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Abstract

Comparing SARS-CoV-2 infection-induced gene expression signatures to drug
treatment-induced gene expression signatures is a promising bioinformatic tool to repurpose
existing drugs against SARS-CoV-2. The general hypothesis of signature based drug
repurposing is that drugs with inverse similarity to a disease signature can reverse disease
phenotype and thus be effective against it. However, in the case of viral infection diseases, like
SARS-CoV-2, infected cells also activate adaptive, antiviral pathways, so that the relationship
between effective drug and disease signature can be more ambiguous.

To address this question, we analysed gene expression data from in vitro SARS-CoV-2 infected
cell lines, and gene expression signatures of drugs showing anti-SARS-CoV-2 activity. Our
extensive functional genomic analysis showed that both infection and treatment with in vitro
effective drugs leads to activation of antiviral pathways like NFkB and JAK-STAT. Based on the
similarity - and not inverse similarity - between drug and infection-induced gene expression
signatures, we were able to predict the in vitro antiviral activity of drugs. We also identified
SREBF1/2, key regulators of lipid metabolising enzymes, as the most activated transcription
factors by several in vitro effective antiviral drugs. Using a fluorescently labeled cholesterol
sensor, we showed that these drugs decrease the cholesterol levels of plasma-membrane.
Supplementing drug-treated cells with cholesterol reversed the in vitro antiviral effect,
suggesting the depleting plasma-membrane cholesterol plays a key role in virus inhibitory
mechanism.

Our results can help to more effectively repurpose approved drugs against SARS-CoV-2, and

also highlights key mechanisms behind their antiviral effect.
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1. Introduction

The newly emerged Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), causing
the coronavirus disease 2019 (COVID-19), has led to more than 222,000,000 infections and
4,600,000 deaths worldwide (Dong, Du, and Gardner 2020). Identification of new therapeutic
compounds against SARS-CoV-2 / COVID-19 is an urgent need until effective vaccination is
worldwide available and given the emergence of SARS-CoV-2 strains showing immune evasion
(McCallum et al. 2021). The main therapeutic strategies include A) inhibiting key viral enzymes
(like remdesivir (M. Wang et al. 2020)); B) modulating the infected cells to decrease viral
replication (Gordon et al. 2020; Bouhaddou et al. 2020) and C) modulating the over-activation of
the immune system to treat late complications like “cytokine storm” (Cuccarese et al. 2020;
Ragab et al. 2020; Olbei et al. 2021). Repurposing already approved drugs for these indications

is especially important as it allows a shorter time of approval for anti-SARS-CoV-2 treatment.

Comparing gene expression signatures of drugs and diseases have been previously shown to
be an effective strategy to repurpose drugs for new therapeutic indications (Sirota et al. 2011).
The general principle of these studies is that a drug inducing an opposite gene expression
signature to a disease signature can reverse the disease-related gene expression changes, thus
the disease phenotype. This “signature reversal” principle has also been used to predict
effective drugs against SARS-CoV-2 infection (Napolitano et al. 2020; Zhou et al. 2020;
Hoagland et al. 2020). However, these predictions lack, in most cases, mechanistic insight and
experimental validation. Moreover, as infected cells activate adaptive antiviral pathways (like

interferon pathway), inhibiting these pathways does not necessarily decrease viral replication.

In this study, we analysed transcriptomics data from in vitro SARS-CoV-2 infected cell lines and
from cell lines treated with drugs showing anti-SARS-CoV-2 activity (effective drugs). Functional
genomic analysis revealed shared transcription factor and pathway activity changes (eg.
increased activity NFKB and JAK-STAT pathways) in the infected and effective drug-treated cell
lines. Similarity between infection signature and drug signature was predictive for in vitro
effective drugs, contradictory to the classical “signature reversal” principle. Machine
learning-based prediction of effective drugs identified SREBF1 and SREBF2 transcription
factors, key regulators of lipid metabolism, as important factors of antiviral drug effect. Using a

fluorescently labeled cholesterol sensor, we showed the decreased level of plasma-membrane
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cholesterol in cells treated with effective drugs, like chlorpromazine, confirming the effect of
these drugs on cholesterol metabolism. We also identified amiodarone, a drug decreasing
plasma-membrane cholesterol content, thus a potential in vitro effective drug. Using an in vitro
SARS-CoV-2 infection assay, we demonstrated that the antiviral effect of amiodarone can be
reversed by cholesterol supplement, underlying the relevance of decreased plasma-membrane

cholesterol in the antiviral drug effect.

2. Results

2.1 Analysis of host pathway and transcription factor activities reveals adaptive response
of SARS-CoV-2 infected cells

We analysed gene expression data from two recent studies (GSE147507 (Blanco-Melo et al.
2020) and GSE148729 (Wyler et al. 2021)), where lung epithelial cancer cell lines (Calu-3 and
A549) were infected with SARS-CoV-2. To identify infection-induced pathway and transcription
factor (TF) changes, we used the PROGENy (Schubert et al. 2018; Holland, Szalai, and
Saez-Rodriguez 2019) and DoRothEA (Garcia-Alonso et al. 2018, 2019) tools, respectively

(more details in Methods).

PROGENy analysis showed increased activity of NFkB and TNFa pathways in both analysed
cell lines, while the activity of JAK-STAT pathway increased more pronounced in infected Calu-3
cell lines (Figure 1A). DoRothEA analysis (Figure 1B) revealed strong activation of STAT, IRF
and NFkB transcription factors, while cell growth-related transcription factors (E2Fs, Myc)
showed decreased activity. Also SREBF1/2, key transcriptional regulators of cholesterol
synthesis, showed decreased activity. STATs, IRFs and NFkB pathways / TFs play a key role in
antiviral innate immunity (Seth, Sun, and Chen 2006). Decreased activity of E2Fs and Myc
(Ramana et al. 2000) and decreased synthesis of cholesterol (York et al. 2015) are also part of

the physiological antiviral / interferon response.

To further analyse which upstream signalling pathways regulate the inferred TF activity changes,
we used CARNIVAL (Liu et al. 2019), a signaling network contextualisation tool, which connects
transcription factor activities to perturbations in signaling networks via integer linear
programming (more details in Methods). We performed CARNIVAL analysis using inferred
transcription factor activities from a SARS-CoV-2 infected cell line (GSE147507, Calu-3), and

5


https://paperpile.com/c/O6698s/REaAy
https://paperpile.com/c/O6698s/REaAy
https://paperpile.com/c/O6698s/bhk5n
https://paperpile.com/c/O6698s/rIARf+C69Ea
https://paperpile.com/c/O6698s/rIARf+C69Ea
https://paperpile.com/c/O6698s/zfyqf+u6DNa
https://paperpile.com/c/O6698s/MizEJ
https://paperpile.com/c/O6698s/IEwWh
https://paperpile.com/c/O6698s/isZtd
https://paperpile.com/c/O6698s/QhxFR
https://doi.org/10.1101/2021.09.10.459786
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.10.459786; this version posted September 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

used RIG-I like receptors (DDX58 and IFIH1), key receptors for foreign RNA sensing (Rehwinkel
and Gack 2020), as main perturbation target. CARNIVAL results showed (Figure 1C), that
activation of RIG-I like receptors by the dsRNA of SARS-CoV-2 can directly lead to the observed
transcription factor activity changes, including activation of NFkB, IRFs and STATs and inhibition
of SREBF2 and E2F4. Key identified intermediate nodes AKT1 and MAPK1 were already
connected to coronavirus infection (Kindrachuk et al. 2015; Bouhaddou et al. 2020), also
suggesting that the observed TF changes are initiated by the RIG-I like receptors, thus

corresponding to the antiviral response of the host cell.

In summary, our functional analysis of the gene expression changes in SARS-CoV-2 infected
cell lines suggests that a large part of the induced pathway / transcription factor activity changes

are adaptive, i.e. part of the physiological antiviral response.
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Figure 1 - Pathway and transcription factor activity analysis of SARS-CoV-2 infected cell lines

(A) Inferred pathway and (B) TF activities of SARS-CoV-2 infected samples from lung epithelial cell lines
(Calu-3 and A549). Activities were calculated from differential expression signatures (infected - control)
using PROGENy and DoRothEA tools for pathway and TF activities, respectively. Only TFs with high
absolute level of activity changes (absolute normalised enrichment score > 4) are shown. (C) Causal
signalling network in SARS-CoV-2 infected Calu-3 cells (GSE147507) identified by CARNIVAL. RIG-I like
receptors (DDX58 and IFIH1) as perturbation targets and DoRothEA inferred TF activities were used as
the input of the CARNIVAL pipeline. Color code represents inferred activity of protein nodes (blue:

inhibited, red: activated).
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2.2 Analysis of in vitro anti-SARS-CoV-2 drug-induced pathway and transcription factor

activities reveals similar changes to virus infection

To compare infection and drug-induced signatures, we used a large compendium of
drug-induced gene expression signatures from the LINCS-L1000 project (Subramanian et al.
2017). LINCS-L1000 contains drug-induced gene expression signatures from different cell lines,
concentrations and time points. We calculated consensus gene signatures for each drug using
our previous approach ((Szalai et al. 2019), Methods), ending up with gene expression
signatures for 4671 drugs. To select drugs effectively inhibiting SARS-CoV-2 replication in vitro,
we used a curated database created by ChEMBL
(http://chembl.blogspot.com/2020/05/chembl27-sars-cov-2-release.html). This dataset contains

133 drugs previously showing effective inhibition of viral replication in 8 studies (Gordon et al.
2020; Riva et al. 2020; Weston et al. 2020; Heiser et al. 2020; Si et al. 2020; Touret et al. 2020;
Ellinger et al. 2021; Jeon et al, n.d.). We found an intersection of 47 drugs between
LINCS-L1000 (available gene expression signatures) and ChEMBL dataset (in vitro effective
drugs). To characterize drug-induced pathway and transcription activity changes, we analysed

consensus drug signatures using PROGENy and DoRothEA.

PROGENy analysis showed strong activation of NFKB and TNFa pathways by several drugs,
including niclosamide, perhexiline and digoxin (Figure 2A). Several drugs also strongly activated
the JAK-STAT pathway (RTK inhibitors osimertinib and regorafenib). In case of TF analysis, we
found similar patterns (Figure 2B) to the infection-induced signatures: increased activity of NFkB
and STAT transcription factors and decreased activity of Myc/E2Fs transcription factors.
Interestingly, SREBF1/2 showed strongly increased activity for a large cluster of drugs, but
(similar to the infection signatures) decreased in another cluster. To further analyse the TF
activity changes in the different clusters of drugs, we calculated average TF activities for these
clusters and plotted these values against the average TF activities of the 3 SARS-CoV-2
infection signatures (Figure 2C). One cluster (Figure 2C, upper left panel), showed high
correlation (Spearman’s rho = 0.64, p = 8.55e-35) across all TFs. Two other clusters (Figure 2C,
upper middle and upper right panels) showed lower, but still significant correlation with infection
TF activity signature (Spearman’s rho = 0.14 and 0.18, p = 0.0122 and 0.00174, respectively),
with prominent increase of STATs and decrease of E2F4 transcription factor activity. For the

remaining two large clusters, we found either negligible (Figure 2C, lower right panel) or high
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(Figure 2C, lower left panel) correlation with infection-induced TF activities (Spearman rho =
0.04 and 0.58, p = 0.484 and 3.14e-27, respectively), but we found high drug induced activity of
SREBF1/2 transcription factors in these clusters, opposite to the inhibition of these TFs by
SARS-CoV-2 infection.

As we found that, for several drug clusters, drug-induced TF activities showed positive
correlation with SARS-CoV-2 induced TF activities, we were interested in the general similarity
of drug and infection-induced gene expression signatures. To achieve this we calculated the
signature similarity (Spearman’s correlation coefficient, which has been previously shown to be
an effective metrics to analyse signature similarity for the LINCS-L1000 data (Subramanian et al.
2017; Szalai et al. 2019)) between all the 4,671 drug signatures from our LINCS-L1000 dataset
and the infection signatures. We found that effective anti-SARS-CoV-2 drugs (ChEMBL dataset)
have higher similarity to infection signatures, than ineffective drugs / drugs with unknown

efficacy (Figure 2E, Mann-Whitney U test p value =<1e-200).

In summary, we found that known in vitro effective anti-SARS-CoV-2 drugs induce similar
pathway and TF activity patterns, and appropriately similar gene expression signatures to virus
infection signatures. We also identified two large clusters of drugs inducing strong activation of

SREBF1/2 transcription factors, key regulators of cholesterol / lipid metabolism.
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Figure 2 - Pathway and transcription factor activity analysis of effective drugs treated cell lines

(A) Inferred pathway and (B) TF activities of anti-SARS-CoV-2 drug treated cell lines. Activities were
calculated from LINCS-L1000 consensus drug signatures, using PROGENy and DoRothEA tools for
pathway and TF activities, respectively. Drug clusters in (B) are color coded. (C) Relationship between
average TF activities induced by drug treatment and SARS-CoV-2 infection for 5 different drug clusters

(colors of clusters correspond to panel B). TFs with the highest/lowest average activities are text labeled.
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(D) Density plot of similarities between SARS-CoV-2- and drug-induced signatures for all LINCS-L1000
drugs and known anti-SARS-CoV-2 drugs (ChEMBL drugs).

2.3 Prediction of drugs with in vitro anti-SARS-CoV-2 activity

After identifying some general patterns in the gene expression signatures of in vitro effective
anti-SARS-CoV-2 drugs, we investigated how well we can predict drug effectiveness using gene

expression signatures.

As a first strategy, we simply used the previously calculated drug - infection signature similarity
to predict effective drugs. Using these similarity values (predicted score) and the known in vitro
effective drugs (ChEMBL dataset, true positive values) we performed ROC analysis (Figure 3A).
We found that similarity to infection signatures is predictive for effective drugs, i.e. drugs with
high similarity to infection signature are more frequently effective (ROC AUCs: 0.75, 0.74 and
0.64 for GSE147507 A549, GSE147507 Calu-3 and GSE148729 Calu-3, respectively). To test
the specificity of this signature similarity-based approach for SARS-CoV-2 infection signature,
we included several other virus infection-induced gene expression signatures for SARS-CoV
(GSE33267 (Sims et al. 2013), GSE148729), MERS (GSE45042 (Josset et al. 2013),
GSE56677 (Selinger et al. 2014)), respiratory syncytial virus (RSV, GSE147507), influenza
(GSE28166 (Li et al. 2011), GSE37571) and human parainfluenza (HPIV, GSE147507) infected
Calu-3 and/or A549 cell lines. Similarity to these infection signatures showed lower predictive
performance for anti-SARS-CoV-2 drugs (ROC AUC values <0.7 except one SARS and RSV
signature with ROC AUCs 0.70 and 0.71 , respectively, Figure 3B), suggesting the relative
SARS-CoV-2 specificity of the similarity-based methods.

Following this unsupervised prediction strategy, we also performed supervised, machine
learning-based predictions. We used the drug-induced TF activities as features, and effective
drugs from the ChEMBL dataset as positive examples, with Random Forest Classification as
prediction algorithm. We set up a random subsampling based cross-validation scheme and
evaluated the performance using ROC analysis (Methods). Our results showed a slightly
improved performance compared to the unsupervised, similarity-based approach (mean ROC
AUCs: 0.69 and 0.68, 0.66, 0.57, respectively for the machine learning and similarity based
methods, paired t-test p-values between machine learning and similarity based methods:
1.85e-01, 1.29e-06, 1.75e-34 for GSE147507 A549, Calu-3 and GSE148729 Calu-3 signatures
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respectively, Figure 3C). To gain some more mechanistic insight from the prediction of machine
learning models, we analysed feature importances (Gini importance, Figure 3D) of the Random
Forest Regression models and found that SREBF1 and SREBF2 activity were the two most
important features, followed by HNF4A, TFAP2A and TP63 transcription factors.

In summary, our two different prediction approaches showed reasonable performance to predict
drugs with in vitro anti-SARS-CoV-2 activity, and also highlighted the importance of previously
discussed SREBF1/2 transcription factors. Drug - SARS-CoV-2 signature similarities, and
predicted probabilities of anti-SARS-CoV-2 activity is available in Supplementary Table 1.
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Figure 3 - Evaluation of similarity-based and machine learning-based models in predicting in vitro
effective drugs

(A, B) ROC analysis of similarity-based predictions of effective drugs against SARS-CoV-2. Drug -
SARS-CoV-2 (A) or drug - other virus infection signature similarity was used as prediction score, while

known in vitro effective drugs (ChEMBL dataset) were used as true positives. (FPR: false positive rate,
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TPR: true positive rate) (C) Comparison of predictive performance (ROCAUCS) of similarity-based method
(similarity to SARS-CoV-2 infection signature, x-axis) and random forest-based (RF-based, x-axis)
prediction. Results of 100 random subsampling cross-validations. In case of similarity based methods,
ROC AUC curves were only calculated for the corresponding cross-validation sets. (D) Feature
importances (Gini importance) of the Random Forest model. Top and bottom 10 features (TFs) are shown

according to importance.

2.4 Anti-SARS-CoV-2 drugs are increasing SREBF activity by depleting plasma membrane

cholesterol

While in most cases we found similarity between the activity of SARS-CoV-2 infection and in
vitro effective drug induced transcription factor activities, in case of SREBF1/2 we found
opposite changes: SARS-CoV-2 infection inhibited SREBF1/2, while a large cluster of effective
drugs lead to increased activity of SREBFs. SREBFs are activated through the decreased
cholesterol content of plasma membrane and endoplasmic reticulum, and activated SREBFs
induce the expression of cholesterol, and other lipid synthesizing enzymes (Horton, Goldstein,
and Brown 2002). From this point of view, decreased SREBF activity during viral infection can
lead to decreased cholesterol synthesis, which can inhibit the viral replication and/or viral entry
(York et al. 2015), thus can be considered as an adaptive response of the host cell (Figure 4A).
Interestingly, we observed a strongly increased SREBF activity in large clusters of effective
drugs. To resolve this discordance, we hypothesized that these in vitro effective drugs directly
decrease plasma membrane cholesterol (Figure 4A). In this case, drug induced decrease of
plasma membrane cholesterol can contribute to the antiviral effect, while decreased cholesterol
levels can activate SREBFs, thus explaining the observed increased activity of these TFs in our

bioinformatic analysis.

To confirm this hypothesis, we performed high-throughput, automatic confocal microscopy
imaging using a fluorescently labeled cholesterol sensor domain, D4H-mVenus (Maekawa and
Fairn 2015; Maekawa 2017). HEK293A cells were co-transfected with D4H-mVenus and
cytoplasmic Cerulean as cytosolic marker (Figure 4B), and treated with dimethyl sulfoxide
(DMSO, negative control), MBCD (methyl B-cyclodextrin, plasma membrane cholesterol
depleting compound, as positive control) and 3 drugs from our computational drug repurposing
pipeline, loperamide, amiodarone and chlorpromazine (all drugs were used in 10 yM final

concentration). All these three drugs increased the activity of SREBF transcription factors
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(Figure 4B, left panel). Loperamide and chlorpromazine have been previously shown to be in
vitro effective against SARS-CoV-2 (ChEMBL dataset), while amiodarone was one of the top
predicted drugs of the Random Forest model (Figure 4B, right panel, ranked 36/4671 drugs,
Supplementary Table 1). We also treated HEK293A cells with rosuvastatin, an inhibitor of
cholesterol synthesis. Rosuvastatin also alters cellular cholesterol metabolism, however, it does
not influence plasma membrane cholesterol directly, but inhibits HMG-CoA reductase, the rate
limiting enzyme of de novo cholesterol synthesis. Rosuvastatin was not predicted as an effective
anti-SARS-CoV-2 drug by the Random Forest model (Figure 4B left panel, ranked 1821/4671
drugs).

Cells were treated with the different drugs and serial confocal microscopy images were recorded
for 4.5 hours. In untreated, or DMSO ftreated cells, we observed a predominantly plasma
membrane localisation of the fluorescent protein labeled cholesterol sensor (Figure 4D, top left
panel). Treatment with MBCD led to decreased plasma membrane cholesterol levels, while
cholesterol accumulated in intracellular vesicles (Figure 4D, top right panel). We observed
similar phenotypic changes in case of amiodarone and chlorpromazine (Figure 4D, bottom
panels), while the localisation of cholesterol sensor in loperamide and rosuvastatin treated cells

was more similar to control condition (Supplementary Figure 1).

For a more systematic and unbiased analysis of the changes in the localisation of cholesterol
sensors, we performed quantitative image analysis (Supplementary Figure 2). For each cell in
each image, we calculated the ratio of average plasma membrane (PM) and average
intracellular (IC) D4H-mVenus fluorescence (PM/IC ratio). To segment cells in confocal
microscopy images, we used Cellpose library ((Stringer et al. 2021), Methods). Plotting the
PM/IC ratio as a function of elapsed time after drug treatment (Figure 4E) revealed that PM/IC
ratio did not decrease in loperamide and rosuvastatin treated samples, while MBCD,
chlorpromazine and amiodarone treatment induced significant decrease of the ratio (linear
model coefficients values for interaction between drug treatment and time: -0.002, -0.00086,
-0.00017, -0.000032 and 0.000083 for MBCD, chlorpromazine, amiodarone, loperamide,
rosuvastatin respectively, p values: <1e-200, <1e-200, 2.71e-09, 0.25 and 0.0047), confirming
the plasma membrane cholesterol depleting effect of chlorpromazine and amiodarone, two
SREBF activating drugs.
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In summary, our high-throughput image acquisition and analysis pipeline confirmed that
chlorpromazine and amiodarone decreased plasma membrane cholesterol content, which
explains the increased activity of SREBF transcription factors in case of gene expression

readout.
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Figure 4 - Cholesterol depleting effect of SREBF activating drugs

(A) Schematic figure of the hypothesis that antiviral drugs block virus entry into cells by cholesterol
depletion from plasma membrane, and are leading to a compensatory increased SREBF1/2 activity. (B)
Schematic representation of the used fluorescent constructs. (C) Histogram of SREBF1 activation (left
panel) and histogram of predicted probabilities of in vitro antiviral activity of LINCS-L1000 drugs (right
panel). Drugs selected for in vitro experiments are text labeled. (D) Representative confocal microscopy
images of D4H-mVenus transfected HEK293A cells treated with DMSO, MBCD, chlorpromazine or
amiodarone. White arrows mark plasma membrane, while red arrows show intracellular localised
cholesterol sensors. (E) Time-dependent change of log,(PM/IC ratio) of average cholesterol sensor
intensity in HEK293A cells treated with DMSO, MBCD, chlorpromazine, amiodarone, loperamide or

rosuvastatin. Red line marks drug treatment.

2.5 Cholesterol rescue inhibits the anti-SARS-CoV-2 activity of amiodarone

As our experiments revealed that the selected drugs with in vitro anti-SARS-CoV-2 activity
decreased the cholesterol content of plasma membrane, we were interested in whether
decreased plasma membrane cholesterol levels could play a causal role in the antiviral effect,
according to our assumptions (Figure 4A). To test this hypothesis, we performed in vitro

SARS-CoV-2 viral infection assay with cholesterol rescue in Vero-EG6 cells.

At first we tested whether the investigated drugs show anti-SARS-CoV-2 activity in our
previously described experimental system (Konrat et al. 2020). Briefly, Vero-E6 cells were
co-treated with SARS-CoV-2 and the selected drugs (6 yM amiodarone, 12 uyM chlorpromazine
or 50 uM loperamide, effective drug concentrations were selected based on preliminary
experiments) for 30 minutes, then washed and incubated with the drugs for 48 hours. Infection
efficacy was evaluated by microscopic examination of infection induced cytopathic effect (CPE,
more details in Methods). Untreated, SARS-CoV-2 infected cells showed strong cytopathy
(Figure 5A, top left panel), while amiodarone, chlorpromazine and loperamide markedly
reduced the infection induced cytopathy, confirming the antiviral effect of these drugs (Figure
5A). The used compounds did not lead to cellular toxicity in the used concentrations

(Supplementary Figure 3).

To test the effect of plasma membrane cholesterol depletion on SARS-CoV-2 infectivity, we

performed cholesterol rescue experiments (Figure 5B). Vero-E6 cells were treated with drugs
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overnight, then the media was replaced with cholesterol (80 uM) containing media. After 1 hour
of cholesterol treatment, the cells were infected for 30 min with SARS-CoV-2. Infection efficacy
was evaluated 48 hours after infection by droplet digital PCR based viral RNA quantification
(Figure 5C). Chlorpromazine and loperamide did not have antiviral effect in the pretreatment
setting (linear model p values: 0.62 and 0.18, respectively), while amiodarone decreased viral
particle number significantly (linear model p value: 1.47e-05). Cholesterol replenishment
significantly increased viral particle number in amiodarone treated Vero-E6 cells (amiodarone :
cholesterol interaction term p value: 0.026), confirming the causal role of drug induced

cholesterol depletion in the antiviral effect of amiodarone.
Our in vitro SARS-CoV-2 infection assay confirmed the antiviral effects of chlorpromazine,

loperamide and amiodarone, and cholesterol rescue experiments suggest that plasma

membrane cholesterol depletion plays an important role in the antiviral effect of amiodarone.
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Figure 5 - Cholesterol replenishment inhibits antiviral effect of amiodarone

(A) Predicted drugs inhibit SARS-CoV-2 replication in infected Vero-E6 cells. Vero-E6 cells were infected

with SARS-CoV-2 (top left) and co-treated either with amiodarone (top right), chlorpromazine (bottom left)

or loperamide (bottom right). Antiviral effect (reduced cytopathy) was evaluated by microscopic imaging

(10x objective) 48 hours after infection. (B) Schematic figure of cholesterol rescue experiments. (C) Effect

of cholesterol rescue on antiviral drug effect. Vero-E6 cells were pretreated with drugs (x-axis), cholesterol

was replenished (color code) and cells were infected with SARS-CoV-2. Antiviral effect of drugs was

evaluated 48 hours after infection by droplet digital PCR (viral copies, y axis).
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3. Discussion

In this study, we analysed the gene expression signatures of in vitro SARS-CoV-2 infected cells
and effective anti-SARS-CoV-2 drugs. Using functional genomic computational tools, we showed
that both virus infection and drug treatment leads to similar changes of pathway and
transcription factor activities, like activation of antiviral NFKB and JAK-STAT pathways. Signature
similarity between infection and drug signature was predictive for drugs with in vitro
anti-SARS-CoV-2 activity, contrary to the classical “signature reversal” hypothesis. Using
machine learning models we effectively predicted anti-SARS-CoV-2 drugs, and predicted
amiodarone as an in vitro antiviral compound. More detailed functional genomic analysis of TF
activities revealed that SREBF1/2 TFs are strongly activated by large clusters of effective drugs.
Using a high-throughput confocal microscopy setup and quantitative image analysis we showed
that two of the three investigated effective drugs influence cellular distribution of cholesterol,
leading to decreased plasma membrane cholesterol content. Viral infection assay confirmed the
already described in vitro antiviral activity of loperamide and chlorpromazine, and also the
predicted antiviral activity of amiodarone. Cholesterol supplement reversed the antiviral effect of
amiodarone, suggesting the causal role of decreased membrane cholesterol in the antiviral

effect.

Gene expression based computational drug repurposing is a promising field to find new disease
indications of existing drugs (Pushpakom et al. 2019). Despite its simplicity, it has been used
successfully to identify repurposable drugs for different diseases from cancer (B. Chen et al.
2017; Stathias et al. 2018) through inflammatory (Malcomson et al. 2016) to metabolic (Kunkel
et al. 2011) diseases. While most of the related works rely on the “signature reversal”
hypothesis, in case of infection diseases, like COVID-19, it is less clear whether signature
reversal (inhibiting the virus-hijacked signalisation) or signature similarity (promoting the antiviral
response of infected host cells) can be more effective. While early studies at the beginning of
the COVID-19 pandemic applied mostly the original signature reversal hypothesis, more recent
works (Laise et al. 2020; F. Chen et al. 2021) also assumed that drugs with similarity to the
SARS-CoV-2 induced gene expression signature can be effective. In our work, we performed a
more unbiased analysis of signature based drug repurposing against SARS-CoV-2. We

compared the gene expression signatures of known effective drugs against SARS-CoV-2
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infection signatures, and found that signature similarity, and not dissimilarity, is predictive for
antiviral effect. These results suggest that increasing the antiviral response of host cells can be
a more effective strategy than inhibiting viral infection induced pathways. Whether this is specific
for SARS-CoV-2, known for evading several antiviral systems of the host cell (Lei et al. 2020), or
a general mechanism for (viral) infections, needs further analysis with large scale in vitro drug
screenings against other viruses. Nevertheless, using our “signature similarity” principle instead
of - or together with - the “signature reversal” hypothesis can accelerate computational drug

repurposing against existing and emerging infectious diseases.

While signature (dis)similarity based computational drug repurposing has promising predictive
performance, it gives no real mechanistic insight. To overcome this problem, we performed
extensive functional genomic analysis of SARS-CoV-2 and drug induced gene expression
signatures. We found that both viral infection and effective drugs stimulate known antiviral
pathways like NFKkB and JAK-STAT. We observed lower induction of these pathways in virus
infected A549 cells, compared to Calu-3 cell lines, probably based on the lower expression of
virus receptor ACE2 in A549 cells. The activation of antiviral pathways in virus infected and

effective drug treated cells also supports the “signature similarity” principle.

Beside the activation of antiviral TFs and pathways, we also observed inhibition of (inferred)
SREBF1/2 transcription factors in SARS-CoV-2 infected samples, while an activation of these
TFs in a large cluster of antiviral drug treated cells. SREBF1/2 regulate the expression of key
members of cholesterol synthesis. Cholesterol depletion of plasma membrane can reduce
SARS-CoV-2 infection (S. Wang et al. 2020; Sanders et al. 2021), and decreasing SREBFs
activity (and cholesterol synthesis) can be also part of the physiological antiviral response of the
host cell (York et al. 2015). In contrast, we found increased activity of SREBFs in case of several
effective drug induced gene expression signatures. Previous works also showed the increased
expression of lipid metabolic enzymes (Hoagland et al. 2020) in antiviral drug treated cells, and
a recent large scale CRISPR screen (Daniloski et al. 2021) also found that increased cholesterol
synthesis can reduce SARS-CoV-2 infection. However, these two later conclusions were based
on the analysis of gene expression changes of the cholesterol synthetic pathway. Gene
expression changes are in several cases not the cause, but the (compensatory) consequence of
perturbed cell states (Dugourd and Saez-Rodriguez 2019; Szalai and Saez-Rodriguez 2020).

Based on this, we hypothesized that increased SREBF1/2 activity (based on transcriptional
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readout) can be a compensatory consequence of decreased plasma membrane cholesterol
levels in case of several antiviral drugs. Using a fluorescent cholesterol sensor, we found that
amiodarone and chlorpromazine, two effective in vitro antiviral drugs, indeed decreases the
cholesterol content of plasma membranes, which can explain the (compensatory) increased
SREBF1/2 activity. In an in vitro SARS-CoV-2 infection assay, coupled with cholesterol rescue,
we also showed that cholesterol replenishment reduced the antiviral activity of amiodarone, thus
confirmed the causal role of plasma membrane cholesterol decrease in the antiviral effect of
amiodarone. While our computational analysis also predicted that PM cholesterol depletion
plays a role in the antiviral effect of chlorpromazine and loperamide, we were not able to verify
these predictions experimentally. Noteworthy, these two drugs had antiviral effect in case of
co-treatment with virus infection, but not in the case of the pre-treatment setup used in
cholesterol rescue experiments (probably due to pharmacokinetic factors). It is thus hard to draw

conclusions about the role of cholesterol in the antiviral effect of these drugs.

While we showed that PM cholesterol depletion can be an important factor in the in vitro antiviral
effect of drugs, whether this can be translated to in vivo is still an open question. A recent large
scale study (Tummino et al. 2021) showed that several in vitro repurposable drugs exert their
antiviral effect via altering the membrane composition of drug treated cells, and this antiviral
effect has low translation potential based on concerns regarding drug concentration and adverse
effects. While the authors of this study concluded that phospholipidosis is the main drug induced
membrane component change, our results argue that altered cholesterol content can also be a
causal factor in the antiviral effect of drugs. Whether altered lipid composition of cellular
membranes is only a factor confounding drug repurposing studies, or this effect can be exploited

towards effective therapy, needs further studies.

In summary, our study showed that in vitro SARS-CoV-2 infection and effective antiviral drugs
lead to similar pathway and transcription activity changes. We found that gene expression
signature similarity, and not the dissimilarity, predicts in vitro effective antiviral compounds,
which can accelerate computational drug repurposing against infectious diseases, and we made
the results of our predictions available for the research community (Supplementary Table 1). We
also identified that plasma membrane cholesterol depletion plays an important role in the

mechanism of action of several antiviral drugs, and that cholesterol replenishment inhibits the in
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vitro antiviral effect of amiodarone, thus our results also give mechanistic insight about the

antiviral effect of repurposable drugs.

4. Methods

Virus infection-induced gene expression signatures

Microarray gene expression profiles of different virus-infected cell lines were downloaded from
Gene Expression Omnibus (GEO) with accession numbers GSE28166 (H5N1), GSE37571
(Influenza), GSE33267 (SARS-CoV-1), GSE56677 and GSE45042 (MERS-CoV). Preprocessing
and differential expression (DE) analysis was performed by using R package limma (Ritchie et
al. 2015).

Total RNA-Seq profiles of SARS-CoV-2 and other virus-infected human cell lines were
downloaded from GEO with accession numbers GSE147507 (SARS-CoV-2, RSV, IAV, HPIV)
and GSE148729 (SARS-CoV-1 and 2). Differential expression (DE) analysis was performed
using R library DESeq2 (Love, Huber, and Anders 2014).

In all gene expression datasets, we used (virus infected - control) contrasts for differential
expression calculation, where the control condition was mock infection. Where gene expression
data after multiple time points were available, we used 24 h post-infection data. Shared genes

across all datasets were selected and further analyzed.

Drug treatment-induced signatures

We used Level 5 gene expression profiles from the LINCS-L1000 dataset (Subramanian et al.
2017). We calculated consensus expression signatures for each drug (across different cell lines,
concentrations and time points) using the MODZ method (Szalai et al. 2019; Subramanian et al.
2017). We matched LINCS-L1000 drugs with ChEMBL effective drug dataset

(http://chembl.blogspot.com/2020/05/chembl27-sars-cov-2-release.html) using drug names and

simplified molecular-input line-entry system (SMILES). Only measured (landmark) genes were

used in the further analysis.
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Pathway and transcription factor activity analysis

From previously calculated SARS-CoV-2 infection and effective drug-induced signatures, we
inferred pathway activities using PROGENy (R package progeny, (Schubert et al. 2018; Holland,
Szalai, and Saez-Rodriguez 2019)) and transcription factor activities using DoRothEA (R
package dorothea, (Garcia-Alonso et al. 2019)).

PROGENy was applied to infer activities of 14 different pathways from expression and weight of
their footprint gene sets. Z-scores of pathway activities were calculated using 10000
permutations of genes as background distribution. DoRothEA was applied to infer transcription
factor activities using the viper algorithm (Alvarez et al. 2016). DoRothEA is a collected, curated
resource of signed TF-target interactions. Interactions are assigned a confidence level ranging
from A (highest) to E (lowest) based on the number of supporting evidence. In this study
interactions assigned A, B, C confidence levels were used.

We used the CARNIVAL tool ((Liu et al. 2019)) to contextualize our transcriptomics-based
results into a mechanistic causal network. Briefly, CARNIVAL takes as input a prior knowledge
network and a set of constraints and infers the most likely causal interactions by solving an
integer linear programming problem. We assembled a curated prior knowledge signaling
network from OmniPath resources ((Turei et al. 2021)). As constraints, we selected the RIG-I
like receptors (DDX58 and IFIH1) as upstream signaling perturbation and the top 25 most
deregulated TFs (according to DoRothEA and viper results) upon SARS-CoV-2 infection as
their downstream target. In addition, we used PROGENy pathway activity scores to weight the
prior knowledge network and assist CARNIVAL in the discovery of optimal networks connecting

the upstream perturbation (RIG-I like receptors) to the downstream targets (TFs).

Signature similarity and machine learning-based prediction

We calculated similarities using Spearman’s correlation between each virus infection-induced
and each drug treatment-induced signature after selecting shared genes.

TF activity scores from drug treated cells were used to predict effective drugs against
SARS-CoV-2 using Random Forest Classifier from scikit-learn Python library (Pedregosa et al.
2011). The model was trained with default parameters (100 trees) and with 100 different training
sets. Training sets consisted of a 50% random sampling of effective drugs and non-effective

drugs as well. The average importance of features (TFs) was computed (sum of feature
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importances, divided by the number of models). Predictive probabilities of drugs were also
computed in each prediction and the mean of them was calculated (probabilities were summed
for each drug and divided by the number of occurrences in validation sets).

We performed ROC analysis using scikit-learn Python library to evaluate similarity-based and
machine learning-based predictions. Effective drugs against SARS-CoV-2 curated by ChEMBL
and overlapping with drugs of the LINCS-L1000 dataset were used as the positive class. The
negative class consisted of the part of drugs from the LINCS-L1000 dataset not considered as
effective by ChEMBL. To compare machine learning-based and similarity-based methods ROC
curves were computed for each different validation set (100) and signature similarity scores of

the corresponding drugs were considered.

Fluorescent cholesterol sensor experiments

The cellular cholesterol sensor used in this study was the D4H domain ((Maekawa and Fairn
2015; Maekawa 2017)) fluorescently labeled with monomer Venus (mVenus) on its N-terminus.
To create the construct coding this sensor, we used a plasmid coding the bioluminescent version
of the sensor (described in (Sohn et al. 2018)), a kind gift from Tamas Balla (NICHD, NIH,
Bethesda, USA). The D4H domain-coding sequence from this plasmid was subcloned into the
pEYFP-C1 plasmid containing mVenus in place of EYFP, using Bglll and BamHI restriction
enzymes. Cytosolic Cerulean was expressed from a pEYFP-N1 plasmid where EYFP had been
replaced with Cerulean.

For fluorescent imaging, HEK293A cells (ATCC, USA) were maintained in Dulbecco’s Modified
Eagle Medium (DMEM - Lonza, Switzerland) complemented with 10% fetal bovine serum
(Biosera, France) and Penicillin/Streptomycin (100 U/ml and 100 ug/ml, respectively - Lonza,
Switzerland). Cells were seeded on poly-L-lysine pretreated (0.001%, 1h) 24-well imaging plates
(Eppendorf, Germany) at a density of 1e05 cells/well. On the next day, cells were co-transfected
with plasmids coding cytoplasmic Cerulean and D4H-mVenus (0.25 pg/well each) using
Lipofectamine 2000 (0.75 ul/well, Invitrogen, USA).

Image acquisition started 24h post-transfection, after the medium had been changed to 300
pl/well HEPES-buffered DMEM without phenol-red (Gibco, USA). Images were acquired
automatically using the ImageXpress Micro Confocal High-Content Imaging System (Molecular
Devices, USA), with a 40x Plan Fluor objective. CFP-2432C and fluorescein isothiocyanate
(FITC) filter sets were used for Cerulean and D4H-mVenus images, respectively, both with an

exposure time of 300 ms. After acquiring control images (30 min), cells were treated with either
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DMSO (as control) or with the drugs indicated on Fig. 4E in a volume of 100 pl/well (270 min).
Measurements were performed at 30°C. Three independent measurements were made, with
duplicate wells for each condition and 5 images/well taken for each time point.

All chemicals used for treatment were purchased from Sigma-Aldrich Merck (Germany).
Amiodarone HCI, chlorpromazine HCI, loperamid HCI and rosuvastatin calcium were dissolved
in DMSO, stored at -20°C as 10 mM stock solutions and diluted in cell medium promptly before
cell treatment to a final concentration of 10 uM. MBCD was stored as powder at 4°C and freshly

dissolved in cell medium before treatment to a final concentration of 10 mM.

Image analysis pipeline

Images were segmented with Cellpose Python library (Stringer et al. 2021), which is a
generalist, deep learning-based segmentation method. To select high-quality images the
cytoplasm marker channel was used with Laplace filtering. We used high-quality images (filtered
according to the upper threshold of Laplace value set to 3) as input of the Cellpose model, with
parameter channel set to greyscale and cell diameter greater than 200 pixels.

After identifying cell boundaries, we applied binary erosion (scipy Python library (Virtanen et al.
2020)) with default structure and 10 iterations to determine cytoplasm boundary, or binary
dilation with default structure and 5 iterations to determine PM outer boundary. The boundary of
PM was determined by subtracting the cytoplasm boundary from the outer boundary. We
calculated the log, ratio of the mean PM and mean intracellular D4H fluorescence intensities for
each cell in the D4H channel to examine the changes of plasma membrane cholesterol
distribution. For statistical analysis, we used log2(PM/IC) ~ Time + Time : Drug + Exp linear
model, where Time corresponds to elapsed time after drug treatment, Drug factor represents the
used drug, using DMSO as reference level. Exp factor represents the (n=3) individual

experiments.

Viral infection and cholesterol rescue experiments

Amiodarone HCI (Sigma-Aldrich, Merck KGaA, Germany) was dissolved in DMSO
(Sigma-Aldrich, Merck KGaA, Germany) and kept at -20 °C. Chlorpromazine (in house
synthesized based on (Galons et al. 1985)) and loperamide HCI (Sigma-Aldrich, Merck KGaA,
Germany) were freshly dissolved in water and filtered prior to the treatment. 10 mM stock
solutions were made from the drugs. Vero-E6 cells were seeded in a 96-well plate on the day

before the experiments. On the next day the cells were treated with 100 pl of 50 uM remdesivir
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or loperamide or 12 yM chlorpromazine or 6 yM amiodarone solution overnight. 1 hour prior to
the infection the cell culture media containing the different drugs was replaced with media
containing 80 uM cholesterol (Sigma-Aldrich, Merck KGaA, Germany). After the 1-hour-long
cholesterol treatment the cells were infected with SARS-CoV-2 (GISAID accession ID:
EPI_ISL_483637) at MOI:0.01 in a BSL-4 laboratory. Cells were incubated with the virus for 30
minutes then the media was replaced with fresh cell culture media. During the investigation
(except cell seeding) DMEM (Lonza Group Ltd, Switzerland) supplemented with 1% Penicillin-
Streptomycin (Lonza Group Ltd, Switzerland) and 2% heat-inactivated fetal bovine serum
(Gibco, Thermo Fisher Scientific Inc., MA, USA) was used. 48 hours post infection (hpi) the cells
were inspected under microscope and RNA was extracted from the supernatant (Zybio EXM
3000 Nucleic Acid Isolation System, Nucleic Acid Extraction Kit B200-32). Viral copy number
was determined using droplet- digital PCR technology (Bio-Rad Laboratories Inc., CA, USA).
SARS-CoV-2 RdRp gene specific primers and probe were utilized (Forward:
GTGARATGGTCATGTGTGGCGG, reverse: CARATGTTAAASACACTATTAGCATA and the
probe was: FAM-CAGGTGGAACCTCATCAGGAGATGC-BBQ). For statistical analysis,
measured viral copy numbers were log2 transformed, and we used a log2(CV) ~ Drug *
Cholesterol + Exp, where Drug factor represents the used drug (untreated as reference level),
Cholesterol factor represents cholesterol replenishment treatment (no treatment as reference

level). Exp factor corresponds to the (n=4) individual experiments.
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Supplementary Materials

Loperamide Rosuvastatin

Supplementary Figure 1. Representative confocal microscopy images of D4H-mVenus transfected

HEK293A cells treated with loperamide and rosuvastatin.
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Supplementary Figure 2. Determination of cytoplasm and membrane boundaries. Cells are detected on
the cytoplasm marker channel, then boundaries of cytoplasm and membrane are determined for each cell.
The D4H channel is used for the calculation of the PM/IC ratio.
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Control Amiodarone (6 pM)
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Supplementary Figure 3. Absence of marked toxic effects of used drugs in the tested concentrations.
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