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2. Abstract

Metagenomic next-generation sequencing has transformed the discovery and diagnosis of
infectious disease, with the power to characterize the complete ‘infectome’ (bacteria, viruses,
fungi, parasites) of an individual host organism. However, the identification of novel
pathogens has been complicated by widespread microbial contamination in commonly used
laboratory reagents. Using total RNA sequencing (“metatranscriptomics’) we documented
the presence of contaminant viral sequences in multiple libraries of ‘blank’ negative control
sequencing libraries that comprise a sterile water and reagent mix. Accordingly, we identified
14 viral sequences in 7 negative control sequencing libraries. As in previous studies, several
circular replication-associated protein encoding (CRESS) DNA virus-like sequences were
recovered in the blank libraries, as well as contaminating sequences from the RNA virus
families Totiviridae, Tombusviridae and Lentiviridae. These data suggest that the
contamination of common laboratory reagents is likely widespread and can comprise a wide

variety of viruses.

3. Data summary

The authors confirm all supporting data, code and protocols have been provided within the

article or through supplementary data files.

4. Introduction

Culture-independent methods, particularly metagenomic next-generation sequencing
(mNGS), have revolutionised pathogen discovery, streamlined pathways of clinical diagnosis,
and have enhanced our ability to track infectious disease outbreaks [1], including the current
COVID-19 pandemic [2, 3]. These methods can reveal the complete profile of pathogenic
and commensal microorganisms within a host, comprising viruses, bacteria, fungi and
eukaryotic parasites. As mNGS, particularly total RNA sequencing (i.e. metatranscriptomics),
enables the identification of diverse and divergent viral sequences, it has been widely utilised

for virus discovery [4-8].

Although the data generated by mNGS is bountiful and cost-effective, it comes with several
inherent limitations, central of which is the possibility of reagent contamination [9]. Indeed,
the contamination of mNGS data can be problematic when identifying microbes in the

context of disease association and creates issues when attempting to identify the true host of a
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novel microbe. The experimental preparation of samples for sequencing necessarily involves
treatment with a variety of reagents, many of which have been shown to carry contaminating
nucleic acids, including viral sequences [10-15]. Previous work has illuminated the extent of
viral contamination in commonly used laboratory components, particularly those with small
single-stranded (ss) DNA genomes [9, 14, 16-18]. Accordingly, there is a clear need for
appropriate controls when characterizing novel viruses from metagenomic data. For example,
metagenomic analysis of human plasma samples revealed the presence of sequences of
Kadipiro virus, a double-stranded positive-sense RNA virus [19, 20]. However, the presence
of these sequences was not confirmed via PCR, suggesting that they were contaminant in
origin [19, 20]. An additional complication is that reagent-associated viral sequences are

often not shared nor widespread across samples, only appearing intermittently [9].

Although mNGS has identified many novel viruses, diverse species of circular replication-
associated protein encoding (CRESS) ssDNA viruses have been particularly prominent [21-
25]. However, as noted above, ssDNA viruses, particularly CRESS viruses and their relatives
including circoviruses, are common contaminants of reagents, leading to incorrect inferences
of host associations [9, 26]. As well as DNA viruses, a variety of other microbial sequences
are present in laboratory reagents, including bacteria, RNA viruses, and eukaryotic parasites

[9, 27-30].

To further explore the diversity of contaminant sequences in laboratory components,
particularly those derived from viruses, we used metatranscriptomics to investigate seven
libraries of blank RNA sequencing samples representing sterile water extractions and library

preparation reagents.

5. Methods

When generating total RNA sequencing libraries, we regularly utilise negative or ‘blank’
samples as experimental controls to assess the extent of reagent contamination. These
controls are derived from extractions of the sterile water used at the elution step, and
importantly, are expected to contain no nucleic acid material. In theory, these negative
controls should generate no sequencing reads, however they can capture contamination

during the DNA/RNA extraction or library preparation steps.
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93  Herein, we analysed negative control sequencing libraries under different experimental
94  conditions to identify likely contaminant sequences (Table 1). Total RNA was extracted
95  using either the RNeasy Plus Universal Kit (Qiagen), RNeasy Plus Mini Kit (Qiagen) or the
96  Total RNA purification Kit (Norgen BioTek Corp), as described in Table 1. RNA libraries
97  were prepared with the Trio RNA-seq + UDI Library Preparation Kit (NuGEN) or the
98  SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (Clontech) and
99  sequenced on the MiSeq, NextSeq or NovaSeq Illumina platforms, producing between
100  0.63Gb and 8.7Gb of data per library.
101
102 Analysis of virus-like sequences in laboratory reagents
103 Each sequencing library underwent trimming and de novo assembly of reads, completed
104  using either the Trinity software with default settings [31] or MEGAHIT [32]. Sequence
105  similarity searches using Diamond BLASTX were performed on the de novo assembled
106  contigs against the GenBank non-redundant (nr) database [33, 34]. Specifically, we used a
107 combination of e-value, hit length, and percentage similarity to determine the potential of a
108  contig to be a viral sequence. The abundance of reagent-associated reads was calculated by
109  comparing the number of contig reads to the total number of library reads (via mapping
110  trimmed reads back to the contigs) as performed in previous studies [5, 8].
111
112 After initial identification, all potential contaminant sequences were subjected to
113 phylogenetic analysis. To ensure high quality amino acid sequence alignments, only
114  conserved sequence contigs that were >800 bp (>200 amino acids) in length were used in
115  downstream analysis. Reference proteins including the highly conserved replicase, DNA
116  polymerase and RNA-dependent RNA polymerase (RdRp) proteins were downloaded from
117  the NCBI RefSeq database (Table 2). Contig and reference proteins were aligned using the
118  L-INS-I algorithm in MAFFT v7 [35], with ambiguously aligned regions removed using
119  Gblocks [36] which resulted in final sequence alignments of between 150-1000 amino acids
120  in length (Table 2). Phylogenetic trees of all alignments were then estimated using the
121  maximum likelihood method in IQ-TREE [37], using the model testing option and bootstrap
122 resampling with 500 replications.
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123 6. Results

124 In total, we identified 14 reagent-associated viral sequences in the negative (blank) control
125 samples tested, including seven CRESS-like viral sequences, four novel Tombusviridae-like
126  viral sequences, and single Lentivirus-like and Totiviridae-like viral sequences.

127

128  The abundance of reads in each library was calculated to compare the percentage of reads
129  associated with viruses (Figure 1). This revealed that the virus-associated contigs identified
130  were predominantly CRESS-like (Figure 1b-e). The L5 library only contained one virus-
131  associated contig, associated with Escherichia coli phage PhiX 174 DNA: this was

132 intentionally added into the sequencing run to add complexity and improve signal in the

133 library. Both the L4 and L6 libraries did not contain long (>800bp) virus-associated contigs.
134

135 Novel reagent-associated virus-like sequences were identified in four of the seven libraries
136  (Table 3). Seven novel circo-like viruses (termed Reagent-associated CRESS-like virus 1-7),
137  four novel tombusvirus-like viruses (termed Reagent-associated tombus-like virus 1-4), and
138  one totivirus-like and lentivirus-like sequence (termed Reagent-associated toti-like virus and
139  Reagent-associated lenti-like virus, respectively) were identified in the L1, L2 and L3

140  libraries. The contigs ranged from 828-3878 bp in length and comprised 0.004-9.66% of

141  reads in their associated libraries.

142

143 Because of the extensive genetic diversity within the Circoviridae we inferred two separate
144 sequence alignments and hence two phylogenetic trees, representing the CRESS viruses and
145  circoviruses taken independently, although both were based on the Rep protein sequence
146  (Figure 3). All seven of the novel reagent-associated circovirus-like sequences exhibited
147  greater sequence similarity to the CRESS viruses, and therefore were included in the CRESS
148  virus phylogeny and termed reagent-associated CRESS-like viruses 1-7. These viruses

149  occupied diverse locations across the phylogeny, although they were closely related to some
150  previously identified reagent-associated viruses: Avon-Heathcote estuary associated circular
151  viruses, Circoviridae sp. subtypes, Dromedary stool-associated circular virus subtypes, and
152 Sandworm circovirus [5, 9] (Figure 2). It is notable that the CRESS viruses analysed derive
153 from a variety of environments, and there is no clear pattern according to the host species of
154  sample origin, which is anticipated in the case of contaminant sequences. The seven novel

155  CRESS-like viruses identified also varied in abundance in the L1 and L3 libraries (0.01-


https://doi.org/10.1101/2021.09.10.459871
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.10.459871; this version posted September 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

156  9.66%). In contrast, a phylogenetic analysis of the Rep protein of other members of

157  Circoviridae (Table 2), containing what we hypothesise are bona fide viruses, reveals a

158  pattern of host-based clustering (Figure 3). In particular, this phylogeny was characterised by
159  two distinct clades of circoviruses: circoviruses, associated with vertebrate hosts, and

160  cycloviruses associated with invertebrates.

161

162 Aside from ssDNA viruses, we identified an additional seven novel reagent-associated viral
163 sequences in the blank control libraries. The first of these was a novel lentivirus-like

164  sequence that we then used in an alignment of the retroviral Pol protein (Table 2). A

165  phylogenetic tree was inferred from the alignment and the novel reagent-associated lenti-like
166  virus was shown to cluster closely to Equine infectious anaemia viruses (EIAV), although
167  occupying a relatively long branch within this clade (Figure 4).

168

169  Similarly, we identified four novel tombus-like sequences in the blank control samples: these
170  were termed Reagent-associated tombus-like virus 1-4. A sequence alignment of the RNA-
171  dependent RNA polymerase (RdRp) protein was used to infer a phylogenetic tree of these
172 tombusvirus-like sequences that are commonly associated with plants (Table 2). Three of the
173 novel tombus-like viruses cluster together in the same divergent clade that falls basal to

174  majority of the tombus-like viruses (Figure 5). Only two tombus-like virus sequences fall in
175  more divergent positions — Wenzhou tombus-like virus 11 and Sclerotinia sclerotiorum

176 ~ umbra-like virus 1. As these were both identified in metatranscriptomic studies [8, 39] it is
177  possible that they reflect reagent contamination, although Sclerotinia sclerotiorum umbra-like
178  virus 1 was found in two samples of Sclerotinia sclerotiorum (a fungus) compatible with its
179  status as a true mycovirus [39, 40]. Additionally, Plasmopara viticola lesion associated

180  tombus-like virus 2, which is also suggested to be a mycovirus, falls nearby (Figure 5). This
181  virus sequence falls basal to a clade within the broader tombusvirus tree that includes a

182  variety of plant viruses, including Groundnut rosette virus, Carrot mottle virus and Tobacco
183  mottle virus. Reagent-associated tombus-like virus 3 was identified in blank library L3 at a
184  relatively high abundance (1% of total reads), although it had a shorter (1574 bp) and likely
185  incomplete genome compared to most tombusviruses (~4-5 kb).

186

187  Finally, the remaining novel sequence was related to the totiviruses, a family of double-strand

188  RNA viruses commonly associated with fungi. The novel totivirus-like sequence was termed
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189  Reagent-associated toti-like virus. It was used in an alignment of the RdRp protein (Table 2),
190  from which a phylogenetic tree was estimated (Figure 6). This revealed that the sequence

191  appears to be related to Scheffersomyces segobiensis virus (83% amino acid identity)

192 associated with the fungus Scheffersomyces segobiensis.

193

194 7. Discussion

195  Viral sequences, particularly those with single-stranded DNA genomes, have previously been
196  associated with common laboratory components [9], and these contaminant viral sequences
197  have sometimes led to erroneous disease associations [14, 17, 18, 41]. Herein, using a series
198  of blank controls comprising sterile water and commonly used laboratory reagents, we

199  identified a diverse range of viral sequences.

200

201  Few laboratory reagents appear to be entirely free from contamination, particularly by

202 ssDNA viruses, predominantly circoviruses [5, 9, 26]. Indeed, approximately half of the viral
203  sequences identified here were CRESS-like members of the Circoviridae. Unfortunately,

204  high levels of sequence diversity prevented us from obtaining a meaningful alignment of the
205  Rep protein for the novel CRESS-like virus sequences obtained here and known

206  Circoviridae. Accordingly, we divided the family into sub-groups, termed here as “host-

207  associated circoviruses” (Figure 3) and “CRESS and CRESS-like viruses” and performed
208  phylogenetic analyses on each (Figure 2). Notably, in the “host-associated circovirus”

209  phylogeny viruses clustered based on broad host species of origin. In contrast, within the

210  “CRESS and CRESS-like” phylogeny, clades could not be defined based on specific hosts or
211  environments, and while many samples were originally derived from marine- or faeces-

212 associated environments, these sequences did not cluster together. Interestingly, however, one
213 of viruses identified in this study, reagent-associated CRESS-like virus 4, is most closely

214  related to Avon-Heathcote Estuary associated circular virus 3, previously identified as a

215  reagent-associated virus [42]. In addition, the seven novel CRESS-like sequences identified
216  here were related to previously identified reagent-associated viruses, including those

217  1identified by Asplund et al. (highlighted in blue, Figure 2) [9], as well as Sandworm

218  circovirus similarly proposed to be a reagent contaminant [43]. This strongly suggests that all
219  these sequences are likely associated with laboratory reagents.

220
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221 It is therefore clear that CRESS-like viruses are common experimental reagent contaminants,
222 with widespread reagent-associated sequences dispersed throughout the CRESS phylogeny.
223 This, along with the range of CRESS viruses of undetermined host origin, create major

224  difficulties in determining the origin of novel CRESS viruses. Although there have been

225  many new members of Circoviridae characterized in recent years, particularly novel

226  cycloviruses [5, 44, 45], we suggest that current and future characterizations of novel

227  circovirus- and CRESS-like genomes should be completed cautiously with additional

228  confirmation steps.

229

230  We also identified several tombusvirus-like sequences in this study, as well as a totivirus- and
231  lentivirus-like sequence. The Tombusviridae are a family of single-strand positive-sense

232 RNA viruses are usually associated with mosaic diseases in plants. We identified four novel
233 tombusvirus-like sequences associated with laboratory reagents, calling into question the
234 provenance of other novel tombusviruses identified in some meta-transcriptomic studies [46].
235  The identification of reagent-associated tombusvirus-like sequences suggests that additional
236  care should be taken when characterizing novel tombusvirus sequences, particularly when
237  associating novel or previously identified tombusviruses with a host or disease. Similarly,
238  although the natural hosts of the Totiviridae are fungi, other Totiviridae are associated with
239  human-infecting protozoa, such as Trichomonasvirus associated with Trichomonas vaginalis
240  [47] and Giardiavirus that likely infects Giardia lamblia protozoa [48, 49]. The novel

241  reagent-associated totivirus identified in this study is distantly related to known totiviruses.
242 We recommend that caution be taken when identifying novel totiviruses, especially if they
243 are related to reagent-associated toti-like virus.

244

245  Lentiviruses are a genus within the Retroviridae and well documented in a wide range of
246  vertebrate species. The novel sequence identified in this study — reagent-associated lenti-like
247  virus —is closely related to several known sequences of equine infectious anemia virus

248  (EIAV) that cause the chronic disease, equine infectious anemia (EIA) in horses. EIAV is
249  transmissible through bodily secretions [50, 51], and has been suggested to be vector-borne
250  through biting flies [52]. Although the novel reagent-associated lenti-like virus was

251  genetically distinct from known EIAV sequences, care should obviously be taken to ensure
252 that any EIAV-like virus is a true viral infection rather than a reagent contaminant.

253
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254 In sum, this study further highlights the extent of viral sequences in commonly used

255  laboratory reagents [9], and the power of mNGS to monitor contamination in microbiological
256  laboratories [53]. Although the source of these contaminants is unknown and needs further
257  scrutiny, we tentatively suggest that viral vectors (for example, in the Lentiviridae) represent
258  alikely source. Factors to consider when assessing the presence of reagent contaminants

259  include genome coverage, read depth and distribution of read alignments across genomes,
260  and that potential contaminant sequences are often only present at low abundance and in

261  multiple libraries. Importantly, reagent-associated viruses are often more prevalent in

262  sequencing reads than assembled contigs, emphasising the importance of careful assessment
263  when relying on read data alone for characterizing novel viruses and other microbial genomes
264 [9, 26]. Finally, our work highlights the importance of employing additional steps such as
265  PCR or cell culture to confirm the presence of the pathogen after initial metagenomic

266 1identification [9, 26]. Clearly, sequencing negative controls, such as that using sterile water
267  and reagent mix as performed here, should become normal procedure in quality control.

268
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Figure 1. Abundance of viral reads in libraries L1, L2, L3, and L7. (A-D) Visual
representation of the virus-associated reads in respective libraries, with the pie chart depicting
the total number of long (>800 bp) virus-associated contigs (orange) compared to all the
virus-associated reads (blue). The bar chart on the right denotes the proportion of contigs of
associated with different virus families in the respective libraries.
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Figure 2. Phylogenetic relationships of CRESS (ssDNA) viruses, including the seven novel
CRESS-like viruses identified here and highlighted in red (reagent-associated CRESS-like
viruses 1-7). Reagent-associated sequences determined previously are highlighted in blue.
The clades that included the novel CRESS-like viruses identified here (A, B and G) are
magnified on the right. The tree and other clades (C, D, E and F) are shown in higher
resolution in Supplementary Figure 1. The tree was mid-point rooted for clarity purposes
only. Bootstrap values greater than 70% are represented by asterisks next to nodes. All
horizontal branch lengths are scaled according to number of amino acid substitutions per site.
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447  Figure 3. Phylogenetic relationships of ssDNA virus family Circoviridae, based on

448  hypothesised “host-associated” circoviruses. The tree has two major clades, comprising the
449  circovirus clade (highlighted in blue), associated with vertebrate hosts, and the cyclovirus
450  clade (highlighted in green), previously associated with invertebrate hosts. For clarity, the
451  tree is mid-point rooted. Bootstrap values greater than 70% are represented by asterisks next
452  to nodes. All horizontal branch lengths are scaled according to number of amino acid

453 substitutions per site.
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455  Figure 4. Phylogenetic relationships of RNA virus family Lentiviridae including the novel
456  virus identified in this study, the novel sequence reagent-associated lenti-like virus. This virus
457  is highlighted in red and falls within the Equine infectious anemia virus clade.
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459  Figure 5. Phylogenetic relationships of RNA virus family Tombusviridae including the seven
460  novel viruses identified in this study (highlighted in red). The phylogeny was mid-point

461  rooted for clarity purposes only. Bootstrap values greater than 70% are represented by

462  asterisks next to nodes. All horizontal branch lengths are scaled according to number of

463  amino acid substitutions per site.
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Figure 6. Phylogenetic relationships of RNA virus family 7otiviridae, including the novel
virus identified in this study - Reagent-associated toti-like virus (highlighted in red). For
clarity, the tree was mid-point rooted. Bootstrap values greater than 70% are represented by
asterisks next to nodes. All horizontal branch lengths are scaled according to number of

amino acid substitutions per site.
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Table 1. Experimental conditions of each blank negative control sample utilised here.

Library  Sequencing RNA extraction Library preparation Data Library
name platform generated accession!
L1 [llumina Novaseq RNeasy Plus Trio RNA-seq +UDI 11,940,824 SRR14737471
6000 150 cycle kit Universal Kits (NuGEN) paired reads
(2x75nt reads) (Qiagen) (1.8Gb)
L2 [llumina Novaseq RNeasy Plus Trio RNA-seq +UDI 57,606,392 SRR14737470
6000 150 cycle kit Universal Kits (NuGEN) paired reads
(2x75nt reads) (Qiagen) (8.7Gb)
L3 [llumina MiSeq, v3  RNeasy Plus Mini SMARTer Stranded 4,156,504 SRX6803604
150 cycle kit Kit (Qiagen) Total RNA-Seq Kit v2  paired reads
(2x75nt reads) - Pico Input (0.63 Gb)
Mammalian (Clontech)
L4 Illumina NextSeq Total RNA SMARTer Stranded 32,279,914 SRR 14737469
500, mid-output Purification Kit Total RNA-Seq Kit v2  paired reads
150 cycle kit (Norgen Biotek) - Pico Input (4.91 Gb)
(2x75nt reads) Mammalian (Clontech)
L5 [llumina MiSeq 150  Total RNA SMARTer Stranded 7,342,876 SAMN20355437
cycle kit (2x75nt purification Kit Total RNA-Seq Kit v2 ?la ilr gdéf);lds
reads) (Norgen BioTek - Pico Input
Corp) Mammalian (Clontech)
L6 [llumina MiSeq 150  Total RNA SMARTer Stranded 10,978,253 SAMN20355438
cycle kit (2x75nt purification Kit Total RNA-Seq Kit v2 {’f‘_iégdég;‘ds
reads) (Norgen BioTek - Pico Input
Corp) Mammalian (Clontech)
L7 [llumina MiSeq 150  Total RNA SMARTer Stranded 8,564,269 SRR 14737466
cycle kit (2x75nt purification Kit Total RNA-Seq Kit v2 12256
reads) (Norgen BioTek - Pico Input
Corp) Mammalian (Clontech)

'The sequencing data for each library can be accessed via the sequence read archive (SRA) using the associated

accession numbers.
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474  Table 2. Reference proteins for each sequence alignment performed in this analysis.

Reference Number of

Reference protein acronym Taxonomy sequences Alignment length

in analysis (amino acid, AA)
Viral replicase protein | Rep CRESS 221 672 AA
Viral replicase protein | Rep Circoviridae 69 161 AA
Polymerase peptide | Pol Lentiviridae 11 478 AA
RNA-dependent RNA | RdRp Totiviridae 95 125 AA

polymerase

RNA-dependent RNA | RdRp Tombusviridae 87 256 AA

polymerase
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476  Table 3. Novel reagent-associated viral sequences identified in this study.

Abundance in Length
Virus name Accession library (%) of (bp) Library
total reads, rRNA
removed)
Reagent-associated tombus-like virus 1 | MZ824229 1.28 1204 L3
Reagent-associated tombus-like virus 2 | MZ824228 0.46 828 L3
Reagent-associated tombus-like virus 3 | MZ824227 1.08 1574 L3
Reagent-associated tombus-like virus 4 | MZ824226 1.29 1410 L3
Reagent-associated toti-like virus | MZ824225 0.001 920 L2
Reagent-associated lenti-like virus | MZ824230 0.004 962 L2
Reagent-associated CRESS-like virus 1 | MZ824237 0.78 3878 L1
Reagent-associated CRESS-like virus 2 | MZ824236 0.24 2377 L1
Reagent-associated CRESS-like virus 3 | MZ824235 0.02 1592 L1
Reagent-associated CRESS-like virus 4 | MZ824234 2.89 2663 L3
Reagent-associated CRESS-like virus 5 | MZ824233 9.66 3027 L3
Reagent-associated CRESS-like virus 6 | MZ824232 4.98 3517 L3
Reagent-associated CRESS-like virus 7 | MZ824231 0.01 1124 L1
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