia* plants were extremely and
30 similarly stress tolerant at all sites. However, we detected notable variation in other life history
31 and morphological traits. Plants in more mesic sites were larger, faster growing, and had more
32 inflorescences. In contrast, plants from the most xeric sites appeared to invest more in
33 persistence and defense, with lower growth rates and less reproductive allocation. Together,
34 this suggests that desiccation tolerance is a binary trait in *M. flabellifolia* with little natural
35 variation, but that other phenotypes are more labile. The trait syndromes exhibited by plants at
36 the different study sites align with general expectations about growth defense tradeoffs
37 associated with the colonization of extreme environments. We show that plants from the least
38 stressful sites are more reproductive and faster growing, whereas plants from the most stressful
39 sites were slower growing and less reproductive. These findings suggest that *M. flabellifolia*
40 plants are finely tuned to their environment.

41

42 **Key words:** CSR theory, desiccation tolerance, drought, ecology, *Myrothamnus flabellifolia*,
43 resurrection plant, South Africa, trade-offs

44 **INTRODUCTION**

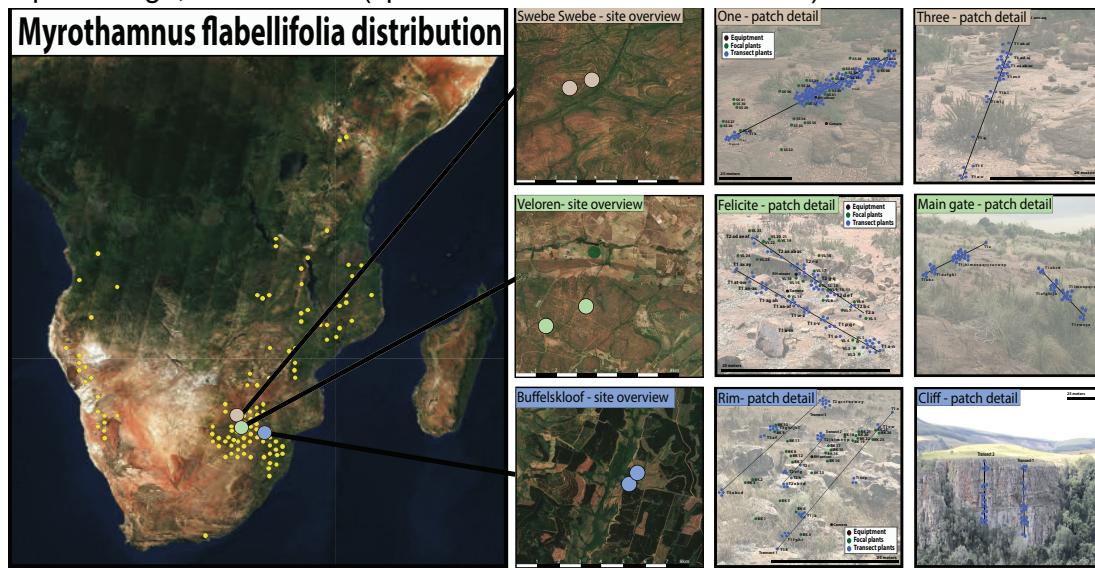
45 Land plants are incredibly diverse, spanning over 500 million years of evolution and
46 divergence (Kumar *et al.* 2017; Morris *et al.* 2018; Nie *et al.* 2020). As a result, individual
47 species exhibit vastly different life history, anatomy, and physiology from one another. This
48 extensive diversity has allowed plants to colonize a wide array of habitats and coexist in rich
49 communities while simultaneously exploiting unique niches (Whittaker 1965; Huston 1994).
50 Many important adaptations that allow plants to thrive in specific habitats have evolved
51 recurrently and convergently across diverse lineages (Mooney and Dunn 1970; Pérez *et al.*
52 2004; Lengyel *et al.* 2010; VanBuren *et al.* 2019), and plants with similar and/or complementary
53 traits are often found growing together in close association (Winemiller *et al.* 2015). In fact, the
54 immense variation in plant life strategies can be crudely summarized into three broad functional
55 classes: Competitors, Stress-tolerators, and Ruderals. These classes comprise the basis of
56 CSR theory and can be used to predict species occurrence and distribution (Grime *et al.* 1997;
57 Grime and Mackey 2002; Grime 2006; Pierce *et al.* 2013; Novakovskiy *et al.* 2016; Li and
58 Shipley 2017). The different functional classes exist along a spectrum, but plants in each class
59 are expected to exhibit a characteristic suite of functional traits and dominate under specific
60 environmental conditions. Competitors generally maximize resource acquisition, invest heavily
61 in vegetative growth, and are long-lived. They dominate in low stress, low disturbance sites.
62 Stress-tolerators allocate more resources to tolerance and defense, have slow growth rates,
63 limited plasticity, and are long-lived. They are expected to dominate in high stress, low
64 disturbance sites. Ruderals are short lived, fast growing, and highly reproductive plants that are
65 expected to dominate in low stress, high disturbance sites (Grime *et al.* 1997; Grime and
66 Mackey 2002; Grime 2006; Novakovskiy *et al.* 2016). Few, if any, plants are able to thrive in
67 high stress, high disturbance sites, but in order to do so they would likely employ a combination
68 of both Stress-tolerator and Ruderal functional traits. While the classes defined by CSR theory
69 are a useful tool for predicting functional traits and species distributions (Zhou *et al.* 2017), not all
70 species fall neatly into the classes of Competitor, Stress-tolerator, and Ruderal. Instead, they
71 exist along a spectrum exhibiting complex and variable assemblages of functional traits (Pierce
72 *et al.* 2013). Although the existence of this phenotypic spectrum is widely accepted, few studies
73 have investigated the nuanced variation and functional trade-offs within a single class, or single
74 species (Wellstein *et al.* 2013).

75 Functional traits and trade-offs associated with stress tolerance are of particular interest
76 due to increasingly challenging environmental conditions related to global change (Ahuja *et al.*
77 2010). Resurrection plants are, in many ways, the epitome of the Stress-tolerator functional
78 type. They are a phylogenetically diverse group of highly stress tolerant plants that occur in
79 extremely arid habitats across the world (Gaff 1971, 1986; Gaff and Bole 1986; Porembski
80 2007, 2011; Alcantara *et al.* 2015; Rabarimanarivo and Ramandimbisoa 2019). These plants
81 can tolerate complete desiccation of their vegetative tissues--to or below an absolute water
82 content of -100 MPa--without dying (Bewley 1979). Most resurrection plants can persist in a
83 completely desiccated state for months to years, during which time they may be exposed to
84 intense heat and irradiation, yet they still recover normal metabolic and photosynthetic
85 processes within hours to days of the first rains (Gaff 1989; Farrant *et al.* 1999). Because of
86 their high stress tolerance, resurrection plants are an ideal system in which to test the
87 predictions laid out in CSR theory. Stress-tolerators are expected to dominate in high stress, low

88 disturbance environments, exhibit slow growth rates, minimal reproductive investment, and low
89 plasticity (Novakovskiy *et al.* 2016). However, many resurrection plants are widely distributed
90 and exposed to notable environmental differences across their native range (Marks *et al.* 2021),
91 which could drive intraspecific variability among populations (Stewart and Nilsen 1995;
92 Baythavong 2011). Characterizing the degree of phenotypic variability in resurrection plants will
93 provide insight into the inherent constraints of high stress tolerance and improve predictions on
94 survival of these and other plants.

95 Here, we tested for phenotypic variation in the resurrection plant, *Myrothamnus*
96 *flabellifolia* across an environmental gradient. *Myrothamnus flabellifolia* is native to southern
97 Africa and is culturally significant. The plants are highly aromatic and produce a robust profile of
98 secondary compounds related to tolerance and defense (Bentley *et al.* 2020) many of which
99 have important historical and contemporary medicinal applications (Dhillon *et al.* 2014; Jaspal *et*
100 *al.* 2018; Bentley *et al.* 2019b, 2020). The species is widely known by local people across its
101 native range and has been independently named by multiple communities. It is known as
102 *Uvukakwabafile* in isiZulu, *Patje-ya-tshwene* in Setswana/Sesotho, *Umazifisi* in isiNdebele, and
103 *Mufandichumuka* in Shona. Elders from these communities report using the plant as a medicinal
104 tea to improve the quality of sleep, cure common colds, mitigate fatigue and stress, and as a
105 seasoning for food. The leaves of this plant are also burned, and the smoke is used to treat
106 respiratory ailments such as asthma, to treat headaches and nosebleeds, to revive people who
107 have fainted, and to treat uterine pain. More recently, the plant has been used to treat cancer,
108 reduce blood pressure, and prevent kidney damage (Jaspal *et al.* 2018; Erhabor *et al.* 2020).
109 There is growing international interest in *M. flabellifolia* for cosmetic and pharmaceutical
110 applications, which could lead to over harvest and population decline (Erhabor *et al.* 2020). A
111 better understanding of the ecology of this species is needed to facilitate conservation efforts.
112 Although *M. flabellifolia* plants are generally restricted to sites where abiotic stresses (e.g.,
113 aridity, heat, irradiation) are high and disturbance and competition are low, notable
114 environmental variation is evident across its native range (Moore *et al.* 2005, 2007; Bentley *et*
115 *al.* 2019b). This provides a convenient framework to test for natural variation and trade-offs
116 associated with stress tolerance within a single species. *Myrothamnus flabellifolia* is also
117 dioecious, and sexual dimorphisms may be related to stress tolerance traits, as previously
118 observed in bryophytes (Newton 1972; Stark *et al.* 2005; Stieha *et al.* 2014; Marks *et al.* 2016,
119 2020). Here, we characterized a suite of functional traits related to stress tolerance, leaf
120 economics, reproductive allocation, and sexual dimorphism in *M. flabellifolia*. We used these
121 data to estimate the degree of phenotypic variability among populations and to test for trade-offs
122 between stress tolerance and other life history traits. We predicted that stress tolerance traits
123 would trade-off with growth and reproduction, as outlined in CSR theory. We also predicted that
124 stress tolerance traits would exhibit the least intraspecific variability compared to growth and
125 reproductive traits due to considerable stabilizing selection on stress tolerance even in the more
126 mesic sites (because drought still occurs at these sites), and that growth and reproductive traits
127 would be more liable.

128
129 **MATERIALS and METHODS**


130

131 **Study organism**

132 *Myrothamnus flabellifolia* is a resurrection plant in the eudicot lineage Gunnerales.
133 Plants are distributed throughout southern Africa in disjunct populations from Namibia to
134 Tanzania, with the highest density of plants occurring in South Africa and Zimbabwe (Fig. 1)
135 (Moore *et al.* 2007; Bentley *et al.* 2019a). *Myrothamnus flabellifolia* is a woody shrub growing up
136 to ~1.5 M tall with highly branched anatomy, short internode length (~0.5-1.5 cm), and opposite
137 leaf arrangement. Leaves are small, with short petioles and parallel venation. Inflorescences
138 consist of densely packed florets in a simple arrangement with extremely short pedicles. Male
139 inflorescences have bracts whereas females are bract-less.
140

141 **Study area and environmental characteristics**

142 For the current study, *M. flabellifolia* plants were sampled at three sites in north-eastern
143 South Africa: Buffelskloof Nature Reserve in Mpumalanga (-25.30229, 30.50631), Veloren (-
144 24.7863, 28.3755), and Swebe Swebe Wildlife Estates (-23.7949, 28.0705) in Limpopo (Fig. 1).
145 The study sites span 400 km and were selected to capture the maximal environmental variation
146 possible within the study area. Historical weather data from 1981-2019 on temperature,
147 precipitation, and relative humidity was downloaded from NASA's Prediction Of Worldwide
148 Energy Resources platform (<https://power.larc.nasa.gov>). Site-specific data was retrieved using
149 the GPS coordinates for the center of each site. These data were analyzed to compute mean
150 annual temperature, rainfall, and relative humidity and to chart monthly temperature and
151 precipitation fluctuations at each of the three study sites. Site-specific elevations were recorded
152 using a Garmin 64csx GPS, bedrock types were visually assessed, and cross referenced with
153 geological records, and soil depths were measured at the base of every study plant (~50-200
154 per site). Specimens were vouchered at the Buffelskloof Nature Reserve Herbarium, Lydenberg,
155 Mpumalanga, South Africa (specimen number BNRH0025621).

156
157 **Figure 1. Overview of the study area and sampling design.** a) The complete distribution of
158 *Myrothamnus flabellifolia* as visualized from data available at www.gbif.org. b) The three study sites are
159 located in north eastern South Africa and are within 400 km of one another. c) Within each site, two
160 patches of *M. flabellifolia* were sampled, and data on ~50-150 plants (blue dots) were recorded along
161 transects within each patch. At select patches we tagged 25 focal plants (green dots) for detailed

162 measurements and long term monitoring. Background images of patches are representative photos of
163 each patch and are not scaled to size.

164

165 **Plant sampling**

166 Sampling was done during the rainy season (~November to March) for two consecutive
167 years (2019-2021). At each of the three sites, two discrete “patches” of *M. flabellifolia* were
168 sampled. We targeted patches that were more than 100 m away from the nearest road (to
169 minimize disturbance) and where *M. flabellifolia* was among the dominant species (based on the
170 criteria that *M. flabellifolia* plants must comprise ~30% or more of the vegetative cover). The
171 location and area of each patch was recorded using a Garmin 64csx GPS. Within each patch,
172 we established transects spanning a cumulative distance of ~60-100 m. The first transect was
173 set to span the longest axis of the patch and subsequent transects were established until a
174 cumulative distance of 60 m or more was sampled. We sampled all plants that occurred within
175 one meter on either side of each transect for a total of ~50-150 plants per patch. We targeted
176 plants that appeared to be separate genets with no above ground connections. One of the
177 patches at Buffelskloof is on a vertical cliff, so we sampled plants by rappelling over the cliff and
178 establishing vertical transects following the same procedures described above.

179 In addition to sampling plants along transects, we selected 25 focal plants at each site
180 for detailed phenotypic measurements. For these, we intentionally targeted plants that were
181 within a medium size range of ~30-80 cm tall, healthy, and were growing in full sun with minimal
182 evidence of shading or competition. These plants were tagged for long term monitoring and
183 used for measures of growth rate, architecture, specific leaf area (SLA), and stress tolerance
184 phenotyping.

185

186 **Stress tolerance traits**

187 We quantified three traits related to water deficit stress and recovery. First, we estimated
188 the intensity of a typical drying event at each site by measuring the relative water content
189 (RWC) of field dry material for the set of 25 focal plants per site. We collected a single terminal
190 twig (~10 cm long) from each plant in a visually desiccated state. The desiccated leaves were
191 removed from the twig and their mass (fresh mass) was determined immediately after collection
192 using a Frankford Arsenal DS-750 scale. Leaf tissue was then fully submerged in water and
193 placed at 4°C in complete darkness for 48 hours, after which tissues were blotted dry and their
194 turgid mass assessed. Tissues were then transported to the University of Cape Town, dried at
195 70°C for 2 days and their dry mass was measured. RWC was calculated as [(fresh mass - dry
196 mass)/(turgid mass - dry mass)*100].

197 Next, we assessed the recovery and rehydration dynamics of desiccated plants. To do
198 so, three randomly selected terminal twigs (~6-13 cm) were cut from each of the 25 focal plants
199 per site, in a visually desiccated state. Plants were photographed immediately upon collection
200 and placed in individual 50 ml falcon tubes containing 15 ml water each. Plants were imaged
201 again after 2, 4, 8, 12, and 24 hours of rehydration. From these images, we computed the
202 percent of tissue that had recovered for each twig (three replicates per individual, 25 individuals
203 per site, totalling 225 twigs across all three sites). Wez scored each leaf as recovered or not, as
204 this is visually quite distinct, and calculated the percent of recovered leaves relative to the total
205 number of leaves on each twig. Subsequently, we measured the rate of rehydration using the

206 same photographic time series described above. The number of leaves that had rehydrated at
207 each timepoint (2, 4, 8, 12, and 24 hours) was visually determined and used to compute the
208 proportion of leaves open at each time point.

209

210 **Growth and leaf traits**

211 Next, we measured a suite of vegetative traits. First, we quantified plant height by
212 measuring the distance from the soil to the top of the tallest branch. Compactness (an
213 anatomical measure of leaf frequency) was estimated for the 25 focal plants per site using
214 photographic data from the rehydration time series described above. Briefly, the number of leaf
215 pairs per cm was determined by counting the number of leaf pairs and dividing that by the total
216 length of the twig using ImageJ v1.53 (Schneider *et al.* 2012). To compute SLA, images of 5-10
217 fully hydrated leaves per plant were taken and the leaf area was calculated using ImageJ
218 v1.53. The leaf tissue was then dried at 70°C for 2 days and the dry mass assessed. From
219 these measures, we computed SLA as (leaf area / dry mass). Growth rate was estimated for the
220 25 focal plants per site using three randomly selected terminal twigs per plant. In year one, we
221 marked each twig 10 cm from the tip. The following year, we measured the distance from that
222 mark to the tip of the twig. Any distance beyond 10 cm was considered new growth.
223 Unfortunately, we were only able to gather growth rate data for two of the three sites, since
224 extensive floods in 2020 prevented access to Swebe Swebe during the critical sampling period.

225

226 **Reproductive traits**

227 Male and female *M. flabellifolia* plants have distinct floral morphology and thus sex was
228 determined visually when plants were in flower. Population sex ratios were calculated as
229 number of males relative to the total number of reproductive individuals. To investigate
230 differences in reproductive allocation across sites we estimated the number of inflorescences
231 produced by each plant (n=525) at the beginning of the rainy season. Because *M. flabellifolia*
232 can produce dozens of inflorescences on a single plant, we subsampled plants by randomly
233 selecting three apical branches on each plant and counting the number of inflorescences on the
234 top 10 cm of each branch.

235

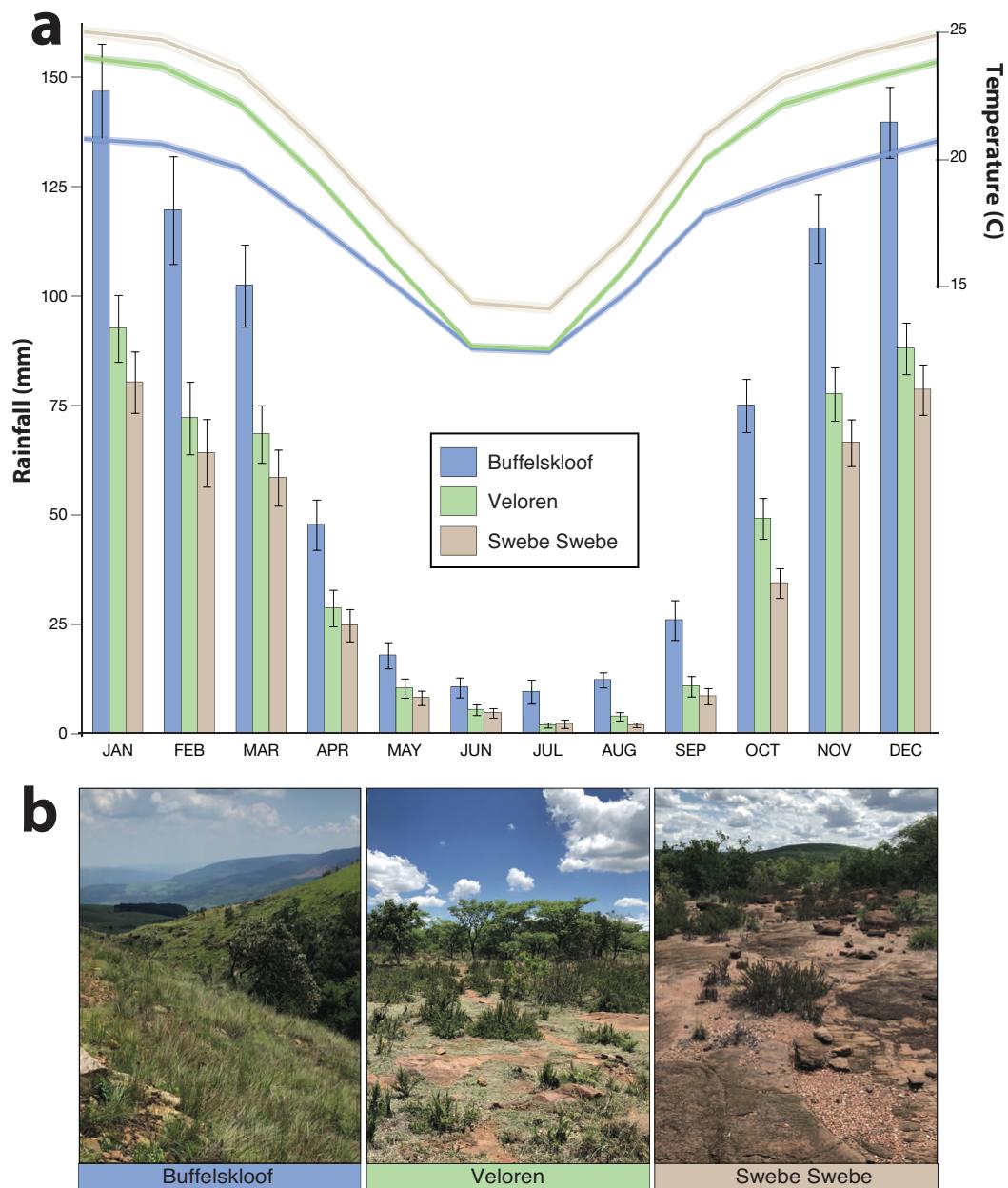
236 **Statistical analyses**

237 Initially, we tested for differences in environmental conditions (e.g., rainfall, temperature,
238 relative humidity, and soil depth) across sites using mixed effects linear models. Next, we tested
239 the effect of site, sex and their interaction on relative water content using a mixed effects linear
240 model. Percent recovery data were log transformed to improve normality and the effects of site,
241 sex, and their interaction were tested using a mixed effect linear model. To test for differences in
242 the rate of rehydration, we used MANOVA repeated measures analysis to test the effect of site
243 and sex on the proportion of leaves open over time. For plant height, compactness, and SLA we
244 used mixed effects linear models to test the effects of site and sex on each response variable,
245 respectively. For growth rate, we used student's T-test to identify significant differences between
246 the two sites where data were available. A heterogeneity test was used to determine if
247 population sex ratios were different from one another and a goodness of fit test was used to
248 identify sex ratios significantly different from 50:50. Lastly, we ran a mixed effects linear model

249 to test the effect of site, sex, and their interaction on the number of inflorescences produced. For
250 all models, plant ID and twig replicate were included as random effects.

251 To gain insight into trait relationships, trade-offs, and associations, we conducted
252 multivariate analyses on all vegetative and reproductive traits. We generated covariance and
253 correlation matrices for each pairwise combination of traits to identify the most positively and
254 negatively associated traits. We also conducted principal component analysis (PCA) to visualize
255 sample and trait relationships. These analyses were conducted using the set of 25 focal plants
256 per site and include trait values for height, compactness, leaf area, SLA, growth rate, and flower
257 production. We did not include stress tolerance traits in these analyses because they showed
258 minimal differences across the study sites.

259


260

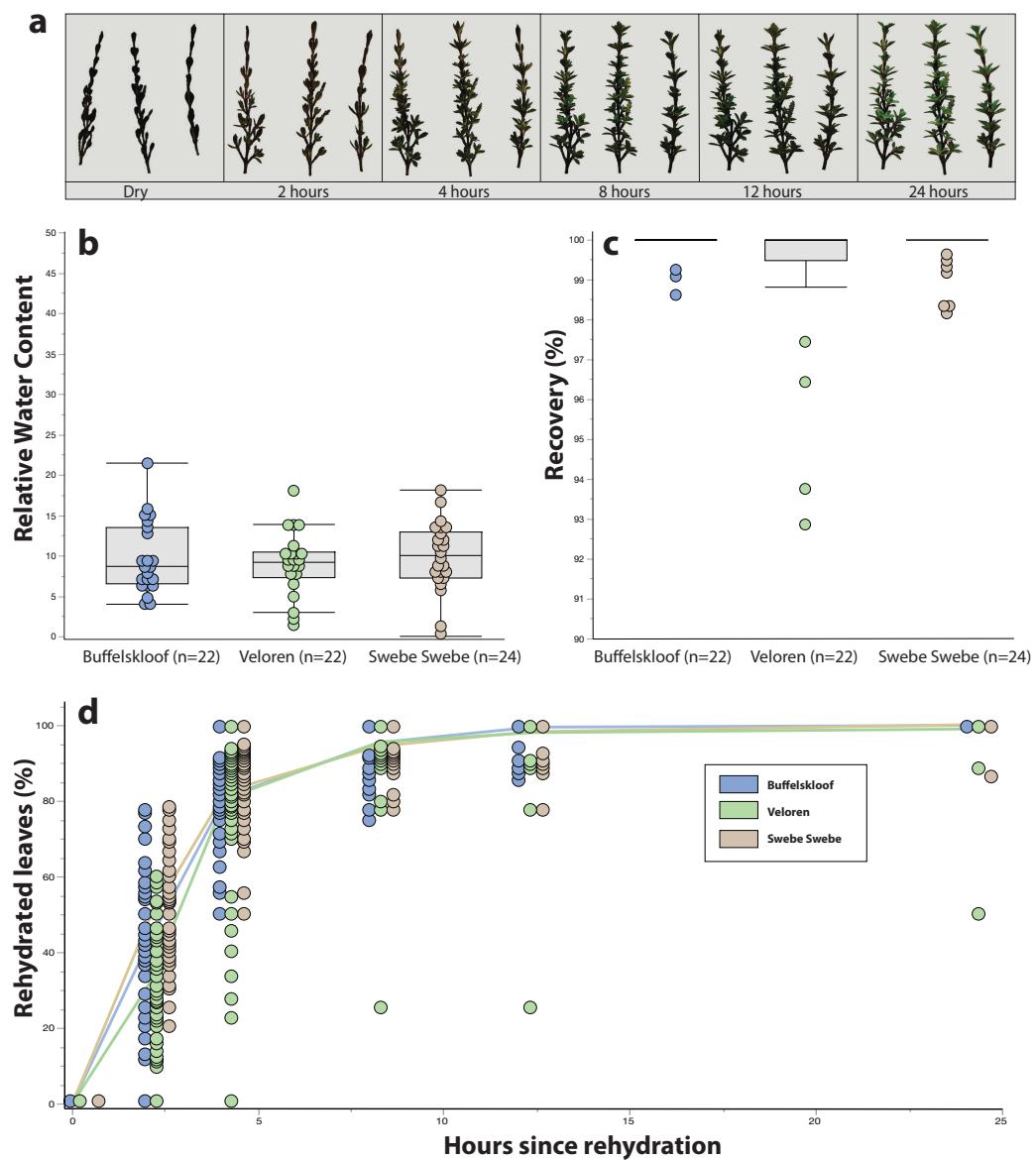
261 RESULTS

262

263 Environmental differences across sites

264 Substantial environmental differences were detected across the study sites in South
265 Africa (Fig. 2a). Annual rainfall differed significantly ($F_{2,113}=52.1$, $P<0.0001$), ranging from
266 820 ± 41.5 mm at Buffelskloof (the wettest site), to 507 ± 26.3 mm at Veloren (the intermediate
267 site) to 430 ± 23.1 mm at Swebe Swebe (the driest site). Significant differences in mean annual
268 relative humidity ($F_{2,113}=204.2$, $P<0.0001$) and temperature ($F_{2,113}=289.7$, $P<0.0001$) were also
269 detected along a similar gradient. Relative humidity ranged from $61\pm0.7\%$ at Buffelskloof, to
270 $47\pm0.6\%$ at Veloren and $45\pm0.6\%$ at Swebe Swebe. Temperatures ranged from $18\pm0.1^\circ\text{C}$ at
271 Buffelskloof, $20\pm0.1^\circ\text{C}$ at Veloren, and $21\pm0.1^\circ\text{C}$ at Swebe Swebe. These sites also occur at
272 different elevations and on different bedrock types. The various substrates can contribute to
273 differences in hydrology, mineral nutrient availability, and thermal dynamics, which further
274 differentiate the ecological conditions across these sites. Buffelskloof is situated on quartzite at
275 1,492 M, Veloren on sandstone at 1,334 M, and Swebe Swebe on conglomerate sandstone at
276 1,068 M. Soil depth was low across all sites, with mean depth ranging from 6.04 ± 0.35 cm at
277 Buffelskloof, to 7.5 ± 0.38 cm at Veloren and 6.13 ± 0.21 cm at Swebe Swebe, but differences
278 across sites were significant ($F_{2,210}=6.79$, $P=0.0014$). Somewhat counterintuitively, the cliff
279 population at Buffelskloof had the deepest soil depth, but this consisted of sporadic pockets of
280 deep soil separated by vertical rock. Taken together, these variables combine to generate
281 perceptibly different environmental conditions at the three study sites (Fig. 2b). Buffelskloof is
282 the wettest, coolest, and highest elevation site; Veloren is intermediate on all three measures,
283 and Swebe Swebe is the driest, hottest, and lowest elevation site.

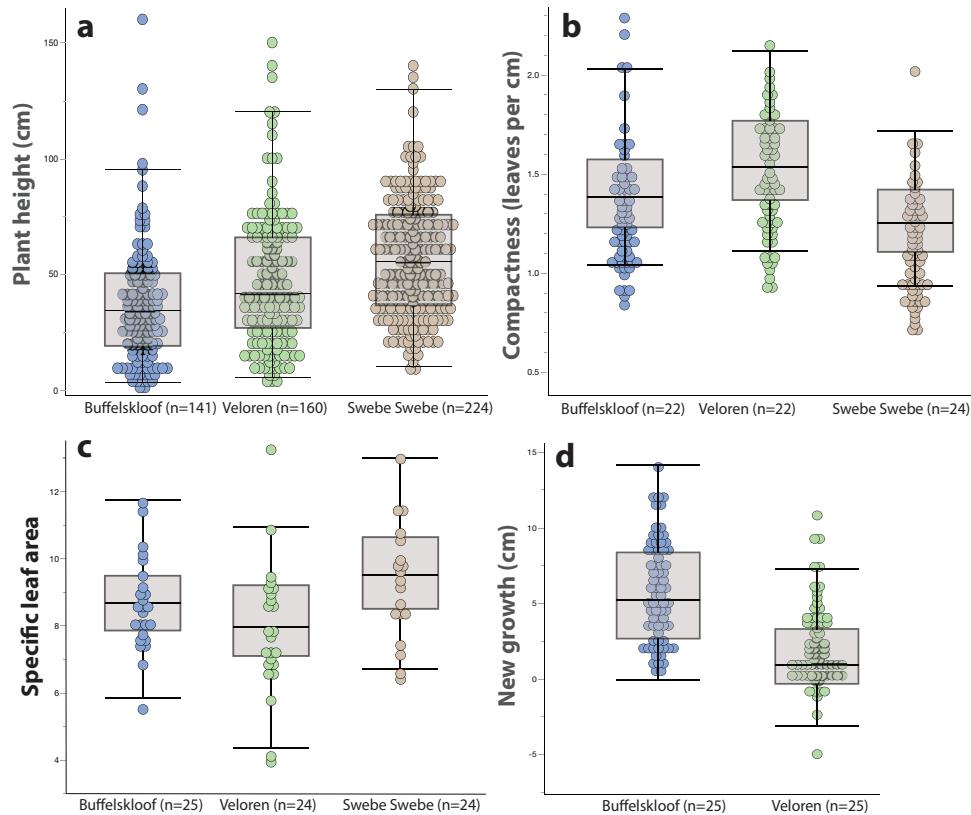
284


285 **Figure 2. Environmental conditions at the three study sites. a)** Differences in mean monthly
286 temperature (lines) and rainfall (bars) are evident across the three study sites. **b)** All three sites are
287 classified as dry winter climates, but differences in vegetative cover and community are evident.

288

289 **Stress tolerance traits**

290 Desiccation tolerance traits exhibited minimal variation in *M. flabellifolia* plants across
291 the three study sites. Field desiccated plants had a mean RWC of $9.6 \pm 0.9\%$ at Buffelskloof,
292 $9.0 \pm 0.8\%$ at Veloren, and $9.8 \pm 0.9\%$ at Swebe Swebe (Fig. 3a). An exceptionally high
293 percentage of tissue recovered for all plants at all sites with mean percent recovery of
294 $99.95 \pm 0.03\%$ at Buffelskloof, $99.53 \pm 0.16\%$ at Veloren and $99.89 \pm 0.05\%$ at Swebe Swebe and
295 there were no significant differences across these sites (Fig. 3c). The rate of rehydration
296 (measured as the proportion of leaves open at a given time point) was the most variable stress


297 tolerance trait we measured, and despite a small effect size showed significant differences
298 across sites ($F_{2,192}=2.35$, $P=0.0021$). This appears to be driven by differences at early
299 timepoints where *M. flabellifolia* plants from Veloren were the slowest to rehydrate and plants
300 from Swebe Swebe were the fastest (Fig. 3d).
301

302
303 **Figure 3. Stress tolerance traits across the three study sites, ordered from wettest to driest. a)**
304 Pictorial representation of a rehydration time course of twigs from one representative plant from
305 Buffelskloof. These, and similar images for all plants, were used to estimate the proportion of leaves open
306 at each timepoint and to assess percent recovery. **b)** The relative water contents of plants collected from
307 the field in a desiccated state. There were no significant differences across the sites. **c)** The percentage
308 of leaves that recovered to a green and healthy condition within 24 hours. There were no significant
309 differences across the sites. **d)** The rate of rehydration is plotted as the proportion of leaves open (green
310 and healthy) at discrete time points following rehydration. Plants from Veloren were significantly slower to
311 rehydrate than plants from Swebe Swebe and Buffelskloof.

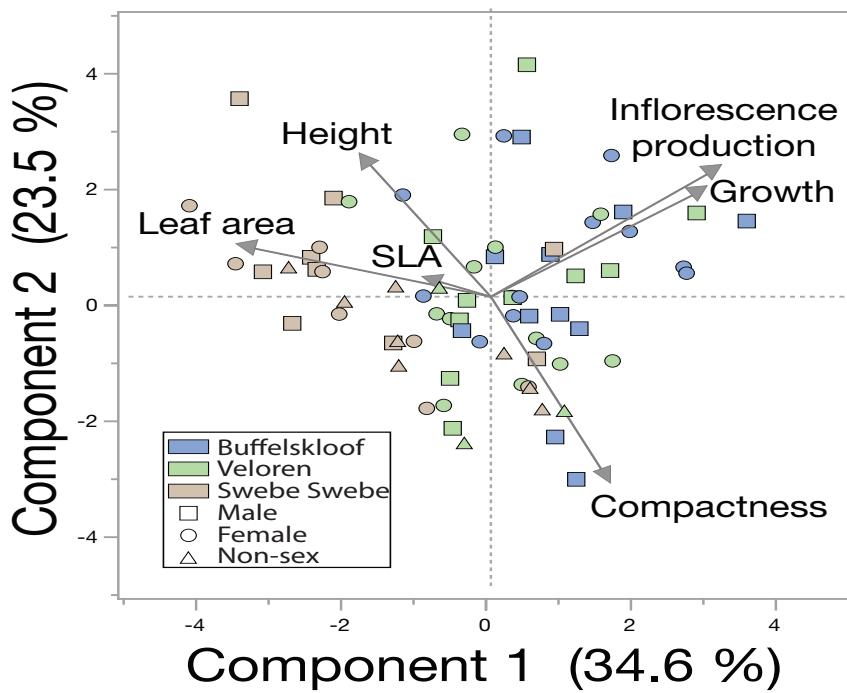
312 **Growth and vegetative traits**

313 Vegetative traits exhibited more variability than stress tolerance traits (Fig. 4). Significant
314 differences in plant height ($F_{2,193}=6.11$, $P=0.0025$), compactness ($F_{2,193}=6.11$, $P<0.0001$), growth
315 rate ($t_{144}=5.35$, $P<0.0001$), and SLA ($F_{2,63}=3.24$, $P=0.046$) were identified across sites. Plants at
316 Buffelskloof were the shortest (35.3 ± 2.15 cm), those at Veloren were intermediate (45.9 ± 2.30
317 cm), and plants at Swebe Swebe were the tallest (55.7 ± 1.68 cm). Plants at Veloren had the
318 most compact leaf arrangement (1.4 ± 0.04 leaves per cm) but the lowest SLA (8.9 ± 0.39),
319 whereas those at Swebe Swebe were least compact (1.09 ± 0.03 leaves per cm) but had the
320 highest SLA (9.43 ± 0.38) and plants from Buffelskloof were intermediate for both (1.28 ± 0.04
321 leaves per cm and 8.80 ± 0.26 SLA). Plants from Buffelskloof grew significantly more in one year
322 (5.80 ± 0.39 cm) than plants Veloren (2.17 ± 0.33 cm).

323 **Figure 4. Vegetative traits across the three study sites, ordered from wettest to driest. a)** Plant
324 height differed significantly across populations. **b)** The number of leaves per cm (a measure of
325 compactness) differed significantly across the study sites. **c)** Specific leaf area differed significantly
326 across sites. **d)** The amount of annual branch growth (a proxy for growth rate) differed significantly
327 between Buffelskloof and Veloren. We were unable to measure growth rate at Swebe Swebe because
328 extensive flooding in 2020 prevented access to field sites during the critical sampling window.

329

330 **Reproductive traits**


331 We identified significant differences in the number of inflorescences produced at each
332 site ($F_{2,447}=22.8$, $P<0.001$). Plants from Buffelskloof produced the most inflorescences (3.8 ± 0.29
333 inflorescences per 10 cm), plants from Veloren were intermediate (3.2 ± 0.22 inflorescences per

335 10 cm), and plants from Swebe Swebe produced the fewest (1.7 ± 0.12 inflorescences per 10
336 cm).

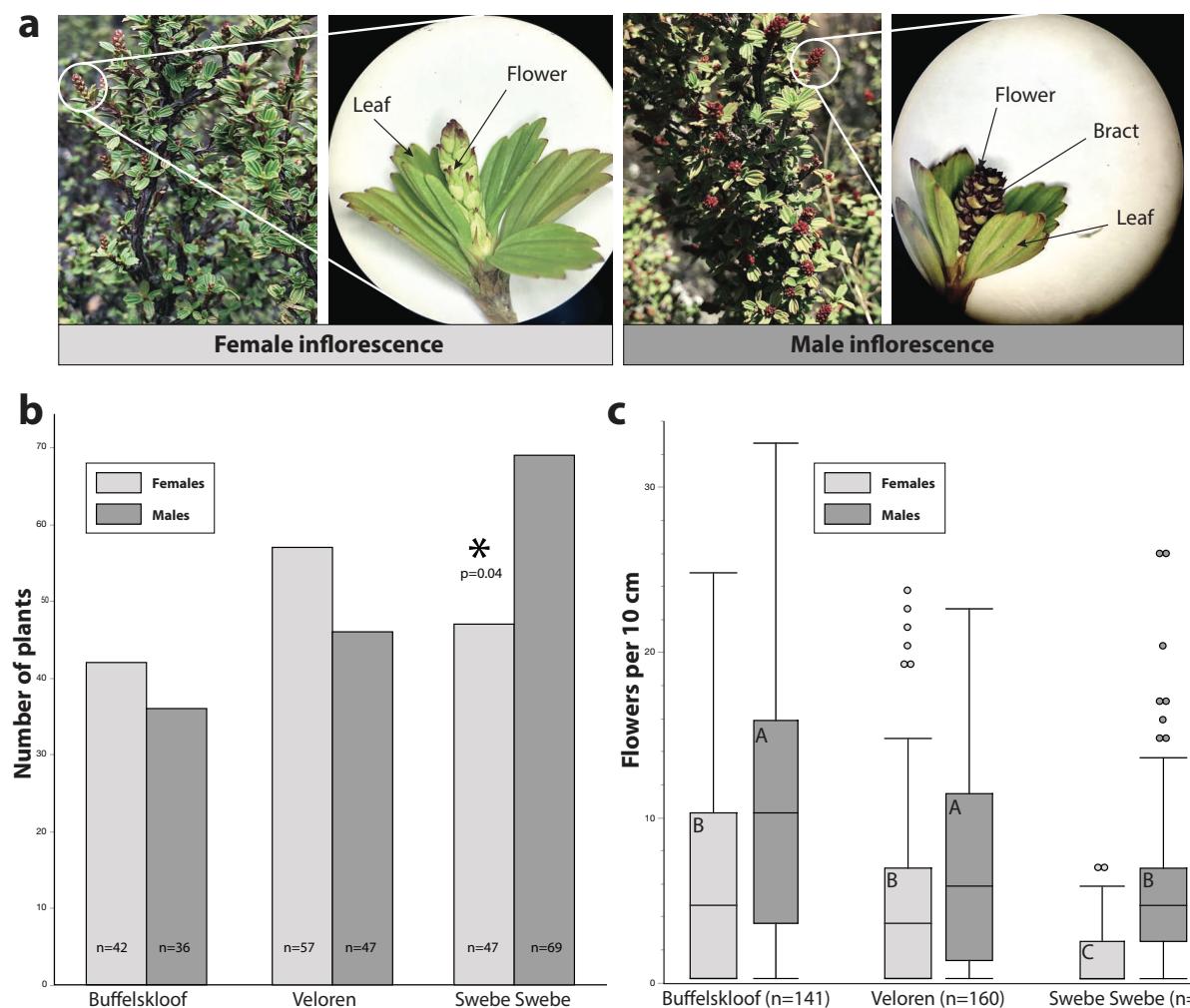
337

338 Trait associations and tradeoffs

339 Multivariate analyses were used to identify trait correlations and covariances. Principal
340 component analysis (PCA) was conducted to visualize sample relationships and gain insight
341 into trait syndromes and functional classes. We identified several traits with strong positive and
342 negative associations (Fig. 5). The most positively associated traits were growth and
343 inflorescence production (fast growing plants produced more inflorescences) and height and
344 leaf area (taller plants had larger leaves). Our analyses identified multiple negatively associated
345 traits, which point towards possible trade-offs. Height and inflorescence number (taller plants
346 produced fewer inflorescences), height and SLA (taller plants had lower SLA), and SLA and
347 inflorescence number (plants with higher SLA produce fewer inflorescences) were all negatively
348 associated, suggesting that being tall and having low SLA trades-off with reproductive
349 allocation. PCA reinforced these associations showing that growth and inflorescence number
350 project in the same direction and are opposed to SLA, height, and compactness (Fig. 5). Plants
351 from Swebe Swebe formed the most distinct cluster and are characterized by increased height
352 and SLA, with fewer inflorescences and open leaf arrangement. Plants from Buffelskloof are the
353 most reproductive and fastest growing plants.

354

355 **Fig. 5. Principal component analysis** of six traits for the 25 focal plants per site. Trait projections are
356 plotted on the graph as arrows and each plant is indicated by a single point. Points are colored by study
357 site and shaped by sex.


358

359 Sexual dimorphisms

360 Sampling was done during the rainy season when flowering is most common.
361 Consequently, we were able to sex a relatively high proportion of plants (60-70% in most sites)

362 (Fig. 6a). The only exception were cliff dwelling plants at Buffelskloof, which had much lower
363 flowering rate, possibly due to limited light exposure. We detected variable sex ratios across
364 patches and sites. Buffelskloof and Veloren were slightly (but not significantly) female biased,
365 whereas Swebe Swebe was significantly male biased ($G_1=4.19$, $P=0.04$) (Fig. 6b).
366

367 We did not detect sexual dimorphisms in any stress tolerance or vegetative traits. Male
368 and female plants had equivalent field RWC, rehydrated at the same rate, and had similarly high
369 percentages of recovery. There were no significant differences between the sexes in height,
370 compactness, SLA, or growth rate. However, we did detect a sexual dimorphism in
371 inflorescence production. Males produced significantly more inflorescences than females across
372 all sites ($F_{2,603}=211.6$, $P<0.0001$) (Fig. 6c).
373

374 **Figure 6. Reproductive traits and sex ratios across the three study sites, ordered from wettest to**
375 **driest. a)** Floral anatomy of female inflorescences (left panels) and male inflorescences (right panels). **b)**
376 The number of male and female plants at each site (non-sex plants are not shown). Swebe Swebe was
377 significantly male biased. **c)** The number of inflorescences on male and female plants. Males produced
378 more inflorescences than females at every site. Different letters in box plots show significant differences
379 among sites, corrected for multiple comparisons by Tukey's HSD.
380

381 **DISCUSSION**

382

383 In theory, stress tolerance is associated with a suite of functional traits related to defense
384 and longevity, including slow growth, extended leaf-lifespan, reduced allocation to reproduction,
385 and minimal plasticity (Grime 2006; Stanton *et al.* 2000). *Myrothamnus flabellifolia* exhibits
386 many of these characteristic phenotypes, including low growth rates (plants put on only
387 3.34 ± 0.37 cm of annual branch growth compared to elongation rates of 5-15 cm reported for
388 other species (Rossatto *et al.* 2009; Rossatto 2009) and low SLA (mean SLA is 8.3 ± 0.29 in *M.*
389 *flabellifolia* relative to 25.6 ± 1.063 reported in a meta analyses across functional classes (Pierce
390 *et al.* 2013)). In addition, *M. flabellifolia* plants were found to be extremely stress tolerant across
391 all study sites. Despite marked environmental variation across the study area, we detected
392 astonishingly little variability in tolerance, suggesting strong stabilizing selection on desiccation
393 tolerance even in more mesic areas.

394 Despite *M. flabellifolia*'s classic Stress-tolerator phenotype, we detected complex and
395 noteworthy phenotypic variation in vegetative and reproductive traits across the study area.
396 Plants from the wettest study site (Buffelskloof) were small, semi-compact, fast growth, and
397 highly reproductive, giving them a somewhat Ruderal-like strategy. Plants from the intermediate
398 site (Veloren) were tall, extremely compact, had slow growth rates, and intermediate flowering--
399 a more typical Stress-tolerator syndrome. Plants from the driest site (Swebe Swebe) were tall
400 and open, with high SLA and minimal flowering--exhibiting an almost Competitor-like strategy.
401 Taken together these differences point towards the existence of subtle sub-syndromes within a
402 single Stress-tolerator species. Because stress tolerance exhibited so little variation across the
403 study sites, we cannot conclusively identify trade-offs with any other traits. However, the
404 different sub-syndromes exhibited by plants at the three sites hint at a possible stress-tolerance
405 productivity trade-off. Plants from the most mesic (presumably least stressful) of the study sites,
406 exhibit the highest growth rate and potential reproductive output, whereas plants from the more
407 xeric sites had lower reproductive output and reduced growth rates. The fine-tuning of these
408 syndromes to specific habitats has major implications for species survival and adaptation to
409 changing environments (Negreiros *et al.* 2014)

410 The Buffelskloof syndrome is the most Ruderal of the three sites, with small, small-
411 leaved plants exhibiting high investment in growth and reproduction. The fast growth rates but
412 small size of plants at Buffelskloof suggest that these plants experience considerable turnover
413 or mortality during establishment and growth. Although we did not quantify it directly,
414 competitive interactions are likely a bigger factor at Buffelskloof compared to the other study
415 sites, since vegetative cover is much higher at Buffelskloof (Fig. 2b). This could explain the
416 abundance of relatively small (presumably young) plants and perhaps even the high investment
417 in sex--as a potential escape strategy. Alternatively, the small size of these plants could be
418 impacted by "desiccation pruning" a phenomenon in which plants self-prune because they are
419 unable to refill their xylem above a certain height.

420 In comparison, plants from Veloren exhibit a more characteristic Stress-tolerator
421 phenotype; they grow slower, have low SLA, and invest less in reproduction. This integrates
422 nicely into CSR theory by showing that in increasingly dry conditions, *M. flabellifolia* exhibits a
423 characteristic Stress-tolerator syndrome. Plants from Veloren were also some of the slowest to

424 rehydrate, possibly driven by mechanical dynamics in which taller and more compact plants
425 rehydrate slower due to the higher volume of vegetative tissue that needs refilling.

426 At Swebe Swebe, the driest of the three sites, the story is a bit more anomalous. These
427 plants actually exhibit the most Competitor-like syndrome of all three sites. In fact, PCA
428 analyses indicate that the plants from Swebe Swebe are the most distinct, despite the
429 environment being somewhat similar to Veloren. At Swebe, plants are tall, have large leaves,
430 and reduced allocation to reproduction. It is unexpected to observe this syndrome in the most
431 putatively stressful site, but it suggests that the Swebe Swebe plants may have a different
432 approach to dealing with sporadic water availability. Perhaps the more open architecture and
433 higher SLA at Swebe Swebe allow plants to cool more effectively in high temperatures and
434 rehydrate more rapidly than those at other sites (Fig. 3d). This strategy might maximize
435 photosynthetic productivity in an area with the most sporadic water availability.

436 Sex ratio variation is influenced by numerous factors, including stochastic dynamics. In
437 most angiosperms, females are expected to be less stress tolerant due to increased resource
438 demand for reproductive processes (Barrett and Hough 2013; Juvany and Munné-Bosch 2015).
439 Thus, females are expected to be less abundant in stressful sites. However, the extent to which
440 this prediction is upheld by empirical data is highly variable and species-specific (Marks *et al.*
441 2019). Here, we find that the driest site, Swebe Swebe, is male biased, fitting the expectation.
442 Sexually dimorphic traits, especially those related to stress tolerance, can differentially impact
443 the survival of male and female plants and drive biased population sex ratios and spatial
444 segregation of the sexes, both of which have consequences for population dynamics
445 (Bierzychudek and Eckhart 1988; Juvany and Munné-Bosch 2015). Identifying such
446 dimorphisms is an important step to understanding how to conserve and protect dioecious
447 plants (Petry *et al.* 2016). Sexual dimorphisms are expected to be most obvious in sex related
448 traits (Barrett and Hough 2013), and we detected a single sexual dimorphism in a reproductive
449 trait, but not in any vegetative or stress tolerance traits. We found that males produced more
450 inflorescences than females at all sites. This finding is not surprising, as males typically invest
451 more in pre-fertilization reproductive processes, whereas females tend to incur major costs
452 post-fertilization (Bateman 1948).

453 In conclusion we show that stress tolerance phenotypes are extremely conserved in *M.*
454 *flabellifolia*. Despite considerable environmental variation, plants are extremely and equally
455 stress tolerant at all sites. However, we detect notable variation in other life history and
456 morphological traits, suggesting that these plants are finely tuned to their environment. In fact,
457 the trait syndromes exhibited by plants at the different study sites generally align with our
458 expectations about stress tolerance and productivity trade-offs. We show that plants from the
459 least stressful sites are more reproductive and faster growing, whereas plants from the more
460 stressful sites are slower growing and less reproductive. Taken together, these data
461 simultaneously support and deviate from classic CSR theory. We find evidence of classic
462 Stress-tolerator phenotypes (slow growth, low SLA) but we also detect variability and plasticity
463 in other traits, indicating that these plants, despite being extremely stress tolerant, can adjust to
464 different environmental conditions.

465

466

467

468 **AUTHOR CONTRIBUTIONS**

469 RAM, JMF, RV, and DNM conceived of the study. RAM, MG, and JP collected field data.
470 RAM led data analyses and writing of the manuscript. MM collected and summarized
471 ethnobotanical information. All authors contributed to data interpretation and edited the
472 manuscript.

473

474 **ACKNOWLEDGEMENTS**

475 This work was supported by an NSF Postdoctoral Research Fellowship in Biology to
476 RAM (PRFB-1906094) and by the Plant Resiliency Institute at Michigan State University. JMF
477 acknowledges funding supplied by the South African Department of Science and Innovation and
478 National Research Foundation (Grant No. 98406). This work would not have been possible
479 without the generous support of landowners who provided accommodation and valuable local
480 expertise. We thank Syd Carlton and Felicite Jackson for allowing access to Veloren Estate,
481 Ken Maude, Peter and Nadine Vervoort, for access to Swebe Swebe. We thank Barbra Turpin,
482 John, and Sandy Burrows at Buffelskloof Nature Preserve for invaluable assistance in
483 taxonomic identification. Technical and logistical assistance was provided by Keren Cooper.

484 **LITERATURE CITED**

485 **Ahuja I, de Vos RCH, Bones AM, Hall RD. 2010.** Plant molecular stress responses face
486 climate change. *Trends in plant science* **15**: 664–674.

487 **Alcantara S, de Mello-Silva R, Teodoro GS, Druceceler K, Ackerly DD, Oliveira RS. 2015.**
488 Carbon assimilation and habitat segregation in resurrection plants: a comparison between
489 desiccation- and non-desiccation-tolerant species of Neotropical Velloziaceae (Pandanales) (L
490 Poorter, Ed.). *Functional ecology* **29**: 1499–1512.

491 **Barrett SCH, Hough J. 2013.** Sexual dimorphism in flowering plants. *Journal of experimental
492 botany* **64**: 67–82.

493 **Bateman AJ. 1948.** Intra-sexual selection in *Drosophila*. *Heredity* **2**: 349–368.

494 **Baythavong BS. 2011.** Linking the spatial scale of environmental variation and the evolution of
495 phenotypic plasticity: selection favors adaptive plasticity in fine-grained environments. *The
496 American naturalist* **178**: 75–87.

497 **Bentley J, Moore JP, Farrant JM. 2019a.** Metabolomics as a complement to phylogenetics for
498 assessing intraspecific boundaries in the desiccation-tolerant medicinal shrub *Myrothamnus*
499 *flabellifolia* (Myrothamnaceae). *Phytochemistry* **159**: 127–136.

500 **Bentley J, Moore JP, Farrant JM. 2019b.** Metabolomic Profiling of the Desiccation-Tolerant
501 Medicinal Shrub *Myrothamnus flabellifolia* Indicates Phenolic Variability Across Its Natural
502 Habitat: Implications for Tea and Cosmetics Production. *Molecules* **24**.

503 **Bentley J, Olsen EK, Moore JP, Farrant JM. 2020.** The phenolic profile extracted from the
504 desiccation-tolerant medicinal shrub *Myrothamnus flabellifolia* using Natural Deep Eutectic
505 Solvents varies according to the solvation conditions. *Phytochemistry* **173**: 112323.

506 **Bewley JD. 1979.** Physiological Aspects of Desiccation Tolerance. *Annual review of plant
507 physiology* **30**: 195–238.

508 **Bierzychudek P, Eckhart V. 1988.** Spatial Segregation of the Sexes of Dioecious Plants. *The
509 American naturalist* **132**: 34–43.

510 **Dhillon J, Miller V, Carter J, et al. 2014.** *International journal of applied research in natural
511 products*. Healthy Synergies Publications.

512 **Erhabor JO, Komakech R, Kang Y, Tang M, Matsabisa MG. 2020.** Ethnopharmacological
513 importance and medical applications of *Myrothamnus flabellifolius* Welw. (Myrothamnaceae)-A
514 review. *Journal of ethnopharmacology* **252**: 112576.

515 **Farrant JM, Cooper K, Kruger LA, Sherwin HW. 1999.** The Effect of Drying Rate on the
516 Survival of Three Desiccation-tolerant Angiosperm Species. *Annals of botany* **84**: 371–379.

517 **Gaff DF. 1971.** Desiccation-tolerant flowering plants in southern Africa. *Science* **174**: 1033–

518 1034.

519 **Gaff DF. 1986.** Desiccation tolerant “resurrection”grasses from Kenya and West Africa.
520 *Oecologia* **70**: 118–120.

521 **Gaff DF. 1989.** Responses of desiccation tolerant “resurrection”plants to water stress. *Structural*
522 *and functional responses to environmental stresses*: 255–268.

523 **Gaff DF, Bole PV. 1986.** Resurrection grasses in India. *Oecologia* **71**: 159–160.

524 **Grime JP, Mackey JML. 2002.** The role of plasticity in resource capture by plants. *Evolutionary*
525 *ecology* **16**: 299–307.

526 **Grime JP, Thompson K, Hunt R, et al. 1997.** Integrated Screening Validates Primary Axes of
527 Specialisation in Plants. *Oikos* **79**: 259–281.

528 **Grime JP. 2006.** *Plant Strategies, Vegetation Processes, and Ecosystem Properties* (Grime,
529 Ed.). John Wiley & Sons.

530 **Huston MA. 1994.** *Biological Diversity The Coexistence of Species on Changing Landscapes*.
531 Cambridge University Press.

532 **Jaspal B, Norman F, Kayla A, Maria CT, Bela P. 2018.** A novel anti-triple negative breast
533 cancer compound isolated from medicinal herb Myrothamnus flabellifolius. *Journal of Medicinal*
534 *Plants Research* **12**: 7–14.

535 **Juvany M, Munné-Bosch S. 2015.** Sex-related differences in stress tolerance in dioecious
536 plants: a critical appraisal in a physiological context. *Journal of experimental botany* **66**: 6083–
537 6092.

538 **Kumar S, Stecher G, Suleski M, Hedges SB. 2017.** TimeTree: A Resource for Timelines,
539 Timetrees, and Divergence Times. *Molecular biology and evolution* **34**: 1812–1819.

540 **Lengyel S, Gove AD, Latimer AM, Majer JD, Dunn RR. 2010.** Convergent evolution of seed
541 dispersal by ants, and phylogeny and biogeography in flowering plants: A global survey.
542 *Perspectives in plant ecology, evolution and systematics* **12**: 43–55.

543 **Li Y, Shipley B. 2017.** An experimental test of CSR theory using a globally calibrated ordination
544 method. *PLoS one* **12**: e0175404.

545 **Luo L, Xia H, Lu B-R. 2019.** Editorial: Crop Breeding for Drought Resistance. *Frontiers in plant*
546 *science* **10**: 314.

547 **Marks RA, Burton JF, McLetchie DN. 2016.** Sex differences and plasticity in dehydration
548 tolerance: insight from a tropical liverwort. *Annals of botany* **118**: 347–356.

549 **Marks RA, Farrant JM, Nicholas McLetchie D, VanBuren R. 2021.** Unexplored dimensions of
550 variability in vegetative desiccation tolerance. *American journal of botany*.

551 **Marks RA, Pike BD, Nicholas McLetchie D. 2019.** Water stress tolerance tracks
552 environmental exposure and exhibits a fluctuating sexual dimorphism in a tropical liverwort.
553 *Oecologia* **191**: 791–802.

554 **Marks RA, Smith JJ, VanBuren R, McLetchie DN. 2020.** Expression dynamics of dehydration
555 tolerance in the tropical plant *Marchantia inflexa*. *The Plant journal: for cell and molecular
556 biology*.

557 **Mooney HA, Dunn EL. 1970.** Convergent evolution of Mediterranean-climate evergreen
558 sclerophyll shrubs. *Evolution; international journal of organic evolution* **24**: 292–303.

559 **Moore JP, Farrant JM, Lindsey GG, Brandt WF. 2005.** The South African and Namibian
560 Populations of the Resurrection Plant *Myrothamnus flabellifolius* are Genetically Distinct and
561 Display Variation in Their Galloylquinic Acid Composition. *Journal of chemical ecology* **31**:
562 2823–2834.

563 **Moore JP, Lindsey GG, Farrant JM, Brandt WF. 2007.** An Overview of the Biology of the
564 Desiccation-tolerant Resurrection Plant *Myrothamnus flabellifolia*. *Annals of botany* **99**: 211–
565 217.

566 **Morris JL, Puttick MN, Clark JW, et al. 2018.** The timescale of early land plant evolution.
567 *Proceedings of the National Academy of Sciences of the United States of America* **115**: E2274–
568 E2283.

569 **Negreiros D, Le Stradic S, Fernandes GW, Rennó HC. 2014.** CSR analysis of plant functional
570 types in highly diverse tropical grasslands of harsh environments. *Plant Ecology* **215**: 379–388.

571 **Newton ME. 1972.** Sex-ratio differences in *Mnium hornum* Hedw. and *M. undulatum* Sw. in
572 relation to spore germination and vegetative regeneration. *Annals of botany* **36**: 163–178.

573 **Nie Y, Foster CSP, Zhu T, et al. 2020.** Accounting for Uncertainty in the Evolutionary
574 Timescale of Green Plants Through Clock-Partitioning and Fossil Calibration Strategies.
575 *Systematic biology* **69**: 1–16.

576 **Novakovskiy AB, Maslova SP, Dalke IV, Dubrovskiy YA. 2016.** Patterns of allocation CSR
577 plant functional types in northern europe. *International Journal of Ecology* **2016**.

578 **Pérez R, Vargas P, Arroyo J. 2004.** Convergent evolution of flower polymorphism in *Narcissus*
579 (Amaryllidaceae). *The New phytologist* **161**: 235–252.

580 **Petry WK, Soule JD, Iler AM, et al. 2016.** Sex-specific responses to climate change in plants
581 alter population sex ratio and performance. *Science* **353**: 69–71.

582 **Pierce S, Brusa G, Vagge I, Cerabolini BEL. 2013.** Allocating CSR plant functional types: the
583 use of leaf economics and size traits to classify woody and herbaceous vascular plants.
584 *Functional ecology* **27**: 1002–1010.

585 **Porembski S. 2007.** Tropical inselbergs: habitat types, adaptive strategies and diversity
586 patterns. *Brazilian Journal of Botany* **30**: 579–586.

587 **Porembski S. 2011.** Evolution, Diversity, and Habitats of Poikilohydrous Vascular Plants In:
588 Bartels D, Lütte U, Beck E, eds. *Plant Desiccation Tolerance*. 139–156.

589 **Rabarimanarivo MN, Ramandimbisoa B. 2019.** The extraordinary botanical diversity of
590 inselbergs in Madagascar. *Candollea* **74**: 65.

591 **Rossatto DR. 2009.** Branch elongation and diameter growth were temporally dissociated in
592 “cerrado” tree species. *Hoehnea* **36**: 437–444.

593 **Rossatto DR, Hoffmann WA, Franco AC. 2009.** Differences in growth patterns between co-
594 occurring forest and savanna trees affect the forest-savanna boundary. *Functional ecology* **23**:
595 689–698.

596 **Schneider CA, Rasband WS, Eliceiri KW. 2012.** NIH Image to ImageJ: 25 years of image
597 analysis. *Nature methods* **9**: 671–675.

598 **Stanton ML, Roy BA, Thiede DA. 2000.** Evolution in stressful environments. I. Phenotypic
599 variability, phenotypic selection, and response to selection in five distinct environmental
600 stresses. *Evolution; international journal of organic evolution* **54**: 93–111.

601 **Stark LR, Nichols L, McLetchie DN, Bonine ML. 2005.** Do the sexes of the desert moss
602 *Syntrichia caninervis* differ in desiccation tolerance? A leaf regeneration assay. *International
603 journal of plant sciences* **166**: 21–29.

604 **Stewart CN, Nilsen ET. 1995.** Phenotypic plasticity and genetic variation of *Vaccinium*
605 *macrocarpon*, the American Cranberry. I. reaction norms of clones from central and marginal
606 populations in a common garden. *International journal of plant sciences* **156**: 687–697.

607 **Stieha CR, Middleton AR, Stieha JK, Trott SH, McLetchie DN. 2014.** The dispersal process of
608 asexual propagules and the contribution to population persistence in *Marchantia*
609 (Marchantiaceae). *American journal of botany* **101**: 348–356.

610 **VanBuren R, Pardo J, Man Wai C, Evans S, Bartels D. 2019.** Massive Tandem Proliferation
611 of ELIPs Supports Convergent Evolution of Desiccation Tolerance across Land Plants. *Plant
612 physiology* **179**: 1040–1049.

613 **Wellstein C, Chelli S, Campetella G, et al. 2013.** Intraspecific phenotypic variability of plant
614 functional traits in contrasting mountain grasslands habitats. *Biodiversity and conservation* **22**:
615 2353–2374.

616 **Whittaker RH. 1965.** Dominance and diversity in land plant communities: numerical relations of
617 species express the importance of competition in community function and evolution. *Science*
618 **147**: 250–260.

619 **Winemiller KO, Fitzgerald DB, Bower LM, Pianka ER. 2015.** Functional traits, convergent
620 evolution, and periodic tables of niches. *Ecology letters* **18**: 737–751.