

1 **Even allocation of benefits stabilizes microbial community engaged in**
2 **metabolic division of labor**

3 Miao Xiao Wang^{1, 2, 3, 4}, Xiao Li Chen^{1, 5}, Xiao-nan Liu¹, Yuan Fang⁷, Xin Zheng⁷, Ting
4 Huang⁷, Yue-Qin Tang⁴, Yong Nie^{1#} and Xiao-Lei Wu^{1, 5, 6#}

5

6 ¹ College of Engineering, Peking University, Beijing 100871, China

7 ² Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland

8 ³ Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland

9 ⁴ College of Architecture and Environment, Sichuan University, Chengdu, China

10 ⁵ Institute of Ocean Research, Peking University, Beijing 100871, China

11 ⁶ Institute of Ecology, Peking University, Beijing 100871, China

12 ⁷ School of Resource and Environmental Engineering, Hefei University of Technology,

13 Hefei 230000

14 [#]Corresponding author: Research Scientist, College of Engineering, Peking University.

15 Tel: +86 10-62759047; Fax: +86 10-62759047; E-mail: nieyong@pku.edu.cn

16 [#]Corresponding author: Professor, College of Engineering, Peking University.

17 Tel: +86 10-62759047; Fax: +86 10-62759047; E-mail: xiaolei_wu@pku.edu.cn

18

19 **Abstract**

20 Metabolic division of labor (MDOL) is commonly observed in microbial communities,
21 where a metabolic pathway is sequentially implemented by several members similar to
22 an assembly line. Uncovering the assembly rules of the community engaged in MDOL
23 is crucial for understanding its ecological contribution, as well as for engineering high-
24 performance microbial communities. To investigate the assembly of the community
25 engaged in MDOL, we combined mathematical modelling with experimentations using
26 synthetic microbial consortia. We built a theoretical framework predict the assembly of
27 MDOL system, and derived a simple rule: to maintain co-existence of the MDOL
28 members, the populations responsible for former steps should hold a growth advantage
29 (m) over the ‘private benefit’ (n) of the population responsible for last step, and the
30 steady-state frequency of the last population is determined by the quotient of n and m .
31 Our experiments further indicated that our theoretical framework accurately predicted
32 the stability and assembly of our engineered synthetic consortia that degrade
33 naphthalene through two-step or multi-step MDOL. Our results demonstrate that the
34 assembly of microbial community engaged in MDOL is determined by a limited
35 number of parameters. This quantitative understanding provides novel insights on
36 designing and managing stable microbial systems to address grand challenges facing
37 human society in agriculture, degradation of the environment, and human health.

38

39 **Key words:** Metabolic division of labor; Assembly; Mathematical analysis; Synthetic
40 microbial consortium.

41

42 **Introduction**

43 Microorganisms colonize all major ecological niches on our planet, from deep
44 terrestrial biosphere miles beneath the land surface¹⁻⁴, to the intestinal tracts of
45 mammals^{5,6}. In order to survive in these ever-changing habitats, microorganisms
46 have evolved highly sophisticated characteristics to accomplish complex metabolic
47 tasks for biochemical transformations, such as converting an unavailable resource into
48 a substrate suitable for cell growth. As a result, their metabolic activities drive global
49 biogeochemical cycles, and thus profoundly influence the health of both ecosystems as
50 well as their inhabitants⁷.

51 Most of these metabolic tasks are accomplished through long metabolic pathways,
52 which are performed by a single microbial population. Alternatively, these tasks are
53 divided across different interacting populations complementarily at the community
54 level, a phenomenon called metabolic division of labor (MDOL)⁸⁻¹¹. The former
55 requires a series of enzymes being produced by a single population, and thus create a
56 substantial metabolic burden that limits the productivity and growth of the population
57 carrying out these tasks^{9,10}. In contrast, if a long pathway is distributed among different
58 populations in communities engaged in MDOL (simplified as MDOL communities
59 thereafter), each member only needs to specialize for its respective metabolic step.

60 Since each population only contains a subset of genetic components required for the
61 overall pathway, MDOL is thought to be a key evolutionary strategy to reduce
62 metabolic burden^{12,13}.

63 Several studies have shown that numerous ecologically and environmentally important

64 pathways are accomplished through MDOL. In particular, microbial degradation of
65 complex organic compounds is frequently executed through MDOL. For example, the
66 gut communities comprised of microbial symbionts digest plant polysaccharides into
67 either sugars or short chain fatty acids in a MDOL manner, which are then absorbed by
68 the host cells^{14,15}. During the Deepwater Horizon oil spill Gulf of Mexico (2010),
69 complete degradation of polycyclic aromatic hydrocarbons (PAHs) required the
70 partitioning of key pathway steps into different bacterial groups¹⁶. In more specific
71 cases, syringate can be degraded through MDOL between *Acetobacterium woodii* and
72 *Pelobacter acidigallici*¹⁷; *Marinobacter* is only responsible for a subset of tasks in
73 phenanthrene degradation, while other marine bacteria perform the remaining steps¹⁸.
74 As the proper functioning of a microbial community is determined by its compositional
75 makeup^{19,20}, it is critical to understand and predict the ecological functions of MDOL
76 communities. To this end, uncovering how MDOL systems are stabilized and how they
77 influence community dynamics is of paramount importance.

78 Inspired by natural MDOL communities, numerous studies have recently explored how
79 to adopt their MDOL strategies for the removal of organic pollutants²¹. For instance,
80 one study engineered a defined consortium composed of an *Escherichia coli* strain and
81 a *Pseudomonas aeruginosa* strain for phenanthrene bio-removal via MDOL²². Another
82 study investigated how MDOL in a consortium composed of *Stenotrophomonas* sp. N5
83 and *Advenella* sp. B9 affects the phenol biodegradation²³. These studies mainly tested
84 whether MDOL enhances the efficiency of biodegradation compared to relevant
85 monocultures comprised of single species. However, specific strains may not be able to

86 stably co-exist in an artificial co-culture system²⁴⁻²⁷, resulting in the collapse of the
87 community. To fully understand how MDOL systems are stabilized and assembled, it
88 is essential to build quantitative rules that reliably forecast whether a specific
89 combination of strains can successfully assemble into a robust MDOL system.
90 Establishing these rules is vital to rationally adopt MDOL strategies to engineer high-
91 performance microbial communities.

92 Our recent work combined mathematical modelling and experiments with a synthetic
93 consortium²⁸. We found that the traits of the substrate, such as its concentration and
94 toxicity, largely affected the assembly of the MDOL community. Nevertheless, a mass
95 of biotic and abiotic factors, such as metabolic burden of each population, mass transfer
96 rate, as well as the toxicity of substrate or intermediates, may also contribute to the
97 assembly of MDOL community. A general rule combining all of these factors remains
98 absent, rendering any prediction of how MDOL communities assemble challenging.

99 Here, we bridged this gap using a bottom-up approach. We first built an ordinary
100 differential equation (ODE) model to formalize a rule that forecasted how MDOL
101 community assembled. We next tested this rule by performing *in vitro* assays using a
102 series of engineered synthetic consortia implementing naphthalene degradation through
103 two- or multi-step MDOL.

104

105 **Results**

106 **Assembly and stability of the microbial community engaged in two-step MDOL**

107 *Model framework for two-step MDOL*

108 To depict the dynamics of the community engaged in metabolic division of labor
109 (MDOL community), we conceptualized the degradation of an organic compound
110 implemented by a microbial consortium composed of two populations using a simple
111 mathematical model (Figure 1A). In this consortium, the first population (named as [1,
112 0]) expressed an enzyme (E1) to catalyze the conversion of an organic substrate (S) into
113 an intermediate metabolite (I), while the second population (named as [0, 1]) was
114 responsible for the subsequent conversion of I to a final product (P) by expressing
115 another enzyme (E2). In the basic model, transport of S, I, and P across the cell
116 membrane was assumed to occur via passive diffusion mediated by coefficients γ_s , γ_i ,
117 and γ_p . Following these assumptions, we formulated the dynamics of intracellular and
118 extracellular I and P by using seven ordinary differential equations (ODEs) (Eqns. [8]-
119 [13] in Methods section). Consistent with our previous hypotheses and observations²⁸,
120 we next assumed that P, which was produced by the second population, was the sole
121 resource for the growth of both populations, while neither S nor I could be directly used
122 for growth. As a consequence, [0, 1] possesses a preferential access to the final product
123 (P), resulted in a ‘private benefit’ derived from the product privatization (Figure 1A).
124 Details about the model construction are described in the Method Section, as well as in
125 the Supplementary Information S1. Meanings of the variables and parameters of the
126 model were listed in Table S1 and S2.

127 Deriving the criterion for maintaining a stable two-step MDOL community

128 To derive the criterion for stable two-step MDOL community, we solved steady-state
129 expressions of Eqns. [8]-[17] (Supplementary Information S1.3). We obtained a simple
130 formula, which suggests that if the steady-state of a two-step MDOL community exists,
131 the relative abundance of the $[0, 1]$ ($R_{[0,1]}$) should follow:

132
$$R_{[0,1]} = \frac{n}{m} \quad [1]$$

133 Here $n = Ig_1/\gamma_p$ is the ‘Product demand gap’ of $[1, 0]$, reflecting the ‘private benefit’
134 of $[0, 1]$ derived from the product privatization, while $m = (\frac{c_1 Ig_1 y_1}{d_1} - \frac{c_2 Ig_2 y_2}{d_2}) / \frac{c_2 Ig_2 y_2}{d_2}$, is
135 the normalized difference between the inherent growth rates of the two populations (see
136 Supplementary Information S1.3 for further explanation). Importantly, since $R_{[0,1]}$
137 ranges from 0 to 1, we derived a prerequisite defining the conditions when the two
138 populations were able to stably co-exist:

139
$$0 < n < m \quad [2]$$

140 Eqn. [2] represents two meanings. Firstly, the requirement, $m > 0$, suggests that $[1, 0]$
141 must hold a higher growth advantage than $[0, 1]$. Secondly, the requirement, $n < m$,
142 indicates that ‘private benefit’ of $[0, 1]$ must lower than the growth advantage of $[1, 0]$.
143 We visualized these formulations by a two-dimensional density map. As shown in
144 Figure 1B, MDOL community succeeded to a steady-state only when the values of n
145 and m fell inside the range defined by Eqn. [2], and the community assembly at the
146 steady-state can be directly assessed by Eqn. [1]. We next performed additional analyses
147 to test whether other parameters that are not included in n and m also affect the proposed
148 rule (Supplementary Information S1.4; Figure S1). Our results indicated that the

149 stability of the MDOL community also requires speed of the first reaction (a_1) reaches
150 a threshold (Figure S1A-B).

151 In summary, our mathematical modelling formulized a rule that defines the condition
152 when the two populations in the MDOL community can stably co-exist, namely when
153 the population [1, 0] possesses a growth advantage that outweighs the ‘private benefit’
154 of the population [0, 1] (Eqn. [2]). When the steady-state exists, this rule also provides
155 a prediction on the steady-state community structure (Eqn. [1]).

156 Stability of MDOL in response to changing metabolic conditions

157 Our basic model only considers the effects of 17 basic parameters (Table S2). To
158 investigate how our general rule responds to changing metabolic conditions associated
159 with more specific parameters, we introduced additional assumptions regarding
160 complex pathway mechanisms hitherto excluded into the basic equations. Our model
161 analyses indicated that these additional pathway mechanisms affect the basic assembly
162 rule of MDOL community. In general, the scenarios that benefits [1, 0] relaxed the
163 parameter areas for stable MDOL communities, whereas scenarios that benefits [0, 1]
164 tightened parameter areas (Supplementary information S2).

165 1) Our basic model assumed that the intermediate (I) and product (P) are transported
166 across the cell membrane by passive diffusion. When we assumed that the final product
167 (P) is actively absorbed by [1, 0], or is actively secreted by [0, 1] (Figure 2A; Figure
168 S2A-B), the MDOL community becomes more likely to reach a steady-state
169 (Supplementary Information 2.1.2-2.1.3; Figure S2C).

170 2) Both metabolic reactions involved in a MDOL pathway might be performed

171 extracellularly²⁹ (Figure 2B; Figure S3A-B). When only the first metabolic step is
172 catalyzed extracellularly, the basic prediction of our rule remains unchanged
173 (Supplementary Information S2.2.1; Figure S3). However, once the second metabolic
174 step is performed extracellularly, the rule change considerably. Our results indicated
175 that the coexistence of the two populations is only present if the two populations exhibit
176 similar relative fitness (as defined by Eqn. [S2.35]). In addition, the assembly of the
177 stable MDOL community is strongly dependent on the initial abundance of the two
178 populations (Supplementary Information S2.2; Figure S3B-C).

179 3) The intermediates of a MDOL pathway can be converted to chemicals unavailable
180 to microorganisms via spontaneous reactions^{30,31} (Figure 2C; Figure S4A). When we
181 included spontaneous conversion of I, P, or both in our model, we found that achieving
182 stability of MDOL community became more untenable (Supplementary Information
183 S2.3; Figure S3B).

184 4) Metabolic by-products may be generated from the first-step reaction of MDOL
185 pathway³¹⁻³³ (Figure 2D; Figure S5A). Under this condition, the ‘private benefit’ of [0,
186 1] was counteracted by the byproduct, strongly favoring [1, 0] and co-existence of the
187 two populations (Supplementary Information S2.7; Figure S4B).

188 5) Toxic effects of substrate³⁴⁻³⁶, intermediates^{34,35,37}, and final product^{38,39} are
189 commonly occur during microbial degradation of organic compounds (Figure 2E-G;
190 Figure S6-8A). While substrate toxicity neutralizes the ‘private benefit’ of [0, 1]
191 (Supplementary Information S2.8.1; Figure S6B), the presence of intermediates toxicity
192 offers an additional benefit to [0, 1], leading to a more rigorous criterion for stabilizing

193 the community (Supplementary Information S2.8.2; Figure S7B-D).

194 Experimentally testing the rules of community assembly and stability achieved by
195 synthetic microbial consortia

196 To experimentally test our proposed rule, we engineered three synthetic consortia that
197 degrade naphthalene via two-step MDOL. In these systems, the first *Pseudomonas*
198 *stutzeri* strain converts naphthalene into its intermediate (i.e., 1, 2- hydroxynaphthalene,
199 salicylate, or catechol), which are exchanged among different cells^{33,40} but cannot be
200 directly used as the carbon source to support bacterial growth. The second strain
201 possesses ability to degrade the intermediate to the final products (pyruvate and acetyl-
202 CoA), which are then partially secreted to the environment and utilized by the consortia
203 as the limiting carbon source (Figure 3A; Figure S9A; Figure S10A; see Supplementary
204 Information S4.1 for the strain construction). To predict the assembly of these synthetic
205 ecosystems, we modified our basic model to include specific pathway mechanisms
206 corresponding to these consortia (see Supplementary Information S4.2 for details about
207 the modifications), and mathematically derived the criteria governing the assembly of
208 these consortia (Figure 3B; Figure S9B; Figure S10B).

209 Setting the consortium composed of strain AN1000 and strain AN0111 (Figure 3A) as
210 an example, our modelling analyses suggest that this system is more likely to be stable
211 compared with our basic rule (Figure 1B), mainly due to the toxic effect of naphthalene.

212 To test the predicting power of our theoretical criterion, we cultured the consortium
213 using naphthalene as the sole carbon source. Since the two strains exhibited a similar
214 inherent fitness ($m = -0.031$), the consortia were found to be ecologically unstable

215 (Figure S12A), consistent with the prediction of our model. To obtain a stable MDOL
216 community, we changed the relative inherent fitness of the two populations (the value
217 of m) according to our theoretical framework. To this end, we introduced two genetic
218 modules to modify the inherent fitness of the strain AN0111 (see Supplementary
219 Information S4.1.4; Figure 3A and 3C; Table S7). We co-cultured the modified strain
220 AN0111 with strain AN1000, mimicking the community dynamics with a given n value
221 of 2.53, (estimated by the experimental measurement of Ig divided by previously
222 reported value of γ_p ⁴¹; see Supplementary information S4.2.2 for details) and a gradient
223 of m values (The blue line in Figure 3B). The results showed that when the value of m
224 is lower than the threshold (that is, when $m < 1.7$), at which our models predict that the
225 two populations fail to stably co-exist, our synthetic consortium collapsed (Figure 3D;
226 Figure S13A; Figure S14A; Figure S15A). In contrast, when m was set over the
227 threshold, the consortium stabilized (Figure 3D; Figure S13A), even after reaching
228 three passaging cycles (Supplementary Fig 14A; Figure S15A). Further analyses
229 showed that our mathematical modelling accurately predicted the steady-state
230 frequency of strain AN0111 in the consortium ($R^2 = 0.927$; Figure 3E).
231 We also tested our proposed rule using two additional synthetic consortia, and observed
232 similar results. As pyruvate was produced from the conversion of 1, 2-
233 hydroxynaphthalene to salicylate as a byproduct, our models related to these consortia
234 predicted that these two consortia remain stable easier than the consortium composed
235 of AN1000 and AN0111 (Figure S9B; Figure S10B). Nevertheless, our mathematical
236 framework accurately predicted the stability and assembly of these two consortia

237 (Figure S9-15). Together, these results indicated that our mathematical framework
238 reliably guide to construct stable synthetic consortia engaged in MDOL, as well as
239 accurately forecast the assembly of these consortia.

240 **Assembly and stability of the community engaged in multi-step MDOL**

241 We next investigated the assembly rule of community executing multi-step MDOL, at
242 which a long metabolic pathway is distributed among more than two populations in
243 microbial communities⁴². To this end, we expanded our basic model (based on 2-step
244 MDOL) to build a more complex mathematical framework (Eqns. [18]-[23] in Methods
245 section; Supplementary Information S3), which conceptualizes the dynamics of N -step
246 MDOL community (Figure 4A). We derived a formula based on the analyses of these
247 equations (Supplementary Information S3.2 and S3.4), which defines the steady-state
248 frequency of the population that performs the last step in a community engaged in N -
249 step MDOL:

$$250 \quad R_N = \sqrt[h]{\frac{1}{N-1} \sum_{k=1}^{N-1} \left(\frac{n_k}{m_k} \right)^h} \quad [3]$$

251 Here, $n_k = Ig_k / \gamma_p$, represents the ‘Product demand gap’ of the k th population, reflecting
252 the relative ‘private benefit’ of the population performing the last step (simplified as the
253 last population thereafter; Figure 4A) against the k th population, while $m = \left(\frac{c_k Ig_k y_k}{d_k} - \frac{c_N Ig_N y_N}{d_N} \right) / \frac{c_N Ig_N y_N}{d_N}$, represents the normalized difference between the inherent fitness of the
254 k th population and the last population; h is a fitted exponent affected by maximum
255 biomass capacity and reaction speed of each metabolic step (Supplementary
256 Information S3.2 and S3.4). Our analysis also identified the two prerequisites that
257 define the co-existence of the populations involved in these complex systems:
258

259
$$\frac{n_1+1}{m_1+1} = \frac{n_2+1}{m_2+1} = \dots = \frac{n_k+1}{m_k+1} = \dots = \frac{n_{N-1}+1}{m_{N-1}+1} = ra \quad [4]$$

260
$$0 < \frac{n_k}{m_k} < 1 \quad [5]$$

261 Here, ra represents the relative fitness of the population performing the last step to the
262 k th population performing the k th step (see Supplementary information S3.2.1 and
263 S3.4.1 for the definitions and discussions).

264 Using three-step MDOL community as an example (Figure S15A; the three population
265 was named as [1, 0, 0], [0, 1, 0], [0, 0, 1]), our simulations showed that the three
266 populations only co-exist when the ra value of [1, 0, 0] equals that of the [0, 1, 0]
267 (prerequisite defined by Eqn. [4]; Figure S15B) and the values of n_k/m_k belong to the
268 range defined by Eqn. [5] (Figure 4B). This result suggests that, a stable community
269 can only be achieved if the populations performing the former steps (simplified as the
270 former populations thereafter; Figure 4A) exhibit comparable fitness levels (Eqn. [4]).

271 In addition, these populations are required to maintain a growth advantage over that
272 outweighs the ‘private benefit’ of the last population (Eqn. [5]). Under steady-state
273 conditions, we successfully estimated the frequencies of the [0, 0, 1] using Eqn. [3]
274 (Figure 4B-C). Importantly, Eqn. [3] can be expanded to estimate the results of
275 mathematical simulations considering MDOL community with more steps (Figure 4C;
276 up to $N=8$). Remarkably, the rule we proposed about the assembly of two-step MDOL
277 community is a specific case of this rule (when set $N = 2$ in Eqn. [3], we obtain Eqn.
278 [1]). Together, we successfully expanded our mathematical framework to estimate the
279 assembly of the multi-step MDOL community.

280 To experimentally verify our expanded rule, we separated the naphthalene degradation

281 pathway into four steps and engineered four *P. stutzeri* populations (*P. stutzeri* AN1000,
282 *P. stutzeri* AN0100, *P. stutzeri* AN0010, and *P. stutzeri* AN0001) that possess similar
283 relative fitness (Figure S17; Supplementary information S3.2.1 and S3.4.1) and execute
284 complementary metabolic reactions to degrade naphthalene by exchanging the three
285 intermediates (Figure 5A). The limiting carbon sources of this consortium were mostly
286 supplied by the last population, *P. stutzeri* AN0001, who converts catechol to usable
287 pyruvate and acetyl-CoA (Figure 5A).

288 We next cultured this consortium using naphthalene as the sole carbon source. Because
289 the inherent growth rate of strain AN0001 is nearly identical to those of strains AN1000,
290 AN0100, and AN0010, meaning $m_k \approx 0$, the community showed signs of collapse
291 (Figure S18), consistent with our basic predictions (Eqn. [5]). To generate a stable
292 synthetic consortium, we applied a similar strategy to that used in stabilizing our two-
293 step MDOL consortia: experimentally modifying the value of m_k by co-culturing a
294 consortium containing an engineered *P. stutzeri* AN0001 (named as *P. stutzeri*
295 AN0001*). In these experiments, we found that the community developed in a stable
296 manner when the values of n_k/m_k were present within a suitable range (Figure 5B;
297 Figure S19A) given by Eqn. [5]. In addition, as shown in Figure 5C (Red dots), Eqn.
298 [3] accurately predict the steady-state frequency of strain *P. stutzeri* AN0001* ($R^2 =$
299 0.946). Moreover, although the assembly of this synthetic consortium may be affected
300 by various factors, including by-product benefit, spontaneous conversion of
301 intermediates, as well as toxic effects of the metabolites, our numeric simulations
302 indicate that these factors negligibly affect the prediction of the community assembly

303 (Figure 5C; Green dots). Taken together, these results demonstrated that our theoretical
304 framework can be expanded to multi-step MDOL communities, and thus greatly
305 contributing to a more detailed understanding of their assembly.

306 **Assembly influenced by initial population ratio**

307 To test whether the structure of MDOL communities remains robust even when the
308 initial ratio of different members is changed, we simultaneously performed
309 mathematical simulations and experiments using our synthetic consortia, initiated using
310 a wide range of ratios for starting strains.

311 For the two-step MDOL community, our simulations indicated that the rule given by
312 Eqn. [2] still accurately predicts whether the two population stably co-exist (Figure S20
313 A). If the community maintains stable, we found that the steady-state ratio of the two
314 genotypes converged to the same level that can be quantitatively predicted by Eqn. [1]
315 (Figure S20 A and 20 B). Similar results were observed in our verification experiments
316 (Figure S21-22). These results suggest that the assembly of two-step MDOL
317 community is independent of the initial ratio of the two strains involved.

318 We then set out to test whether the assembly of multi-step MDOL community was
319 influenced by the initial abundance of the different members involved. As shown in
320 Figure S23-24, when one of the populations dominated the initial community, the
321 parameter space for the stable co-existence decreased, suggesting that these extreme
322 initial conditions considerably destabilize the community. If the community maintains
323 stable, the frequency of one former population was significantly positively correlated
324 with its initial frequency (Figure S25-27A), and was largely determined by the

325 proportion of its initial abundance accounting for the total initial abundance of all the
326 former populations (Figure S25-27B). We defined this proportion as σ_k ,

327

$$\sigma_k = \frac{x_k^0}{\sum_{k=1}^{N-1} x_k^0} \quad [6]$$

328 Here, x_k^0 represents the initial biomass of the k th population ($k = 1 \sim N$). Moreover, the
329 frequency of the last population in the steady-state community remained unchanged
330 despite changing initial conditions (Figure S23A; Figure S25-27A), but this frequency
331 did not match well with the prediction of Eqn. [3]. We added σ_k as a weight to the
332 original formula Eqn. [3], generating a novel formula,

333

$$R_N = \sqrt[h]{\sum_{k=1}^{N-1} \sigma_k \left(\frac{n_k}{m_k}\right)^h} \quad [7]$$

334 Eqn. [7] predicted the frequency of the last population more accurately than Eqn. [3]
335 (Figure S23A; Figure S25-27C), indicating that the steady-state frequency of the last
336 population was affected by the initial ratio of the former populations. These
337 mathematical predictions were then verified in our synthetic consortium engaged in
338 four-step MDOL (Figure 6B; Figure S19B; Figure S28A-B). Together, these results
339 suggested that the initial population ratio, especially the initial ratio of the former
340 populations, plays a critical role in governing the assembly of a multi-step MDOL
341 community (see Supplementary Information S3.7 for further discussions).

342

343 **Discussion**

344 Here, we proposed a simple rule to predict the assembly of microbial community
345 engaged in metabolic division of labor (MDOL community) using a mathematical
346 model. This rule was verified by experimentations using designed synthetic microbial
347 consortia. Our rule demonstrates that the stability and assembly of MDOL community
348 are mostly determined by how benefits are allocated among the community members.
349 Importantly, our rule is built on the feature of most organic compound degradation
350 pathways. One basic assumption of our rule is that the final product of a MDOL
351 pathway is the sole carbon source for all the strains involved in the community. This
352 feature offered a ‘private benefit’ to the last population, which represents a common
353 challenge for developing MDOL communities. This selfish population is analogous to
354 a human worker responsible for the final step of an assembly line, who pockets the final
355 product without sharing the resulting profits with other workers. Therefore, we named
356 this final population the ‘Embezzler’ population, and likened the instability of the
357 community caused by ‘Embezzler’ as the ‘Embezzler dilemma’. This phenomenon has
358 been observed in other MDOL communities. For instance, one study engineered a dual-
359 species consortium for removal of the insecticide parathion, in which an *Escherichia*
360 *coli* strain SD2 was responsible for hydrolyzing parathion, yielding two intermediates
361 including *p*-nitrophenol, while another *Pseudomonas putida* strain KT2440 was
362 responsible for metabolizing *p*-nitrophenol (Embezzler)⁴³. That study found that the
363 ‘Embezzler’ strain largely dominated the final community, which is in accordance with
364 our observation of ‘Embezzler dilemma’. Another study investigated the interactions

365 among five bacterial species in a cellulose-degrading community, which also found that
366 the strains responsible for the last step of the cellulose degradation dominated the
367 community⁴⁴. Therefore, the ‘Embezzler dilemma’ may represent a common challenge
368 when engineering microbial systems to remove pollutants.

369 Our model provides several avenues to address the issue of the ‘Embezzler dilemma’
370 in engineered microbial systems. Firstly, it is feasible to reduce the inherent fitness of
371 the ‘Embezzler’ strain. This can be accomplished by either rationally engineering a
372 slow-growing strain performing the last step, or assigning more tasks to this strain that
373 incur higher energetic costs to the ‘Embezzler’ strain. Secondly, the ‘Embezzler
374 dilemma’ can be also alleviated if the populations performing former steps are designed
375 to be capable of obtaining metabolic by-products generated from the former reactions.

376 From this perspective, when designing a synthetic consortium engaged in MDOL for
377 pollutant degradation, it may be useful to assign a by-product to the former populations.

378 Thirdly, our results also showed that if the substrate is toxic, the microbial system will
379 be more stable, which is consistent with the results in our previous study²⁸. In summary,
380 our results provide a quantitative way to evaluate the feasibility of applying these
381 strategies into a specific pathway engineering, and thus should greatly assist in
382 designing and managing related artificial microbial systems.

383 Our study also has implications for our understanding on the evolution of MDOL
384 among microorganisms. Our results suggest that the individuals of ‘Embezzler’ must
385 evolve to possess lower relative fitness to eliminate ‘Embezzler dilemma’ and maintain
386 system stability. From this perspective, the evolution of MDOL systems seems to

387 contradict Darwin's theory, which emphasizes that individuals must evolve to achieve
388 greatest personal fitness and reproductive success⁴⁵. This paradox suggests that
389 evolutionary selection at the community-level⁴⁶⁻⁴⁸ may present a main driving force
390 behind the evolution of MDOL communities. Our analysis presented here offers
391 possible solutions to this paradox. As we discussed above, the presence of several
392 specific pathway features, such as substrate toxicity and by-product production, relax
393 the constraints ensuring the stability of a MDOL community. Therefore, MDOL among
394 different members may be easier to evolve in the pathways that possess these specific
395 features. This hypothesis can be examined using large-scale bioinformatic analysis, as
396 well as the well-designed experimental evolution assays. Another solution to this
397 paradox may be derived from the effects of spatial positioning⁴⁶. Our previous study
398 found that although 'Embezzler' strain generally grew more in a two-member microbial
399 colony engaged in MDOL, the second strain is usually not completely excluded²⁸,
400 suggesting that specific spatial organizing of a community may facilitate their co-
401 existence. In these spatially structured environments, interaction between the two
402 populations would require their cells to be spatially proximal to each other⁴⁹⁻⁵². Even
403 'Embezzler' cells can obtain asymmetric 'private benefit', but they must be located in
404 close proximity to their partners. Therefore, spatial organization of a MDOL
405 community may help to maintain the co-existence of its members, thus favoring the
406 evolution of MDOL processes. This hypothesis can be examined by comparing the
407 results of evolutionary experiments in biofilms and well-mixed systems.
408 In conclusion, our results provide a basis for a theory guiding the application of MDOL

409 strategy to design and manipulate artificial microbial systems, and also provides new
410 perspectives for understanding the evolution of natural MDOL systems.
411

412 **Methods**

413 **Formulation of the ODE models**

414 The mathematical models were built using ordinary differential equations (ODEs),
415 which formulated the dynamics of intracellular and extracellular intermediates and end
416 products, as well as the growth of all the populations involved in the community. In all
417 cases, the models were built on a well-mixed system (or sufficiently fast metabolite
418 diffusion). Here, the dimensionless forms of the models were presented. The detailed
419 derivations of all models and justifications of our assumptions are described in
420 Supplementary Information S1-S4. The definitions and dimensionless methods of all
421 the variables and parameters are listed in Table S1-S5.

422 **The basic ODE models for two-step MDOL community.** As described in the first
423 part of the Results section, we assumed that a two-step pathway was implemented by
424 MDOL between two populations (Figure S1A). Details about the construction of this
425 basic ODE system are described in Supplementary Information S1.1. For simplicity,
426 the basic model was built based on seven simple assumptions, namely transport via
427 passive diffusion, intracellular metabolic reactions, negligible abiotic degradation of I
428 and P, excess of initial substrate, as well as low levels of intracellular accumulation of
429 I and P; importantly, P was assumed to be the sole and limited resource for the growth
430 of the two populations and its consumption was calculated following Monod equations.

431 Thus, the dynamics of intracellular and extracellular I and P are given by

$$432 \frac{di_{1,in}}{dt} = a_1 \cdot \gamma_i \cdot (i_{1,in} - i_{out}) \quad [8]$$

$$433 \frac{di_{2,in}}{dt} = -a_2 i_{2,in} + \gamma_i \cdot (i_{out} - i_{2,in}) \quad [9]$$

434
$$\frac{dp_{1,in}}{d\tau} = -Ig_1 p_{1,in} + \gamma_p \cdot (p_{out} - p_{1,in}) \quad [10]$$

435
$$\frac{dp_{2,in}}{d\tau} = a_2 i_{2,in} - Ig_2 p_{2,in} - \gamma_p \cdot (p_{2,in} - p_{out}) \quad [11]$$

436
$$\frac{di_{out}}{d\tau} = x_1 \cdot \gamma_i \cdot (i_{1,in} - i_{out}) - x_2 \cdot \gamma_i \cdot (i_{out} - i_{2,in}) \quad [12]$$

437
$$\frac{dp_{out}}{d\tau} = x_2 \cdot \gamma_p \cdot (p_{2,in} - p_{out}) - x_1 \cdot \gamma_p \cdot (p_{out} - p_{1,in}) \quad [13]$$

438 Here, $i_{1,in}$ and $i_{2,in}$ represent the intracellular I concentration of two populations; i_{out}
 439 is the extracellular concentration of I; p_{out} is the extracellular concentration of P; $p_{1,in}$
 440 and $p_{2,in}$ are the intracellular P concentration of two populations; x_1 and x_2 are the
 441 biomass of two populations; a_1 and a_2 are the reaction rates of two reactions; γ_i and
 442 γ_p are the diffusion rates of I and P across cell membrane; Ig_1 and Ig_2 are the
 443 consumption rate of product for the growth of two populations. The growth of the two
 444 populations was modelled modeled using a general logistic function with first-order
 445 cell death:

446
$$\frac{dx_1}{d\tau} = \mu_1 x_1 \left(1 - \frac{x_1 + x_2}{\rho}\right) - d_1 x_1 \quad [14]$$

447
$$\frac{dx_2}{d\tau} = \mu_2 x_2 \left(1 - \frac{x_1 + x_2}{\rho}\right) - d_2 x_2 \quad [15]$$

448 Here, ρ represents the carrying capacity of the whole communities; d_1 and d_2
 449 represent the apparent maintenance rates of the two populations. The specific growth
 450 rates of the two populations, μ_1 and μ_2 , are calculated by

451
$$\mu_1 = Ig_1 p_{1,in} \gamma_1 c_1 \quad [16]$$

452
$$\mu_2 = Ig_2 p_{2,in} \gamma_2 c_2 \quad [17]$$

453 Eqn. [16] and [17] are linked with our basic assumption that P is the sole resource for

454 growth. In addition, y_1 and y_2 represent the yield coefficients for biomass production
455 of the two populations; coefficients c_1 and c_2 are used to describe the metabolic
456 burdens of the two reactions.

457 **The ODE models that consider complex pathway mechanisms.** The models that
458 consider the complex pathway mechanisms were built by modifying or adding the
459 related mathematical terms to the basic model. Details of these modifications are
460 described in Supplementary Information S2.

461 **The ODE models for multiple-step MDOL community.** Assuming that a metabolic
462 pathway is segregated into N steps that are executed by N populations (Figure S1A), a
463 more general models are built by expanding the basic framework of the two-step
464 MDOL community, which was described in Supplementary Information S3 in detail. In
465 this system, an organic substrate (S) is converted to a final product (P) through a long
466 metabolic pathway containing N reactions and $N-1$ intermediate metabolites (I). Each
467 reaction is carried out by one population by expressing a specific enzyme. The ODE
468 model was built accordingly,

$$469 \frac{di_{k,in}^l}{dt} = \epsilon_{k,1}a_1 - \epsilon_{k,2}a_2 \cdot i_{k,in}^l + \gamma_{i^l} \cdot (i_{out}^l - i_{k,in}^l) \quad [18]$$

$$470 \frac{di_{k,in}^j}{dt} = \epsilon_{k,j}a_k \cdot i_{k,in}^{j-1} - \epsilon_{k,j+1}a_{k+1} \cdot i_{k,in}^j + \gamma_{i^j} \cdot (i_{out}^j - i_{k,in}^j), \quad (j > 1) \quad [19]$$

$$471 \frac{dp_{k,in}}{dt} = \epsilon_{k,N}a_N \cdot i_{k,in}^{N-1} - Ig_k \cdot p_{k,in} + \gamma_p \cdot (p_{out} - p_{k,in}) \quad [20]$$

$$472 \frac{dt_{out}^j}{dt} = - \sum_{k=1}^N x_k \cdot \gamma_{i^j} \cdot (i_{out}^j - i_{k,in}^j) \quad [21]$$

$$473 \frac{dp_{out}}{dt} = - \sum_{k=1}^N x_k \cdot \gamma_p \cdot (p_{out} - p_{k,in}) \quad [22]$$

$$474 \frac{dx_k}{dt} = Ig_k \cdot p_{k,in} \cdot \gamma_k \cdot c_k \cdot x_k \left(1 - \frac{\sum_{k=1}^N x_k}{\rho} \right) - d_k \cdot x_k \quad [23]$$

475 In the model, $i_{k,in}^j$ represents the intracellular concentration of the j th intermediate of
476 the k th population; i_{out}^j represents the extracellular concentration of the j th
477 intermediate; $p_{k,in}$ represents the intracellular P concentration of the k th population; ε_k
478 represents a vector that characterizes the phenotype of the k th population, where ε_k
479 equals $[0,0,\dots,1,\dots,0,0]$ denoting that the k th population is only capable of performing
480 the k th reaction; x_k is biomass of the k th population; a_k is the reaction rates of the k th
481 reactions; γ_j and γ_P are the diffusion rates of the j th intermediate and P across cell
482 membrane; Ig_k are the consumption rate of P of the k th population; ρ is the carrying
483 capacity of the whole communities; d_k is apparent maintenance rate of the k th
484 population; y_k is the yield coefficients for biomass production of the k th population;
485 c_k is the metabolic burdens of the k th population.

486 **The ODE model used to predict the assembly of our synthetic consortia.** The
487 models used to predict the assembly of the three 2-step MDOL synthetic consortia, as
488 well as the four-step MDOL synthetic consortium were built by adding the specific
489 mechanisms of each consortium to our basic ODE model. These effects include the
490 toxicity of the naphthalene and the intermediates, the abiotic conversion of the
491 intermediates, the generation of metabolic by-products in the step of converting 1, 2-
492 hydroxynaphthalene to salicylate. In addition, the parameters, such as the reaction rates,
493 the consuming rate of P, were experimentally measured or obtained from previous
494 reports. Specifically, the value of d_2 (2-step consortia) and d_4 (four-step consortia)
495 are estimated by the experimentally fitted function that links death rate to the rhamnose
496 concentration (see Supplementary Information S4.1.4 for details of the measurements).

497 Details of formulation of these predicting models are described in Supplementary
498 Information S4.2, and the values and sources of all the parameters used in the predicting
499 models are listed in Table S7.

500 **Model derivation and simulation protocols.** Solving and simplifying of the ODE
501 models were performed using the Solve, Dsolve and Simplify functions of *Wolfram*
502 *Mathematica* (version 12.0), associated with manual arrangement. In order to perform
503 sensitive analyses of the basic model, as well as solve those ODE systems that cannot
504 be easily managed using simple analytic method, numeric simulations were performed
505 using basic settings of NDsolve function of *Wolfram Mathematica*. In particular,
506 derivation methods of the basic assembly rule of 2-step MDOL community (see Eqns.
507 [1] and [2]) are described in Supplementary Information S1.3; Analyses of the models
508 considering those complex mechanisms are described in Supplementary Information
509 S2; Derivation methods of the assembly rule of multiple-step MDOL community (that
510 is, Eqns. [3]-[5]) are described in Supplementary Information S3.2 and S3.4;
511 Simulation protocols and parameterization of the models for predicting experimental
512 results are described in Supplementary Information S4.2; Simulation protocols that test
513 the effects of initial population ratio on the assembly rule are described in
514 Supplementary Information S1.5 and S3.6. These analyses were performed using
515 custom *Wolfram Mathematica* scripts. The generated data were then analyzed and
516 visualized using basic functions in *Wolfram Mathematica*, of which the custom codes
517 were integrated to the aforementioned scripts. Specifically, to fit simulation data with
518 the proposed function, NonlinearModelFit function were used with the default settings.

519 The source codes used for all the models concerning two-step MDOL community are
520 available on: <https://github.com/RoyWang1991/MDOLcode/tree/master/MDOL->
521 [LVMM-twomember](#), while the codes for the models concerning multi-step MDOL
522 community are available on
523 <https://github.com/RoyWang1991/MDOLcode/tree/master/MDOL-LVMM-mutiple>.

524 **Construction and culturing of the synthetic microbial communities**

525 *Construction of the strains involved in the synthetic microbial communities* The strains
526 and plasmids used in this study are summarized in Table S6. All *P. stutzeri* strains were
527 engineered from a naphthalene-degrading bacterial strain *P. stutzeri* AN10^{33,40,53}. Genes
528 that encode the key enzymes responsible for the four metabolic steps in naphthalene
529 degradation pathway were knocked out to generate different strains involved in the
530 synthetic microbial consortia. The details of the strain design and construction are
531 described in Supplementary information S4.1. To label the strains with fluorescence for
532 the measurement of their relative abundance in synthetic consortia, *eCFP*, *dsRed*,
533 *mBeRFP*, *mCherry*, *eGFP* genes were cloned into a constitutive vector, pMMPc-Gm⁵⁴,
534 using the Hieff Clone® Plus One Step Cloning Kit (Yeasen, Shanghai, China), and
535 delivered to the host cells via triparental filter mating⁵⁵.

536 *Culturing of the synthetic microbial communities* Our synthetic microbial communities
537 were cultured in 25-mL flask containing 5 mL new fresh minimum medium⁵⁶
538 supplemented with naphthalene powder (1% w/v) as the sole carbon source. The
539 biomass and relative fraction were measured using the method described previously^{28,57}.
540 The detailed protocols were described in Supplementary information S4.1.6.

541 **Competing Interests**

542 The authors declare that they have no conflict of interest.

543 **Acknowledgments**

544 We wish to thank Professor Ping Xu (Shanghai Jiao Tong University, Shanghai, P.R.

545 China) for supplying plasmid pMMPc-Gm, used for fluorescence labeling in this study;

546 Dr. Min Lin (Chinese Academy of Agricultural Sciences, Beijing, P.R. China) for

547 providing plasmid pK18mobsacB and pRK2013, used for genetic engineering in this

548 work; Dr. T. Juelich (UCAS, Beijing) for linguistic assistance during the preparation of

549 this manuscript.

550 This work was supported by National Key R&D Program of China (2018YFA0902100

551 and 2018YFA0902103), and National Natural Science Foundation of China (91951204,

552 31761133006, 31770120, and 31770118).

553

554 **References**

555 1 Delgado-Baquerizo, M. *et al.* A global atlas of the dominant bacteria found in soil. *Science*
556 **359**, 320-+, doi:10.1126/science.aap9516 (2018).

557 2 Thompson, L. R. *et al.* A communal catalogue reveals Earth's multiscale microbial
558 diversity. *Nature* **551**, 457-+, doi:10.1038/nature24621 (2017).

559 3 Zhao, J. Y. *et al.* Thermodynamically favorable reactions shape the archaeal community
560 affecting bacterial community assembly in oil reservoirs. *Sci Total Environ* **781**, doi:ARTN
561 14650610.1016/j.scitotenv.2021.146506 (2021).

562 4 Head, I. M., Jones, D. M. & Larter, S. R. Biological activity in the deep subsurface and the
563 origin of heavy oil. *Nature* **426**, 344-352, doi:10.1038/nature02134 (2003).

564 5 Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in
565 nutrition and health. *Nat Rev Gastroenterol Hepatol* **9**, 577-589, doi:10.1038/nrgastro.2012.156
566 (2012).

567 6 Levin, D. *et al.* Diversity and functional landscapes in the microbiota of animals in the
568 wild. *Science* **372**, 254-+, doi:ARTN eabb535210.1126/science.abb5352 (2021).

569 7 Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth's
570 biogeochemical cycles. *Science* **320**, 1034-1039, doi:10.1126/science.1153213 (2008).

571 8 Kreft, J. U., Griffin, B. M. & Gonzalez-Cabaleiro, R. Evolutionary causes and
572 consequences of metabolic division of labour: why anaerobes do and aerobes don't. *Curr Opin
573 Biotechnol* **62**, 80-87, doi:10.1016/j.copbio.2019.08.008 (2020).

574 9 Tsoi, R. *et al.* Metabolic division of labor in microbial systems. *P Natl Acad Sci USA* **115**,
575 2526-2531, doi:10.1073/pnas.1716888115 (2018).

576 10 Harvey, E., Heys, J. & Gedeon, T. Quantifying the effects of the division of labor in
577 metabolic pathways. *Journal of Theoretical Biology* **360**, 222-242,
578 doi:10.1016/j.jtbi.2014.07.011 (2014).

579 11 Thommes, M., Wang, T. Y., Zhao, Q., Paschalidis, I. C. & Segre, D. Designing Metabolic
580 Division of Labor in Microbial Communities. *Msystems* **4**, doi:ARTN e00263-
581 1810.1128/mSystems.00263-18 (2019).

582 12 West, S. A. & Cooper, G. A. Division of labour in microorganisms: an evolutionary

583 perspective. *Nat Rev Microbiol* **14**, 716-723, doi:10.1038/nrmicro.2016.111 (2016).

584 13 van Gestel, J., Vlamakis, H. & Kolter, R. Division of Labor in Biofilms: the Ecology of
585 Cell Differentiation. *Microbiol Spectr* **3**, MB-0002-2014, doi:10.1128/microbiolspec.MB-
586 0002-2014 (2015).

587 14 Zheng, H. *et al.* Division of labor in honey bee gut microbiota for plant polysaccharide
588 digestion. *P Natl Acad Sci USA* **116**, 25909-25916, doi:10.1073/pnas.1916224116 (2019).

589 15 Peng, X. F. *et al.* Genomic and functional analyses of fungal and bacterial consortia that
590 enable lignocellulose breakdown in goat gut microbiomes. *Nat Microbiol* **6**, 499-+,
591 doi:10.1038/s41564-020-00861-0 (2021).

592 16 Dombrowski, N. *et al.* Reconstructing metabolic pathways of hydrocarbon-degrading
593 bacteria from the Deepwater Horizon oil spill. *Nat Microbiol* **1**, doi:Artn
594 1605710.1038/Nmicrobiol.2016.57 (2016).

595 17 Schink, B. & Pfennig, N. Fermentation of Trihydroxybenzenes by *Pelobacter-Acidigallici*
596 Gen-Nov Sp-Nov a New Strictly Anaerobic, Non-Sporeforming Bacterium. *Arch Microbiol* **133**,
597 195-201, doi:Doi 10.1007/Bf00415000 (1982).

598 18 Wang, C. Y., Huang, Y., Zhang, Z. T., Hao, H. & Wang, H. Absence of the nahG-like gene
599 caused the syntrophic interaction between *Marinobacter* and other microbes in PAH-degrading
600 process. *J Hazard Mater* **384**, doi:ARTN 12138710.1016/j.jhazmat.2019.121387 (2020).

601 19 Graham, E. B. *et al.* Microbes as Engines of Ecosystem Function: When Does Community
602 Structure Enhance Predictions of Ecosystem Processes? *Frontiers in Microbiology* **7**,
603 doi:ARTN 21410.3389/fmicb.2016.00214 (2016).

604 20 Fuhrman, J. A. Microbial community structure and its functional implications. *Nature* **459**,
605 193-199, doi:10.1038/nature08058 (2009).

606 21 Ahmed, P. M., Pajot, H. F. J. M. f. S. E. & Health. Application of microbial consortia in
607 degradation and detoxification of industrial pollutants. **401** (2020).

608 22 Jia, X. Q., He, Y., Jiang, D. W., Liu, C. & Lu, W. Y. Construction and analysis of an
609 engineered *Escherichia coli*-*Pseudomonas aeruginosa* co-culture consortium for phenanthrene
610 bioremoval. *Biochem Eng J* **148**, 214-223, doi:10.1016/j.bej.2019.05.010 (2019).

611 23 Li, C. M., Wu, H. Z., Wang, Y. X., Zhu, S. & Wei, C. H. Enhancement of phenol
612 biodegradation: Metabolic division of labor in co-culture of *Stenotrophomonas* sp. N5 and

613 13 *Advenella* sp. B9. *J Hazard Mater* **400**, 123214, doi:10.1016/j.jhazmat.2020.123214 (2020).

614 24 Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly
615 rules in microbial microcosms. *Nat Ecol Evol* **1**, doi:ARTN 010910.1038/s41559-017-0109
616 (2017).

617 25 Niehaus, L. *et al.* Microbial coexistence through chemical-mediated interactions. *Nature
618 Communications* **10**, doi:ARTN 205210.1038/s41467-019-10062-x (2019).

619 26 Logan, B. E. & Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using
620 microbial electrochemical technologies (vol 337, pg 686, 2012). *Science* **339**, 906-906 (2013).

621 27 Relman, D. A. The human microbiome: ecosystem resilience and health. *Nutr Rev* **70**, S2-
622 S9, doi:10.1111/j.1753-4887.2012.00489.x (2012).

623 28 Wang, M., Chen, X., Nie, Y. & Wu, X.-L. Substrate traits govern the assembly of microbial
624 community engaged in metabolic division of labor. *bioRxiv*, 2020.2011.2018.387787,
625 doi:10.1101/2020.11.18.387787 (2021).

626 29 Yang, N. J. & Hinner, M. J. J. S.-s. p. l. Getting across the cell membrane: an overview for
627 small molecules, peptides, and proteins. 29-53 (2015).

628 30 Maier, G. P., Bernt, C. M. & Butler, A. Catechol oxidation: considerations in the design of
629 wet adhesive materials. *Biomater Sci-Uk* **6**, 332-339, doi:10.1039/c7bm00884h (2018).

630 31 Gupta, S., Pathak, B. & Fulekar, M. H. Molecular approaches for biodegradation of
631 polycyclic aromatic hydrocarbon compounds: a review. *Rev Environ Sci Bio* **14**, 241-269,
632 doi:10.1007/s11157-014-9353-3 (2015).

633 32 Ghosal, D., Ghosh, S., Dutta, T. K. & Ahn, Y. Current State of Knowledge in Microbial
634 Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. *Frontiers in
635 Microbiology* **7**, doi:ARTN 136910.3389/fmicb.2016.01369 (2016).

636 33 Bosch, R., Garcia-Valdes, E. & Moore, E. R. B. Genetic characterization and evolutionary
637 implications of a chromosomally encoded naphthalene-degradation upper pathway from
638 *Pseudomonas stutzeri* AN10. *Gene* **236**, 149-157, doi:Doi 10.1016/S0378-1119(99)00241-3
639 (1999).

640 34 Park, W., Jeon, C. O., Cadillo, H., DeRito, C. & Madsen, E. L. Survival of naphthalene-
641 degrading *Pseudomonas putida* NCIB 9816-4 in naphthalene-amended soils: toxicity of
642 naphthalene and its metabolites. *Appl Microbiol Biot* **64**, 429-435, doi:10.1007/s00253-003-

643 1420-6 (2004).

644 35 Pumphrey, G. M. & Madsen, E. L. Naphthalene metabolism and growth inhibition by
645 naphthalene in *Polaromonas naphthalenivorans* strain CJ2. *Microbiology (Reading)* **153**, 3730-
646 3738, doi:10.1099/mic.0.2007/010728-0 (2007).

647 36 Lanfranconi, M. P. *et al.* Physiological role of NahW, the additional salicylate hydroxylase
648 found in *Pseudomonas stutzeri* AN10. *Fems Microbiol Lett* **300**, 265-272, doi:10.1111/j.1574-
649 6968.2009.01787.x (2009).

650 37 Munoz, R., Diaz, L. F., Bordel, S. & Villaverde, S. Inhibitory effects of catechol
651 accumulation on benzene biodegradation in *Pseudomonas putida* F1 cultures. *Chemosphere* **68**,
652 244-252, doi:10.1016/j.chemosphere.2007.01.016 (2007).

653 38 Aiba, S., Shoda, M. & Nagatani, M. Kinetics of product inhibition in alcohol fermentation
654 (Reprinted from Biotechnology and Bioengineering, vol 10, pg 845, 1968). *Biotechnol Bioeng*
655 **67**, 671-690, doi:Doi 10.1002/(Sici)1097-0290(20000320)67:6<671::Aid-Bit6>3.0.Co;2-W
656 (2000).

657 39 Herrero, A. A. J. T. i. B. End-product inhibition in anaerobic fermentations. **1**, 49-53
658 (1983).

659 40 Bosch, R., Garcia-Valdes, E. & Moore, E. R. B. Complete nucleotide sequence and
660 evolutionary significance of a chromosomally encoded naphthalene-degradation lower
661 pathway from *Pseudomonas stutzeri* AN10. *Gene* **245**, 65-74, doi:Doi 10.1016/S0378-
662 1119(00)00038-X (2000).

663 41 Ahn, C. K., Woo, S. H., Lee, D. S. & Park, J. M. Mathematical evaluation of intermediates
664 accumulation during microbial phenanthrene degradation. *Korean J Chem Eng* **23**, 415-418,
665 doi:Doi 10.1007/Bf02706743 (2006).

666 42 Jones, J. A. *et al.* Complete Biosynthesis of Anthocyanins Using *E. coli* Polycultures. *Mbio*
667 **8**, doi:ARTN e00621-1710.1128/mBio.00621-17 (2017).

668 43 Gilbert, E. S., Walker, A. W. & Keasling, J. D. A constructed microbial consortium for
669 biodegradation of the organophosphorus insecticide parathion. *Appl Microbiol Biot* **61**, 77-81,
670 doi:10.1007/s00253-002-1203-5 (2003).

671 44 Kato, S., Haruta, S., Cui, Z. J., Ishii, M. & Igarashi, Y. Stable coexistence of five bacterial
672 strains as a cellulose-degrading community. *Appl Environ Microb* **71**, 7099-7106,

673 doi:10.1128/Aem.71.11.7099-7106.2005 (2005).

674 45 Darwin, C. *On the origin of species, 1859.* (Routledge, 2004).

675 46 Johnson, C. R. & Boerlijst, M. C. Selection at the level of the community: the importance
676 of spatial structure. *Trends in Ecology & Evolution* **17**, 83-90,
677 doi:[https://doi.org/10.1016/S0169-5347\(01\)02385-0](https://doi.org/10.1016/S0169-5347(01)02385-0) (2002).

678 47 Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies
679 interactions in microbial communities. **375**, 20190256, doi:doi:10.1098/rstb.2019.0256
680 (2020).

681 48 Meroz, N., Tovi, N., Sorokin, Y. & Friedman, J. J. N. c. Community composition of
682 microbial microcosms follows simple assembly rules at evolutionary timescales. **12**, 1-9
683 (2021).

684 49 Dal Co, A., van Vliet, S., Kiviet, D. J., Schlegel, S. & Ackermann, M. Short-range
685 interactions govern the dynamics and functions of microbial communities. *Nat Ecol Evol* **4**,
686 366-375, doi:10.1038/s41559-019-1080-2 (2020).

687 50 Momeni, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic
688 cooperation over cheating. *Elife* **2**, e00960, doi:10.7554/eLife.00960 (2013).

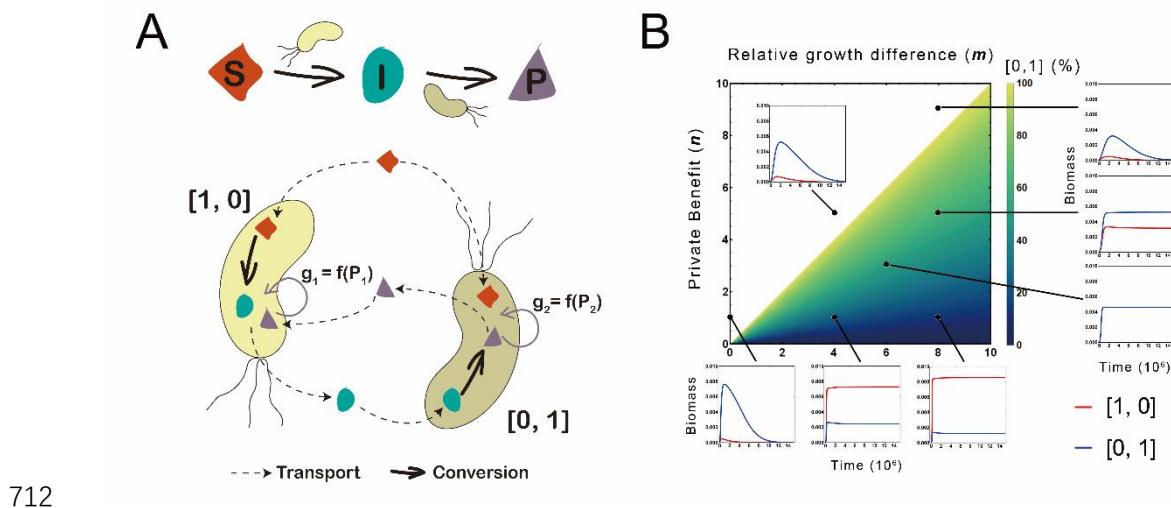
689 51 Pande, S. *et al.* Privatization of cooperative benefits stabilizes mutualistic cross-feeding
690 interactions in spatially structured environments. *ISME J* **10**, 1413-1423,
691 doi:10.1038/ismej.2015.212 (2016).

692 52 Wang, M., Liu, X., Nie, Y. & Wu, X. L. Selfishness driving reductive evolution shapes
693 interdependent patterns in spatially structured microbial communities. *ISME J* **15**, 1387-1401,
694 doi:10.1038/s41396-020-00858-x (2021).

695 53 Brunet-Galme, I. *et al.* Complete Genome Sequence of the Naphthalene-Degrading
696 Bacterium *Pseudomonas stutzeri* AN10 (CCUG 29243). *J Bacteriol* **194**, 6642-6643,
697 doi:10.1128/JB.01753-12 (2012).

698 54 Xu, Y., Tao, F., Ma, C. & Xu, P. New constitutive vectors: useful genetic engineering tools
699 for biocatalysis. *Appl Environ Microbiol* **79**, 2836-2840, doi:10.1128/AEM.03746-12 (2013).

700 55 Gao, C. *et al.* NAD-Independent L-Lactate Dehydrogenase Required for L-Lactate
701 Utilization in *Pseudomonas stutzeri* A1501. *J Bacteriol* **197**, 2239-2247,
702 doi:10.1128/JB.00017-15 (2015).


703 56 Liang, J. L. *et al.* Regulation of alkane degradation pathway by a TetR family repressor
704 via an autoregulation positive feedback mechanism in a Gram-positive *Dietzia* bacterium. *Mol*
705 *Microbiol* **99**, 338-359, doi:10.1111/mmi.13232 (2016).

706 57 Adamowicz, E. M., Flynn, J., Hunter, R. C. & Harcombe, W. R. Cross-feeding modulates
707 antibiotic tolerance in bacterial communities. *ISME J* **12**, 2723-2735, doi:10.1038/s41396-018-
708 0212-z (2018).

709

710

711 **Figure legends**

713 **Figure 1** Assembly rule of microbial community engaged in two-step MDOL. (A)

714 Schematic diagram showing the assumptions of our basic model. We assumed a

715 conceptualized organic substrate (S) could be degraded into an intermediate metabolite

716 (I) by a population [1, 0], then to a final product (P) by the other population [0, 1]. All

717 the reactions occurred intracellularly, while S, I, and P passively diffused across the cell

718 membrane. Importantly, the growth of both populations is dependent on the intracellular

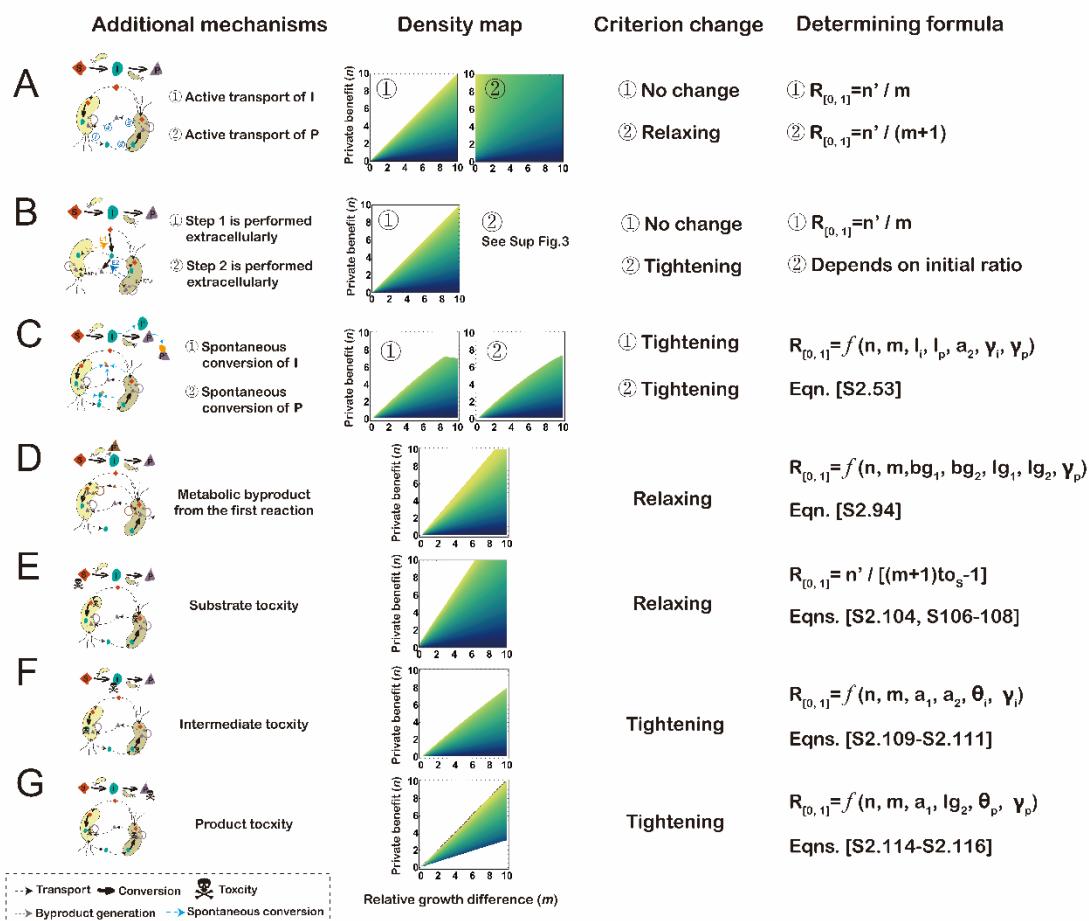
719 concentration of P, which is the sole limiting resource of this system. (B) The density

720 map indicates the assembly rule of the two-step MDOL community. The value of

721 privatization benefit (n) and relative growth advantage (m) determines whether [1, 0]

722 and [0, 1] can stably co-exist (shown by the colorized space), as well as the relative

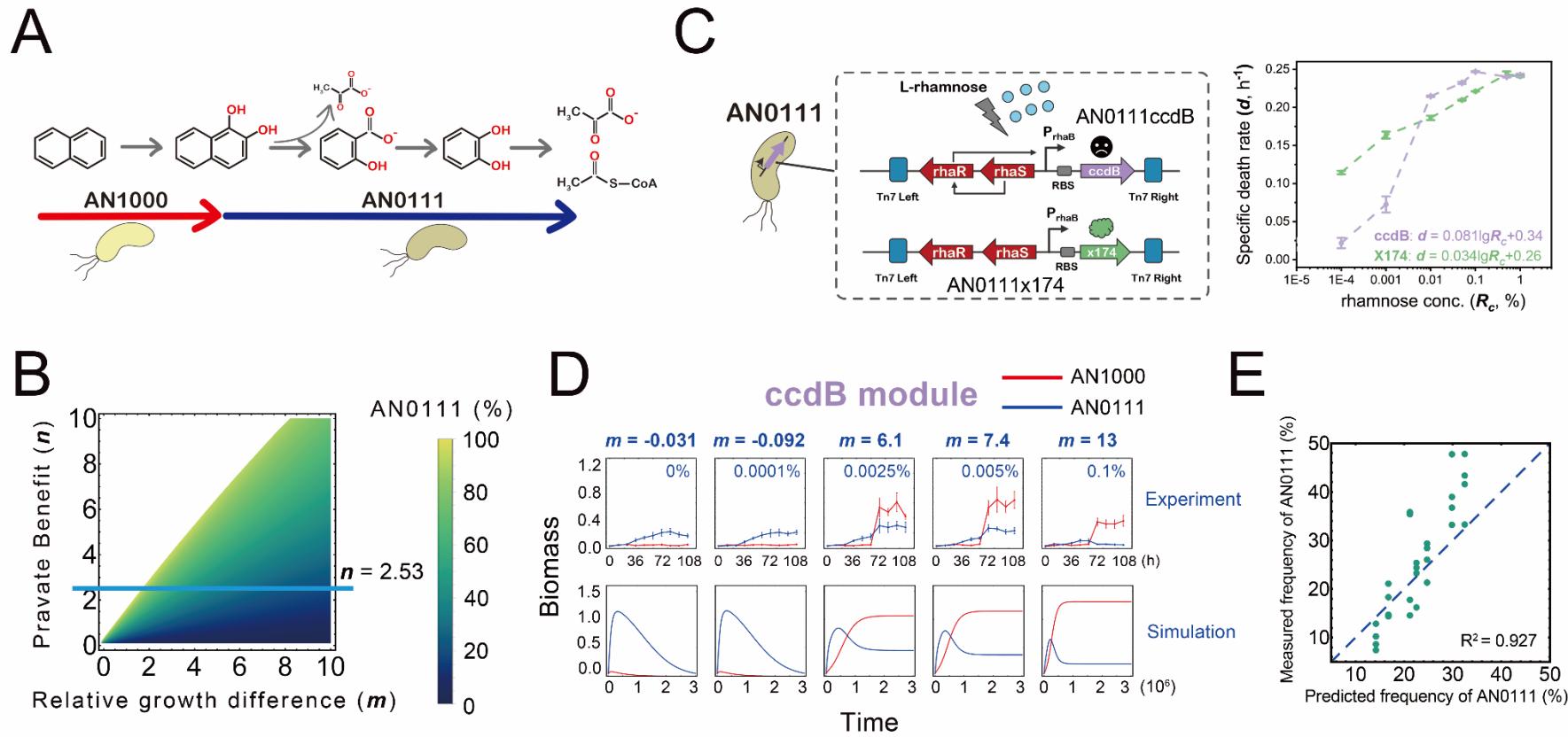
723 abundance of [0, 1] in the stable community (shown by the color gradient). The


724 corresponding curve graph illustrates the community dynamics of the community under

725 six specific n and m combinations. In these simulations, the growth cost of the

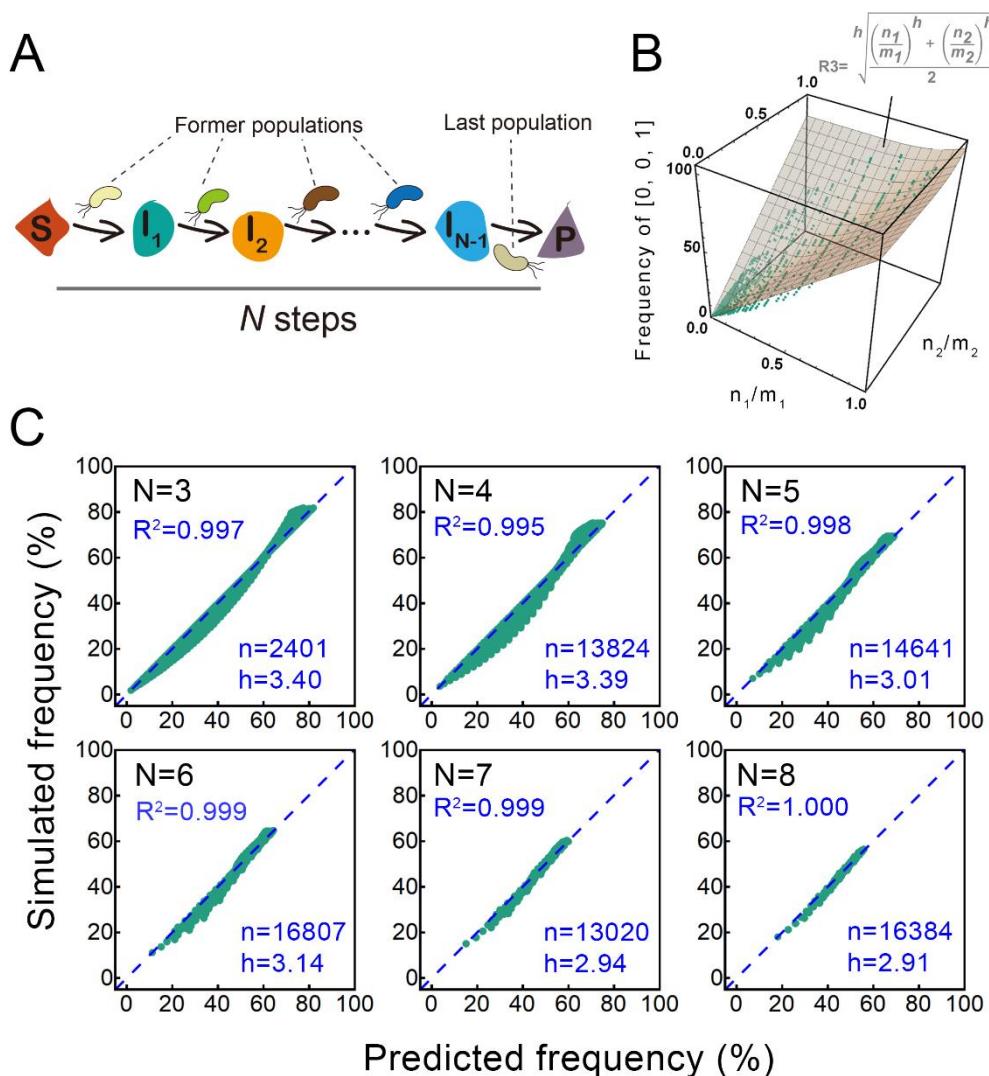
726 population [0,1] (c_2) was adjusted to modify m , and the diffusion coefficient of the final

727 product (γ_p) was adjusted to to modify n . The default values listed in Table S2 were
728 assigned for other parameters.


729

730

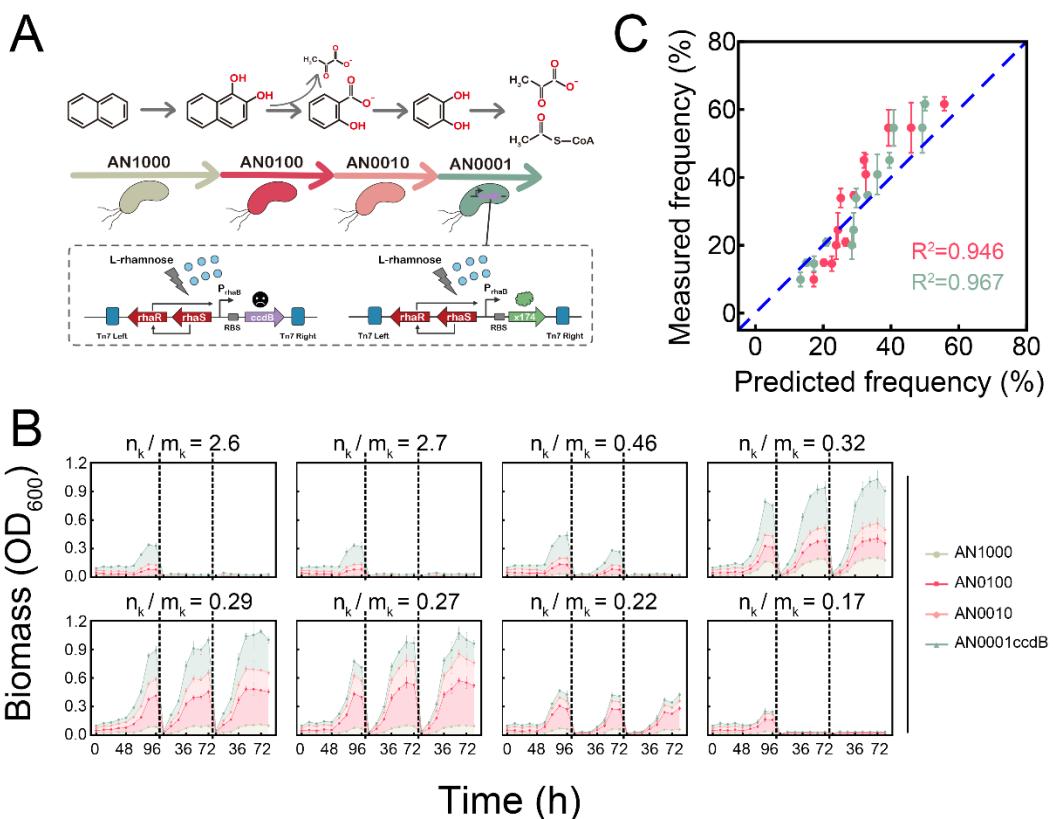
731 **Figure 2** Additional pathway mechanisms influence the assembly of the two-step
 732 MDOL community. Seven additional pathway mechanisms were tested: Different
 733 configurations for the transport of the intermediate and product (A); Alternative or both
 734 metabolic reactions occurring in the extracellular space (B); Presence of abiotic
 735 conversion of intermediate and product (C); Presence of byproduct generated from the
 736 first reaction (D); Presence of biotoxicity of substrate (E); Presence of biotoxicity of
 737 intermediate (F); Presence of biotoxicity of end product (G). First column:
 738 Architectures of two-step MDOL community considering these seven pathway
 739 mechanisms. Second column: Representative density maps shows how the additional
 740 pathway mechanisms change the assembly rules. Third column: Summary of the how


741 the additional pathway mechanisms change the criterion for the stability of the
742 community. ‘Tightening’ means that the size of the parameter space required for the
743 stability decreases, thus the two-step MDOL community becomes more difficult to
744 maintain stability. In contrast, ‘Relaxing’ means that the size of the parameter space
745 required for the stability increases, thus the two-step MDOL community becomes easier
746 to maintain stability. Fourth column: Summary of the derived formulas that determine
747 the assembly of two-step MDOL community at steady-state in each scenario. For
748 simplicity, the key impacting factors of the scenarios in (C), (D), (F), and (G) are listed.
749 Detailed expressions of these formulas are available in Supplementary Information S2,
750 of which the tracking number are listed.

751

752 **Figure 3** Dynamics of the synthetic community composed of *P. stutzeri* AN1000 and *P. stutzeri* AN0111ccdB. (A) Schematic diagram of the
 753 construction of the synthetic consortium. (B) Predicting the assembly of the synthetic community by mathematical modelling. The density map

754 shows the parameter space in which the community can maintain (the colorized space), as well as the relative abundance of *P. stutzeri* AN0111ccdB
755 or *P. stutzeri* AN0111x174 in the stable community (the color gradient). The blue line suggests that in our synthetic community $n = 2.53$, which is
756 the region we performed experimental verification. (C) To experimentally modify m value, two genetic modules were introduced into strain *P.*
757 *stutzeri* AN0111, generating *P. stutzeri* AN0111ccdB and *P. stutzeri* AN0111x174, in which the expression of toxic protein, CcdB or X174, are
758 controllably induced by rhamnose. Therefore, the death rate of the modified strain can be quantitatively modulated by adjusting rhamnose
759 concentration, as shown in the left plot and Table S7. (D) The dynamics of the synthetic community composed of *P. stutzeri* AN1000 and *P. stutzeri*
760 AN0111ccdB from co-culture experiments and mathematical modelling under different rhamnose concentrations (that is, a gradient of m values).
761 To measure their relative abundance, the strain performing the first step was labeled with MCherry, while the other strain was labeled with EGFP.
762 (E) Testing the predicting power of our mathematical frameworks. The experimentally measured frequency of the *P. stutzeri* AN0111ccdB (Figure
763 S14) and *P. stutzeri* AN0111x174 (Figure S15) in dilution-transfer experiments are compared with the predicted frequency from our mathematical
764 framework. The values of relative abundance at the end of the third transfer were recorded. Each green dot indicates one experimental replicate.
765 The blue dashed line indicates the line in which the experimental results and predicted results are identical. The adjust R^2 are aquired from statistical
766 fit using NonlinearModelFit function of *Worfram Mathematica*.

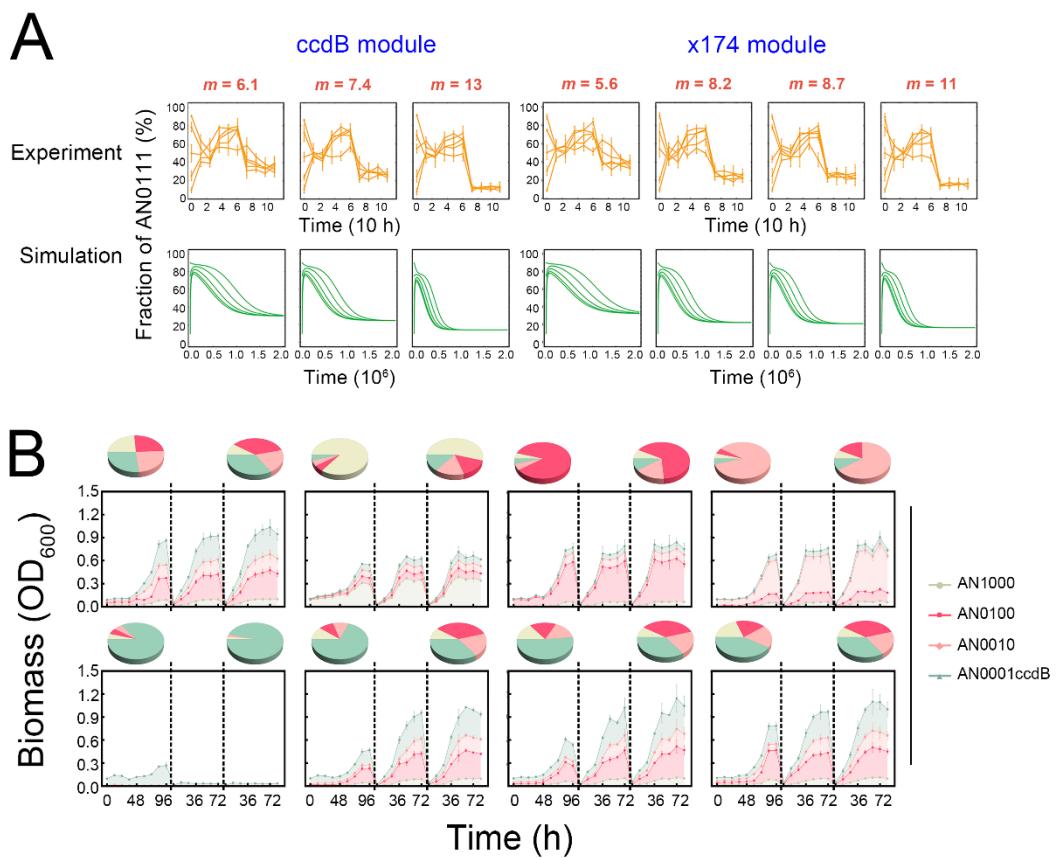


767

768 **Figure 4** Assembly rule of microbial community engaged in multi-step MDOL. (A)
769 Schematic diagram shows the assumptions of the model regarding the assembly of
770 multi-step MDOL community. We assumed a conceptualized organic substrate (S) was
771 degraded into the end product (P) through $N-1$ intermediates, and the j th intermediate
772 was labelled with I_j . Each reaction was carried out by one population and occurred
773 intracellularly. (B) Assembly rule of microbial community engaged in three-step
774 MDOL. The relationship between the relative abundance of the $[0, 0, 1]$ and the ratio
775 n_1/m_1 and n_2/m_2 in 890 simulated steady-state communities. Each dot shows the

776 relative abundance of [0, 0, 1] obtained by the simulation parameterized with the
777 corresponding value set. The surface diagram shows distribution of the relative
778 abundance of [0, 0, 1] predicted by Eqn. [3]. Details of these simulations are provided
779 in Supplementary Information S3.2. (C) The linear correlation between the relative
780 abundances of the last population (R_N) in those stable N -step MDOL communities
781 predicted by Eqn. [3] and those abundances obtained by simulations. Comparisons of
782 three- to eight-step MDOL communities are shown (meaning $N = 3\sim 8$). The dashed
783 lines show the fitted linear correlation curve. N is the number of the simulations
784 included, h is the optimal mean square index h . Details of these simulations are
785 described in Supplementary Information S3.4.

786



787

788 **Figure 5** Dynamics of the four-step synthetic community. (A) Schematic diagram of
 789 the construction of the synthetic community. To experimentally modify m_k , strain *P.*
 790 *stutzeri* AN0001ccdB or *P. stutzeri* AN0001x174 was used. (B) The dynamics of the
 791 synthetic community composed of *P. stutzeri* AN1000, *P. stutzeri* AN0100, *P. stutzeri*
 792 AN0010 and *P. stutzeri* AN0001ccdB from co-culture experiments under a gradient of
 793 n_k/m_k value conditions (i.e., using medium with different rhamnose concentrations).
 794 The cultures were diluted by a factor of 20 after 96 h or 72h of culturing (indicated by
 795 the dashed line), and transferred into a new fresh medium. To measure their relative
 796 abundances, strain *P. stutzeri* AN1000 was labeled with ECFP, strain *P. stutzeri* AN0100
 797 was labeled with DsRed, strain *P. stutzeri* AN0010 was labeled with mBeRFP, and
 798 strain *P. stutzeri* AN0001ccdB was labeled with EGFP. The dynamics of the community
 799 composed of *P. stutzeri* AN1000, *P. stutzeri* AN0100, *P. stutzeri* AN0010 and *P. stutzeri*

800 AN0001x174 are shown in Figure S19A. (C) Predicting the relative abundance of the
801 last populations (that is, *P. stutzeri* AN0001ccdB or strain *P. stutzeri* AN0001x174) by
802 mathematical modelling. The experimental results are summarized from those stable
803 communities shown in (B) and Figure S19A, in which the values of relative abundance
804 at the end point of the third transfer were recorded. The red dots show the results
805 calculated the Eqn. [3], while the green dots show the results predicted from the
806 simulations considering the specific pathway mechanisms of naphthalene degradation
807 (see Supplementary Information S4.2 for details).

808

810 **Figure 6** Effects of initial population ratio on the assembly rule of microbial community
811 engaged in MDOL. (A) The assembly rule of two-step MDOL community is
812 independent on the changing initial population ratio. Culture experiments and
813 mathematical modelling of the community composed of *P. stutzeri* AN1000 and *P.*
814 *stutzeri* AN0111ccdB (or *P. stutzeri* AN0111x174) were performed by setting seven
815 different m values, as well as five different initial ratios. The relative abundances of *P.*
816 *stutzeri* AN0111ccdB or *P. stutzeri* AN0111x174 from experiments (orange, first row)
817 and mathematical modelling (green, second row) are shown. (B) Growth dynamics of
818 the synthetic community composed of *P. stutzeri* AN1000, *P. stutzeri* AN0100, *P.*
819 *stutzeri* AN0010, and *P. stutzeri* AN0001ccdB at eight different initial ratios. In these

820 experiments, rhamnose concentration was set to 0.005% (n_k/m_k value equals to 0.29).

821 Each color region represents the relative abundance of each strain. The pie charts denote

822 the community structure at the starting and end time points. Three independent

823 replicates were performed for each condition. Results of same experiments using

824 synthetic community composed of *P. stutzeri* AN1000, *P. stutzeri* AN0100, *P. stutzeri*

825 *P. stutzeri* AN0010, and *P. stutzeri* AN0001x174 are shown in Figure S19B.

826

827

828