

1 Metagenomic identification of viral sequences 2 in laboratory reagents

3

4 1.1 Author names

5 Ashleigh F. Porter¹, Joanna Cobbin², Cixiu Li³, John-Sebastian Eden^{2,4}, Edward C. Holmes^{2*}

6

7 1.2 Affiliations

8 ¹ The Peter Doherty Institute of Immunity and Infection, Department of Microbiology
9 and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.

10 ² Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and
11 Environmental Sciences and School of Medical Sciences, The University of Sydney,
12 Sydney, NSW 2006, Australia.

13 ³ Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in
14 Universities of Shandong, Shandong First Medical University & Shandong Academy of
15 Medical Sciences, Taian 271000, China.

16 ⁴ Centre for Virus Research, Westmead Institute for Medical Research, Westmead,
17 Australia.

18 1.3 Corresponding author

19 Edward C. Holmes, edward.holmes@sydney.edu.au

20 1.4 Keywords

21 Reagent contamination, virology, metatranscriptomics, *Circoviridae*, *Totiviridae*,
22 *Tombusviridae*, *Lentiviridae*

23 1.5 Repositories

24 The viral genome sequence data generated in this study has been deposited in the NCBI
25 database under accession numbers MZ824225-MZ824237. Sequence reads are available at
26 the public Sequence Read Archive (SRA) database with accession SRX6803604 and under
27 the BioProject accession PRJNA735051 reference numbers SRR14737466-71 and
28 BioSample numbers SAMN20355437-40.

29 **2. Abstract**

30 Metagenomic next-generation sequencing has transformed the discovery and diagnosis of
31 infectious disease, with the power to characterize the complete ‘infectome’ (bacteria, viruses,
32 fungi, parasites) of an individual host organism. However, the identification of novel
33 pathogens has been complicated by widespread microbial contamination in commonly used
34 laboratory reagents. Using total RNA sequencing (“metatranscriptomics”) we documented
35 the presence of contaminant viral sequences in multiple libraries of ‘blank’ negative control
36 sequencing libraries that comprise a sterile water and reagent mix. Accordingly, we identified
37 14 viral sequences in 7 negative control sequencing libraries. As in previous studies, several
38 circular replication-associated protein encoding (CRESS) DNA virus-like sequences were
39 recovered in the blank libraries, as well as contaminating sequences from the RNA virus
40 families *Totiviridae*, *Tombusviridae* and *Lentiviridae*. These data suggest that the
41 contamination of common laboratory reagents is likely widespread and can comprise a wide
42 variety of viruses.

43 **3. Data summary**

44 The authors confirm all supporting data, code and protocols have been provided within the
45 article or through supplementary data files.

46

47 **4. Introduction**

48 Culture-independent methods, particularly metagenomic next-generation sequencing
49 (mNGS), have revolutionised pathogen discovery, streamlined pathways of clinical diagnosis,
50 and have enhanced our ability to track infectious disease outbreaks [1], including the current
51 COVID-19 pandemic [2, 3]. These methods can reveal the complete profile of pathogenic
52 and commensal microorganisms within a host, comprising viruses, bacteria, fungi and
53 eukaryotic parasites. As mNGS, particularly total RNA sequencing (i.e. metatranscriptomics),
54 enables the identification of diverse and divergent viral sequences, it has been widely utilised
55 for virus discovery [4-8].

56

57 Although the data generated by mNGS is bountiful and cost-effective, it comes with several
58 inherent limitations, central of which is the possibility of reagent contamination [9]. Indeed,
59 the contamination of mNGS data can be problematic when identifying microbes in the
60 context of disease association and creates issues when attempting to identify the true host of a

61 novel microbe. The experimental preparation of samples for sequencing necessarily involves
62 treatment with a variety of reagents, many of which have been shown to carry contaminating
63 nucleic acids, including viral sequences [10-15]. Previous work has illuminated the extent of
64 viral contamination in commonly used laboratory components, particularly those with small
65 single-stranded (ss) DNA genomes [9, 14, 16-18]. Accordingly, there is a clear need for
66 appropriate controls when characterizing novel viruses from metagenomic data. For example,
67 metagenomic analysis of human plasma samples revealed the presence of sequences of
68 Kadipiro virus, a double-stranded positive-sense RNA virus [19, 20]. However, the presence
69 of these sequences was not confirmed via PCR, suggesting that they were contaminant in
70 origin [19, 20]. An additional complication is that reagent-associated viral sequences are
71 often not shared nor widespread across samples, only appearing intermittently [9].

72

73 Although mNGS has identified many novel viruses, diverse species of circular replication-
74 associated protein encoding (CRESS) ssDNA viruses have been particularly prominent [21-
75 25]. However, as noted above, ssDNA viruses, particularly CRESS viruses and their relatives
76 including circoviruses, are common contaminants of reagents, leading to incorrect inferences
77 of host associations [9, 26]. As well as DNA viruses, a variety of other microbial sequences
78 are present in laboratory reagents, including bacteria, RNA viruses, and eukaryotic parasites
79 [9, 27-30].

80

81 To further explore the diversity of contaminant sequences in laboratory components,
82 particularly those derived from viruses, we used metatranscriptomics to investigate seven
83 libraries of blank RNA sequencing samples representing sterile water extractions and library
84 preparation reagents.

85 **5. Methods**

86 When generating total RNA sequencing libraries, we regularly utilise negative or ‘blank’
87 samples as experimental controls to assess the extent of reagent contamination. These
88 controls are derived from extractions of the sterile water used at the elution step, and
89 importantly, are expected to contain no nucleic acid material. In theory, these negative
90 controls should generate no sequencing reads, however they can capture contamination
91 during the DNA/RNA extraction or library preparation steps.

92

93 Herein, we analysed negative control sequencing libraries under different experimental
94 conditions to identify likely contaminant sequences (**Table 1**). Total RNA was extracted
95 using either the RNeasy Plus Universal Kit (Qiagen), RNeasy Plus Mini Kit (Qiagen) or the
96 Total RNA purification Kit (Norgen BioTek Corp), as described in Table 1. RNA libraries
97 were prepared with the Trio RNA-seq + UDI Library Preparation Kit (NuGEN) or the
98 SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (Clontech) and
99 sequenced on the MiSeq, NextSeq or NovaSeq Illumina platforms, producing between
100 0.63Gb and 8.7Gb of data per library.

101

102 *Analysis of virus-like sequences in laboratory reagents*

103 Each sequencing library underwent trimming and *de novo* assembly of reads, completed
104 using either the Trinity software with default settings [31] or MEGAHIT [32]. Sequence
105 similarity searches using Diamond BLASTX were performed on the *de novo* assembled
106 contigs against the GenBank non-redundant (nr) database [33, 34]. Specifically, we used a
107 combination of e-value, hit length, and percentage similarity to determine the potential of a
108 contig to be a viral sequence. The abundance of reagent-associated reads was calculated by
109 comparing the number of contig reads to the total number of library reads (via mapping
110 trimmed reads back to the contigs) as performed in previous studies [5, 8].

111

112 After initial identification, all potential contaminant sequences were subjected to
113 phylogenetic analysis. To ensure high quality amino acid sequence alignments, only
114 conserved sequence contigs that were >800 bp (>200 amino acids) in length were used in
115 downstream analysis. Reference proteins including the highly conserved replicase, DNA
116 polymerase and RNA-dependent RNA polymerase (RdRp) proteins were downloaded from
117 the NCBI RefSeq database (**Table 2**). Contig and reference proteins were aligned using the
118 L-INS-I algorithm in MAFFT v7 [35], with ambiguously aligned regions removed using
119 Gblocks [36] which resulted in final sequence alignments of between 150-1000 amino acids
120 in length (**Table 2**). Phylogenetic trees of all alignments were then estimated using the
121 maximum likelihood method in IQ-TREE [37], using the model testing option and bootstrap
122 resampling with 500 replications.

123 **6. Results**

124 In total, we identified 14 reagent-associated viral sequences in the negative (blank) control
125 samples tested, including seven CRESS-like viral sequences, four novel *Tombusviridae*-like
126 viral sequences, and single *Lentivirus*-like and *Totiviridae*-like viral sequences.

127

128 The abundance of reads in each library was calculated to compare the percentage of reads
129 associated with viruses (**Figure 1**). This revealed that the virus-associated contigs identified
130 were predominantly CRESS-like (**Figure 1b-e**). The L5 library only contained one virus-
131 associated contig, associated with *Escherichia coli* phage PhiX 174 DNA: this was
132 intentionally added into the sequencing run to add complexity and improve signal in the
133 library. Both the L4 and L6 libraries did not contain long (>800bp) virus-associated contigs.

134

135 Novel reagent-associated virus-like sequences were identified in four of the seven libraries
136 (**Table 3**). Seven novel circo-like viruses (termed Reagent-associated CRESS-like virus 1-7),
137 four novel tombusvirus-like viruses (termed Reagent-associated tombus-like virus 1-4), and
138 one totivirus-like and lentivirus-like sequence (termed Reagent-associated toti-like virus and
139 Reagent-associated lenti-like virus, respectively) were identified in the L1, L2 and L3
140 libraries. The contigs ranged from 828-3878 bp in length and comprised 0.004-9.66% of
141 reads in their associated libraries.

142

143 Because of the extensive genetic diversity within the *Circoviridae* we inferred two separate
144 sequence alignments and hence two phylogenetic trees, representing the CRESS viruses and
145 circoviruses taken independently, although both were based on the Rep protein sequence
146 (**Figure 3**). All seven of the novel reagent-associated circovirus-like sequences exhibited
147 greater sequence similarity to the CRESS viruses, and therefore were included in the CRESS
148 virus phylogeny and termed reagent-associated CRESS-like viruses 1-7. These viruses
149 occupied diverse locations across the phylogeny, although they were closely related to some
150 previously identified reagent-associated viruses: Avon-Heathcote estuary associated circular
151 viruses, *Circoviridae* sp. subtypes, Dromedary stool-associated circular virus subtypes, and
152 Sandworm circovirus [5, 9] (**Figure 2**). It is notable that the CRESS viruses analysed derive
153 from a variety of environments, and there is no clear pattern according to the host species of
154 sample origin, which is anticipated in the case of contaminant sequences. The seven novel
155 CRESS-like viruses identified also varied in abundance in the L1 and L3 libraries (0.01-

156 9.66%). In contrast, a phylogenetic analysis of the Rep protein of other members of
157 *Circoviridae* (**Table 2**), containing what we hypothesise are *bona fide* viruses, reveals a
158 pattern of host-based clustering (**Figure 3**). In particular, this phylogeny was characterised by
159 two distinct clades of circoviruses: circoviruses, associated with vertebrate hosts, and
160 cycloviruses associated with invertebrates.

161

162 Aside from ssDNA viruses, we identified an additional seven novel reagent-associated viral
163 sequences in the blank control libraries. The first of these was a novel lentivirus-like
164 sequence that we then used in an alignment of the retroviral Pol protein (**Table 2**). A
165 phylogenetic tree was inferred from the alignment and the novel reagent-associated lenti-like
166 virus was shown to cluster closely to Equine infectious anaemia viruses (EIAV), although
167 occupying a relatively long branch within this clade (**Figure 4**).

168

169 Similarly, we identified four novel tombus-like sequences in the blank control samples: these
170 were termed Reagent-associated tombus-like virus 1-4. A sequence alignment of the RNA-
171 dependent RNA polymerase (RdRp) protein was used to infer a phylogenetic tree of these
172 tombusvirus-like sequences that are commonly associated with plants (**Table 2**). Three of the
173 novel tombus-like viruses cluster together in the same divergent clade that falls basal to
174 majority of the tombus-like viruses (**Figure 5**). Only two tombus-like virus sequences fall in
175 more divergent positions – Wenzhou tombus-like virus 11 and *Sclerotinia sclerotiorum*
176 *umbra*-like virus 1. As these were both identified in metatranscriptomic studies [8, 39] it is
177 possible that they reflect reagent contamination, although *Sclerotinia sclerotiorum* *umbra*-like
178 virus 1 was found in two samples of *Sclerotinia sclerotiorum* (a fungus) compatible with its
179 status as a true mycovirus [39, 40]. Additionally, *Plasmopara viticola* lesion associated
180 tombus-like virus 2, which is also suggested to be a mycovirus, falls nearby (**Figure 5**). This
181 virus sequence falls basal to a clade within the broader tombusvirus tree that includes a
182 variety of plant viruses, including Groundnut rosette virus, Carrot mottle virus and Tobacco
183 mottle virus. Reagent-associated tombus-like virus 3 was identified in blank library L3 at a
184 relatively high abundance (1% of total reads), although it had a shorter (1574 bp) and likely
185 incomplete genome compared to most tombusviruses (~4-5 kb).

186

187 Finally, the remaining novel sequence was related to the totiviruses, a family of double-strand
188 RNA viruses commonly associated with fungi. The novel totivirus-like sequence was termed

189 Reagent-associated toti-like virus. It was used in an alignment of the RdRp protein (**Table 2**),
190 from which a phylogenetic tree was estimated (**Figure 6**). This revealed that the sequence
191 appears to be related to *Scheffersomyces segobiensis* virus (83% amino acid identity)
192 associated with the fungus *Scheffersomyces segobiensis*.
193

194 **7. Discussion**

195 Viral sequences, particularly those with single-stranded DNA genomes, have previously been
196 associated with common laboratory components [9], and these contaminant viral sequences
197 have sometimes led to erroneous disease associations [14, 17, 18, 41]. Herein, using a series
198 of blank controls comprising sterile water and commonly used laboratory reagents, we
199 identified a diverse range of viral sequences.
200

201 Few laboratory reagents appear to be entirely free from contamination, particularly by
202 ssDNA viruses, predominantly circoviruses [5, 9, 26]. Indeed, approximately half of the viral
203 sequences identified here were CRESS-like members of the *Circoviridae*. Unfortunately,
204 high levels of sequence diversity prevented us from obtaining a meaningful alignment of the
205 Rep protein for the novel CRESS-like virus sequences obtained here and known
206 *Circoviridae*. Accordingly, we divided the family into sub-groups, termed here as “host-
207 associated circoviruses” (**Figure 3**) and “CRESS and CRESS-like viruses” and performed
208 phylogenetic analyses on each (**Figure 2**). Notably, in the “host-associated circovirus”
209 phylogeny viruses clustered based on broad host species of origin. In contrast, within the
210 “CRESS and CRESS-like” phylogeny, clades could not be defined based on specific hosts or
211 environments, and while many samples were originally derived from marine- or faeces-
212 associated environments, these sequences did not cluster together. Interestingly, however, one
213 of viruses identified in this study, reagent-associated CRESS-like virus 4, is most closely
214 related to Avon-Heathcote Estuary associated circular virus 3, previously identified as a
215 reagent-associated virus [42]. In addition, the seven novel CRESS-like sequences identified
216 here were related to previously identified reagent-associated viruses, including those
217 identified by Asplund et al. (highlighted in blue, **Figure 2**) [9], as well as Sandworm
218 circovirus similarly proposed to be a reagent contaminant [43]. This strongly suggests that all
219 these sequences are likely associated with laboratory reagents.
220

221 It is therefore clear that CRESS-like viruses are common experimental reagent contaminants,
222 with widespread reagent-associated sequences dispersed throughout the CRESS phylogeny.
223 This, along with the range of CRESS viruses of undetermined host origin, create major
224 difficulties in determining the origin of novel CRESS viruses. Although there have been
225 many new members of *Circoviridae* characterized in recent years, particularly novel
226 cycloviruses [5, 44, 45], we suggest that current and future characterizations of novel
227 circovirus- and CRESS-like genomes should be completed cautiously with additional
228 confirmation steps.

229

230 We also identified several tombusvirus-like sequences in this study, as well as a totivirus- and
231 lentivirus-like sequence. The *Tombusviridae* are a family of single-strand positive-sense
232 RNA viruses are usually associated with mosaic diseases in plants. We identified four novel
233 tombusvirus-like sequences associated with laboratory reagents, calling into question the
234 provenance of other novel tombusviruses identified in some meta-transcriptomic studies [46].
235 The identification of reagent-associated tombusvirus-like sequences suggests that additional
236 care should be taken when characterizing novel tombusvirus sequences, particularly when
237 associating novel or previously identified tombusviruses with a host or disease. Similarly,
238 although the natural hosts of the *Totiviridae* are fungi, other *Totiviridae* are associated with
239 human-infecting protozoa, such as *Trichomonasvirus* associated with *Trichomonas vaginalis*
240 [47] and *Giardiavirus* that likely infects *Giardia lamblia* protozoa [48, 49]. The novel
241 reagent-associated totivirus identified in this study is distantly related to known totiviruses.
242 We recommend that caution be taken when identifying novel totiviruses, especially if they
243 are related to reagent-associated toti-like virus.

244

245 Lentiviruses are a genus within the *Retroviridae* and well documented in a wide range of
246 vertebrate species. The novel sequence identified in this study – reagent-associated lenti-like
247 virus – is closely related to several known sequences of equine infectious anemia virus
248 (EIAV) that cause the chronic disease, equine infectious anemia (EIA) in horses. EIAV is
249 transmissible through bodily secretions [50, 51], and has been suggested to be vector-borne
250 through biting flies [52]. Although the novel reagent-associated lenti-like virus was
251 genetically distinct from known EIAV sequences, care should obviously be taken to ensure
252 that any EIAV-like virus is a true viral infection rather than a reagent contaminant.

253

254 In sum, this study further highlights the extent of viral sequences in commonly used
255 laboratory reagents [9], and the power of mNGS to monitor contamination in microbiological
256 laboratories [53]. Although the source of these contaminants is unknown and needs further
257 scrutiny, we tentatively suggest that viral vectors (for example, in the *Lentiviridae*) represent
258 a likely source. Factors to consider when assessing the presence of reagent contaminants
259 include genome coverage, read depth and distribution of read alignments across genomes,
260 and that potential contaminant sequences are often only present at low abundance and in
261 multiple libraries. Importantly, reagent-associated viruses are often more prevalent in
262 sequencing reads than assembled contigs, emphasising the importance of careful assessment
263 when relying on read data alone for characterizing novel viruses and other microbial genomes
264 [9, 26]. Finally, our work highlights the importance of employing additional steps such as
265 PCR or cell culture to confirm the presence of the pathogen after initial metagenomic
266 identification [9, 26]. Clearly, sequencing negative controls, such as that using sterile water
267 and reagent mix as performed here, should become normal procedure in quality control.
268

269 **8. Author statements**

270 **8.1 Authors and contributors**

271 Conceptualization, E.C.H.; methodology, A.F.P, J.C, C.L and J.- S.E.; formal analysis,
272 A.F.P.; writing—original draft preparation, A.F.P. and E.C.H.; writing—review and editing,
273 A.F.P., E.C.H., C.L, J.C, J.-S.E.; funding acquisition, E.C.H.
274

275 **8.2 Conflicts of interest**

276 The authors declare that there are no conflicts of interest.
277

278 **8.3 Funding information**

279 This research was funded by an Australian Research Council Australian Laureate Fellowship
280 to E.C.H (grant FL170100022).
281

282 **8.4 Ethical approval**

283 Not applicable.
284

285 **8.5 Acknowledgements**

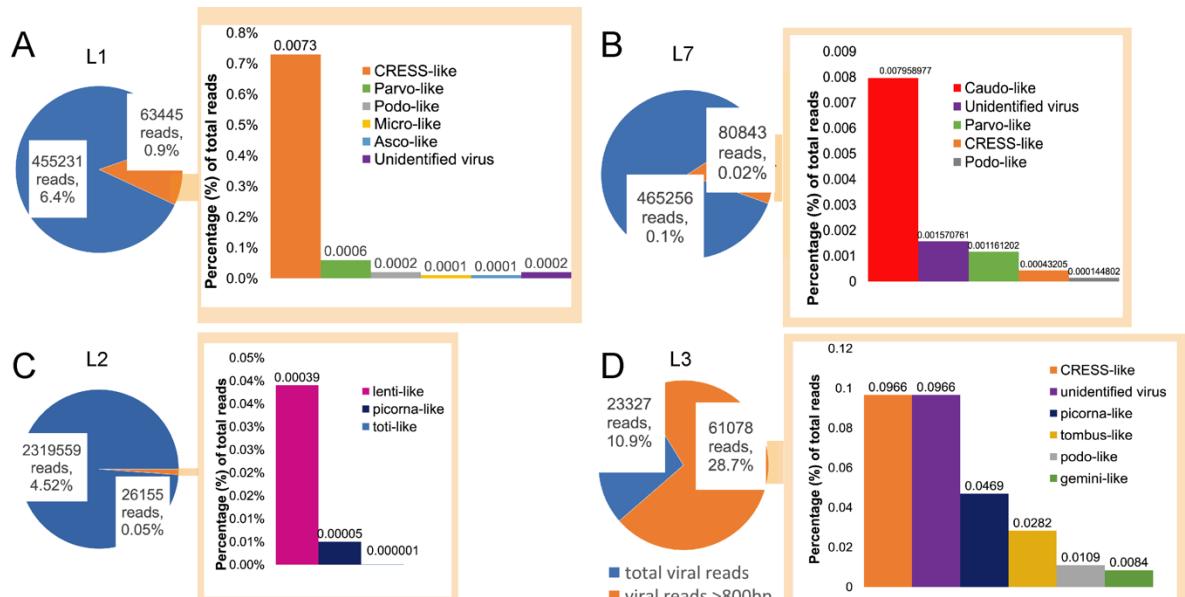
286 We acknowledge the University of Sydney high performance computing cluster Artemis and
287 Sydney Informatics Hub which was used for the analyses in this study.

288

289 **9. References**

- 290 1. **Grubaugh ND, Ladner JT, Lemey P, Pybus OG, Rambaut A, Holmes EC, et al.** Tracking virus outbreaks in the twenty-first century. *Nat Microbiol.* 2019;4:10-9.
- 292 2. **Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al.** Genomic characterisation and
293 epidemiology of 2019 novel coronavirus: implications for virus origins and receptor
294 binding. *The Lancet.* 2020;395:565-74.
- 295 3. **Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl
296 GL, et al.** Spread of SARS-CoV-2 in the Icelandic Population. *New Eng J Med.* 2020;
297 382:2302-15.
- 298 4. **Zhang Y-Z, Chen Y-M, Wang W, Qin X-C, Holmes EC.** Expanding the RNA
299 virosphere by unbiased metagenomics. *Annu Rev Virol.* 2019;6:119-39.
- 300 5. **Porter AF, Pettersson JHO, Chang W-S, Harvey E, Rose K, Shi M, et al.** Novel
301 hepacivirus- and pegi-like viruses in native Australian wildlife and non-human primates.
302 *Virus Evol.* 2020;6:veaa064.
- 303 6. **Geoghegan JL, Di Giallonardo F, Cousins K, Shi M, Williamson JE, Holmes EC.**
304 Hidden diversity and evolution of viruses in market fish. *Virus Evol.* 2018;4:vey031.
- 305 7. **Harvey E, Rose K, Eden JS, Lo N, Abeyasuriya T, Shi M, et al.** Extensive diversity of
306 RNA viruses in Australian ticks. *J Virol.* 2019;93; e01358-18.
- 307 8. **Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, et al.** Redefining the invertebrate
308 RNA virosphere. *Nature.* 2016;540:539-43.
- 309 9. **Asplund M, Kjartansdóttir KR, Mollerup S, Vinner L, Fridholm H, Herrera JA, et
310 al.** Contaminating viral sequences in high-throughput sequencing viromics: a linkage
311 study of 700 sequencing libraries. *Clin Microbiol Infect.* 2019;25:1277-85.
- 312 10. **Kjartansdóttir KR, Friis-Nielsen J, Asplund M, Mollerup S, Mourier T, Jensen RH,
313 et al.** Traces of ATCV-1 associated with laboratory component contamination. *Proc Natl
314 Acad Sci USA.* 2015;112:E925-E6.
- 315 11. **Laurence M, Hatzis C, Brash DE.** Common contaminants in next-generation
316 sequencing that hinder discovery of low-abundance microbes. *PLoS ONE.*
317 2014;9:e97876.
- 318 12. **Friis-Nielsen J, Kjartansdóttir KR, Mollerup S, Asplund M, Mourier T, Jensen RH,
319 et al.** Identification of known and novel recurrent viral sequences in data from multiple
320 patients and multiple cancers. *Viruses.* 2016;8:53.

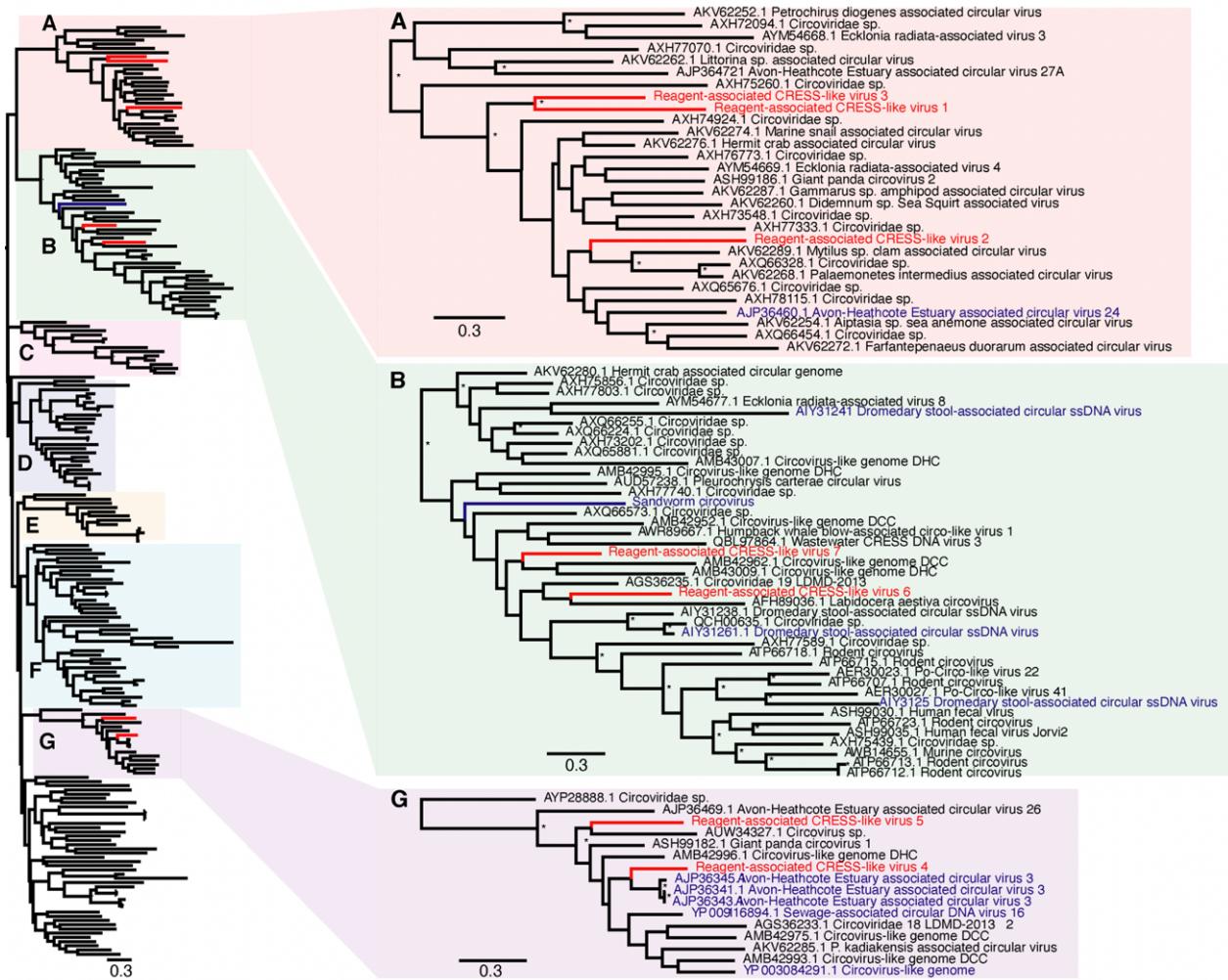
- 321 13. **Lysholm F, Wetterbom A, Lindau C, Darban H, Bjerkner A, Fahlander K, et al.**
322 Characterization of the viral microbiome in patients with severe lower respiratory tract
323 infections, using metagenomic sequencing. *PLoS ONE*. 2012;7:e30875.
- 324 14. **Smuts H, Kew M, Khan A, Korsman S.** Novel hybrid parvovirus-like virus, NIH-
325 CQV/PHV, contaminants in silica column-based nucleic acid extraction kits. *Journal of*
326 *Virology*. 2014;88:1398.
- 327 15. **Lusk RW.** Diverse and widespread contamination evident in the unmapped depths of
328 high throughput sequencing Data. *PLoS ONE*. 2014;9:e110808.
- 329 16. **Knox K, Carrigan D, Simmons G, Teque F, Zhou Y, Hackett J, et al.** No evidence of
330 murine-like gammaretroviruses in CFS patients previously identified as XMRV-infected.
331 *Science*. 2011;333:94-7.
- 332 17. **Naccache SN, Greninger AL, Lee D, Coffey LL, Phan T, Rein-Weston A, et al.** The
333 perils of pathogen discovery: origin of a novel parvovirus-like hybrid genome traced to
334 nucleic acid extraction spin columns. *J Virol*. 2013;87:11966-77.
- 335 18. **Paprotka T, Delviks-Frankenberry KA, Cingöz O, Martinez A, Kung H-J, Tepper**
336 **CG, et al.** Recombinant origin of the retrovirus XMRV. *Science*. 2011;333:97-101.
- 337 19. **Ngoi CN, Siqueira J, Li L, Deng X, Mugo P, Graham SM, et al.** The plasma virome
338 of febrile adult Kenyans shows frequent parvovirus B19 infections and a novel arbovirus
339 (Kadipiro virus). *J Gen Virol*. 2016;97:3359-67.
- 340 20. **Ngoi CN, Siqueira J, Li L, Deng X, Mugo P, Graham SM, et al.** Corrigendum: the
341 plasma virome of febrile adult Kenyans shows frequent parvovirus B19 infections and a
342 novel arbovirus (Kadipiro virus). *J Gen Virol*. 2017;98:517.
- 343 21. **Kerr M, Rosario K, Baker CCM, Breitbart M.** Discovery of four novel circular
344 single-stranded DNA viruses in fungus-farming termites. *Microbiol Resour Ann*.
345 2018;6:e00318-18.
- 346 22. **Kazlauskas D, Dayaram A, Kraberger S, Goldstien S, Varsani A, Krupovic M.**
347 Evolutionary history of ssDNA bacilladnaviruses features horizontal acquisition of the
348 capsid gene from ssRNA nodaviruses. *Virology*. 2017;504:114-21.
- 349 23. **Krupovic M, Ghabrial SA, Jiang D, Varsani A.** *Genomoviridae*: a new family of
350 widespread single-stranded DNA viruses. *Arch Virol*. 2016;161:2633-43.
- 351 24. **Rosario K, Breitbart M, Harrach B, Segales J, Delwart E, Biagini P, et al.** Revisiting
352 the taxonomy of the family *Circoviridae*: establishment of the genus *Cyclovirus* and
353 removal of the genus *Gyrovirus*. *Arch Virol*. 2017;162:1447-63.
- 354 25. **Varsani A, Krupovic M.** *Smacoviridae*: a new family of animal-associated single-
355 stranded DNA viruses. *Arch Virol*. 2018;163:3213-4.
- 356 26. **Holmes EC.** Reagent contamination in viromics: all that glitters is not gold. *Clin*
357 *Microbiol Infect*. 2019;25:1167-8.


- 358 27. **de Goffau MC, Lager S, Salter SJ, Wagner J, Kronbichler A, Charnock-Jones DS, et al.** Recognizing the reagent microbiome. *Nat Microbiol.* 2018;3:851-3.
- 359
- 360 28. **Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al.** Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. *BMC Biol.* 2014;12:87.
- 361
- 362
- 363 29. **Zinter M, Mayday M, Ryckman K, Jelliffe-Pawlowski L, DeRisi J.** Towards precision quantification of contamination in metagenomic sequencing experiments. *Microbiome.* 2019;7:1-5.
- 364
- 365
- 366 30. **Stinson LF, Keelan JA, Payne MS.** Identification and removal of contaminating microbial DNA from PCR reagents: impact on low-biomass microbiome analyses. *Lett Appl Microbiol.* 2019;68:2-8.
- 367
- 368
- 369 31. **Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al.** Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat Biotech.* 2011;29:644-52.
- 370
- 371
- 372 32. **Li D, Liu C-M, Luo R, Sadakane K, Lam T-W.** MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. *Bioinformatics.* 2015;3:1674-6.
- 373
- 374
- 375 33. **Buchfink B, Xie C, Huson DH.** Fast and sensitive protein alignment using DIAMOND. *Nat Meth.* 2015;12:59-60.
- 376
- 377 34. **Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.** BLAST+: architecture and applications. *BMC Bioinformatics.* 2009;10:421.
- 378
- 379 35. **Katoh K, Standley DM.** MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. *Mol Biol Evol.* 2013;30:772-80.
- 380
- 381 36. **Castresana J.** Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Mol Biol Evol.* 2000;17:540-52.
- 382
- 383 37. **Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ.** IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol.* 2015;32:268-74.
- 384
- 385
- 386 38. **Langmead B, Salzberg SL.** Fast gapped-read alignment with Bowtie 2. *Nat Meth.* 2012;9:357-9.
- 387
- 388 39. **Marzano S-YL, Nelson BD, Ajayi-Oyetunde O, Bradley CA, Hughes TJ, Hartman GL, et al.** Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. *J Virol.* 2016;90:6846-63.
- 389
- 390
- 391
- 392 40. **Mu F, Xie J, Cheng S, You MP, Barbetti MJ, Jia J, et al.** Virome characterization of a collection of *S. sclerotiorum* from Australia. *Front. Microbiol.* 2017;8:2540.
- 393

- 394 41. **Erlwein O, Robinson MJ, Dustan S, Weber J, Kaye S, McClure MO.** DNA
395 extraction columns contaminated with murine sequences. *PLoS ONE*. 2011;6:e23484.
- 396 42. **Dayaram A, Goldstien S, Arguello-Astorga GR, Zawar-Reza P, Gomez C, Harding**
397 **JS, et al.** Diverse small circular DNA viruses circulating amongst estuarine molluscs.
398 *Infect Genet Evol*. 2015;31:284-95.
- 399 43. **Porter AF, Shi M, Eden J-S, Zhang Y-Z, Holmes EC.** Diversity and evolution of
400 novel invertebrate DNA viruses revealed by meta-transcriptomics. *Viruses*.
401 2019;11:1092.
- 402 44. **Rosario K, Dayaram A, Marinov M, Ware J, Kraberger S, Stainton D, et al.** Diverse
403 circular ssDNA viruses discovered in dragonflies (Odonata: Epioprocta). *J Gen Virol*.
404 2012;93:2668-81.
- 405 45. **Islam SU, Lin W, Wu R, Lin C, Islam W, Arif M, et al.** Complete genome sequences
406 of three novel cycloviruses identified in a dragonfly (Odonata: Anisoptera) from China.
407 *Arch Virol*. 2018;163:2569-73.
- 408 46. **Culley AI, Lang AS, Suttle CA.** Metagenomic analysis of coastal RNA virus
409 communities. *Science*. 2006;312:1795-8.
- 410 47. **Goodman RP, Ghabrial SA, Fichorova RN, Nibert ML.** *Trichomonasvirus*: a new
411 genus of protozoan viruses in the family *Totiviridae*. *Arch Virol*. 2011;156:171-9.
- 412 48. **Wang AL, Yang HM, Shen KA, Wang CC.** Giardiavirus double-stranded RNA
413 genome encodes a capsid polypeptide and a gag-pol-like fusion protein by a translation
414 frameshift. *Proc Natl Acad Sci USA*. 1993;90:8595-9.
- 415 49. **Wang AL, Wang CC.** Viruses of the protozoa. *Annu Rev Microbiol*. 1991;45:251-63.
- 416 50. **Sellon DC, Fuller FJ, McGuire TC.** The immunopathogenesis of equine infectious
417 anemia virus. *Virus Res*. 1994;32:111-38.
- 418 51. **Issel CJ, Adams WV, Jr., Meek L, Ochoa R.** Transmission of equine infectious anemia
419 virus from horses without clinical signs of disease. *J Am Vet Med Assoc*. 1982;180:272-
420 5.
- 421 52. **Hawkins JA, Adams WV, Jr., Wilson BH, Issel CJ, Roth EE.** Transmission of equine
422 infectious anemia virus by *Tabanus fuscicostatus*. *J Am Vet Med Assoc*. 1976;168:63-4.
- 423 53. **Xiao Y, Zhang L, Yang B, Li M, Ren L, Wang J.** Application of next generation
424 sequencing technology on contamination monitoring in microbiology laboratory.
425 *Biosafety Health*. 2019;1:25-31.
- 426

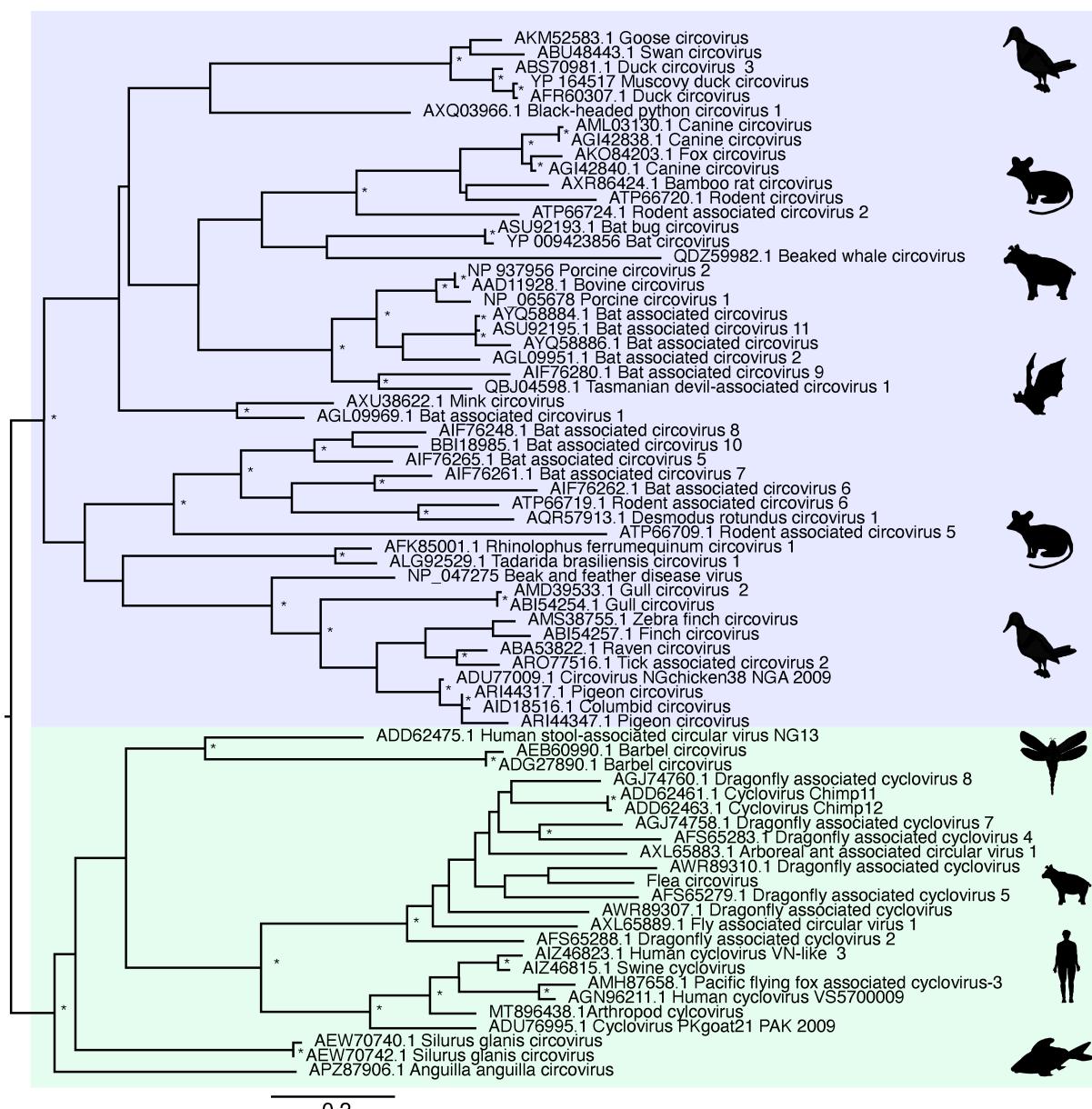
427

10. Figures and tables


428

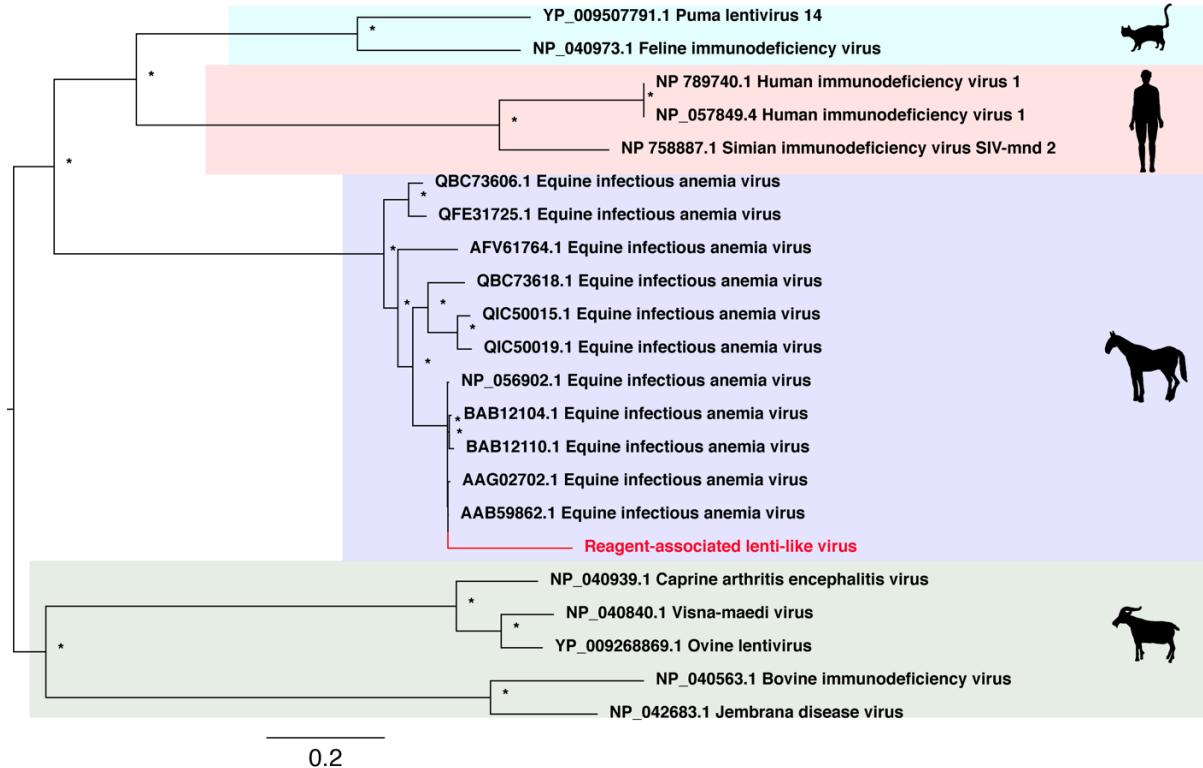
429

430

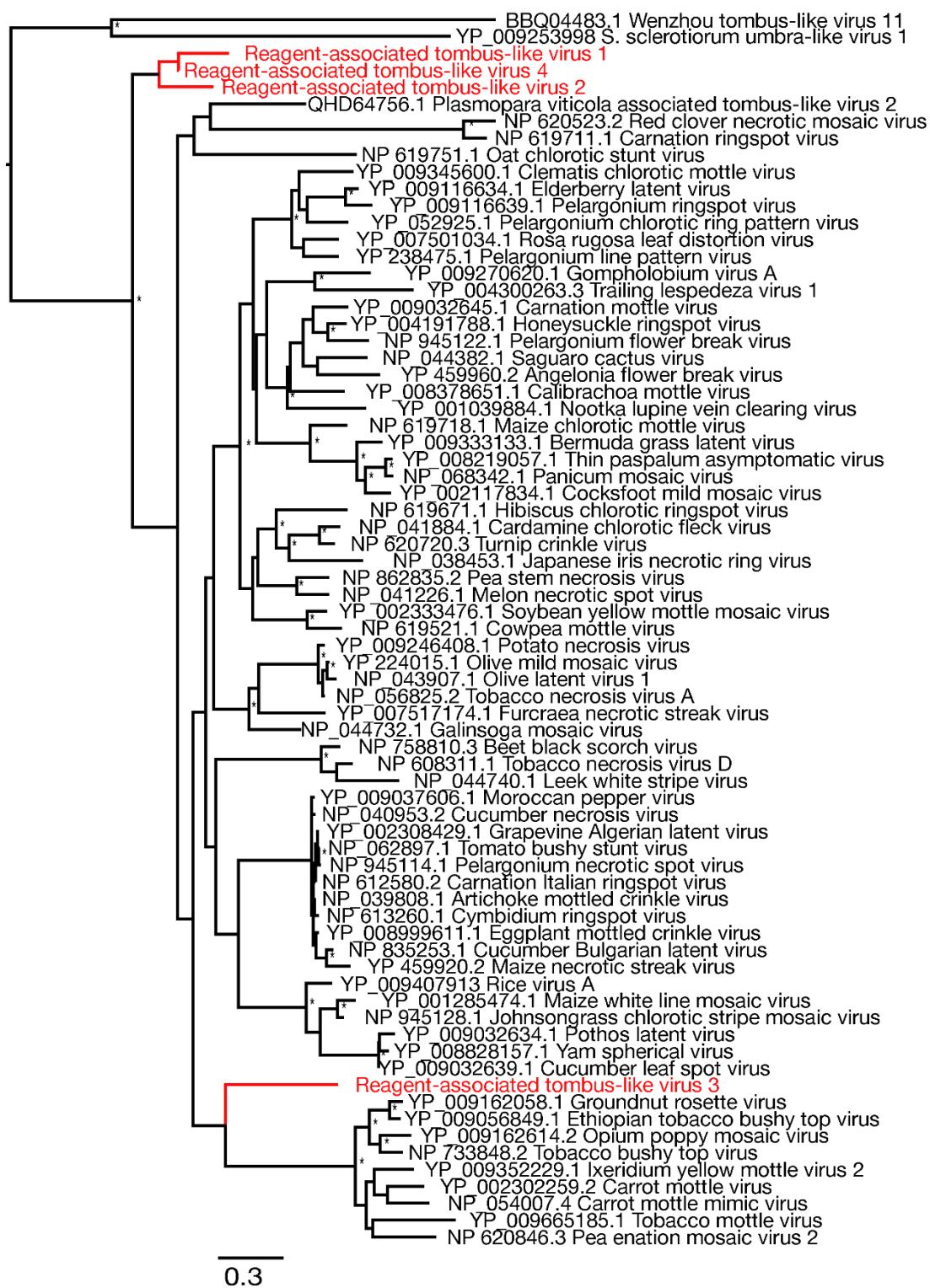

431 **Figure 1.** Abundance of viral reads in libraries L1, L2, L3, and L7. (A-D) Visual
432 representation of the virus-associated reads in respective libraries, with the pie chart depicting
433 the total number of long (>800 bp) virus-associated contigs (orange) compared to all the
434 virus-associated reads (blue). The bar chart on the right denotes the proportion of contigs of
435 associated with different virus families in the respective libraries.

436

437


438 **Figure 2.** Phylogenetic relationships of CRESS (ssDNA) viruses, including the seven novel
439 CRESS-like viruses identified here and highlighted in red (reagent-associated CRESS-like
440 viruses 1-7). Reagent-associated sequences determined previously are highlighted in blue.
441 The clades that included the novel CRESS-like viruses identified here (A, B and G) are
442 magnified on the right. The tree and other clades (C, D, E and F) are shown in higher
443 resolution in Supplementary Figure 1. The tree was mid-point rooted for clarity purposes
444 only. Bootstrap values greater than 70% are represented by asterisks next to nodes. All
445 horizontal branch lengths are scaled according to number of amino acid substitutions per site.

446


0.2

447 **Figure 3.** Phylogenetic relationships of ssDNA virus family *Circoviridae*, based on
448 hypothesised “host-associated” circoviruses. The tree has two major clades, comprising the
449 circovirus clade (highlighted in blue), associated with vertebrate hosts, and the cyclovirus
450 clade (highlighted in green), previously associated with invertebrate hosts. For clarity, the
451 tree is mid-point rooted. Bootstrap values greater than 70% are represented by asterisks next
452 to nodes. All horizontal branch lengths are scaled according to number of amino acid
453 substitutions per site.

454

455 **Figure 4.** Phylogenetic relationships of RNA virus family *Lentiviridae* including the novel
456 virus identified in this study, the novel sequence reagent-associated lenti-like virus. This virus
457 is highlighted in red and falls within the Equine infectious anemia virus clade.

458

459 **Figure 5.** Phylogenetic relationships of RNA viruses from the family *Tombusviridae* including the seven
460 novel viruses identified in this study (highlighted in red). The phylogeny was mid-point
461 rooted for clarity purposes only. Bootstrap values greater than 70% are represented by
462 asterisks next to nodes. All horizontal branch lengths are scaled according to number of
463 amino acid substitutions per site.

464
465

466 **Figure 6. Phylogenetic relationships of RNA virus family Totiviridae, including the novel**
 467 **virus identified in this study - Reagent-associated toti-like virus (highlighted in red). For**
 468 **clarity, the tree was mid-point rooted. Bootstrap values greater than 70% are represented by**
 469 **asterisks next to nodes. All horizontal branch lengths are scaled according to number of**
 470 **amino acid substitutions per site.**

471 **Table 1.** Experimental conditions of each blank negative control sample utilised here.

472

Library name	Sequencing platform	RNA extraction	Library preparation	Data generated	Library accession ¹
L1	Illumina Novaseq 6000 150 cycle kit (2x75nt reads)	RNeasy Plus Universal Kits (Qiagen)	Trio RNA-seq +UDI (NuGEN)	11,940,824 paired reads (1.8Gb)	SRR14737471
L2	Illumina Novaseq 6000 150 cycle kit (2x75nt reads)	RNeasy Plus Universal Kits (Qiagen)	Trio RNA-seq +UDI (NuGEN)	57,606,392 paired reads (8.7Gb)	SRR14737470
L3	Illumina MiSeq, v3 150 cycle kit (2x75nt reads)	RNeasy Plus Mini Kit (Qiagen)	SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (Clontech)	4,156,504 paired reads (0.63 Gb)	SRX6803604
L4	Illumina NextSeq 500, mid-output 150 cycle kit (2x75nt reads)	Total RNA Purification Kit (Norgen Biotek)	SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (Clontech)	32,279,914 paired reads (4.91 Gb)	SRR14737469
L5	Illumina MiSeq 150 cycle kit (2x75nt reads)	Total RNA purification Kit (Norgen BioTek Corp)	SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (Clontech)	7,342,876 paired reads (1.10 Gb)	SAMN20355437
L6	Illumina MiSeq 150 cycle kit (2x75nt reads)	Total RNA purification Kit (Norgen BioTek Corp)	SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (Clontech)	10,978,253 paired reads (1.65 Gb)	SAMN20355438
L7	Illumina MiSeq 150 cycle kit (2x75nt reads)	Total RNA purification Kit (Norgen BioTek Corp)	SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (Clontech)	8,564,269 1.28 Gb	SRR14737466

¹The sequencing data for each library can be accessed via the sequence read archive (SRA) using the associated accession numbers.

473

474 **Table 2.** Reference proteins for each sequence alignment performed in this analysis.

Reference protein	Reference acronym	Taxonomy	Number of sequences in analysis	Alignment length (amino acid, AA)
<i>Viral replicase protein</i>	Rep	CRESS	221	672 AA
<i>Viral replicase protein</i>	Rep	<i>Circoviridae</i>	69	161 AA
<i>Polymerase peptide</i>	Pol	<i>Lentiviridae</i>	11	478 AA
<i>RNA-dependent RNA polymerase</i>	RdRp	<i>Totiviridae</i>	95	125 AA
<i>RNA-dependent RNA polymerase</i>	RdRp	<i>Tombusviridae</i>	87	256 AA

475

476 **Table 3.** Novel reagent-associated viral sequences identified in this study.

Virus name	Accession	Abundance in library (%) of total reads, rRNA removed)	Length (bp)	Library
<i>Reagent-associated tombus-like virus 1</i>	MZ824229	1.28	1204	L3
<i>Reagent-associated tombus-like virus 2</i>	MZ824228	0.46	828	L3
<i>Reagent-associated tombus-like virus 3</i>	MZ824227	1.08	1574	L3
<i>Reagent-associated tombus-like virus 4</i>	MZ824226	1.29	1410	L3
<i>Reagent-associated toti-like virus</i>	MZ824225	0.001	920	L2
<i>Reagent-associated lenti-like virus</i>	MZ824230	0.004	962	L2
<i>Reagent-associated CRESS-like virus 1</i>	MZ824237	0.78	3878	L1
<i>Reagent-associated CRESS-like virus 2</i>	MZ824236	0.24	2377	L1
<i>Reagent-associated CRESS-like virus 3</i>	MZ824235	0.02	1592	L1
<i>Reagent-associated CRESS-like virus 4</i>	MZ824234	2.89	2663	L3
<i>Reagent-associated CRESS-like virus 5</i>	MZ824233	9.66	3027	L3
<i>Reagent-associated CRESS-like virus 6</i>	MZ824232	4.98	3517	L3
<i>Reagent-associated CRESS-like virus 7</i>	MZ824231	0.01	1124	L1

477