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ABSTRACT
Background

Wildfire smoke is responsible for around 20% of all particulate emissions in the U.S. and affects
millions of people worldwide. Children are especially vulnerable, as ambient air pollution
exposure during early childhood is associated with reduced lung function. Most studies,
however, have focused on the short-term impacts of wildfire smoke exposures. We aimed to
identify long-term baseline epigenetic changes associated with early-life exposure to wildfire
smoke. We collected nasal epithelium samples for whole genome bisulfite sequencing (WGBS)
from two groups of adult female rhesus macaques: one group born just before the 2008
California wildfire season and exposed to wildfire smoke during early-life (n = 8), and the other
group born in 2009 with no wildfire smoke exposure during early-life (n = 14). RNA-sequencing

was also performed on a subset of these samples.

Results

We identified 3370 differentially methylated regions (DMRs) (difference in methylation > 5%
empirical p <0.05) and 1 differentially expressed gene (FLOT2) (FDR< 0.05, fold of change >
1.2). The DMRs were annotated to genes significantly enriched for synaptogenesis signaling,
protein kinase A signaling, and a variety of immune processes, and some DMRs significantly
correlated with gene expression differences. DMRs were also significantly enriched within
regions of bivalent chromatin (top odds ratio = 1.46, g-value < 3 x 10) that often silence key

developmental genes while keeping them poised for activation in pluripotent cells.

Conclusions
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These data suggest that early-life exposure to wildfire smoke leads to long-term changes in the
methylome over genes impacting the nervous and immune systems, but follow-up studies will be
required to test whether these changes influence transcription following an immune/respiratory

challenge.

Keywords: Wildfire smoke, whole genome bisulfite sequencing, RNA-sequencing, rhesus

macaques, early life
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BACKGROUND

According to the National Interagency Fire Center, there were 50,477 wildfires (4.7 million acres
burned) in the United States in 2019. In total, 212 million Americans lived in counties affected
by wildfires in 2011 (1). These wildfires have contributed to levels of air pollution in the United
States that have been linked to premature death (2-5). About 20% of all fine particulate
emissions in the U.S. are from wildfire smoke, while half of all particulate matter less than 2.5
um in diameter (PM2s) in California resulted from wildfires (2). PM; s are especially harmful, as
these particles are able to penetrate the respiratory system and the lungs (2). Exposure to these
particles has been associated with asthma, bronchitis, lung cancer, and cardiovascular disease (3-
5). Young children are especially vulnerable to these negative health effects, as studies have
linked air pollution exposure in children to reduced lung function (6, 7), reduced height-for-age
(8), increased blood pressure (9), and an increased risk of developing asthma and eczema (10).
Most of these studies, however, focused on the short-term effects of exposures to wildfire smoke
or polluted air and none have performed an unbiased assessment of gene pathways impacted by

wildfire smoke exposure.

A cohort of rhesus macaques (Macaca mulatta) that were exposed in their first three
months of life to a harsh wildfire season in 2008 in California was previously studied to
understand some of the long-term effects of wildfire smoke exposure (11). Peripheral blood
mononuclear cells (PBMCs) were cultured and challenged with either LPS or flagellin, and
secretions of IL-8 and IL-6 were compared to macaques that were born in 2009 (PM 5 and ozone
levels were much lower in 2009 compared to 2008) (11). Lung function was also compared
between exposed and control macaques. Compared to control macaques, wildfire smoke-exposed

macaques had significantly reduced lung volume. Female wildfire-exposed macaques showed
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reduced production of IL-8 compared to controls, while male wildfire-exposed macaques showed
reduced production of IL-6 compared to controls (11). This study implied that early-life exposure
led to a difference in IL-8 and IL-6 production following an immune challenge, but it was still
unclear to what degree these macaques exhibited baseline differences at the level of epigenetics

and gene expression.

The epigenetic mark of DNA methylation has the potential to reflect past exposures with
long-lived marks on genes, while the transcriptome reflects current levels of gene expression in a
sampled tissue. To test the hypothesis that early-life wildfire smoke exposure would result in
detectable epigenetic differences to gene pathways reflecting cellular function, we performed the
integrated unbiased approaches of whole genome bisulfite sequencing (methylome) and RNA-
sequencing (transcriptome) from nasal epithelial samples collected the same cohorts of female
macaques examined a decade earlier for lung functions and immune responses. We identified a
large number of genes associated with early-life exposure-related differential methylation
involved in neuronal and immune signaling. In contrast, only one differentially expressed gene

(FLOT?2) was stably associated with early-life wildfire smoke exposure.

RESULTS

Exposure to wildfire smoke during infancy is associated with long-lasting changes to DNA

methylation patterns in nasal epithelial cells.

To test the effects of early-life wildfire smoke-exposure on methylation status throughout the
genome, we performed whole genome bisulfite sequencing on nasal epithelial samples collected

from 22 adult rhesus macaques in 2019 (8 born in 2008 and exposed to high levels of PM» s and
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ozone due to wildfires, 14 born in 2009 and therefore has relatively low levels of exposure to
PM: s and ozone; Figure 1, Table 1). Though there were several shared exposures to high levels
of wildfire smoke PMa s (> 35ug/m’, the 24-hour PM, s National Ambient Air Quality Standard) and
ozone after the 2009 cohort was born (especially in the year of 2019), there was one high
exposure event that only the 2008 cohort was exposed to in early-life (10 days above 35ug/m’,
Figure 1, Table 1). We assessed 26,609,677 CpG sites and identified 3370 differentially
methylated regions (DMRs) between exposed and non-exposed samples (Figure 2, empirical p <
0.05, differences in methylation>5%). The majority of these DMRs were hypermethylated in
exposed animals (2899, ~86%). A total of 114 (3.38%) of these DMRs were primarily located in
CpG islands (12), 287 (8.52%) were located in CpG shores (0-2kb from island), 205 (6.08%)
were located in CpG shelves (2-4kb from island), and 2764 (82.02%) were in the open sea (>4kb
from island). This distribution was significantly different than expected by chance, with an
enrichment towards CpG islands, shores, and shelves compared to regions assayed
(Supplementary Figure 1). These 3370 DMRs were annotated to 2139 genes (Supplementary
Table 1), of which 1852 genes were associated with DMRs hypermethylated in the exposed
group, while 376 genes were associated with DMRs hypomethylated in the exposed group, and
89 genes were associated with both hypermethylated and hypomethylated DMRs (examples of
DMRs shown in Figure 3). The DMRs were significantly more associated with promoters and
exons than expected by chance, while they were less associated with intergenic regions than
expected by chance (Supplementary Figure 2). The genes associated with DMRs as a whole were
significantly enriched (FDR < 0.05) for 186 IPA canonical pathways, including axonal guidance
signaling, synaptogenesis signaling pathway, protein kinase A signaling, IL-15 production,

CXCRA4 signaling, and Thl and Th2 activation pathway (Figure 4, Supplementary Table 2).
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Genes associated with hypermethylated DMRs were enriched for 187 IPA pathways, 168 of
which were also enriched in genes associated with DMRs as a whole. The 19 unique IPA
pathways enriched in hypermethylated DMRs include /4-3-3-mediated signaling, LPS-
stimulated MAPK Signaling, and NF-kB activation by viruses (Supplementary Table 3). Genes
associated with hypomethylated DMRs were enriched for 41 IPA pathways, 23 of which were
also enriched in genes associated with DMRs as a whole. The 18 unique IPA pathways enriched
in hypomethylated DMRs include dermatan sulfate biosynthesis, xenobiotic metabolism PXR

signaling pathway, and HOTAIR regulatory pathway (Supplementary Table 4).

Impact of wildfire smoke-associated DNA methylation changes on TF binding.

As the binding of transcription factors (TFs) are often influenced by DNA methylation, we
performed a HOMER analysis to determine whether any transcription factor binding sites were
enriched in these wildfire smoke-associated DMRs (13). A total of 131 transcription factor
motifs were enriched in all DMRs (q < 0.05; Supplementary Table 5). Eight of the top ten most
highly enriched TF motifs are part of the bZIP TF family (shown in Table 2). When testing for
TF binding site enrichment in only DMRs that were hypermethylated in exposed macaques, six
of the top ten were part of the bZIP TF family, while none of the top ten enriched TF binding
sites in hypomethylated DMRs were part of the bZIP TF family (five out of ten contained
homeobox motifs). Interestingly, the TFs whose binding sites were most enriched in all wildfire
smoke-associated DMRs were primarily unmethylated (Table 2) in other ChIP-seq datasets (14),
so the differential methylation could theoretically have a large impact on transcription factor
binding and expression (15). In support of this, DNA methylation generally inhibits binding of

bZIP TF members to DNA (15, 16).
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92  Regions with hypomethylated DMRs are enriched for bivalent chromatin marks across tissue

93  tpes.

94  In order to understand the gene regulatory role of regions with wildfire smoke-DMRs, we

95  searched for the enrichment of 15 pre-defined chromatin states across 127 epigenomes from

96  multiple tissues and cell types in the Roadmap Epigenomics project (17). After converting the M.

97  maculatta coordinates into human (hg38) coordinates and using LOLA, the DMRs as a whole

98  were enriched for bivalent chromatin marks (top odds ratio for any mark = 1.46, g-value <3 x

99 10 Figure 5A). Bivalent chromatin marks represent co-existing activating and repressing
100  marks, which often silence key developmental genes while keeping them poised for activation in
101  pluripotent cells (18). Hypomethylated DMRs seemed to drive this enrichment (top odds ratio for
102  any mark = 2.05, g-value < 0.02; Figure 5B), though hypermethylated DMRs showed enrichment
103  (top odds ratio for any mark = 1.51, g-value < 1 x 10) for bivalent chromHMM chromatin states
104  as well (Figure 5C).

105
106  Early-life wildfire smoke exposure had a minimal effect on baseline genes expression levels.

107  To determine whether early-life exposure to wildfire smoke leads to detectable differences in

108  gene expression later in life, we performed RNA-sequencing on 15 female rhesus macaques (6
109  born in 2008 and exposed to wildfire smoke, 9 born in 2009 and not directly exposed to the 2009
110  California wildfires). A principal component analysis (PCA) and hierarchical clustering of all
111 detected transcripts were performed to visualize how samples clustered based on expression

112 (Supplementary Figure 3D). The top two principal components in a principal component analysis
113 (PCA) explained 62% of the variation in the dataset. Exposed and non-exposed samples did not

114 cluster separately in either the PCA or the hierarchical clustering analysis, implying no
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widespread transcriptomic difference between exposed and non-exposed individuals. After
multiple hypothesis correction (FDR < 0.05, fold change > 1.2; Supplementary Table 6), there
was only one differentially expressed gene (FLOTZ2; Supplementary Table 6). None of the genes
annotated to DMRs were significantly differentially expressed.

To identify co-expressed genes whose expression correlated with wildfire smoke-
exposure status, we performed a weighted gene co-expression network analysis (WGCNA) (19).
We identified 16 co-expressed modules using WGCNA. None of the modules were significantly
associated with early-life exposure status (p < 0.05). The module that best correlated with
exposure status was the purple module (p = 0.1; consisting of 585 genes, including 1F144,
IFNAZ21, and IL24; Supplementary Figure 4, Supplementary Table 7). No genes in this module
were significantly differentially expressed at an individual level, 19 genes were associated with
significant DMRs, and two genes had significantly correlated methylation and expression. The
genes in this module were enriched (FDR < 0.05) for 21 IPA pathways, including E/F2
signaling, mTOR signaling, Thl7 activation pathway, and interferon signaling (Supplementary

Table 8).

Correlation of DNA methylation and gene expression differences resulting from wildfire smoke
exposure during infancy

Out of the 2139 genes associated with DMRs, 2128 had enough corresponding expression data to
evaluate the correlation between expression and methylation. To identify genes where
differential methylation may be ultimately leading to differential expression, we calculated the
spearman rank correlation between methylation and expression levels for genes that were

associated with DMRs. In total, 172 genes were significantly correlated (spearman p-value <
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0.05), with 76 genes showing a negative correlation and 96 showing a positive correlation
between methylation and expression (Supplementary Table 9, two examples are shown in Figure
6). These 172 genes were enriched for 32 IPA pathway terms, including leukocyte extravasation
signaling, CCR)S signaling in macrophages, and MIF regulation of innate immunity

(Supplementary Table 10).

DISCUSSION

Utilizing rhesus macaques that experienced the harsh conditions of the 2008 California wildfire
season in their first three months, we have elucidated some of the long-term effects of early-life
exposure to wildfire smoke. Baseline methylation profiles generally clustered better by exposure
status than expression profiles (Supplementary Figure 3). Many genes (2139) were associated
with differentially methylated regions between exposed and control macaques (empirical p <
0.05), while only 1 gene (FLOT?2) was differentially expressed between these groups after
multiple hypothesis correction (FDR < 0.05). Out of the genes associated with differentially
methylated regions, 172 had methylation levels that significantly correlated with expression
levels across samples, indicating that the overall epigenetic regulatory landscape ultimately led
to few significant differences in baseline expression. However, the changes in DNA methylation
were significantly enriched at promoters and enhancers, and located at regions that transcription

factors may bind, suggesting that they may have an impact on gene regulation.

FLOT?2 (flotillin 2) encodes a caveolae-associated, integral membrane protein that
belongs to the lipid raft family. Flotillins are implicated in variety of cellular functions, including
regulation of G-protein coupled receptor signaling (20), endocytosis (21), cell-cell adhesion (22),

uropod formation and migratory capacity of neutrophils and monocytes (23) and T cells (24).

10
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FLOT?2 also protected lung epithelial cells from Fas-signaling mediated apoptosis (25), and silica
nanoparticles were found in Flotillin-1 and -2 marked vesicles in alveolar epithelial cell (26).
However, its role in response to wildfire smoke exposure has not been reported. One potential
explanation for the few gene expression changes despite more widespread methylation
differences is that many of these DMRs are in regions associated with bivalent chromatin marks.
The differential methylation at these regions may not affect gene expression because the bivalent
chromatin marks generally keep expression repressed, but poised for rapid activation during
early development (27) or in cancer (28). This would imply that some of the methylation
differences were due to early-life events that were not reflected in baseline transcript levels later
in life. Additionally, although baseline gene expression was relatively similar between exposed
and control macaques, one hypothesis is that the altered regulatory landscape could lead to
differences in expression upon additional immune (or other) challenges. This hypothesis is
supported by a previous study on macaques from these same cohorts that found differences in
IL-6 (significant in males) and IL-8 (significant in females) production in peripheral blood
mononuclear cells (PBMC) from wildfire smoke-exposed macaques compared to controls after a
challenge with media, LPS, or flagellin (11). Out of 84 genes tested, only two (RELB and REL)
showed significant differences in expression following a media challenge (essentially a
comparison of baseline expression), while five genes were differentially expressed following a
challenge with either LPS or flagellin (11). RELB was the only gene that was differentially
expressed in all three tests, but the direction of change in challenged cells (increased RELB in
cells from exposed animals) was opposite of what was found at baseline (decreased RELB in
cells from exposed animals) (11). In summary, there were very few differences in baseline

expression in the previous study between exposed and control cells, and even when there was

11
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184  differential expression, those patterns changed or became non-significant following an immune
185  challenge. While the sample types (PBMCs vs. nasal epithelium) and ages of the macaques

186  (adolescents vs. adults) differ between the prior study and the current study, they both support
187  that early exposure to wildfire smoke did not lead to drastic differences in baseline expression
188  profiles between samples. Another potential explanation for differences in the degree of

189  differential expression and differential methylation is that we had fewer samples for our

190 differential expression analysis, potentially limiting our ability to identify differential expression
191  compared to our ability to identify differential methylation. If there were widespread differences
192  in expression due to exposure status, however, we expect that wildfire smoke-exposed samples
193  would have clustered together in the principal component analysis and in hierarchical clustering

194  analyses, so we postulate that this is not the major reason for the lack of differential expression.

195

196  Long-term effects of wildfire smoke exposure on the methylome

197  Our data implies that there are long-term effects on the methylome due to wildfire smoke

198  exposures during infancy. DMRs were enriched for many pathways linked to asthma, COPD, or
199  other pulmonary diseases, including /L-15 production (29, 30), CXCR4 signaling (31, 32), Actin
200  cytoskeleton signaling (33, 34), VDR/RXR activation (35, 36), Thl and Th2 activation pathway
201 (37, 38), and Wnt/p-catenin signaling (39, 40) (Supplementary Table 2). Cytokines derived from
202 T helper type 2 (Th2) cells have long been thought to play a critical role in allergic asthma

203  through regulation of immunoglobulin E (IgE) synthesis (38, 41), but other T helper subsets

204  (such as Thl) are starting to gain recognition for their role in asthma as well. Increased levels of
205 the Thl cytokine IFN-y have been shown to exacerbate existing asthmatic responses (42) and

206  increase airway hyperresponsiveness (41) in transgenic mice. IFNGR2 (interferon gamma

12
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receptor 2) was differentially methylated in our comparison (as were several other Th1 related
genes, including IL6R, LOC694631/IFNA1/13-like, and NFATC1), perhaps indicating that the
early life wildfire smoke exposure has altered Th1 responses and resulted in differential
responses to bacterial and viral infection. Additionally, hypermethylation of IL6 and IFNA13
was associated with idiopathic pulmonary fibrosis (IPF) (43), while hypermethylation of IL6R
was associated with COPD in prior studies (44). IL6R and IFNA13 were also hypermethylated in
exposed macaques in our current study (Supplementary Table 11), indicating that changes in the
Th1 pathway may contribute to the reduction in lung function noted in macaques exposed to
wildfire smoke early in life (11). Th2-related genes that were differentially methylated in our
dataset include IL4R and TIMD4, while there were several genes associated with DMRs that
were related to both the Th1 and Th2 pathways (including CD4, IL10, IL12RB2, NFATC2,
RUNX3, and SOCS3). Hypermethylation of NFATC2 (44), RUNX3 (44), and SOCS3 (45) has
been associated with COPD (Supplementary Table 11). These three genes were also
hypermethylated in wildfire smoke-exposed macaques versus controls.

Deletion of Fral, the transcription factor with the most enriched motif in the DMRs
(Table 2, Supplementary Table 5), in mice led to greater levels of progressive interstitial fibrosis
(46). Fral 1s a bZIP transcription factor and bZIP transcription factor binding is generally
inhibited by methylation (15, 16). Meanwhile, overexpression of Fra2 (another highly enriched
bZIP TF motif in the DMRSs) in mice lead to non-allergic asthma development (47). The other
bZIP transcription factors whose motifs were among the top ten enriched motifs have also all
been linked to pulmonary disease (ATF3 (48), JunB (49), BATF (50), and AP-1 (46, 51)). The
role of bZIP transcription factors in pulmonary disease pathogenesis combined with the

sensitivity of bZIP to changes in methylation imply that the differences in methylation noted

13
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between wildfire smoke-exposed and non-exposed macaques could greatly impact how bZIP
targets are regulated following a respiratory challenge. Overall, differences in methylation in Thl
and Th2-related genes (and the relation of those genes to asthma, IPF, and COPD pathogenesis;
see Supplementary Table 11) may explain the long-term differences in lung function previously
observed between wildfire smoke-exposed macaques and controls (11).

Interestingly, there is also recent research that suggests that exposure to air pollution can
have negative neuropsychological effects in children (52, 53). The DMRs from our dataset were
enriched in multiple IPA neurological pathways, including axonal guidance signaling (most
significant pathway), synaptogenesis signaling pathway (third most significant pathway), and
neuropathic pain signaling in dorsal horn neurons (Supplementary Table 2). Additionally, the
top enriched biological process term in GOfuncR (54) was neuron differentiation, while the top
enriched cellular component term was synapse (Supplementary Figure 5). The effect of wildfire
smoke on neurological development is understudied, but studies have shown that particles less
than 0.1 um in diameter (which are produced by wildfires) can cross the blood-brain barrier (55).
Additionally, exposure to these ultrafine particles has been associated with ADHD, autism, and
declines in school performance and memory in children (53). Along with this evidence from
prior studies, the differential methylation of regions near genes involved in neurological
pathways indicates that early-life wildfire smoke exposure could have a long-lasting impact on

nervous system function.

Genes with correlated changes in methylation and expression are enriched for pathways

associated with respiratory diseases
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In addition to directly studying genes and enriched pathways associated with DMRs, we also
wanted to identify genes that showed correlations between expression and methylation to get a
better understanding of how differences in methylation modify mRNA expression. Though only
one gene was differentially expressed between our groups following multiple hypothesis
correction (FLOT?2), there were many more genes associated with DMRs that had a significant
correlation between methylation and expression (172 in total; Supplementary Table 9). MAPKI0
(Spearman’s p ~ 0.75) and WNTS8B (Spearman’s p ~ 0.82) were two other genes that were
associated with DMRs that showed a significant correlation between methylation and expression
(Supplementary Table 9). Wnt signaling has been linked to in utero lung development and
development/maturation during early life (alveologenesis) (56-58). Prior studies have shown that
Wnt/B-catenin and the mitogen-activated protein kinase (MAPK) signaling pathway take part in
the airway remodeling process in asthma (39). In a mouse model of asthma, blocking Wnt
signaling reduced airway remodeling, while p38 MAPK expression was increased in asthmatic
mice compared to controls (39). MAPK 10 expression was slightly higher on average in wildfire
smoke-exposed macaques than control macaques, and methylation was significantly positively
correlated with expression (hypermethylated in exposed animals). WNT8B expression was
slightly lower on average in exposed macaques, while methylation was significantly negatively
correlated with methylation (hypomethylated in exposed animals). Neither of these genes were
significantly differently expressed, however. Given the role of Wnt signaling and MAPK
signaling in airway remodeling, it seems possible that changes in gene regulation could have

contributed to the reduced lung function noted in wildfire smoke-exposed macaques (11).
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Our study had several limitations. As previously touched upon, our current study
included only female rhesus macaques, but a prior study with these macaques noted significant
sex-specific differences in PBMCs challenged with LPS or flagellin. Male wildfire smoke-
exposed macaques had significantly higher levels of IL-8 compared to controls, while female
wildfire smoke-exposed macaques had significantly higher levels of IL-6 compared to controls
(11). While IL-6 was not differentially expressed or methylated in our exposed macaques
compared to controls, this does underscore that we may have missed some sex-specific
differences in gene expression or methylation by sampling only female macaques for our current
study. Indeed, studies have shown that there are sex-specific differences in expression between
female and male asthmatics (59, 60), implying that the molecular underpinnings of asthma and
other pulmonary issues may differ between the sexes. Additionally, our cohort of wildfire
smoke-exposed macaques was roughly one year older than our cohort of control macaques.
Studies have indicated that methylation patterns are associated with aging (epigenetic clocks) in
humans (61, 62), so this is likely the case for rhesus macaques as well. Out of 2139 genes that
were associated with DMRs in our dataset, 20 were differentially methylated in a pattern that
was consistent with the models from the previously referenced studies on epigenetic clocks.
Based on these results, most of the differential methylation we observed cannot be explained by
known differences in how methylation correlates with age. Another potential alternative
explanation is that the differences in methylation we observed were due to greater cumulative
exposure to pollutants in the older macaques. Table 1 shows that the difference in cumulative
exposures to high levels of PM> 5 and ozone between the two groups were roughly equivalent to
the differences observed in the first three months of life, implying that these early exposures

were key drivers of the noted differences between the groups. However, cumulative exposures
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below the current U.S. EPA standards were associated with increased mortality in a Medicare
population (63), and they may also have an impact on the epigenome. The epigenetic effects of
acute and chronic wildfire smoke exposure are worthy of further investigation. As previously
discussed, we had a smaller sample size for our expression dataset (n = 13 after removing two
outliers) than our methylation dataset (n = 22). This could explain why we saw fewer changes in
expression overall, however samples appeared to cluster more closely based on exposure status
for the methylation dataset than the expression dataset (Supplementary Figure 3). The p-values
from DMRichR were empirical p-values calculated from permutation tests (64, 65). Although
this puts our study at a higher risk of false-positive findings, these permutation p-values
calculated by DMRichR were used to determine DMR significance in multiple published studies
in combination with effect size (64-67). Given that our analysis of chromatin states relied on
human hg38 annotations, we compared our macaque rheMac10 annotations to the hg38
annotations to make sure they were similar enough. About 67% of the DMR gene annotations
were exact matches after lifting over the coordinates to hg38. While 30% of DMRs had a
different annotation, some of these differences were just due to differences in gene naming
convention between the species. For example, one DMR was annotated to LOC694631
(IFNA1/13-like) in rheMac10, while the lifted over DMR was annotated to IFNA13 in hg38.In a
broader pathway analysis, 90% of the IPA pathways enriched in DMRs using rheMac10
annotations were also enriched when we used hg38 annotations. We also focused our discussion
on genes that were consistent between the two annotations.

One area of interest for future studies would be the stability of these changes. The
exposure event took place in 2008, while samples were collected from the macaques in 2019.

Over that relatively long course of time (the average lifespan for macaques in captivity is ~27
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years (68)), the methylation profiles still clustered based on exposure status (Figure 2,
Supplementary Figure 3). This implies that there are long-term impacts of wildfire smoke
exposure on methylation, and that at least some of these changes are highly stable. An early
study on DNA methylation stability involved sampling individuals three days apart to check for
differences in DNA methylation. This study on 12 gene promoters indicated that methylation
stability was marker dependent and varied based on sequence composition (69). Meanwhile, a
large-scale study on how storage conditions affect methylation stability indicated that storing
DNA samples in temperatures as high as four degrees Celsius for up to 20 years had no

significant impact on methylation (70).

CONCLUSIONS:

In summary, our study revealed differences in methylation and gene expression in nasal
epithelial samples between macaques that were exposed to wildfire smoke during early life and
macaques that were not exposed to wildfire smoke during early life. The wildfire smoke
associated DMRs were enriched for a variety of immune processes, but there were few
significant expression differences at baseline between exposed and non-exposed macaques.
Given the differences in methylation, perhaps differences in expression between these two
groups would become apparent following an immune/respiratory challenge, but future studies
would be required to explore this hypothesis. Our study indicates that wildfire smoke exposure in

early life can have long-term impacts on the epigenome.

METHODS:
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Animals

Wildfire smoke-exposed rhesus macaque monkeys born between April 1 and June 8, 2008 were
housed in outdoor facilities at the CNPRC from birth to now (Table 1). Monkeys born between
April 1 and June 8, 2009 were used as controls. PM2 s and ozone were measured by a California
Air Resources Board air monitoring station (site no. 57,577) located 2.7 miles southeast of the
California National Primate Research Center on the University of California Davis campus
(Figure 1). Care and housing of animals complied with the provisions of the Institute of
Laboratory Animal Resources and conformed to practices established by the American
Association for Accreditation of Laboratory Animal Care. Procedures in this study were

approved by the UC Davis Institutional Animal Care and Use Committee.

Sample Collection and DNA/RNA Extraction

Nasal epithelium samples were collected from 22 female rhesus macaques (Macaca mulatta)
housed at the California National Primate Research Center. Exposures of these animals to
wildfire smoke were previously estimated (11). Eight of these macaques were born in 2008 and
exposed to wildfire smoke from birth to 3 months old, while the other 14 were born in 2009 with
low wildfire exposure from birth to 3 months old (Table 1, demographic comparison of two
groups). We collected these nasal epithelium samples in 2019. RNA and DNA were isolated

using the Allprep DNA and RNA kit (Qiagen) according to the manufacturer’s instructions.

Library preparation for whole genome bisulfite sequencing (WGBS)
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Whole genome bisulfite sequencing (WGBS) libraries were prepared for all 22 samples. Library
quality was checked prior to sequencing using an Agilent 2100 Bioanalyzer system; library
concentration was measured using a Qubit DNA high sensitivity assay. Each library was
comprised of sample from a single individual; these individually barcoded libraries were then
pooled and sequenced on two lanes from a NovaSeq 6000 S4 flow cell at PE150 using Swift’s
Accel-NGS Methyl-Seq Kit at the DNA Technologies and Expression Analysis Cores at the UC
Davis Genome Center. We sequenced approximately 475 million paired end reads per sample

that passed initial filters. Reads were demultiplexed using the bcl2fastq Illumina software.

WGBS read alignment, differential methylation analysis, pathway analysis, and chromatin state

analysis

The CpG_Me pipeline (71-74) was utilized to align the WGBS data. Reads were trimmed using
Trim Galore (73) to address methylation biases at the 5* and 3’ end of reads (10 bases were
trimmed from the 3’ end of both read 1 and read 2, and 10 and 20 bases were trimmed from the
5’ end of reads 1 and 2 respectively). The reads were aligned to the M. mulatta genome using
Bismark (72), which was also used to deduplicate the aligned reads and generate CpG count
matrices. Read quality and mapping quality were assessed using MultiQC (74). Differentially
methylated regions between exposed and non-exposed macaques were identified using
DMRIichR (64, 75, 76), which uses the dmrseq (75) and bsseq (76) algorithms. Animal weight
was adjusted for as a covariate. We used the default paramters for DMRichR, including requiring
at least 1x coverage for all samples for a CpG, requiring a minimum of 5 CpGs for a DMR,
performing 10 permutations for DMR and block analyses, and setting the single CpG coefficient

required to discover testable background regions to be at least 0.05. Using DMRichR, candidate

20


https://doi.org/10.1101/2021.09.10.459648
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.10.459648; this version posted September 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

available under aCC-BY-NC-ND 4.0 International license.

regions are identified based on differences in mean methylation between groups, then region-
level metrics that account for mean methylation, CpG correlation, and coverage are computed.
These region-level metrics are then compared to a pooled null distribution generated via
permutations to calculate an empirical p value for each candidate region (64, 65). Bsseq (76) was
used to generate individual smoothed methylation values and heatmap visualizations. IPA

(QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) was

used for pathway enrichment analysis. We also used GOfuncR (54) for GO enrichments based
on DMR coordinates rather than gene names. HOMER (13) was used to identify enriched
transcription factor binding motifs in the DMRs (p < 0.05) , while we utilized MethMotif (14) to
characterize methylation frequency of transcription factors whose binding motifs were enriched
in the DMRs. We used the UCSC liftover tool (77) to lift DMR coordinates from rheMac10 to
hg38 because chromatin state information was not available for M. mulatta. Locus Overlap
Analysis (LOLA) (78) was used to determine whether DMRs were enriched for chromHMM
(79) states relative to the background regions. The spearman correlation coefficient between
gene expression and methylation levels for genes associated with DMRs was used to determine
whether significant methylation changes were associated with changes in gene expression (p<

0.05).

Library preparation for RNA-seq

RNAseq libraries were prepared for a total of 15 samples: 6 from wildfire smoke-exposed
individuals and 9 from non-exposed individuals (Supplementary Table 12, comparison of these
two groups). As some of the RNA samples were of low quantity, a special low-input RNA-seq

pipeline were applied at the Genomics, Epigenomics and Sequencing Core of University of
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Cincinnati (80, 81). Briefly, polyA RNA was isolated using NEBNext Poly(A) mRNA Magnetic
Isolation Module (New England BioLabs, Ipswich, MA) and enriched using SMARTer Apollo
NGS library prep system (Takara Bio USA, Mountain View, CA). Libraries were prepared using
NEBNext Ultra II Directional RNA Library Prep Kit (New England BioLabs), indexed, pooled
and sequenced using Nextseq 550 sequencer (Illumina, San Diego, CA). Approximately 40
million reads passing filter per sample were generated under the sequencing setting of single read
1x85 bp. Reads were demultiplexed and adapters were trimmed using the bcl2fastq [llumina

software.

RNA-seq read alignment, differential expression analysis, pathway analysis, and co-expression

analysis

Read quality was checked using FastQC (82), then the reads were aligned to the Macaca mulatta
genome (rheMac10, GenBank assembly accession: GCA_003339765.3) with Bowtie2 (83).
Transcripts were quantified using RSEM (84). The data from RSEM was congregated and
converted into DESeq?2 (85) format using tximport (86). Sample clustering by expression
(investigated via principal component analysis and hierarchical clustering) and detection of
differentially expressed genes between wildfire smoke-exposed and non-exposed samples was
done using DESeq?2 (85). Individual weight was included as a covariate in the differential
expression analysis. Two samples (one wildfire smoke-exposed and one non-exposed sample)
were excluded from all subsequent RNA-sequencing analyses because they were identified as
outliers in the hierarchical clustering analysis (Supplementary Figure 6). The resulting log-fold
change values were shrunken (following the recommendation from the DESeq?2 reference
manual) using apeg/m (87). Differentially expressed genes had FDR < 0.05 and an absolute

shrunken fold change of at least 1.2. The Ingenuity Pathway Analysis (IPA) software (QIAGEN
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Inc., https://www.giagenbioinformatics.com/products/ingenuitypathway-analysis) was used for

pathway analysis. Significantly enriched pathways in IPA had a p-value < 0.05.

Co-expressed modules of genes were found using WGCNA (19). The soft threshold (power) was
set to 8 based on a plot of soft threshold vs scale free topology model fit. Modules that were too
similar to one another (below a height of 0.5) were merged into one module. After merging, the
final co-expression modules were tested for significant associations with wildfire smoke
exposure and animal weight. Pathways enriched in genes in modules of interest were identified
using [PA.
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467  Table 1: Demographic characteristics of animal populations

2008 Birth Year 2009 Birth year P
Participants
N 8 14
Age at sample collection (yr) 11.2+0.2 10.3+0.1 P<0.001
Weight at sample collection (kg) 8.61£1.60 10.11+2.78 0.12
Genetic background
Indian 7 13 1.0
Mixed Indian-Chinese 1 1
Corral diversity 8 13 1.0
Maternal Background
Age at parturition (yr) 5.5+1.7 5.842.5 0.8
Genetic background
Indian 7 12 1.0
Mixed Indian-Chinese 1 2
Corral diversity 8 14 1.0
Ambient pollutants months 0-3
Days with PM, s higher than 35ug/m’ 10+£1.0 0+0 P<0.0001
Mean PM s concentration (ug/m°) 14.6£16.3 9.14£3.7 P<0.0001
Median PM, 5 concentration (ug/m?) 9.5 (6.0-15.6) 8.8 (6.4-11.4) P<0.0001
Hours over California 1-h ozone standard 13£2.9 0+0 P<0.0001
Mean ozone level (ppm) 0.032+0.020 0.029+0.017 P<0.001
Median ozone level (ppm) 0.030 (0.016-0.045)  0.027 (0.016-0.040) P<0.001

Cumulative exposures through sampling date
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Days with PM, s higher than 35ug/m’ 40+0 294+0.4 P<0.0001
Mean PM, 5 concentration (png/m?®) 9.3+£8.0 9.1£7.7 P<0.0001
Median PM, 5 concentration (ug/m?) 8.4 (5.5-13.4) 8.6 (6.3-11.4) P<0.0001
Hours over California 1-h ozone standard 24+0 7+0 N/A (0 SD)
Mean ozone level (ppm) 0.026+0.015 0.026+0.015 P<0.001
Median ozone level (ppm) 0.025 (0.015-0.036)  0.025 (0.015-0.036) P<0.001

Note: Age, weight and exposures are shown as mean = (SD) or median (interquartile range), and compared using t
test. Categorical variables (genetic background and corral diversity) are reported as group-specific numerical
frequency and compared using Fisher’s exact tests. 35ug/m’ is the 24-hour PM, s National Ambient Air Quality

Standard. 0.09ppm is the California 1-h ozone standard.
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Figure legends

Figure 1: Average daily PM2 s from April 2008 through October 2019 at the California Air
Resources Board air monitoring station (site no. 57,577) located 2.7 miles southeast of the
California National Primate Research Center on the University of California Davis campus. The
dotted line at 35ug/m? represent the 24-hour PM, s National Ambient Air Quality Standard. Note
the arrow pointing to the early-life exposure event in macaques born in 2008. All other exposure

events were shared between the two groups.

Figure 2: Heatmap showing sample clustering based on methylation. The heatmap includes only
differentially methylated regions (DMRs). The heatmap was normalized on a per row basis for

visualization, therefore the values on the scales are relative rather than absolute.

Figure 3: Examples of differentially methylated regions (DMRs) between rhesus macaques
exposed in the first three months of life to wildfire smoke and those that were not. A) IL4R. B)
RXRG. C) TLRS. D) ITGB6. Each dot represents the methylation percentage of one individual
at one CpG site, while each line represents the smoothed average methylation level moving
across the region. The red shaded boxes denote the specific DMR locations. Tracks for CpG
islands (if present) or genes are included underneath each plot. For the gene tracks, a solid box

indicates an exon, while the arrows indicate the direction of transcription.

Figure 4: Enriched pathway analyses for differentially methylated regions (DMRs). Only the top

ten (out of 186) enriched Ingenuity Pathway Analysis (IPA) canonical pathways are shown.

27


https://doi.org/10.1101/2021.09.10.459648
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.10.459648; this version posted September 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

491  Figure S: Enrichment in chromHMM (79) states in A) all differentially methylated regions

492  (DMRs), B) DMRs that were hypomethylated in wildfire smoke-exposed macaques, and C)

493  DMRs that were hypermethylated in wildfire smoke-exposed macaques. The rows in the plot
494  represent different datasets from different cell types from the NIH Roadmap Epigenomics

495  Consortium (88). Epithelial and IMR90 are highlighted in the plots, as these are the closest to the

496  nasal epithelial samples in our current study.

497

498  Figure 6. Correlation plots between expression and methylation for A) MAPK10and B) CD44.
499  Each individual point represents one sample. Expression and methylation were significantly

500 correlated (spearman p-value < 0.05) for both genes.

501
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Motif unmethylated partially methylated methylated
Fral/FOSL1 0.32 0.00
Atf3 0.18 0.01
JunB 0.12 0.00
BATF 0.28 0.03
Fra2/FOSL2 0.10 0.00
AP-1/Jun 0.19 0.00
p63/TP53 0.46 0.35 0.19

NF1-halfsite(CTF)/NFIA  0.64 0.31 0.05

Table 2


https://doi.org/10.1101/2021.09.10.459648
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.10.459648; this version posted September 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Table 1. Differentially methylated regions between rhesus macaques exposed to
wildfire smoke in early life and rhesus macaques with no early life exposure to wildfire smoke.
Note: betaCoefficient is presented with respect to exposed macaques (i.e. a positive

betaCoefficient implies hypermethylation in exposed macaques compared to control macaques)

Supplementary Table 2. Canonical pathways from Ingenuity Pathway Analysis that were

enriched in all differentially methylated regions.

Supplementary Table 3. Canonical pathways from Ingenuity Pathway Analysis that were
enriched in differentially methylated regions hypermethylated in macaques exposed to wildfire

smoke in early life.

Supplementary Table 4. Canonical pathways from Ingenuity Pathway Analysis that were
enriched in differentially methylated regions hypomethylated in macaques exposed to wildfire

smoke in early life.

Supplementary Table 5. Transcription factor binding site motifs that were significantly

enriched in differentially methylated regions (from HOMER (1)).

Supplementary Table 6. The differentially expressed gene between rhesus macaques exposed to
wildfire smoke in early life and rhesus macaques with no early life exposure to wildfire smoke.

Note: log2FoldChange is presented with respect to exposed macaques (i.e. a positive
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log2FoldChange implies greater expression in exposed macaques compared to control

macaques).

Supplementary Table 7. Genes in the purple module (the module most significantly associated

with exposure) from the weighted gene coexpression network analysis (WGCNA (2)).

Supplementary Table 8. Canonical pathways from Ingenuity Pathway Analysis that were

enriched in genes in the purple module from the WGCNA (2) analysis.

Supplementary Table 9. Genes that showed significant correlation (p < 0.05) between

methylation and expression across all samples.

Supplementary Table 10. Canonical pathways from Ingenuity Pathway Analysis that were

enriched in genes that had significantly correlated methylation and expression.

Supplementary Table 11. Comparison between differentially methylated genes from the current

study and other studies on respiratory diseases.

Supplementary Table 12. Extended information on the samples in our current study.

Supplementary Figure 1. Enrichment of different CpG features associated with all differentially

methylated regions, regions hypermethylated in wildfire-exposed macaques, and regions
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hypomethylated in wildfire-exposed macaques. Asterisks indicate a significant deficit or

enrichment of the feature in a given set (p < 0.05).

Supplementary Figure 2. Enrichment of different genic features associated with all
differentially methylated regions, regions hypermethylated in wildfire-exposed macaques, and
regions hypomethylated in wildfire-exposed macaques. Asterisks indicate a significant deficit or

enrichment of the feature in a given set (p < 0.05).

Supplementary Figure 3. Heatmaps showing sample clustering by A) methylation and B) gene
expression, and principal component analysis showing sample clustering by C) methylation and

D) gene expression.

Supplementary Figure 4. Module-trait relationship between clusters identified in WGCNA and
either exposure or animal weight. The top number in each box is the correlation value (ranging

from -1 to 1), while the bottom number in parentheses is the p-value for this correlation.

Supplementary Figure 5. Top enriched biological process, cellular component, and molecular
function gene ontology terms identified by GOfuncR (3) associated with differentially

methylated regions between wildfire-exposed macaques and control macaques.

Supplementary Figure 6. Heatmap showing all samples clustering by gene expression. Gene

expression data from the two leftmost samples were removed from the study as outliers.


https://doi.org/10.1101/2021.09.10.459648
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.10.459648; this version posted September 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

References

1. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of
lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B
cell identities. Mol Cell. 2010;38(4):576-89.

2. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis.
BMC Bioinformatics. 2008;9(1):559.

3. Grote S. GOfuncR: Gene ontology enrichment using FUNC. R package version 1.10.0 ed2020.


https://doi.org/10.1101/2021.09.10.459648
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.10.459648; this version posted September 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 Intgrnational license.

Clustering by gene expression

| ' Exposure

— Exposure
— 3 Exposed

I".;.-—

| w

al l"ﬂ_

] |'T'.'1"T,||-T
|

2 . Control

— - 1

L]
1

\ \ _
Il )

LRI

¥

Ly
|

|
s

TT'!'I

1
]

|

1 !

h

U

|
[\

|
|

‘ | ‘ H %
\

I
\

ML R0

(L i M

A | ‘ I‘

i
|T I"
il'
|

o)

v
\

"

i}
\

,'-"T"

"
!

il

7

L
|

d

i

L
\

‘ ” 11| ‘ \. ‘ I‘h \

| O

)

l

1

Supplemntary Figure 1


https://doi.org/10.1101/2021.09.10.459648
http://creativecommons.org/licenses/by-nc-nd/4.0/

All Hypermethylated| | Hypomethylated
CpG Islands * * *
CpG Shores: * * *
CpG Shelves: * * *
Open Sea{ * * *

0 10 20 0 10 20 0 10 20
Fold Enrichment

Supplemntary Figure 2


https://doi.org/10.1101/2021.09.10.459648
http://creativecommons.org/licenses/by-nc-nd/4.0/

Promoter-
5'UTR1
Exonj

Intron

3' UTR1
Downstreamj

Intergenic

All Hypermethylated| | Hypomethylated
]* *
4 -2 0 2 4-4 -2 0 2 4-4 2 0 2 4

Fold Enrichment

Supplemntary Figure 3


https://doi.org/10.1101/2021.09.10.459648
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

bioRxiv preprint doi: https://ddj. o i

(which was not certified by pe

Clustering by methylation

|

I I 3

e Exposure

400 -

200~-

PC2: 19% variance

-200-

-200

|

il

“ I”\‘ ] ||||I| I II IWM| ’ M lll\’ | “

|
il

Il IIIHIH%I_I Il

']

(i

|
LN

|

|

021.09.10.459648; this version posted.September 11, 2021. The copyright holder for this preprint
b author/funder, who has granted bioRxiv a license-to-display the preprintin perpetuity. It is made
hilable under aCC-BY-NC-ND 4.0 Internationallieense.

| |IH\I !‘ ”Il ‘HHHCI

=
®
=k
>
=
)
.
o)
S
1
O
>

0 200
PC1: 30% variance

I4
— .5

400

Exposure
Exposed

e Control

Exposure
Exposed
Control

= Ak
s n

¥

Ti

Clustering by gene expression

| Exposure
3 Exnasure
' I Exposed
82 & Control
1

III
|
{01
|
|
||
1 1111

il
NN

[l
0| i

|

¥
o

P
g
L

TFF'TI’F:F’; 'ﬁﬁr-f.
|

-

A

1
i

P g

w
|

e
I

ki

'-.

|

_Ezg_ _:—_ »
— e

\ I“ | “

—
—
— — —_— =
— A =
—— e e— _—
—_— — = —_—
—
P —

H
l

I

il
I

I 1F )

Liid rﬁ"l'r

|r_?-;'1
r '

20~

10~

PC2: 12% variance

_30 -

I 0
||

' HII|I| ||!| IE

Expression PCA

[
o
o
o
o
y Exposure
Exposed
e Control
o
o
~40 -20 0 20

PC1: 50% variance

Supplemntary Figure 4


https://doi.org/10.1101/2021.09.10.459648
http://creativecommons.org/licenses/by-nc-nd/4.0/

MEblack
MEblue
MEmagenta
MEcyan
MEtan
MEgreenyellow
MEyellow
MEgreen
MEmidnightblue [l
MEturquoise
MEpink

MEpurple .

MEsalmon

MEbrown
MEred

MEgrey

Module-trait relationships

—0.5

Supplemntary Figure 5

0.41 -0.26
(0.2) (0.4)
0.34 -0.38
(0.3) (0.2)
-0.16 0.14
(0.6) (0.6)
-0.22 -0.027
(0.5) (0.9)
0.37 -0.38
(0.2) (0.2)
-0.2 -0.46
(0.5) (0.1)
0.23 -0.11
(0.5) (0.7)
0.23 0.43
(0.5) (0.1)
0.36 0.042
(0.2) (0.9)
-0.12 0.041
(0.7) (0.9)
-0.079 -0.092
(0.8) (0.8)
0.48 -0.24
(0.1) (0.4)
-0.15 0.12
(0.6) (0.7)
-0.25 0.38
(0.4) 0.2)
-0.42 0.04
(0.2) (0.9)
-0.15 -0.27
(0.6) (0.4)
) Y
ro\)\ \6)(\
(o) $®
B


https://doi.org/10.1101/2021.09.10.459648
http://creativecommons.org/licenses/by-nc-nd/4.0/

Neuron differentiation
Developmental process

Cell adhesion

Biological adhesion

Multicellular organismal process
Behavior

Regulation of signaling
Synapse

Receptor complex

Cell junction Gene Ontology

Biological Process
Cellular Component
Molecular Function

Cell projection
Anchoring junction
Host cell nuclear part

Extrinsic component of membrane

Rac guanyl-nucleotide exchange factor
activity

Calcium ion binding

Transferase activity, transferring sulfur—
containing groups

Potassium:chloride symporter activity

Structural molecule activity conferring
elasticity

Molecular transducer activity

Transcription factor activity, sequence-
specific DNA binding

0 2 4 6 8
-logio(p)

Supplemntary Figure 6


https://doi.org/10.1101/2021.09.10.459648
http://creativecommons.org/licenses/by-nc-nd/4.0/

	rhesus monkey wildfire exposure 2021-09-10
	Figure1_9-10-2021
	Figure2_9-10-2021
	Figure3_9-10-2021
	Figure4_8-9-2021
	Figure5_9-10-2021
	Figure6_9-10-2021
	Table2
	Supplementary_information_document_8-9-2021
	SupplementaryFigure1_9-10-2021
	SupplementaryFigure2_9-10-2021
	SupplementaryFigure3_9-10-2021
	SupplementaryFigure4_9-10-2021
	SupplementaryFigure5_9-10-2021
	SupplementaryFigure6_9-10-2021

