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Abstract

Summary: Gilda is a software tool and web service which implements a scored string
matching algorithm for names and synonyms across entries in biomedical ontologies
covering genes, proteins (and their families and complexes), small molecules, biological
processes and diseases. Gilda integrates machine-learned disambiguation models to
choose between ambiguous strings given relevant surrounding text as context, and
supports species-prioritization in case of ambiguity.

Availability: The Gilda web service is available at http://grounding.indra.bio
with source code, documentation and tutorials are available via
https://github.com/indralab/gildal

Contact: benjamin_gyori@hms.harvard.edu

Introduction

Named entity recognition (NER) and named entity normalization (NEN) are central tasks
in extracting knowledge about genes, proteins, metabolites, small molecules, biological
processes, and other entities of interest from unstructured text in the biomedical literature.
The role of NER is to identify an entity string (e.g., “JNK-1”) in text, and NEN, or
grounding, is to choose an appropriate namespace and identifier corresponding to an entity
string (e.g., [ HGNC:6881 for “JNK-1").

While UniProt, ChEBI, GO, and other resources make available curated lists of names

and synonyms for different entity types, exact searches over their thesauri have been shown
to provide insufficient coverage due to the diversity of biomedical nomenclature |1]. It is
further necessary to account for variability in spaces, dashes, capitalization and the
expansion of certain characters (e.g., Greek letters) with respect to these lexicalizations to
find relevant matches. A further challenge is that of ambiguity, namely, that several entities
can share the same name or synonym, and it is only based on broader context (a surrounding
sentence or paragraph) that one can resolve which sense is implied in the given setting.

While NEN is typically integrated in systems solving more complex tasks such as

full-text annotation 2] or relation extraction [3|, there are many ways in which NEN is
useful as a standalone tool, including in the context of interactive search interfaces (finding
identifiers for search terms entered by users), data analysis (finding identifiers for data
entries, e.g., drugs), and modeling (assigning identifiers for modeled concepts).

Here, we present Gilda, a software tool and web service which integrates multiple

biomedical lexical resources and implements a scored string matching algorithm (parts of
which were adapted from the text tagger in [4]) to names and synonyms across entries in
these resources. Importantly, Gilda makes available over 1,000 machine-learned
disambiguation models for strings representing multiple ambiguous entities, and can apply
these models as part of the scoring process given surrounding text as context. Gilda
achieves state of the art performance on several of the BioCreative VI NEN benchmarking
tasks and is competitive on the rest.

Gilda is available as a public REST web-service at |http://grounding.indra.bio, and as an

open-source Python package under a BSD license at https://github.com/indralab/gilda.
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2 Results

Lexical Resources. Gilda integrates over 1.8 million names and synonyms from 9
ontologies and lexical resources for the purpose of name matching (Supplementary Table .
In addition to standard resources such as UniProt, Gilda integrates FamPlex, a resource
providing lexicalizations for protein families and complexes (shown to be a key missing
component in named entity normalization systems) as well as over two thousand
lexicalizations for entities that were manually curated using a frequency-ranked list of
strings mined from the literature that did not appear in other standard resources [1].

Each of the resources listed in Supplementary Table [I] are processed to extract a list of
terms, with each term carrying the following information, illustrated via the example of
"MEK1”: (i) Namespace (e.g., HGNC); (ii) Identifier within the namespace (e.g., 6840); (iii)
Text name (e.g, MEK1); (iv) Type of text name (e.g., synonym); (v) Canonicalized text
name (e.g., mekl); (vi) Standard name (e.g., MAP2K1); (vii) Source (e.g., hgnc).

To allow extensions and customizations, the Gilda Python package supports instantiation
with custom grounding resources, and is able to load terms from ontologies in OWL, OBO,
and other standard formats using the PyOBqH package.

Efficient approximate scored string matching. Gilda implements a grounding
algorithm inspired by [4] that allows for efficient approximate matches to any of the terms
appearing in the integrated resource table. For a given entity string, the grounding process
first generates relevant variants (e.g., by spelling out Greek letters) and then identifies
possible matches for each variant. This involves canonicalizing the variant string, and then
searching the resource table for the same canonicalized text name. This lookup is efficient
since the service loads the resource table in memory, indexed by canonicalized text names in
a hash map. A string comparison algorithm then compares the original (i.e., not yet
canonicalized) entity string with each matched entry to assign a score. The string
comparison algorithm takes the following into account when scoring each match: (i) dashes,
hyphens and spaces; (ii) capitalization; (iii) whether the entity is possibly a plural form; (iv)
the status of the term that was matched (standard name, synonym, withdrawn entry, etc.).
The final score is between 0 and 1, with 1 corresponding to an exact match of a standard
name. Further details of the matching and scoring procedure are described in Supplement
section

Machine-learned models for context-aware disambiguation. Many of the entries
integrated in Gilda’s resource table share the same text name, including over one thousand
gene synonyms that are shared across multiple human genes. These entries are textually
equivalent and their status (i.e., synonym) is identical, therefore the scores assigned to them
for a given input entity string will be the same.

To resolve this ambiguity, we used labeled articles from the biomedical literature to learn
models of the context surrounding each member of a set of ambiguous terms that share a
synonym (see Supplement section for details). Gilda currently contains such
disambiguation models for 1,008 ambiguous strings (e.g., “HK4”, “p42”). Gilda also
integrates 153 disambiguation models made available by the Adeft system [5]. Adeft models
are classifiers that can choose between senses of the most commonly occurring acronyms in
biology literature with multiple senses (e.g., “ER”) given surrounding text context.

When Gilda is called with an ambiguous string that one of the models is applicable to, it
uses context (for instance, a sentence or a paragraph) supplied by the user to make a
prediction and adjust the scores of returned matches. More information about these models
can be found in Supplementary section |3.3

Thttps://github.com/pyobo/pyobo
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Cross-species protein disambiguation. In addition to text as context, Gilda also
takes an optional species prioritization list as input. The list can be provided directly by the
user to express prior knowledge or preference for normalizing to a specific species such as
human or yeast. Alternatively, in case the text to be normalized comes from a
PubMed-indexed publication, Medical Subject Headings annotations associated with the
publication can be used to automatically derive a species preference order.

Benchmarks. We benchmarked Gilda on a grounding task with the BioCreative VI Track
1 (Bio-ID) data set from [6fF] When used as a Python package, Gilda was able to ground
over 20 thousand strings per second in this benchmark (Supplementary Table . Gilda
achieved state of the art Fy for proteins (.693 for human .616 for non-human vs. .445
from [7]), cellular components (.504 vs. .476 from [§]), and small molecules (.620 vs. .591
from [8]). It underperformed for species (.586 vs. an average .623 over several configurations
from [9]) cells/cell lines (.595 vs. .740 from [8]) and tissues (.446 vs. .633 from [§]) likely due
to gaps in the lexical resources in Gilda covering those entity types. While most previous
works generated static entity-type-specific models, Gilda uses a single general model for all
entity types which can be readily updated on new releases of its underlying lexical resources
and extended to new tasks by incorporating additional lexical resources. However, we
acknowledge that its generalization has a negative impact on Gilda’s precision in comparison
to entity-type-specific models.

We also benchmarked Gilda on the evaluation data set described in [1] where a random
sample of 300 named entities extracted from a subset of literature were curated manually
and compared to automated grounding. We found that using Gilda improved precision from
.900 to .943, and recall from .850 to .895 compared to the results reported in [1] (see also
Supplementary Table .

Availability and integrations.

Gilda is available as a Python package through PyPI, a Docker image through DockerHub,
and as a web application with a RESTful APT at https://grounding.indra.bio. Gilda is

integrated into INDRA [10] to ground entity texts from knowledge sources where grounding
is missing and to disambiguate entity strings from text mining. Gilda is also integrated into
multiple web services and a human-machine dialogue system (see Supplement section .
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3 Supplementary Material

3.1 Lexical Resources

Gilda (version 0.6.1) integrates terms extracted from the resources listed in [Table 1 Gilda
can also be instantiated with other custom resources loaded as Terms.

Table 1. Resources integrated in Gilda.

Resource  Entity types # strings  Reference
HGNC Genes 105,109 [11]
UniProt  Proteins 437,645 |12]
ChEBI Small molecules, metabolites 321,599 |13]

GO Biological processes, complexes, cellular locations 143,309 [14]
MeSH Multiple entity types 756,326  |15]
FamPlex  Protein families and complexes 3,051 |1]

EFO Cell types, anatomy, disease, etc. 30,507 |16]

HPO Phenotypic abnormalities 30,201 [17]

DO Diseases 23,793 [1§]

3.2 String Matching and Scoring

Keys into Gilda’s grounding terms are stored in a canonical form. Given a string Y, the
canonical form C (V) is obtained by replacing all contiguous runs of white-space characters
with a single ASCII space, converting all text characters to lower case and removing all
ASCII and Unicode dash characters.

Given a string X containing the raw text of an entity that is to be grounded, Gilda
generates a set of lookup strings £ (X) and searches for them among the canonicalized keys
in the lexicon. One lookup string in £ (X) is the canonical form C (X), but an additional set
of lookup strings are included to allow for more flexible matching. Given X, lookup strings
are generated for the canonical forms of each of the following strings.

o X.

X after all ASCII and Unicode dashes have been replaced with spaces (example:
“EGF-receptor” -; “EGF receptor”).

X after all spelled out Greek letters have been replaced with their single character
Unicode equivalents.(example: “PKC-alpha” -; “PKCA”)

X after all spelled out Greek letters from a subset with close Latin equivalents have
been replaced with the single character Latin equivalent. (example: “IKK-8" -
(LIKKB”)

X after all Unicode Greek characters have been replaced with the spelled out Latin
form. (example: “GSK3-8 -; “GSK3-beta”)

The depluralized form of X, if X is determined to be in a possible plural form through
rule-based pattern matching. (example: “RAFs” -; “RAF”)

Matches are then scored based on the “status” of the matching entry in the lexicon and
based on a string comparison score computed between the original uncanonicalized agent
text X and the original uncanonicalized entry Y in the lexicon corresponding to the match.

The possible statuses for entries in the lexicon are listed below. Each status is assigned a
numerical score encoding its priority.
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e Assertion: A name or synonym for an entity which has been manually curated as
unambiguous. Score 4

e Name: The standard name for an entity within the given ontology or lexical resource.
Score 3

e Synonym: A known synonym for an entity that is listed within the given ontology or
lexical resource. Score 2

e Previous: A term which was previously the standard name for an entity in a given
ontology or lexical resource. Score 1

Given a raw agent text X and the associated raw agent text Y for a matching entry, the
string comparison score Sstring (X,Y), is a numerical score between 0 and 1. If the entry
corresponding to Y has status score Sgtatyg, and disambiguation score then the overall

score for the match is given by

2Sstatus + Sstrin
g
Soverall = 9 disamb (1)

which yields a numerical score between 0 and 1. Here Syjqqmt, i the probability
assigned by a disambiguation model if one was available and applied, or 1 (i.e., no change to
the overall score) if disambiguation was not applied. Scoring of individual matches, i.e., the
calculation of Sstringv follows the text tagging algorithm in [4] and is described in detail at

http://trips.ihmc.us/TextTagger/docs/README. xhtml#sec-5.7 (see formula for
“case_dash_score”). To summarize the key details here: the score is calculated as a
normalized linear combination of six sub-score terms. Five of the sub-score terms penalize
different patterns of capitalization mismatches between the two strings, while the sixth term
penalizes dash-mismatches between the strings.

3.3 Disambiguation Models

It is common for there to be multiple distinct groundings for the same entity text within
Gilda’s resources. One example of such an ambiguity is the overlapping gene synonym
“DAP4” for both DLGAP4 (DLG associated protein 4) and THAP12 (Death associated
protein 4). As of Gilda v0.6.1, there are 3,801 synonyms that are shared between at least
two distinct human genes and 573 synonyms that are shared between 3 or more distinct
human genes.

Gilda offers the feature to disambiguate between the different senses of an entity text
through a set of trained logistic regression models, using context provided by the user.
Gilda v0.6.1 provides models for disambiguating 1,008 different entity texts and also makes
use of models for 172 entity texts provided by the Adeft package [5], allowing for
disambiguation of a total of 1,180 ambiguous entity texts. Below we describe the process
used to train Gilda’s models and select them for inclusion.

For Gilda, disambiguation is formulated as a classification problem. Gilda adopts the
approach of training one classification model per ambiguous agent text and makes the one
sense per discourse assumption [19] that an agent text is unlikely to be used with multiple
senses within the same document. Within this approach to disambiguation, the key
challenge is, for each ambiguous agent text, to produce a corpus of documents where the
agent text appears and where each document is labeled with the sense in which the agent
text is being used in that document. Producing such corpora of documents can be
challenging and is often a bottleneck. Gilda leverages existing annotations of documents
from the Entrez Gene database [20] and MeSH [15] by relaxing the requirement that the
document uses the given agent text, only requiring that it has been annotated as being
relevant to one of the senses of interest.
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We identified 1,287 ambiguous agent texts with senses for which a sufficient number of
labeled documents were available in Entrez and MeSH. Agent texts with at least one ChEBI
grounding were excluded, due to difficulties producing labeled documents for chemicals and
because chemical and gene synonyms often overlap. Using Adeft’s Scikit-learn [21] wrapper
with default parameters, we trained logistic regression models for each of these agent texts
using term frequency-inverse document frequency (tf-idf) [22] vectorized unigrams and
bigrams as features, performing 5-fold cross-validation in order to estimate generalization
error. We evaluated model performance with Scikit-learn’s macro-averaged Fj score. For
each model, we considered the mean of the macro-averaged Fj scores from each
cross-validation split. A histogram of these F; scores over all models can be seen in Figure
Reasons for poor performance in some cases include insufficient amounts of training data,
and highly similar senses that are difficult to distinguish. We chose a cutoff of 0.7 for
macro-averaged Fj score; all models with score below this cutoff were excluded from
deployment.
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Figure 1. A histogram of F} cross-validation scores for all of the trained disambiguation models.
A red vertical line indicates the cutoff of 0.7 that was chosen for model inclusion.

3.4 BioCreative VI Benchmark Results

We benchmarked Gilda on the BioCreative VI Bio-ID corpus which is available at
https://biocreative.bioinformatics.udel.edu/media/store/files/2017/
BioIDtraining_2.tar.gzl This corpus consists of 102, 717 entity texts chosen from 570
publications with a curated grounding provided for each entity text (in the “obj” column of
the table). Some of the provided groundings, however, do not refer to a specific identifier in
an ontology. For example, “protein:GST” appears as an entry in the “obj” column, but it
does not represent a specific grounding in an ontology. We classify such groundings as
unknown and filter them out to retain only rows that refer to entries in specific namespaces
such as NCBI gene, UniProt, GO, Uberon, etc., resulting in a total of 86,574 rows. The
namespaces used in the Bio-ID corpus do not align exactly with ones Gilda uses by default.
For instance, Bio-ID provides gene and protein groundings to NCBI gene and UniProt,
whereas Gilda uses HGNC for human genes/proteins and UniProt for non-human
genes/proteins. Similarly, Bio-ID provides groundings for tissues in Uberon whereas Gilda
uses MeSH to ground tissues. We therefore applied equivalence mappings between these
namespaces to allow matches to equivalent entries in different ontologies from the one used
for a given row in Bio-ID. For example, one row of Bio-ID contains “brain” as an entity text
and provides UBERON:0000955 as its grounding; using equivalence mappings between
Uberon and MeSH, we also allow MESH:D001921 as an acceptable grounding.

Table [2] shows the results of this benchmark. We calculated precision and recall under
two conditions: a strict one in which we only accept a grounding if it is the “top” match

W
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returned by Gilda, and a more permissive one in which we score a grounding as correct if
“any” of the matches returned by Gilda corresponds to the expected grounding.

Table 2. Precision, recall, and F; values for Gilda performance on the Bio-ID corpus by entity
type. Values are given both for the case where Gilda's result is considered correct only if the
“top” grounding matches and the case where Gilda's result is considered correct if “any” of its
returned groundings match.

Entity Type Prec. (top) Prec. (any) Rec. (top) Rec. (any) Fj (top) Fi (any)
Cell types/Cell lines .695 722 520 .540 595 .618
Cellular Component 587 .615 442 463 504 .528
Human Gene .710 .795 677 .758 .693 776
Non-human Gene .655 .703 .582 .624 616 .661
Small Molecule .683 760 .568 .632 620 .690
Taxon 676 707 517 540 586 .612
Tissue/Organ 575 575 .364 .364 446 446
miRNA .358 .358 .282 .282 315 315
Overall .669 722 561 .606 610 .659

We noted a relatively large gap for human genes between the “top” and “any” conditions
and found that there were two factors affecting these scores. First, we found that the Bio-ID
corpus often assigns a specific protein grounding to entity texts which are ambiguous, and
could refer to a protein family containing the specific protein. For example, “VEGF” in
Bio-ID is annotated as the specific gene VEGFA (HGNC:12680) whereas Gilda grounds it to
the VEGF protein family in the FamPlex namespace, an entry which represents all human
VEGFs. We found that when we accepted matches by Gilda to a FamPlex family or
complex of which the Bio-ID-annotated specific protein is a member, Fj-score for human
genes was .762, significantly higher than the .669 reported in Table [2| where only a strict
match is allowed. Second, we found that the Bio-ID corpus differentiates human and
non-human forms of the same gene within the same paper. In several cases, Gilda found the
expected species-specific gene but lower in the priority order (which in Gilda’s case is
constructed at the paper level).

3.5 FamPlex Benchmark Results

We also evaluated Gilda on a manually curated set of 300 entity texts randomly selected
from relation extractions by the Reach system [3] on a corpus of 270,000 papers defined
by [1]. The corpus consists of abstracts from PubMed and (where available), full text content
from PubMed Central, or via the Elsevier text and data mining API covering articles
specifically relevant for signaling pathways (for more details, see Table 1 of [1]). We used the
grounding results described by [1] as reference (“Reference” row of Table [3) and calculated
precision, recall, and F} scores, and compared it with groundings produced by Gilda for the
same entity strings (“Gilda” row of Table . Corresponding to the grounding logic applied
in the reference data, in this setting, we ran Gilda without species-disambiguation. We
found that using Gilda resulted in a relative improvement compared to the reference both in
terms of precision and recall, by 4.8% and 5.3%, respectively.

3.6 Gilda responsiveness benchmark

We benchmarked the responsiveness (i.e., speed) of Gilda in three settings: (i) when run as
a Python package; (ii) when run as a local web service; and (iii) when using the publicly
available web service instance. We used all entity texts from the BioCreative VI Bio-ID

corpus (the same corpus used for benchmarking in Supplementary [subsection 3.4)) and
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Table 3. FamPlex benchmarking results

Trial Precision  Recall Fi
Reference [1] .000 .850 .874
Gilda 944 895 919
Absolute Improvement .044 .045  .045
Percentage Improvement 48% 53% 5.1%

measured the average number of groundings performed per unit time with and without
context added (i.e., additional surrounding text provided along with the entity text for
disambiguation purposes). For benchmarking Gilda in the first two scenarios (when running
as a local Python package or a local web service) we used a desktop PC with a 2.5GHz Intel
19-11900 processor and 64 GB of RAM running Ubuntu 20.04 and Python 3.8.10. Results
are shown in Table [4

Table 4. Summary statistics on the Gilda responsiveness benchmark on the Bio-ID corpus under
three scenarios (local Python package, local web app, and public web app), and with and without
context-based disambiguation. The mean requests served per second and its standard deviation

are shown.
Scenario Context Requests per Second
Python package False 22050.9 £+ 10168.9
True 21558.4 4+ 10260.3
Local web app False 683.0 = 64.3
True 538.7+69.4
Public web app  False 28.24+0.9
True 151 +£1.7

While usage as a local Python package was by far the fastest (over 20 thousand entity
strings grounded per second), this usage mode may not be ideal in settings where startup
time, memory usage and Python dependencies are undesirable. In such cases using the web
application is recommended. The local web application performed better than the remote
application likely due to the lack of overhead from network communication.

3.7 Integrations

Gilda is used in the INDRA Database web application (https://db.indra.bio) which
allows searching for statements assembled by the INDRA system [10]. Here, Gilda
grounding allows users to enter entity texts in non-standard form (e.g., using informal
synonyms) and select an appropriate grounding used for the search, as demonstrated in
Figure [2l Gilda is also integrated into the EMMAA dashboard
(https://emmaa.indra.bio) where, similar to its integration with the INDRA Database, it
supports queries based on user-entered entity texts.

Gilda is used to support human-machine dialogue in the context of the CLARE system
which plugs into Slack workspaces as an application. In this context, Gilda grounds named
entities appearing in questions from users, a key component of interpreting natural language
input and constructing responses. Figure [3| shows an example dialogue in which Gilda is
invoked to ground a human gene, a biological process, and a small molecule based on
non-standard synonyms.
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A 333 INDRA Database Search (Old Search)

Query Constraints <Back  Forward >

X Agent: role: any v text:  JNK-1 namespace: auto v OR GG Ke][RpLY

+  select constraint... v

B =3 INDRA Database Search (Old Search)

Query Constraints <Back  Forward >

X Agent: role: any v GILDA grounding: MAPKS (score: 1.00, 6881 from HGNC)

+  select constraint... v

Figure 2. Gilda is used to ground entity texts before submitting search queries to the INDRA
Database at https://db.indra.bio. (A) The user enters the entity text “JNK-1", then presses the
" Ground with GILDA" button. (B) Gilda returns HGNC:6881 (standard name MAPKS8) as the
grounding, which is then used to perform the search.

user 10:17PM
how does PKC-delta affect proliferation?

@ clare APP 10:17 PM
W®  Overall, | know that PRKCD can activate and inhibit cell population proliferation.

You can browse the full set of 5 statements here: https:/s3.amazonaws.com/indrabot-results/3890969d-173a-455e-ae8f-26662a697266.html

user 10:18PM
what is plx4032?

@ clare APP 10:18 PM
W® vemurafenib is a small molecule. Links: CHEBI MESH DRUGBANK HMS-LINCS LINCS CAS CHEMBL PUBCHEM.

Figure 3. Gilda is used to ground three entity texts in the context of human-machine dia-
logue. “PKC-delta” is grounded to HGNC:9399 with standard name PRKCD (red underline),
“proliferation” is grounded to GO:0008283 with standard name cell population proliferation (blue
underline), and “plx4032" is grounded to CHEBI:63637 with standard name vemurafenib (green
underline).
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