

Deficits in decision-making induced by parietal cortex inactivation are compensated at two time scales

1 **Abbreviated title:** Deficits in decision-making after parietal cortex inactivation

2 **Author Names and Affiliations:** Danique Jeurissen^{1,2*^①}, S Shushruth^{1*^②}, Yasmine El-Shamayleh¹, Gre-
3 gory D Horwitz⁴, Michael N Shadlen^{1,2,3^③}

4 ^{*}: Equal contribution;

5 ^①: Contact: DJ: d.jeurissen@columbia.edu; SS: fs2478@columbia.edu; MNS: shadlen@columbia.edu.

6 ¹ Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, ² Howard Hughes Medical
7 Institute, ³ Kavli Institute, Columbia University, New York, NY, USA; ⁴ Department of Physiology &
8 Biophysics, Washington National Primate Research Center, University of Washington, Seattle, WA, USA.

9 **Number of pages:** 32

10 **Number of figures:** 4 (+2 Supplementary Figures)

11 **Conflict of interest statement:** The authors declare no competing financial interests.

12 **Acknowledgements:** We thank Anthony Napolitano, Brian Madeira, Cornel Duhaney, Lee Anthony
13 Williams, and the Institute of Comparative Medicine for technical support and animal care; John Neumaier
14 of University of Washington for advice on chemogenetic techniques; and members of the Shadlen lab for
15 helpful discussions.

16 The research was supported by the Howard Hughes Medical Institute; an R01 from the NIH Brain
17 Initiative (MNS, R01NS113113); an R21 from the NIH National Institute on Aging (MNS, DJ, SS,
18 1R21AG067108-01); a postdoctoral fellowship from the Simons Collaboration on the Global Brain (Si-
19 mons Foundation, DJ, 414196); a pilot grant from the Alzheimer's Disease Research Institute at the Taub
20 Institute, Columbia University (MNS, DJ, SS); Young Investigator Awards from the Brain and Behavior
21 Research Foundation (DJ, 28476 and SS, 23556), and an R01 grant from the National Eye Institute (GDH,
22 EY030441).

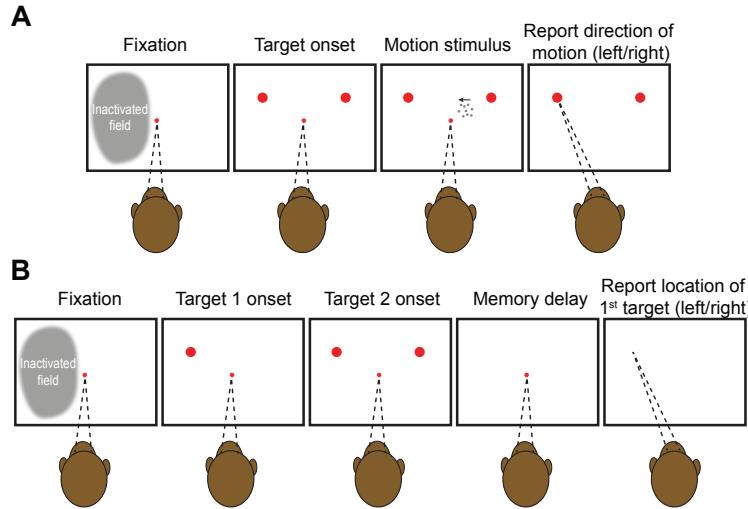
23 Abstract

24 Perceptual decisions arise through the transformation of samples of evidence into a commitment to a
25 proposition or plan of action. Such transformation is thought to involve cortical circuits capable of com-
26 putation over time scales associated with working memory, attention, and planning. Neurons in the lateral
27 intraparietal area (LIP) are thought to play a role in all of these functions, and much of what is known about
28 the neurobiology of decision making has been influenced by studies of LIP and its network of cortical and
29 subcortical connections. However a causal role of neurons in LIP remains controversial. We used pharmaco-
30 logical and chemogenetic methods to inactivate LIP in one hemisphere of four rhesus monkeys. Inactivation
31 produced clear biases in decisions, but the effects dissipated despite the persistence of neural inactivation,
32 implying compensation by other unaffected areas. Compensation occurs on a rapid times scale, within an
33 experimental session, and more gradually, across sessions. The findings resolve disparate studies and inform
34 interpretation of focal perturbations of brain function.

35 Introduction

36 A decision is a commitment to a proposition or plan of action based on evidence from the environment
37 or memory. The underlying neural computations convert such evidence into a state similar to working
38 memory or motor planning. This conversion involves a network of brain areas spanning the association
39 areas of the cerebral cortex as well as their subcortical connections. Even a simple decision to look to the
40 left or right, based on visual evidence from straight ahead, is known to involve neurons in the dorsolateral
41 prefrontal cortex, frontal eye field, striatum, superior colliculus, and lateral intraparietal area (LIP) (Shadlen
42 and Newsome, 1996; Kim and Shadlen, 1999; Horwitz et al., 2004; Ding and Gold, 2010, 2012). Neurons
43 in these areas represent both the saccadic choice and the evolving deliberative process—the integration of
44 noisy evidence leading to the choice (Shadlen and Kiani, 2013).

45 The evidence-accumulation process has been extensively characterized in area LIP. Neurons in LIP
46 combine accumulating evidence with other factors, including biases (e.g., prior probability) and time-costs
47 to establish a representation (the decision variable) suitable for terminating the process. However, whether
48 LIP, or any other single area, is essential to this process remains unclear. Causal perturbations of LIP
49 activity have led to mixed results. Hanks et al. (2006) showed that electrical microstimulation of neurons
50 that represent one of two choice targets caused a small bias in favor of that choice. The bias was associated
51 with changes in response time by an amount consistent with a change in the firing rates of neurons that
52 represent the decision variable. However, inactivation of LIP has not produced consistent effects on choice.
53 Chen et al. (2020) observed striking biases against choice targets in the visual hemifield contralateral to cryo-
54 inactivated posterior parietal cortex, including area LIP. However two recent studies used intraparenchymal
55 infusions of the GABA-A agonist, muscimol, to inactivate LIP specifically, and found only small biases
56 (Zhou and Freedman, 2019) or no behavioral effects at all (Katz et al., 2016).


57 We hypothesized that the weak behavioral effects might be explained by compensation from unaffected
58 parts of the decision-making network (Fetsch et al., 2018). Such compensation could arise from neurons
59 in distal brain regions (including the homologous LIP in the opposite hemisphere) as well as from local
60 neurons within the targeted LIP but outside the inactivated region. We therefore inactivated LIP, but in
61 contrast with previous studies, we (*i*) ensured that our inactivation encompassed a substantial fraction of
62 the neurons that were associated with decision formation, and (*ii*) tracked the effect of inactivation over

63 the course of each experimental session. We found that inactivation of area LIP induced a large bias in
64 two types of perceptual decisions but only temporarily; the bias diminished within a few hundred trials and
65 across inactivation sessions. The behavioral compensation was evident in monkeys performing two types of
66 decision-making tasks, highlighting the generality of the phenomenon.

67 Results

68 We trained four rhesus monkeys on perceptual tasks requiring a binary decision about a stimulus category.
69 Monkeys 1 and 2 decided whether the net direction of random dot motion (RDM) was to the left or right
70 (Fig. 1A). We varied the difficulty of the decision by controlling the strength and duration of the motion.
71 After the removal of the motion stimulus, the monkeys reported the perceived net direction of motion with
72 an eye movement to a choice-target on the right or left side of the display. Monkeys 3 and 4 made a decision
73 about the temporal order of two flashed targets, which were presented sequentially in the left and right
74 hemifield (Fig. 1B). Difficulty was controlled by the time between the onset of the two targets (Δt). After
75 a wait period following target presentation, the monkey had to report which of the two targets had appeared
76 first by making an eye movement to the remembered location of that target.

77 The two tasks share the requirement of reporting the decision with an eye movement. In such tasks,
78 neurons in area LIP that exhibit spatially selective persistent activity during saccade planning (Gnadt and
79 Andersen, 1988) are thought to play a role in decision formation (Shadlen and Newsome, 1996; Wardak
80 et al., 2002; Rorie et al., 2010). We used a memory-guided saccade task (Gnadt and Andersen, 1988) to
81 ascertain the full extent of LIP (in one hemisphere) that contains such neurons. Consistent with previous
82 reports (Patel et al., 2010), neurons with persistent activity were identified across a broad swath of the lateral
83 bank of the intraparietal sulcus (IPS). The anteroposterior spread ranged from 6–10 mm; the dorsoventral
84 spread ranged from 3–7 mm (Fig. 2A–B). We targeted our inactivation to the region determined by this
85 functional mapping in each monkey. In Monkeys 1–3, we inactivated the region of interest by making
86 several injections of the GABA-A agonist muscimol. In Monkey 4, we injected an AAV vector to express
87 the inhibitory muscarinic receptor hM4Di in the region of interest (Armbruster et al., 2007) and targeted the
88 receptor by subcutaneous administration of clozapine. We confirmed that our inactivation encompassed the
89 targeted area by multi-neuron recordings (Fig. 2C–D).

Figure 1: Behavioral tasks. Both tasks require the monkey to make a binary decision and report it with an eye movement to one of two choice-targets presented in the left or right hemifield, respectively. In each trial, the monkey is required to maintain its gaze on a central fixation point until its extinction, which serves as a *go cue*. **A**, Motion direction task. Dynamic random dot motion (RDM) appears within an invisible aperture contained within the hemifield ipsilateral to the inactivated cortex. The fixation point and motion stimulus are extinguished simultaneously, whereupon the monkey reports its decision. The monkey is rewarded for choosing the target in the direction of the motion (and randomly for the 0% coherent motion). Across trials, the strength, direction (left or right), and duration of the motion were varied randomly, as were the exact positions of choice targets (see Suppl. Fig. 2). **B**, Temporal order task. The choice-targets are presented sequentially. Choice-targets 1 and 2 are extinguished simultaneously, 430 ms after the onset of the first target. The fixation point is then extinguished after a variable delay, and the monkey is rewarded for making a saccade to the remembered location of the first target. Across trials, the order, onset asynchrony, and exact positions of the targets were varied randomly.

90 In both tasks, the choice targets were in opposite hemifields, contralateral and ipsilateral to the inac-
 91 tivated area LIP. We refer to the corresponding choices as contraversive and ipsiversive, respectively. By
 92 convention, positive values of motion strength (task 1) and target asynchrony (task 2) indicate evidence
 93 for the contralateral choice target. [Figure 3](#) shows the choice behavior over the first 100 trials of the first
 94 LIP inactivation experiment for each monkey. The rationale for restricting analysis to the earliest trials and
 95 sessions will be made clear in [Figure 4](#). All monkeys made fewer contraversive choices during the 100
 96 trials after inactivation than they did during the 100 trials before inactivation. This reduction held at nearly
 97 every stimulus strength in all four monkeys ([Fig. 3](#)). Thus the monkeys made more errors in response to
 98 contraversive motion ([Fig. 3A](#)) and early contralateral target appearances ([Fig. 3B](#)). The effect could not be

99 attributed to more frequent fixation breaks on trials supporting a contralateral choice compared to an ipsi-
100 lateral choice (Fisher exact test, $p > 0.15$ for each monkey). The sigmoid curves in [Figure 3](#) are fits of a
101 logistic regression model ([Eq. 5](#)). The fits show clear effects of muscimol and hM4Di mediated inactivation
102 on the monkeys' decisions compared to pre-inactivation and to control experiments. The dominant effect of
103 inactivation is a bias against contraversive choices ($p < 0.02$ in all cases, [Table 1](#)). Inactivation also appears
104 to affect the slope of the choice functions, which would suggest decreased sensitivity to motion (Monkey 1)
105 and Δt (Monkeys 3 & 4). The effect is statistically significant in Monkey 3 ($p < 0.01$, [Table 2](#)), and it
106 is statistically significant in Monkey 1 upon inclusion of more experimental sessions ([Eq. 9](#), $p < 0.023$).
107 Overall, however, we interpret the the effect of inactivation on sensitivity as inconsistent across animals, and
108 therefore inconclusive. From here on we focus all analyses on the decision bias.

109 Inactivation with muscimol reduced contraversive choices in the first session, but this effect diminished
110 over subsequent sessions. [Figure 4A](#) shows the bias during the first 100 trials in each muscimol session
111 compared to controls. All three monkeys exhibited weaker biases against contraversive choices in later
112 sessions. For monkeys 1 (motion) and 3 (time), the change is strikingly monotonic ($p = 10^{-4}$ and 0.003,
113 respectively; [Eq. 6](#), $\mathcal{H}_0: \beta_2 = 0$). The trend is not monotonic in Monkey 2, but the decrease as a function of
114 session number is statistically significant ($p = 0.01$). This effect is not explained by decreased efficacy of
115 muscimol across sessions, as the drug induced silencing of neural activity in all sessions. Thus the decision-
116 making network can learn to compensate for the loss of area LIP across multiple days. For Monkey 4,
117 we varied the dosage to the agonist, clozapine, across sessions. As shown in [Figure 4B](#), the contralateral
118 bias was strongly dose dependent ($p = 10^{-8}$). We did not detect an effect of session number in Monkey
119 4 ($p = 0.15$), possibly because it was masked by a strong effect of drug dosage, which was randomized
120 across sessions. We cannot ascertain whether the lack of across-session compensation is attributed to the
121 chemogenetic approach, or the limited number of sessions possible in this monkey, or the confounding effect
122 of clozapine dose.

123 In addition to the behavioral compensation observed across sessions, the bias also dissipated over the
124 course of individual sessions. In most sessions, the bias decreased gradually over a few hundred trials
125 and resolved nearly completely after 500 trials ([Fig. 4C–D](#)). [Figure 4E–F](#) highlights this within-session
126 attenuation of bias by combining sessions in which a statistically significant bias was present in the first

127 hundred trials (asterisks in [Fig. 4A, B](#)). The initial bias is evident in the small fraction of correct contraversive
128 choices (~60%) and the large fraction of correct ipsiversive choices (80–100%). This assay for the bias
129 ignores stimulus strength, but it allows us to focus on the effect of trial number within a session by combining
130 over strengths and sessions. The running means thus reveal a gradual dissipation of the disparity between
131 accuracy on the contralateral and ipsilateral supporting stimuli. These changes were highly reliable by
132 logistic regression for three of the monkeys ($p < 10^{-5}$; [Eq. 8](#), $\mathcal{H}_0: \beta_2 = 0$) and borderline for Monkey 2
133 ($p = 0.06$).

134 The behavioral compensation across trials was not caused by recovery of neural activity at the inacti-
135 vated site, which persisted for the entire duration of each session ([Fig. 2C–D](#)). Further, the monkeys still
136 displayed signs of contralateral hemineglect on a simple extinction (side-preference) assay ([Christopoulos](#)
137 [et al., 2018a](#)), conducted at the end of the experiment (Monkeys 2 and 3). Both animals exhibited a strong
138 bias for choosing the treat presented in the ipsilateral visual field (compared to control sessions, $p < 10^{-3}$,
139 for both monkeys, Fisher exact test, Supp. Fig. 1). Thus the compensation exhibited on the perceptual
140 decisions appears to be task specific.

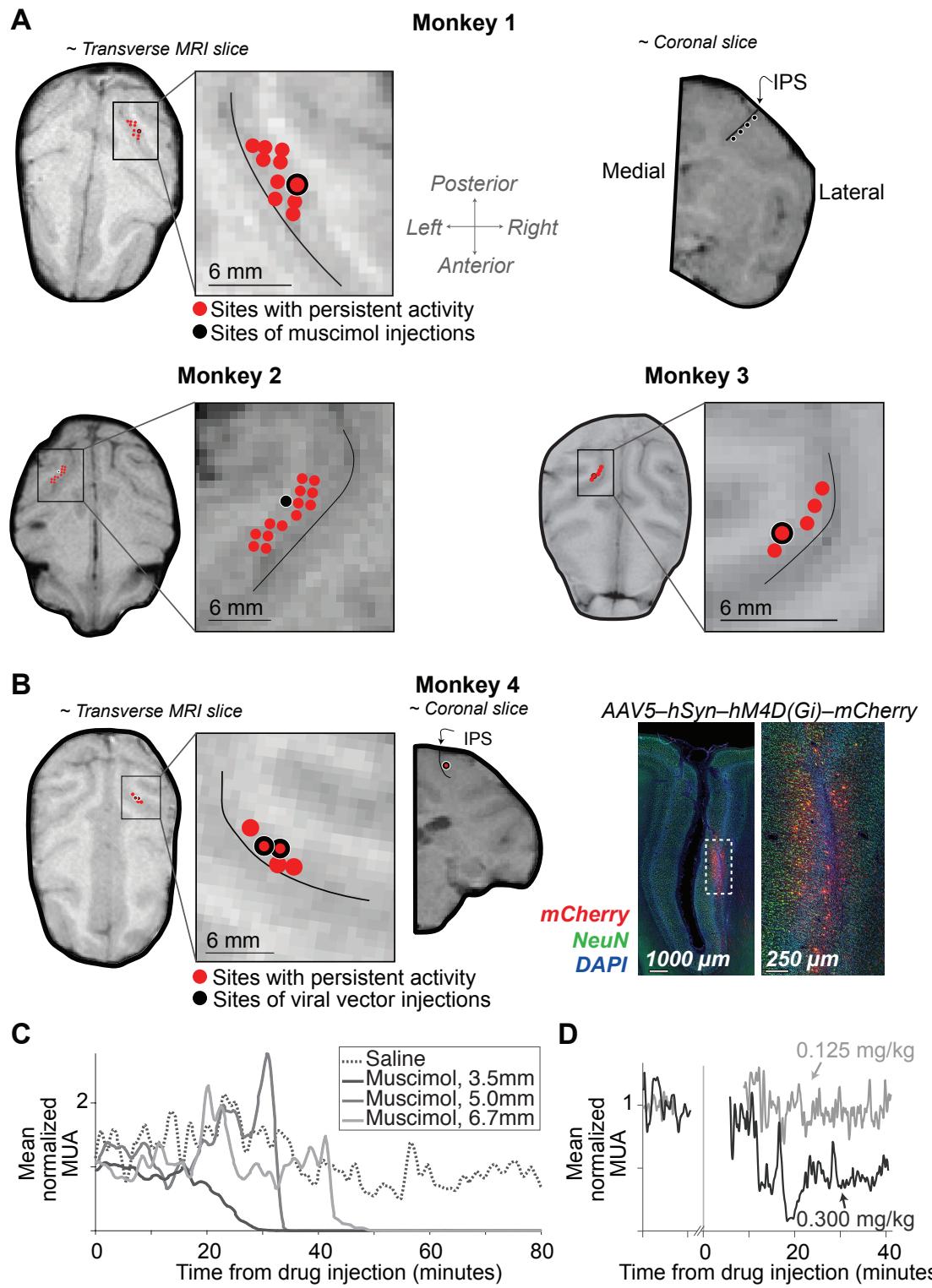


Figure 2

Figure 2: (Previous page.) **Localization and characterization of LIP inactivation sites.** **A**, The locations of muscimol injections and neurons with spatially selective persistent activity are superimposed on MRIs for Monkeys 1, 2, and 3. The near-transverse planes are orthogonal to the injection trajectories. The near-coronal MRI slice from Monkey 1 (top-right) shows positions along the intraparietal sulcus (IPS) where muscimol was injected. The thin black curve (*inset*) marks the center of the IPS. **B, Left:** Location of viral vector injections for Monkey 4. The coronal slice shows the injection site; same conventions as in A. **Right:** Representative histology. Expression of hM4Di-mCherry receptor is restricted to the lateral bank of the IPS. **C**, Time course of multi-unit activity (MUA) in area LIP following injection of saline (dotted) and muscimol (solid). Recordings were obtained at different distances from the injection site (legend). Note the complete suppression of activity in < 1 hour. **D**, Time course of MUA following subcutaneous injection of clozapine at the lowest (gray) and highest (black) dose tested.

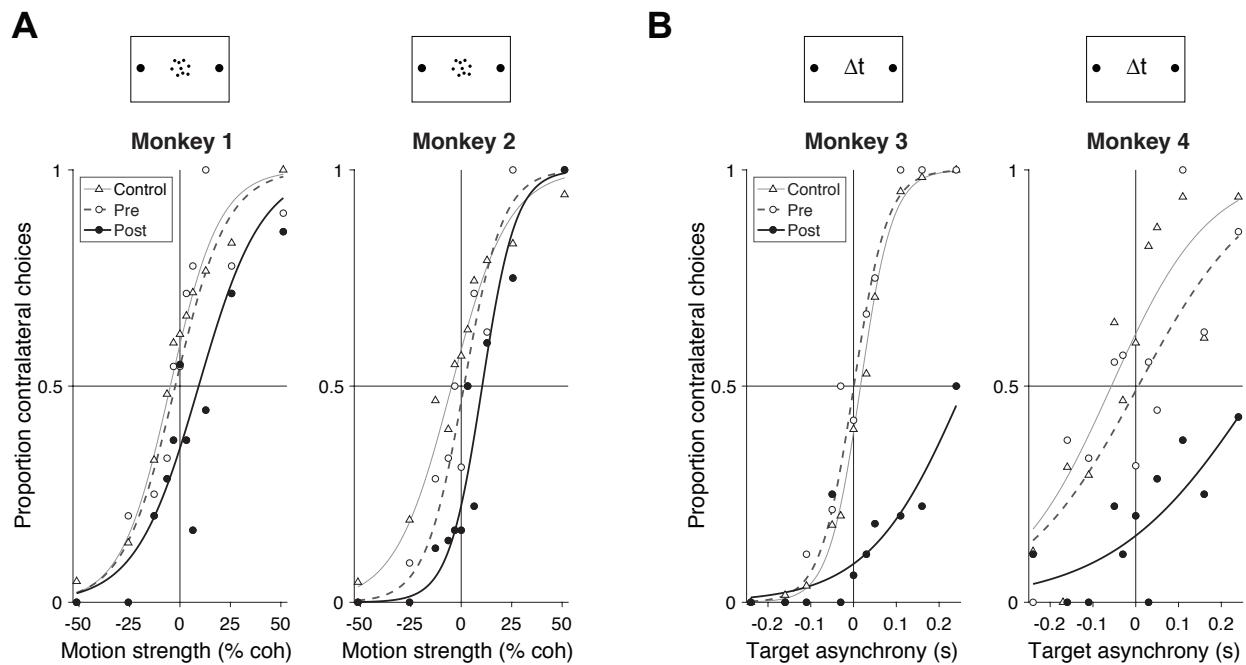
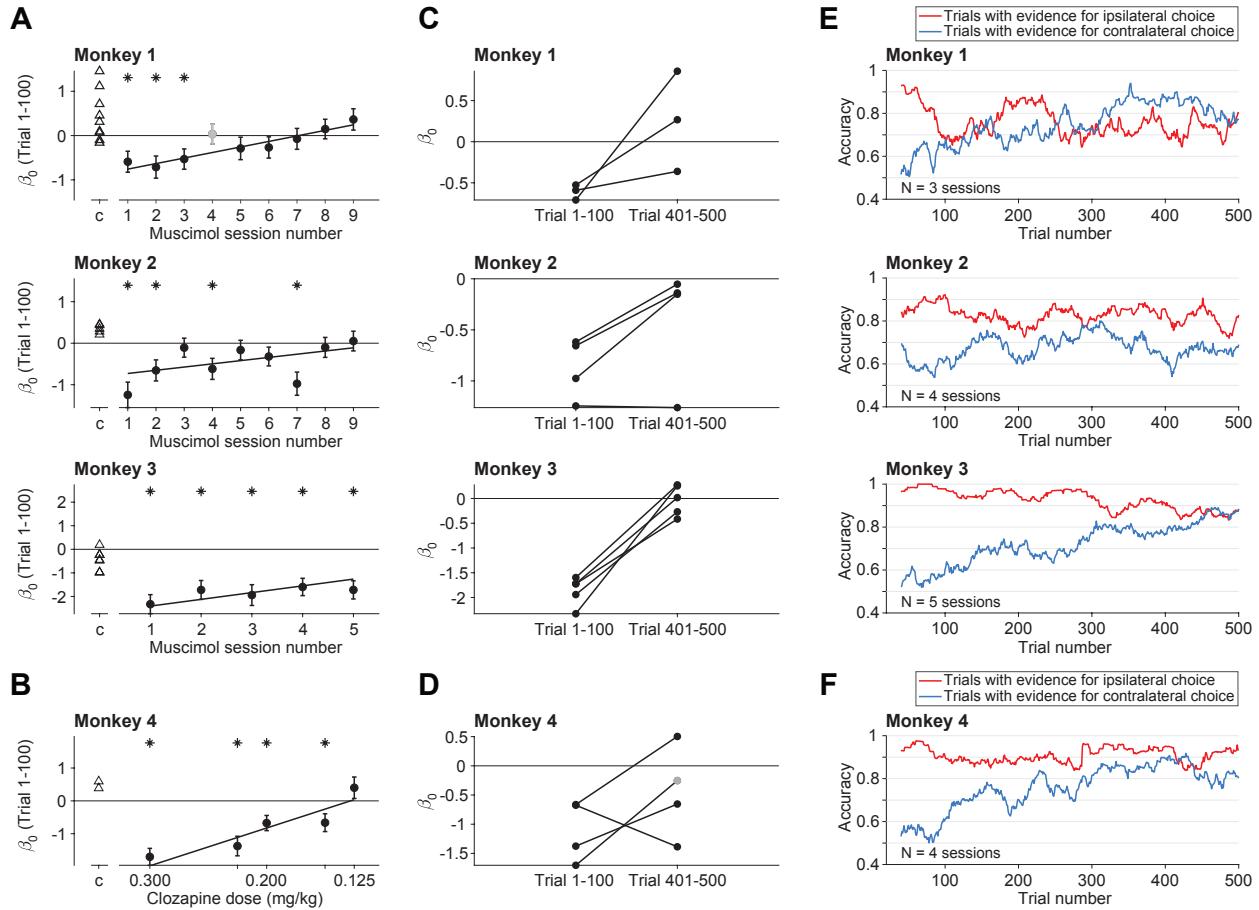



Figure 3: **Inactivation of LIP induces a decision bias.** **A**, Proportion of contralateral choices as a function of motion strength for Monkeys 1 and 2. Filled circles show data from the first 100 trials after muscimol injection in the first inactivation session. Open symbols show data from the last 100 trials in the pre-injection phase of the same experiments. Triangles depict data from all control sessions using the first 100 trials after the saline or sham injection. Muscimol induces a bias against contralateral choices. Curves are logistic regression fits (Eq. 2). **B**, Proportion of contralateral choices as a function of target onset asynchrony for Monkeys 3 and 4. Data from Monkey 3 are from the first session in which muscimol was administered. Data from Monkey 4 are from the session in which 0.3 mg/kg clozapine was administered. Other conventions are the same as in A.

Figure 4: Compensation of bias across and within sessions. **A**, The size of the contraversive bias (β_0 , Eq. 2) in the first 100 trials following inactivation is plotted as a function of experimental session. Data are shown separately for the three monkeys that received muscimol. Negative bias ($\beta_0 < 0$) indicates bias against contraversive decisions. Triangles are data from control sessions. Asterisks denote statistical significance ($p < 0.05$; $H_0: \beta_0 = 0$). The regression line is from the fit to Eq. 6, excluding session 4 for Monkey 1 (gray point), in which we appraised a smaller volume ($8 \mu\text{L}$; see Methods). Error bars are s.e. **B**, Effect of clozapine dose on decision bias (Monkey 4). Same conventions as in A. **C–F**, Within session compensation. These analyses use only sessions with a statistically significant bias in the first 100 trials (asterisks in A & B). **C**, Individual muscimol sessions. Each line connects the bias in trials 1–100 with the bias in trials 401–500. **D**, Individual clozapine sessions (Monkey 4). Same conventions as in C, except for one session, where less than 500 trials were completed. The gray point is the bias from the last 100 trials (trials 186–286). **E, F** Gradual diminution of the bias. These analyses combine the individual experiments in C & D and group trials with the same sign of evidence (color), regardless of evidence strength (trials with 0% coh or $\Delta t = 0$ are excluded). The traces are running means of choice accuracy using 40 trials. Trial numbers on the abscissa correspond to the end of the averaging window.

141 Discussion

142 We have shown that suppression of neural activity in cortical area LIP induces behavioral changes in per-
143 ceptual decision making. We used two types of tasks and two methods of inactivation. In all cases, inactiva-
144 tion of LIP in one hemisphere produced a bias against contralateral choices, consistent with partial spatial
145 hemineglect (Mattingley et al., 1998). The effect was transient, however, bringing to light compensatory
146 mechanisms that operate on at least two distinct time scales—over the course of a few hundred trials within
147 individual sessions and across multiple sessions separated by days. Our results complement a previous study
148 that reported an even faster, within-trial compensation, associated with optogenetic suppression of neurons
149 in extrastriate cortical area MT/V5 (Fetsch et al., 2018).

150 Previous studies have shown that unilateral inactivation of LIP produces behavioral effects consistent
151 with contralateral hemineglect (Li et al., 1999; Chafee and Goldman-Rakic, 2000; Li and Andersen, 2001;
152 Christopoulos et al., 2018b), and it affects target selection in attentionally demanding tasks (Wardak et al.,
153 2002, 2004). Our findings complement these studies by showing that LIP inactivation affects decisions in
154 a manner similar to a change in base-rate, prior probability, or value difference (Hanks et al., 2011; Rorie
155 et al., 2010; Platt and Glimcher, 1999). The findings are also consistent with the observation that electrical
156 microstimulation of LIP biases decisions regarding random dot motion in favor of contraversive choices
157 (Hanks et al., 2006). Indeed the present findings would be unsurprising were it not for (i) the accompany-
158 ing compensation and (ii) two recent studies that reported such a bias to be absent (Katz et al., 2016) or
159 vanishingly small (Zhou and Freedman, 2019). The present findings readily explain this discrepancy.

160 We attempted to inactivate the extent of area LIP that contains neurons with spatially selective persistent
161 activity during the saccade planning phase of an oculomotor delayed response—neurons that have been
162 shown to represent the accumulation of evidence during perceptual decision making. Our mapping protocol
163 revealed that the span of such neurons is extensive, consistent with Patel et al. (2010), indicating that a large
164 injection of muscimol would be required to inactivate most of them. Thus the volume of cortex inactivated
165 in our experiments was approximately 1.5 times the volume inactivated by Zhou and Freedman (2019) and
166 Katz et al. (2016). We suspect that only a fraction of the relevant neurons were silenced in those studies,
167 leaving open the possibility of weaker effects and more rapid compensation by neurons in the penumbra of
168 the silenced tissue. Additional differences between these previous studies and ours may also contribute to

169 the difference in results, including the levels of difficulty, jittering of the target positions, or differences in
170 the motion display itself (e.g., highly salient moving elements in the [Katz et al.](#) study) which may discourage
171 integration of evidence over time. Unless the animal is integrating information over time, relying on working
172 memory ([Constantinidis et al., 2018](#)), or evaluating an interval of time itself (e.g., [Leon and Shadlen 2003](#)),
173 there is little reason to expect LIP to play a role in the decision.

174 The finding of compensation has broad implications for the interpretation of causal studies. [Otchy et al.](#)
175 ([2015](#)) showed that successful inactivation experiments (i.e., leading to loss of function) need not implicate
176 the brain tissue targeted by the causal intervention—related to the concept of *diaschisis* in neurology ([Car-](#)
177 [rera and Tononi, 2014](#)). Our finding adds the complementary caveat that inactivation experiments yielding
178 negative results do not rule out a causal role of the inactivated tissue. In other words, causation does not
179 imply necessity. Yet, the phenomenon of compensation is likely to play a more constructive role in neuro-
180 science than muddying the interpretation of null inactivation experiments. Translational neuroscience stands
181 to benefit greatly from a fuller characterization of behavioral compensation and its underlying mechanisms.
182 The present study and [Fetsch et al. \(2018\)](#) only begin to scratch the surface.

183 Rapid compensation would seem to rely on mechanisms of plasticity that operate on behaviorally rel-
184 evant time scales (e.g., [Magee and Grienberger 2020](#)). One possibility is, shortly after LIP inactivation,
185 downstream areas sense that the source of information they rely upon is compromised and establish com-
186 munication with alternate sources. The mechanisms underlying such flexible routing of information from
187 the senses to circuits that control behavior is unknown. Yet they are essential for higher brain function, for
188 which dedicated input-output relations were not anticipated by evolution and therefore not determined by
189 dedicated pathways. We suspect that these mechanisms involve both long range cortico-cortical feedback
190 and matrix thalamic projections to superficial cortical layers (e.g., [Jones 2001](#)). The same mechanisms might
191 underlie the resiliency of humans to focal cortical lesions ([Cramer et al., 1997](#))—the clinical observation that
192 small strokes are often silent until there are enough of them (e.g., vascular dementia). So the news is mixed:
193 on the one hand, the possibility of compensation exposes the limitations of causal manipulation to assign
194 cognitive functions to localized regions of the brain. On the other, causal manipulations might be used to
195 investigate the mechanism of compensation and to augment them to achieve clinically relevant goals.

196 **References**

197 Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create
198 a family of g protein-coupled receptors potently activated by an inert ligand. *Proc Natl Acad Sci U S*
199 *A* 104:5163–8.

200 Brainard DH (1997) The psychophysics toolbox. *Spatial vision* 10:433–436.

201 Carrera E, Tononi G (2014) Diaschisis: past, present, future. *Brain* 137:2408–2422.

202 Chafee MV, Goldman-Rakic PS (2000) Inactivation of parietal and prefrontal cortex reveals interdependence
203 of neural activity during memory-guided saccades. *J Neurophysiol* 83:1550–66.

204 Chen X, Zirnsak M, Vega GM, Govil E, Lomber SG, Moore T (2020) Parietal cortex regulates visual
205 salience and salience-driven behavior. *Neuron* 106:177–187 e4.

206 Christopoulos VN, Andersen KN, Andersen RA (2018a) Extinction as a deficit of the decision-making
207 circuitry in the posterior parietal cortex. *Handbook of clinical neurology* 151:163–182.

208 Christopoulos VN, Kagan I, Andersen RA (2018b) Lateral intraparietal area (LIP) is largely effector-specific
209 in free-choice decisions. *Scientific Reports* pp. 1 – 13.

210 Constantinidis C, Funahashi S, Lee D, Murray JD, Qi XL, Wang M, Arnsten AF (2018) Persistent spiking
211 activity underlies working memory. *Journal of neuroscience* 38:7020–7028.

212 Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen
213 BR (1997) A functional mri study of subjects recovered from hemiparetic stroke. *Stroke* 28:2518–27.

214 Ding L, Gold JI (2010) Caudate encodes multiple computations for perceptual decisions. *J Neu-*
215 *rosci* 30:15747–59.

216 Ding L, Gold JI (2012) Neural correlates of perceptual decision making before, during, and after decision
217 commitment in monkey frontal eye field. *Cereb Cortex* 22:1052–67.

218 Fetsch CR, Odean NN, Jeurissen D, El-Shamayleh Y, Horwitz GD, Shadlen MN (2018) Focal optoge-
219 netic suppression in macaque area mt biases direction discrimination and decision confidence, but only
220 transiently. *Elife* 7.

221 Fetsch C, Kiani R, Newsome W, Shadlen M (2014) Effects of cortical microstimulation on confidence in a
222 perceptual decision. *Neuron* 83:797–804.

223 Gnadt JW, Andersen RA (1988) Memory related motor planning activity in posterior parietal cor-
224 tex of macaque. *Experimental brain research. Experimentelle Hirnforschung. Experimentation cere-*
225 *brale* 70:216–20.

226 Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, Ellis RJ, Richie CT,
227 Harvey BK, Dannals RF, Pomper MG, Bonci A, Michaelides M (2017) Chemogenetics revealed: DREADD
228 occupancy and activation via converted clozapine. *Science* 357:503–507.

229 Hanks TD, Mazurek ME, Kiani R, Hopp E, Shadlen MN (2011) Elapsed decision time affects the weighting
230 of prior probability in a perceptual decision task. *The Journal of neuroscience* 31:6339–52.

231 Hanks TD, Ditterich J, Shadlen MN (2006) Microstimulation of macaque area LIP affects decision-making
232 in a motion discrimination task. *Nature Neuroscience* 9:682 – 689.

233 Hays Jr A, Richmond B, Optican L (1982) Unix-based multiple-process system, for real-time data acquisi-
234 tion and control .

235 Horwitz GD, Batista AP, Newsome WT (2004) Representation of an abstract perceptual decision in macaque
236 superior colliculus. *J Neurophysiol* 91:2281–96.

237 Jones EG (2001) The thalamic matrix and thalamocortical synchrony. *Trends in Neuro-*
238 *sciences* 24:595 – 601.

239 Kass RE, Raftery AE (1995) Bayes factors. *Journal of the American Statistical Association* 90:773–795.

240 Katz LN, Yates JL, Pillow JW, Huk AC (2016) Dissociated functional significance of decision-related
241 activity in the primate dorsal stream. *Nature* 535:285–8.

242 Kiani R, Hanks TD, Shadlen MN (2008) Bounded integration in parietal cortex underlies decisions even
243 when viewing duration is dictated by the environment. *The Journal of neuroscience* 28:3017–29.

244 Kim JN, Shadlen MN (1999) Neural correlates of a decision in the dorsolateral prefrontal cortex of the
245 macaque. *Nature neuroscience* 2:176–85.

246 Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the
247 macaque. *Neuron* 38:317 – 327.

248 Li CS, Andersen RA (2001) Inactivation of macaque lateral intraparietal area delays initiation of the
249 second saccade predominantly from contralateral eye positions in a double-saccade task. *Exp Brain
250 Res* 137:45–57.

251 Li CS, Mazzoni P, Andersen RA (1999) Effect of reversible inactivation of macaque lateral intraparietal
252 area on visual and memory saccades. *J Neurophysiol* 81:1827–38.

253 Magee JC, Grienberger C (2020) Synaptic Plasticity Forms and Functions. *Annual Review of Neuro-
254 science* 43:1–23.

255 Mattingley JB, Husain M, Rorden C, Kennard C, Driver J (1998) Motor role of human inferior parietal lobe
256 revealed in unilateral neglect patients. *Nature* 392:179–182.

257 National Research Council (2011) *Guide for the Care and Use of Laboratory Animals: Eighth Edition* The
258 National Academies Press, Washington, DC.

259 Otchy TM, Wolff SB, Rhee JY, Pehlevan C, Kawai R, Kempf A, Gobes SM, Olveczky BP (2015) Acute
260 off-target effects of neural circuit manipulations. *Nature* 528:358–63.

261 Patel GH, Shulman GL, Baker JT, Akbudak E, Snyder AZ, Snyder LH, Corbetta M (2010) Topographic
262 organization of macaque area lip. *Proc Natl Acad Sci U S A* 107:4728–33.

263 Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. *Nature* 400:233–8.

264 Raper J, Morrison RD, Daniels JS, Howell L, Bachevalier J, Wichmann T, Galvan A (2017) Metabolism
265 and distribution of clozapine-n-oxide: Implications for nonhuman primate chemogenetics. *ACS Chem
266 Neurosci* 8:1570–1576.

267 Roitman JD, Shadlen MN (2002) Response of neurons in the lateral intraparietal area during a combined
268 visual discrimination reaction time task. *The Journal of neuroscience* 22:9475–89.

269 Rorie AE, Gao J, McClelland JL, Newsome WT (2010) Integration of sensory and reward information
270 during perceptual decision-making in lateral intraparietal cortex (lip) of the macaque monkey. *PLoS
271 One* 5:e9308.

272 Shadlen MN, Kiani R (2013) Decision making as a window on cognition. *Neuron* 80:791–806.

273 Shadlen MN, Newsome WT (1996) Motion perception: seeing and deciding. *Proceedings of the National
274 Academy of Sciences of the United States of America* 93:628–33.

275 Wardak C, Olivier E, Duhamel JR (2002) Saccadic target selection deficits after lateral intraparietal area
276 inactivation in monkeys. *J Neurosci* 22:9877–84.

277 Wardak C, Olivier E, Duhamel JR (2004) A deficit in covert attention after parietal cortex inactivation in
278 the monkey. *Neuron* 42:501–8.

279 Zhou Y, Freedman DJ (2019) Posterior parietal cortex plays a causal role in perceptual and categorical
280 decisions. *Science* 365:180–185.

281 Materials and Methods

282 All training, surgery, and experimental procedures were conducted in accordance with the Public Health
283 Service Policy on Humane Care and Use of Laboratory Animals ([National Research Council, 2011](#)). Exper-
284 iments were approved by the Columbia University Institutional Animal Care and Use Committee (IACUC)
285 under protocol number AC-AAAW4454.

286 Subjects

287 We performed extracellular neural recordings and unilateral reversible inactivation in the parietal cortex of
288 four adult male rhesus macaques. The animals weighed 10, 7, 10, and 8 kg, and were aged 9, 18, 18, and
289 12 years, respectively. We used a pharmacological approach for inactivation in Monkeys 1, 2, and 3 and a
290 chemogenetic approach in Monkey 4. All four monkeys had a headpost to allow head fixation and a CILUX
291 recording chamber (Crist Instruments) over the parietal cortex. Recording chambers provided access to the
292 right hemisphere in Monkeys 1 and 4 and to the left hemisphere in Monkeys 2 and 3.

293 Behavioral Tasks

294 Visual stimuli were presented on a CRT monitor (60 or 75 Hz refresh rate; viewing distance 58 or 48 cm).
295 Eye position was recorded using an infrared eye tracker (Eyelink, SR Research; sampling rate: 1 kHz).
296 Stimuli were generated using the Psychophysics Toolbox ([Brainard, 1997](#)) in Matlab (Mathworks) under
297 the control of a REX system ([Hays Jr et al., 1982](#)). Juice rewards were delivered by a solenoid-based reward
298 system.

299 Motion direction task

300 Monkeys 1 and 2 were required to decide whether the net direction of motion in a dynamic random dot
301 display was leftward or rightward ([Fig. 1A](#)). The animal initiated each trial by fixating within ± 4 degrees
302 visual angle (dva) of a central red fixation point on a black background. After 0.6–1 s, two red choice-targets
303 appeared in the left and right upper quadrants of the visual field. The exact location of each target was chosen
304 randomly and independently on each trial using a uniform distribution of polar angle and eccentricities
305 within a specified range (See Supp. Fig. 2). We took this step to ensure that the monkey could not infer the
306 location of one target from the position of the other. After a random wait duration (drawn from a truncated

307 exponential distribution, range 0.8–1.5 s, mean 1 s), the RDM stimulus appeared within a circular aperture
308 (radius: 2.5 dva), at an eccentricity of 3.5 dva from the fixation point. The RDM was confined to the
309 hemifield ipsilateral to the inactivated LIP. The RDM was generated using previously described methods
310 (Roitman and Shadlen, 2002). Three interleaved sets of dots (density 16.7 dots/deg²/s) were presented
311 on successive video frames. Each dot was redrawn three video frames later at a random location within
312 the stimulus aperture or at a location consistent with the direction of motion; the motion coherence is the
313 probability of the latter occurring. The coherence on each trial was drawn randomly from the set $\pm[0, 0.032,$
314 $0.064, 0.128, 0.256, 0.512]$. Positive values indicate that the motion was towards the target in the hemifield
315 contralateral to the inactivation site; negative values indicate motion towards the target in the ipsilateral
316 hemifield. On 0% motion coherence trials, one of the targets was randomly assigned as correct. The RDM
317 was presented for a variable duration drawn from a truncated exponential distribution (range 0.1–2 s):

$$f(t) = \begin{cases} \frac{\alpha}{\lambda} e^{-\frac{t-t_{\min}}{\lambda}} & t_{\min} \leq t \leq t_{\max} \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

318 where $\lambda = 0.3$, $t_{\min} = 0.1$ s, $t_{\max} = 2$ s, and α is chosen to ensure the total probability is unity. The
319 fixation point and RDM disappeared simultaneously, whereupon the monkey was allowed to indicate its
320 decision about the direction of motion by making a saccade to the corresponding target.

321 For Monkey 1, we used a fixed ratio reward schedule with a juice reward for every correct trial. For
322 Monkey 2 we used a variable ratio reward schedule with a juice reward for only a subset of the correct
323 trials. The number of correct trials needed to obtain a reward was a random number drawn from a Normal
324 distribution, $\mathcal{N}\{3, 1\}$, and discretized to the nearest integer from 1–6. Incorrect trials were never rewarded
325 and were followed by a time-out (5 s).

326 **Temporal order task**

327 Monkeys 3 and 4 performed a temporal-order discrimination task in which they indicated which of two
328 targets appeared first (Fig. 1B). The animal initiated a trial by acquiring a central red fixation point. After
329 0.6–1 s of maintained fixation, two targets appeared, one in each hemifield at locations that were randomized
330 across trials, as in the motion task (Supp. Fig. 2). The delay between targets were randomly chosen on each
331 trial from the set $\pm[0, 27, 53, 107, 160, 240]$ ms, where positive values indicate that the target contralateral

332 to the inactivated side was presented first. The first target stayed on the screen for 0.43 s, and both targets
333 disappeared simultaneously. Following a memory delay (drawn from a truncated exponential distribution,
334 range 1–2 s, mean 1.4 s), the monkey was required to make a saccade to the location of the remembered
335 target that had appeared first to obtain a juice reward. Both monkeys were rewarded using a fixed ratio
336 reward schedule with a juice reward for all correct trials and on 50% of the trials in which the targets
337 appeared simultaneously.

338 **Side-preference test**

339 Monkeys 2 and 3 were tested for signs of spatial hemineglect ([Christopoulos et al., 2018a](#)) at the end of
340 experimental sessions. The testing was performed after retraction of any pipettes and electrodes in the brain
341 but before the head fixation was released. Two equal sized pieces of fruit were offered to the monkey, one to
342 the left and another to the right, equidistant from the mouth. The animal indicated its choice for one piece of
343 fruit by extending its tongue to one side or the other to acquire that treat. This procedure was repeated 8–16
344 times per session. A Fisher exact test was used to compare the proportion of ipsilateral choices between
345 tests conducted after inactivation sessions and after control sessions ([Supp. Fig. 1](#)). On interleaved control
346 trials, a single piece of fruit was offered unilaterally to confirm that the monkey could indicate choices on
347 both sides.

348 **History of participation in previous causal manipulation experiments**

349 Three of the monkeys had participated in other causal manipulation experiments. We provide details here
350 for completeness. Monkeys 1 and 2 had participated in an experiment in which small clusters of cells in
351 area MT were inhibited using optogenetics ([Fetsch et al., 2018](#)) or stimulated using electrical stimulation
352 ([Fetsch et al., 2014](#)) in a post-decision wagering task. Before training on the temporal-order discrimination
353 task and before the injection of the viral vectors, Monkey 4 participated in 5 sessions in which we optimized
354 our muscimol infusion techniques. During these sessions, muscimol was infused into area LIP while the
355 monkey performed simple saccadic tasks.

356 **Pharmacological inactivation and neural recordings**

357 We used magnetic resonance imaging (MRI) to localize the intraparietal sulcus (IPS) in relation to the
358 recording chamber. We obtained MR images (T1 weighted gradient-echo sequences in Monkeys 1, 2, and 4;

359 a T2 weighted spin-echo sequence in Monkey 3) with a recording grid *in situ*. We used custom software to
360 project the recording grid onto the MR images (Fig. 2A,B). We systematically mapped the lateral bank of
361 the IPS and noted the locations of neurons with spatially selective persistent activity during visually-guided
362 and memory-guided saccade tasks (Gnadt and Andersen, 1988). We planned our inactivation to encompass
363 as many of these locations as possible.

364 Muscimol and saline injections were made with quartz glass injection pipettes (115 μm outer diameter,
365 85 μm inner diameter, beveled tip, Thomas Recording). Extracellular neural recordings were obtained with a
366 tungsten microelectrode (100 μm outer diameter, $\approx 1 \text{ M}\Omega$ impedance, FHC Inc.) to confirm tissue silencing
367 (Fig. 2C) and to estimate its spatial extent. The pipette and the microelectrode were advanced independently
368 using a motorized hydraulic drive (Narishige International Inc.) along parallel trajectories through the IPS.
369 The mean distance between the electrode and first injection site was 3.6 mm (range of 2.1—6.7 mm across
370 sessions). A grid system allowed us to place the pipette at a site with an abundance of the targeted neurons
371 and sufficiently near other targeted sites to achieve inactivation by diffusion from multiple injections spaced
372 along this single trajectory (see Fig. 2A and Table 3). The injection site and depths were the same in all
373 sessions for a given monkey.

374 The location of the recording electrode varied across sessions but was always at a location on the lateral
375 bank of the IPS with strong multi-unit neural activity (MUA) before inactivation. We quantified the MUA
376 (Fig. 2C,D) as follows. The raw voltage signal (30 kHz sampling rate) was bandpassed between 300 and
377 6 kHz. The mean and standard deviation (σ) of the filtered signal in the time window 90 s before initiation
378 of inactivation established a baseline for comparison. The raw MUA is defined as the frequency of positive
379 crossings of threshold 3σ above baseline. Fig. 2C,D show the MUA normalized to the average MUA during
380 the baseline epoch.

381 Injections were made with a Hamilton syringe (1700 series, gas tight, 50 μL volume) using a micro-
382 injection pump (Phd Ultra-nanomite, Harvard Apparatus Inc.) connected to the pipette with Tygon tubing
383 (0.25 mm inner diameter). The Hamilton syringe was filled with silicone fluid (Octamethyltrisiloxane;
384 Clearco Products) mixed with fluorescent leak-detection dye (Dye-Lite; Tracerline) and filter-sterilized by
385 passage through a Mixed Cellulose Esters membrane (Millex-GS 0.22 μm ; SLGS033SB; EMD Millipore).
386 The dyed silicone fluid allowed visualization of the meniscus to confirm the injected volume based on the

387 length of travel of dye along the tubing.

388 We infused muscimol ($8 \mu\text{g}/\mu\text{L} \times 0.4 \mu\text{L}/\text{min}$) at four depths along the injection track. The first of the
389 four injections made during each session was at the deepest target location. After each injection, the pipette
390 was left in place for at least 5 minutes before retraction to the next injection site. After each session, we
391 confirmed that the pipette was intact by turning the pump on and visualizing a drop of fluid at the pipette
392 tip. [Table 3](#) shows injection details for the individual sessions. The total volume was typically $20 \mu\text{L}$ per
393 session. However, in the first session (Monkey 1) the total volume was $45 \mu\text{L}$, and in the fourth session
394 the total volume was $8 \mu\text{L}$. The low-volume injection failed to induce behavioral effects and we reverted
395 to $20 \mu\text{L}$ in subsequent sessions. This session is excluded from the analysis in [Figure 4A](#), but the reported
396 effect is statistically significant with this data point included.

397 Saline injections followed the same injection protocol. We limited the number of saline injections to
398 avoid tissue damage at the injection site ([Zhou and Freedman, 2019](#)). In sham sessions, all procedures were
399 identical to those used in the muscimol and saline injections except that the pipette remained in the guide
400 tube instead of being lowered into the brain, and the syringe was not connected to the pipette. In some sham
401 sessions, we did not lower the electrode into the brain. We refer to both saline injections and sham sessions
402 as control sessions.

403 **Chemogenetic inactivation and neural recordings**

404 In Monkey 4, we injected the viral vector AAV5-hSyn-hM4Di-mCherry (titer = 4.9×10^{12} genome
405 copies/mL, RRID: Addgene_50475) at locations informed by the mapping experiments ([Fig. 2B](#)). Injec-
406 tion procedures were similar to those described above for drug injections. The differences are detailed here.
407 The viral vector was administered with a custom injectrode, comprising a pipette affixed to an electrode that
408 protruded 700–800 μm beyond the tip of the pipette. The injectrode was lowered into the brain through a
409 single transdural guide tube using a motorized hydraulic drive (FHC Inc.). Before injecting, we confirmed
410 that the injectrode was at a location where neurons showed persistent activity during saccadic tasks. Injec-
411 tions were made along two tracks, separated by 1.4 mm, on two consecutive days. Each day, we injected
412 at 13–14 depths separated by 500 μm covering 5.5–6mm. We injected $0.5 \mu\text{L}$ at each location at a rate of
413 $0.1 \mu\text{L}/\text{min}$, starting at the deepest location. The total injected volume was $13.5 \mu\text{L}$. After each injection,
414 the injectrode was left in place for an additional 8 minutes before being retracted to the next site. We then

415 waited 6 months for expression of the hM4Di receptor to stabilize before beginning behavioral experiments.

416 In the inactivation experiments, we administered the hM4Di agonist, clozapine (Hello Bio #HB1607,
417 concentrations listed in [Table 3](#)). Clozapine was chosen over the designer drug CNO as it is a more potent
418 agonist of hM4Di receptors in the central nervous system at doses less than 10% of the minimum dose used
419 clinically ([Gomez et al., 2017](#); [Raper et al., 2017](#)). The monkey was trained to present its right arm through
420 an opening in the primate chair to allow for subcutaneous clozapine injection. During two inactivation
421 sessions, we recorded the effect of clozapine administration on neural firing rate with 24-channel V-probes
422 (Plexon Inc.). The V-probe recordings were made 1–1.4 mm from the the viral injections. Following the
423 session in which clozapine was administered at 0.15 mg/kg (see [Table 3](#)), Monkey 4 lost the cranial implant
424 that allowed head stabilization. Subsequently, we were able to collect data from two additional inactivation
425 sessions and two control sessions using a noninvasive restraint system.

426 **General procedures**

427 During experimental sessions, the recording electrode was lowered into the brain and left in place until the
428 end of the session. Baseline behavioral data were collected for at least 200 trials of the relevant task (motion
429 direction or temporal order task). For Monkey 1 and 4, we then initiated the relevant inactivation procedure.
430 For Monkey 2 and 3, we used inclusion criteria based on psychometric data to decide whether the behavior
431 was sufficiently stable to continue the experiment. We computed the subjective point of equality (SPE) from
432 logistic fit to the choice data ($-\beta_1/\beta_0$ from [Eq. 2](#)). Monkey 2 would continue the session only if $|SPE| \leq$
433 3.2% coherence and the error rate at the highest coherence was $\leq 5\%$. For Monkey 3 the criteria were $|SPE|$
434 ≤ 0.026 seconds and error rate $\leq 5\%$. Based on these inclusion criteria, we aborted 7 sessions for Monkey
435 2, and 7 sessions for Monkey 3.

436 During muscimol administration, the animals watched cartoon movies and received occasional juice
437 rewards for looking at the screen. The pipette was left in place for at least 15 minutes afterwards, and
438 behavioral data collection resumed after pipette removal. In the chemogenetic inactivation sessions, the
439 animal waited for at least 30 minutes after clozapine administration before the collection of behavioral data
440 resumed. On most sessions, monkeys performed at least 500 trials following inactivation. These 500 trials
441 were included in the post-inactivation analysis. At the conclusion of each session and after removing the
442 electrode and pipette from the chamber, we collected data in the extinction task (Monkeys 2 and 3 only).

443 After each inactivation session, the animal did not work on any task for at least 3 days.

444 Behavioral data analysis

445 We analyzed the effect of inactivation on choice using a variety of generalized linear models (GLM; logistic

446 regression). The simplest generates the fits in [Figure 3](#).

$$\text{logit}[p^+(s)] = \theta = \beta_0 + \beta_1 s \quad (2)$$

$$p^+(s) = \frac{e^\theta}{1 + e^\theta} \quad (3)$$

447 where p^+ is the probability of a contralateral choice and s is the signed motion coherence (motion direction
448 task) or the signed Δt (temporal order task). In all cases, $s > 0$ indicates support for the choice target in the
449 hemifield contralateral to the site of inactivation.

450 In the motion task, the strength of motion is a function of the coherence (coh) on the RDM stimulus and
451 the duration of the presentation, t . The strength of the stimulus is therefore captured by a power law

$$s_t = \text{coh} \times t^\pi \quad (4)$$

452 For perfect, unbounded accumulation of independent samples, the exponent would be $\pi = 0.5$, (i.e., the
453 rate of improvement of signal to noise in the accumulation of independent identically distributed random
454 samples), but the presence of a terminating bound attenuates the improvement ([Kiani et al., 2008](#)). The
455 exponent used here was derived by fitting [Eq. 2](#), with $s = s_t$, to the control data ($\pi = 0.38$ and 0.43 for
456 Monkeys 1 and 2, respectively). Using pre-injection data from all sessions, we confirmed that the version
457 of [Eq. 2](#) with s_t is superior to a model that ignores stimulus duration ($\Delta\text{BIC}=31$ for Monkey 1 and 27 for
458 Monkey 2; *strong* support; [Kass and Raftery 1995](#)). We use [Eq. 4](#) for all statistical analyses of the motion
459 experiments. For the asynchrony experiment $s_t = \Delta t = s$, as defined above. Significance tests are standard
460 t-tests, based on the standard error of the parameter, or χ^2 -tests, based on the difference in the deviance of
461 nested models with and without the terms that define the null hypothesis, \mathcal{H}_0 .

462 For comparing inactivation-induced bias to pre-existing bias (in the same session) or to the bias on

463 comparable trials during control sessions, we used the GLM,

$$\text{logit}[p^+(s_t, I_\emptyset)] = \theta_1 = \beta_0 + \beta_1 s_t + \beta_2 I_\emptyset + \beta_3 s_t I_\emptyset \quad (5)$$

464 where $I_\emptyset = 1$ if the trial occurs after administration of muscimol or clozapine, and 0 otherwise. To test
465 whether inactivation produces a bias against contralateral choices, the null hypothesis is $\{\mathcal{H}_0: \beta_2 = 0\}$. The
466 curves shown in [Fig. 3A](#) use the expectation of s_t :

$$\mathbb{E}[s_t] = \text{coh} \times \int_{t_{\min}}^{t_{\max}} f(t) t^\pi dt$$

467 where $f(t)$ is the distribution of durations defined in [Eq. 1](#) and π takes the values defined above.

468 Change in bias across sessions

469 To visualize compensation across sessions in Monkeys 1–3 ([Fig. 4A](#)) and across clozapine dosage in Monkey
470 4 ([Fig. 4B](#)) we used the GLM:

$$\text{logit}[p^+(s_t, S_x)] = \beta_0 + \beta_1 s_t + \beta_2 S_x \quad (6)$$

471 where S_x is either the x^{th} session number in chronological order (for Monkeys 1–3) or the dose of
472 administered clozapine in mg/kg (for Monkey 4). For this analysis we use only the first 100 trials after
473 inactivation. Lines in [Fig. 4A–B](#) are from this fit as are the p -values reported in Results. We confirmed
474 that the effect of session number (or clozapine dose) on behavior is statistically significant even when the
475 following saturated model was considered:

$$\text{logit}[p^+(s_t, S_x)] = \beta_0 + \beta_1 s_t + \beta_2 S_x + \beta_3 s_t S_x \quad (7)$$

476 Change in bias during a session

477 To visualize the decay of the choice bias over the course of a session ([Fig. 4C–D](#)), we compared β_0 terms
478 for [Eq. 2](#), computed from trials 1–100 and from trials 401–500 (or the last 100 trials if the animal did not
479 complete a 500 trial block after inactivation). Due to compensation across sessions, we could not detect
480 a bias post-inactivation in some of the later sessions. We therefore only analyze sessions in which there

481 was a significant bias in the first 100 trials. To compute the rate of compensation across trials in individual
482 sessions, we added the term N_\emptyset , the trial number after inactivation, to Eq. 2:

$$\text{logit}[p^+(s_t, N_\emptyset)] = \beta_0 + \beta_1 s_t + \beta_2 N_\emptyset \quad (8)$$

483 Finally, the statement about the effect of inactivation on sensitivity (Monkey 1) is supported by combin-
484 ing the first three inactivation sessions and elaborating Eq. 5 to include the trial number (post-injection) in
485 each session:

$$\text{logit}[p^+(s_t, I_\emptyset)] = \theta_1 = \beta_0 + \beta_1 s_t + \beta_2 I_\emptyset + \beta_3 s_t I_\emptyset + \beta_4 N_\emptyset + \beta_5 s_t N_\emptyset \quad (9)$$

486 We report the p-value associated with $\{\mathcal{H}_0: \beta_3 = \beta_5 = 0\}$, using the last 100 pre-injection trials and the first
487 500 post-injection trials from each session.

488 **Histology**

489 We verified expression of the hM4Di-receptor in Monkey 4 histologically. The animal was euthanized under
490 deep isofluorane anesthesia and perfused transcardially with 4% paraformaldehyde followed by a gradient of
491 sucrose in phosphate buffer (10, 20, and 30%). The brain was extracted and cryoprotected in 30% sucrose.
492 Sagittal sections (50 μm) were cut on a sliding microtome and mounted onto slides. Transduced cells were
493 first localized by inspecting native fluorescence signals. Sections were then stained using primary antibodies
494 against the reporter proteins mCherry (Clontech 632543 RRID: AB_2307319, 1:250) and against the pan-
495 neuronal marker NeuN (millipore MAB377 RRID: AB_2298772, 1:250), and using secondary antibodies
496 (Invitrogen Molecular Probes): Alexa 568 (A10042 RRID: AB_2534017, 1:400), Alexa 488 (A21206 RRID:
497 AB_141708 and custom, 1:400) and the nuclear stain DAPI (Invitrogen Molecular Probes D-21490, 1:5000)
498 for visualization by epifluorescence microscopy.

499 **Data availability**

500 Matlab code (m-files) and data (mat-files) to generate the main figures and for performing statistical analysis
501 will be made available in a public github repository at the time of publication.

	pre vs. post			control vs. post		
	value	SE	p	value	SE	p
Monkey 1	-0.77	0.34	0.02	-0.98	0.25	9e-05
Monkey 2	-1.08	0.40	0.01	-1.58	0.32	1e-06
Monkey 3	-2.31	0.50	4e-06	-1.90	0.42	6e-06
Monkey 4	-1.66	0.37	6e-06	-2.20	0.34	1e-10

Table 1: β_2 values, SE and p values from Eq. 5

	pre vs. post			control vs. post		
	value	SE	p	value	SE	p
Monkey 1	-0.02	0.03	0.58	-0.03	0.03	0.32
Monkey 2	0.03	0.06	0.63	0.07	0.05	0.13
Monkey 3	-16.68	6.61	0.01	-17.77	3.87	4e-06
Monkey 4	-1.38	3.11	0.66	-2.79	2.78	0.32

Table 2: β_3 values, SE and p values from Eq. 5

Table 3: Session information

Monkey	Task	Inactivation Method	Date	Session Type	Electrode Depth (μm)	Pipette Depth (μm)	Distance electrode to pipette (μm)	Injection Speed (μL/min)	Injected Volume	Drug Dose	Additional Info
1	Motion	Pharmacology	20180109	Sham	-	-	-	-	-	-	
			20180121	Muscimol	8000	8500, 6700, 4900, 3100	x=1000, y=2000, z=500, D=2291	.3	15 + 10 + 12 + 8 = 45μL	8μg/μL	1
			20180626	Muscimol	6500	8000, 6200, 4400, 2600	x=1000, y=2000, z=1500, D=2693	.3	3 + 6 + 6 + 4 = 19μL	8μg/μL	
			20180701	Muscimol	6500	8000, 6200, 4400, 2600	x=1000, y=2000, z=1500, D=2693	.3	4 + 6 + 6 + 4 = 20μL	8μg/μL	%
			20180705	Saline	6500	8000, 6200, 4400, 2600	x=1000, y=2000, z=1500, D=2693	.3	4 + 6 + 6 + 4 = 20μL	-	%
			20180803	Saline	7100	8000, 6200, 4400, 2600	x=1000, y=2000, z=900, D=2410	.3	1 + 1 + 1 + 1 = 4μL	-	
			20180807	Muscimol	6500	8000, 6200, 4400, 2600	x=1000, y=2000, z=1500, D=2693	.3	2 + 2 + 2 + 2 = 8μL	8μg/μL	#
			20180814	Sham	-	-	-	-	-	-	
			20180815	Saline	6500	8000, 6200, 4400, 2600	x=1000, y=2000, z=1500, D=2693	.3	4 + 6 + 6 + 4 = 20μL	-	
			20180816	Muscimol	6500	8000, 6200, 4400, 2600	x=1000, y=2000, z=1500, D=2693	.3	4 + 6 + 6 + 4 = 20μL	8μg/μL	
			20180821	Sham	6900	-	-	-	-	-	*
			20180822	Saline	6500	8000, 6200, 4400, 2600	x=1000, y=2000, z=1500, D=2693	.3	4 + 6 + 6 + 4 = 20μL	-	
			20180823	Saline	6500	8000, 6200, 4400, 2600	x=1000, y=2000, z=1500, D=2693	.3	4 + 6 + 6 + 4 = 20μL	-	

			20180824	Muscimol	6500	8000, 6200, 4400, 2600	x=1000, y=2000, z=1500, D=2693	.3	4 + 6 + 6 + 4 = 20µL	8µg/µL	*
			20180829	Saline	6500	8000, 6200, 4400, 2600	x=1000, y=2000, z=1500, D=2693	.3	4 + 6 + 6 + 4 + 20µL	-	
			20180830	Muscimol	7150	8000, 6200, 4400, 2600	x=1000, y=2000, z=850, D=2392	.3	4 + 6 + 6 + 4 = 20µL	8µg/µL	
			20180904	Muscimol	6500	8000, 6200, 4400, 2600	x=1000, y=2000, z=1500, D=2693	.3	4 + 6 + 5.5 + 4.5 = 20µL	8µg/µL	
			20180914	Muscimol	6500	8000, 6200, 4400, 2600	x=1000, y=2000, z=1500, D=2693	.3	4 + 6 + 6 + 4 = 20µL	8µg/µL	
2	Motion	Pharma-cology	20190808	Muscimol	3650	8000, 6200, 4400, 2600	x=2000, y=1000, z=4350, D=4891	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	1
			20190814	Muscimol	3500	8000, 6200, 4400, 2600	x=2000, y=1000, z=4500, D=5025	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	
			20190829	Saline	3600	8000, 6200, 4400, 2600	x=2000, y=1000, z=4400, D=4936	.4	5 + 5 + 6 + 4 = 20µL	-	
			20190902	Muscimol	3500	8000, 6200, 4400, 2600	x=2000, y=1000, z=4500, D=5025	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	N
			20190913	Sham	3600	-	-	-	-	-	
			20191002	Sham	3600	-	-	-	-	-	
			20191003	Muscimol	3600	8000, 6200, 4400, 2600	x=3000, y=1000, z=4400, D=5418	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	N
			20191008	Sham	7000	-		-	-	-	
			20191009	Muscimol	6800	8000, 6200, 4400, 2600	x=4000, y=1000, z=1200, D=4294	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	
			20191015	Muscimol	6600	8000, 6200, 4400, 2600	x=3000, y=1000, z=1400, D=3458	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	

			20191029	Sham	6150	-	-	-	-	N	
			20191030	Muscimol	5400	8000, 6200, 4400, 2600	x=4000, y=1000, z=2600, D=4874	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	N
			20191106	Muscimol	6500	8000, 6200, 4400, 2600	x=4000, y=1000, z=1500, D=4387	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	N
			20191111	Muscimol	1700	8000, 6200, 4400, 2600	x=2000, y=1000, z=6300, D=6685	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	N
3	Time	Pharma-cology	20200121	Sham	4000	-	-	-	-	N	
			20200122	Sham	4000	-	-	-	-	N	
			20200128	Sham	4100	-	-	-	-	N	
			20200207	Muscimol	8000	8500, 6700, 4900, 3100	x=2000, y=0, z=500, D=2062	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	N, 1
			20200213	Muscimol	6850	8500, 6700, 4900, 3100	x=2000, y=0, z=1650, D=2593	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	N
			20200218	Sham	6500	-	-	-	-	N	
			20200221	Sham	4800	-	-	-	-	N	
			20200225	Muscimol	5200	8500, 6700, 4900, 3100	x=3000, y=0, z=3300, D=4460	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	N
			20200303	Sham	3000	-	-	-	-	N	
			20200304	Muscimol	4500	8500, 6700, 4900, 3100	x=4000, y=1000, z=4000, D=5745	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	N
			20200310	Sham	4100	-	-	-	-	N	
			20200311	Muscimol	4500	8500, 6700, 4900, 3100	x=4000, y=1000, z=4000, D=5745	.4	4 + 6 + 6 + 4 = 20µL	8µg/µL	!, N
								13 injections of .5µL each. Total volume: 6.5µL	-	vi	
4	Time	Chemo-genetics	20171121	Viral injection	13 locations, each spaced 500µm apart, between 9800 and 3800	13 locations, each spaced 500µm apart, between 9000 and 3000	800	.1			

20171122	Viral injection	14 locations, each spaced 500 μ m apart, between 9700 and 3200	14 locations, each spaced 500 μ m apart, between 9000 and 2500	700	.1	14 injections of .5 μ L each. Total volume: 7 μ L	-	vi
20180522	Clozapine	9000	-	-	-	-	0.125 mg/kg	v, *
20180604	Clozapine	7000	-	-	-	-	0.300 mg/kg	v, 1
20180608	Clozapine	-	-	-	-	-	0.150 mg/kg	
20180727	Saline	-	-	-	-	-	-	
20180731	Clozapine	-	-	-	-	-	0.200 mg/kg	
20180807	Saline	-	-	-	-	-	-	
20190809	Clozapine	-	-	-	-	-	0.225 mg/kg	

Table 3: List of all experimental sessions. Sessions are sorted by date for each monkey. The electrode and pipette depths are in micrometers below the dura. Electrode depth was constant throughout the session and we list the depth of either the tip of the electrode (single channel) or deepest electrode (24-channel V-probe). For muscimol infusion, the pipette was placed at four different depths. The injected volume is reported for each depth. For the muscimol infusion experiments, the distance between the recording electrode and the deepest pipette location is reported (i.e., first injection site).

Symbols and abbreviations:

Motion: Random-dot motion discrimination task.

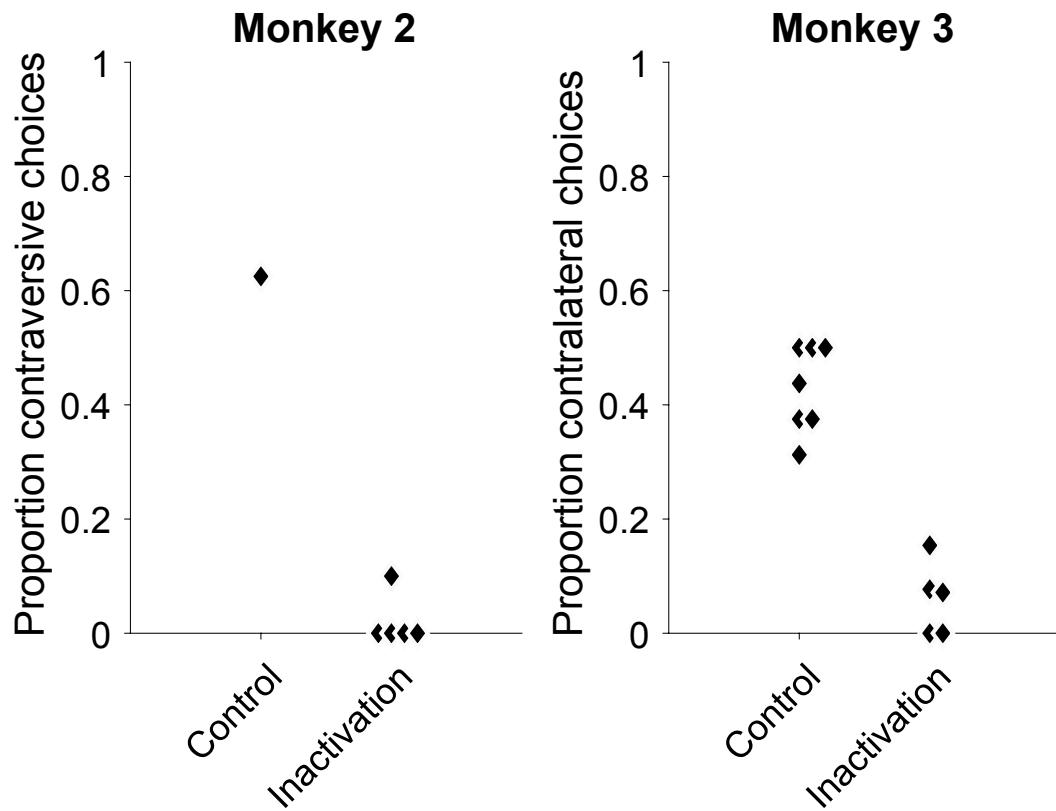
Time: Temporal-order discrimination task.

*: Monkey completed < 500 trials post injection.

%: Strongest motion strength (coherence +/-51.2%) was not used in this session.

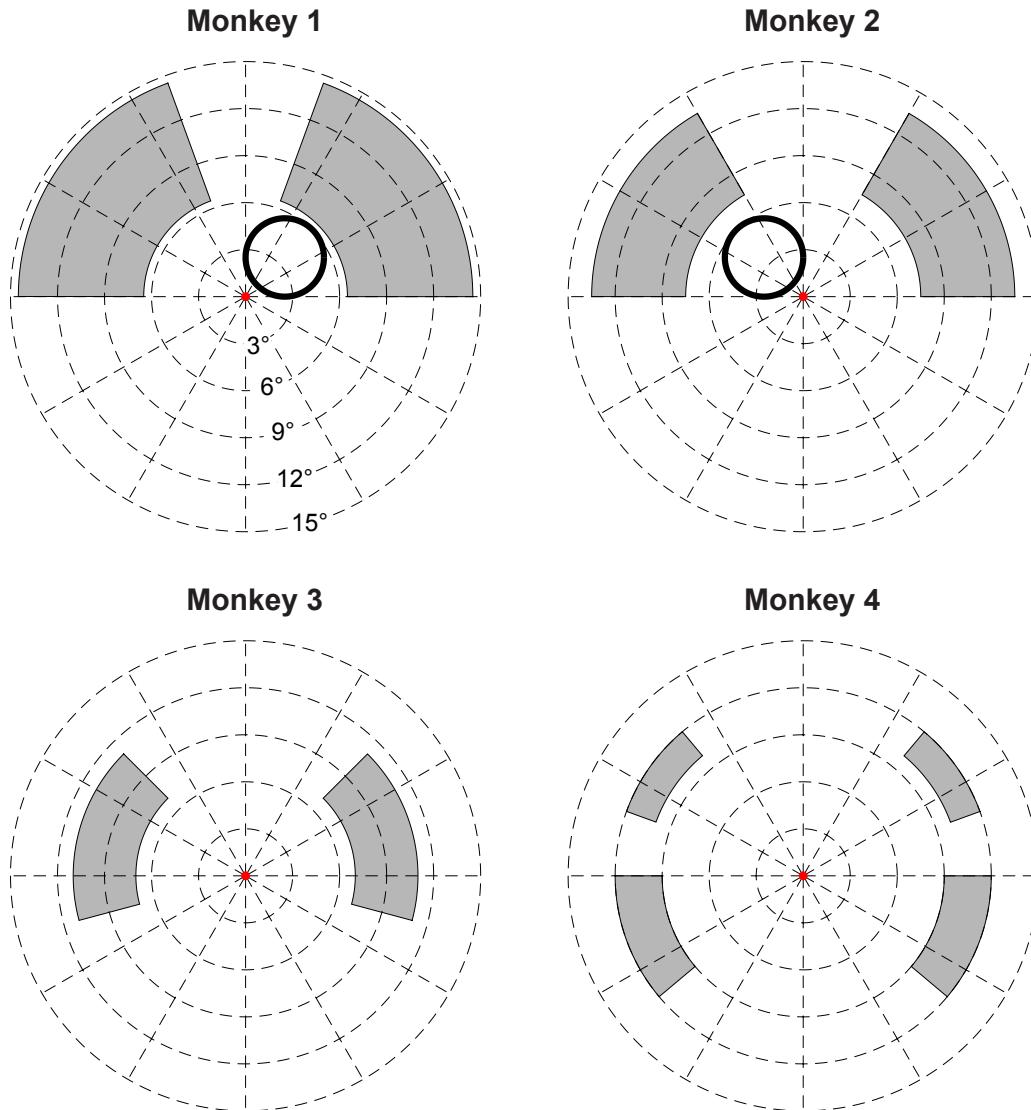
#: Low-volume muscimol injection session.

!: Last session in Monkey 3. Further sessions were not possible due to the health and safety restrictions related to the COVID-19 pandemic.


vi: Viral vector injection session.

v: Sessions with V-probe recordings. Data shown in Figure 2D.

N: Collected data on side-preference task.


1: First (high-dose) session. Data shown in Figure 3.

Supplementary Figure 1

Behavior on the side-preference task. After completion of the main experiment, Monkeys 2 and 3 were tested on a preference task intended to approximate a neurological double-simultaneous stimulation test for extinction. The experimenter presented desirable food items in both palms symmetric about either side of the monkeys mouth, and allowed the monkey to choose and item by picking the treat with its tongue. The proportion of chosen items from the side contralateral to the inactivated cortex is shown. Points are data from one session. Points belonging to the same treatment group (control or muscimol inactivation) are displaced horizontally for visualization.

Supplementary Figure 2

Stimulus configuration. The left and right choice-targets were positioned randomly on each trial using independent samples from the shaded regions of the visual field (uniform distribution over range of r, θ). For monkey 4, both choice targets were in either the upper or the lower hemifield. The area subtended by the random dot motion display (black circles; Monkeys 1 and 2) was consistent across trials/sessions and confined to the hemifield ipsilateral to the inactivated cortex. Eccentricities are in degrees visual angle.