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ABSTRACT 

Background 

Wildfire smoke is responsible for around 20% of all particulate emissions in the U.S. and affects 

millions of people worldwide. Children are especially vulnerable, as ambient air pollution 

exposure during early childhood is associated with reduced lung function. Most studies, 

however, have focused on the short-term impacts of wildfire smoke exposures. We aimed to 

identify long-term baseline epigenetic changes associated with early-life exposure to wildfire 

smoke. We collected nasal epithelium samples for whole genome bisulfite sequencing (WGBS) 

from two groups of adult female rhesus macaques: one group born just before the 2008 

California wildfire season and exposed to wildfire smoke during early-life (n = 8), and the other 

group born in 2009 with no wildfire smoke exposure during early-life (n = 14). RNA-sequencing 

was also performed on a subset of these samples.  

Results 

We identified 3370 differentially methylated regions (DMRs) (difference in methylation ³ 5% 

empirical p < 0.05) and 1 differentially expressed gene (FLOT2) (FDR< 0.05, fold of change ³ 

1.2). The DMRs were annotated to genes significantly enriched for synaptogenesis signaling, 

protein kinase A signaling, and a variety of immune processes, and some DMRs significantly 

correlated with gene expression differences. DMRs were also significantly enriched within 

regions of bivalent chromatin (top odds ratio = 1.46, q-value < 3 x 10-6) that often silence key 

developmental genes while keeping them poised for activation in pluripotent cells. 

Conclusions 
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These data suggest that early-life exposure to wildfire smoke leads to long-term changes in the 

methylome over genes impacting the nervous and immune systems, but follow-up studies will be 

required to test whether these changes influence transcription following an immune/respiratory 

challenge. 

 

Keywords: Wildfire smoke, whole genome bisulfite sequencing, RNA-sequencing, rhesus 

macaques, early life 
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BACKGROUND 1 

According to the National Interagency Fire Center, there were 50,477 wildfires (4.7 million acres 2 

burned) in the United States in 2019. In total, 212 million Americans lived in counties affected 3 

by wildfires in 2011 (1). These wildfires have contributed to levels of air pollution in the United 4 

States that have been linked to premature death (2-5). About 20% of all fine particulate 5 

emissions in the U.S. are from wildfire smoke, while half of all particulate matter less than 2.5 6 

µm in diameter (PM2.5) in California resulted from wildfires (2). PM2.5 are especially harmful, as 7 

these particles are able to penetrate the respiratory system and the lungs (2). Exposure to these 8 

particles has been associated with asthma, bronchitis, lung cancer, and cardiovascular disease (3-9 

5). Young children are especially vulnerable to these negative health effects, as studies have 10 

linked air pollution exposure in children to reduced lung function (6, 7), reduced height-for-age 11 

(8), increased blood pressure (9), and an increased risk of developing asthma and eczema (10). 12 

Most of these studies, however, focused on the short-term effects of exposures to wildfire smoke 13 

or polluted air and none have performed an unbiased assessment of gene pathways impacted by 14 

wildfire smoke exposure. 15 

A cohort of rhesus macaques (Macaca mulatta) that were exposed in their first three 16 

months of life to a harsh wildfire season in 2008 in California was previously studied to 17 

understand some of the long-term effects of wildfire smoke exposure (11). Peripheral blood 18 

mononuclear cells (PBMCs) were cultured and challenged with either LPS or flagellin, and 19 

secretions of IL-8 and IL-6 were compared to macaques that were born in 2009 (PM2.5 and ozone 20 

levels were much lower in 2009 compared to 2008) (11). Lung function was also compared 21 

between exposed and control macaques. Compared to control macaques, wildfire smoke-exposed 22 

macaques had significantly reduced lung volume. Female wildfire-exposed macaques showed 23 
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reduced production of IL-8 compared to controls, while male wildfire-exposed macaques showed 24 

reduced production of IL-6 compared to controls (11). This study implied that early-life exposure 25 

led to a difference in IL-8 and IL-6 production following an immune challenge, but it was still 26 

unclear to what degree these macaques exhibited baseline differences at the level of epigenetics 27 

and gene expression.  28 

The epigenetic mark of DNA methylation has the potential to reflect past exposures with 29 

long-lived marks on genes, while the transcriptome reflects current levels of gene expression in a 30 

sampled tissue. To test the hypothesis that early-life wildfire smoke exposure would result in 31 

detectable epigenetic differences to gene pathways reflecting cellular function, we performed the 32 

integrated unbiased approaches of whole genome bisulfite sequencing (methylome) and RNA-33 

sequencing (transcriptome) from nasal epithelial samples collected the same cohorts of female 34 

macaques examined a decade earlier for lung functions and immune responses. We identified a 35 

large number of genes associated with early-life exposure-related differential methylation 36 

involved in neuronal and immune signaling. In contrast, only one differentially expressed gene 37 

(FLOT2) was stably associated with early-life wildfire smoke exposure. 38 

 39 

RESULTS 40 

Exposure to wildfire smoke during infancy is associated with long-lasting changes to DNA 41 

methylation patterns in nasal epithelial cells. 42 

To test the effects of early-life wildfire smoke-exposure on methylation status throughout the 43 

genome, we performed whole genome bisulfite sequencing on nasal epithelial samples collected 44 

from 22 adult rhesus macaques in 2019 (8 born in 2008 and exposed to high levels of PM2.5 and 45 
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ozone due to wildfires, 14 born in 2009 and therefore has relatively low levels of exposure to 46 

PM2.5 and ozone; Figure 1, Table 1). Though there were several shared exposures to high levels 47 

of wildfire smoke PM2.5 (> 35ug/m3, the 24-hour PM2.5 National Ambient Air Quality Standard) and 48 

ozone after the 2009 cohort was born (especially in the year of 2019), there was one high 49 

exposure event that only the 2008 cohort was exposed to in early-life (10 days above 35ug/m3, 50 

Figure 1, Table 1). We assessed 26,609,677 CpG sites and identified 3370 differentially 51 

methylated regions (DMRs) between exposed and non-exposed samples (Figure 2, empirical p < 52 

0.05, differences in methylation>5%). The majority of these DMRs were hypermethylated in 53 

exposed animals (2899, ~86%). A total of 114 (3.38%) of these DMRs were primarily located in 54 

CpG islands (12), 287 (8.52%) were located in CpG shores (0-2kb from island), 205 (6.08%) 55 

were located in CpG shelves (2-4kb from island), and 2764 (82.02%) were in the open sea (>4kb 56 

from island). This distribution was significantly different than expected by chance, with an 57 

enrichment towards CpG islands, shores, and shelves compared to regions assayed 58 

(Supplementary Figure 1). These 3370 DMRs were annotated to 2139 genes (Supplementary 59 

Table 1), of which 1852 genes were associated with DMRs hypermethylated in the exposed 60 

group, while 376 genes were associated with DMRs hypomethylated in the exposed group, and 61 

89 genes were associated with both hypermethylated and hypomethylated DMRs (examples of 62 

DMRs shown in Figure 3). The DMRs were significantly more associated with promoters and 63 

exons than expected by chance, while they were less associated with intergenic regions than 64 

expected by chance (Supplementary Figure 2). The genes associated with DMRs as a whole were 65 

significantly enriched (FDR < 0.05) for 186 IPA canonical pathways, including axonal guidance 66 

signaling, synaptogenesis signaling pathway, protein kinase A signaling, IL-15 production, 67 

CXCR4 signaling, and Th1 and Th2 activation pathway (Figure 4, Supplementary Table 2). 68 
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Genes associated with hypermethylated DMRs were enriched for 187 IPA pathways, 168 of 69 

which were also enriched in genes associated with DMRs as a whole. The 19 unique IPA 70 

pathways enriched in hypermethylated DMRs include 14-3-3-mediated signaling, LPS-71 

stimulated MAPK Signaling, and NF-κB activation by viruses (Supplementary Table 3). Genes 72 

associated with hypomethylated DMRs were enriched for 41 IPA pathways, 23 of which were 73 

also enriched in genes associated with DMRs as a whole. The 18 unique IPA pathways enriched 74 

in hypomethylated DMRs include dermatan sulfate biosynthesis, xenobiotic metabolism PXR 75 

signaling pathway, and HOTAIR regulatory pathway (Supplementary Table 4). 76 

 77 

Impact of wildfire smoke-associated DNA methylation changes on TF binding. 78 

As the binding of transcription factors (TFs) are often influenced by DNA methylation, we 79 

performed a HOMER analysis to determine whether any transcription factor binding sites were 80 

enriched in these wildfire smoke-associated DMRs (13). A total of 131 transcription factor 81 

motifs were enriched in all DMRs (q < 0.05; Supplementary Table 5). Eight of the top ten most 82 

highly enriched TF motifs are part of the bZIP TF family (shown in Table 2). When testing for 83 

TF binding site enrichment in only DMRs that were hypermethylated in exposed macaques, six 84 

of the top ten were part of the bZIP TF family, while none of the top ten enriched TF binding 85 

sites in hypomethylated DMRs were part of the bZIP TF family (five out of ten contained 86 

homeobox motifs). Interestingly, the TFs whose binding sites were most enriched in all wildfire 87 

smoke-associated DMRs were primarily unmethylated (Table 2) in other ChIP-seq datasets (14), 88 

so the differential methylation could theoretically have a large impact on transcription factor 89 

binding and expression (15). In support of this, DNA methylation generally inhibits binding of 90 

bZIP TF members to DNA (15, 16). 91 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459648doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.10.459648
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Regions with hypomethylated DMRs are enriched for bivalent chromatin marks across tissue 92 

types.  93 

In order to understand the gene regulatory role of regions with wildfire smoke-DMRs, we 94 

searched for the enrichment of 15 pre-defined chromatin states across 127 epigenomes from 95 

multiple tissues and cell types in the Roadmap Epigenomics project (17). After converting the M. 96 

maculatta coordinates into human (hg38) coordinates and using LOLA, the DMRs as a whole 97 

were enriched for bivalent chromatin marks (top odds ratio for any mark = 1.46, q-value < 3 x 98 

10-6; Figure 5A). Bivalent chromatin marks represent co-existing activating and repressing 99 

marks, which often silence key developmental genes while keeping them poised for activation in 100 

pluripotent cells (18). Hypomethylated DMRs seemed to drive this enrichment (top odds ratio for 101 

any mark = 2.05, q-value < 0.02; Figure 5B), though hypermethylated DMRs showed enrichment 102 

(top odds ratio for any mark = 1.51, q-value < 1 x 10-6) for bivalent chromHMM chromatin states 103 

as well (Figure 5C).   104 

 105 

Early-life wildfire smoke exposure had a minimal effect on baseline genes expression levels.  106 

To determine whether early-life exposure to wildfire smoke leads to detectable differences in 107 

gene expression later in life, we performed RNA-sequencing on 15 female rhesus macaques (6 108 

born in 2008 and exposed to wildfire smoke, 9 born in 2009 and not directly exposed to the 2009 109 

California wildfires). A principal component analysis (PCA) and hierarchical clustering of all 110 

detected transcripts were performed to visualize how samples clustered based on expression 111 

(Supplementary Figure 3D). The top two principal components in a principal component analysis 112 

(PCA) explained 62% of the variation in the dataset. Exposed and non-exposed samples did not 113 

cluster separately in either the PCA or the hierarchical clustering analysis, implying no 114 
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widespread transcriptomic difference between exposed and non-exposed individuals. After 115 

multiple hypothesis correction (FDR < 0.05, fold change ³ 1.2; Supplementary Table 6), there 116 

was only one differentially expressed gene (FLOT2; Supplementary Table 6). None of the genes 117 

annotated to DMRs were significantly differentially expressed. 118 

To identify co-expressed genes whose expression correlated with wildfire smoke-119 

exposure status, we performed a weighted gene co-expression network analysis (WGCNA) (19). 120 

We identified 16 co-expressed modules using WGCNA. None of the modules were significantly 121 

associated with early-life exposure status (p < 0.05). The module that best correlated with 122 

exposure status was the purple module (p = 0.1; consisting of 585 genes, including IFI44, 123 

IFNA21, and IL24; Supplementary Figure 4, Supplementary Table 7). No genes in this module 124 

were significantly differentially expressed at an individual level, 19 genes were associated with 125 

significant DMRs, and two genes had significantly correlated methylation and expression. The 126 

genes in this module were enriched (FDR < 0.05) for 21 IPA pathways, including EIF2 127 

signaling, mTOR signaling, Th17 activation pathway, and interferon signaling (Supplementary 128 

Table 8).  129 

 130 

Correlation of DNA methylation and gene expression differences resulting from wildfire smoke 131 

exposure during infancy 132 

Out of the 2139 genes associated with DMRs, 2128 had enough corresponding expression data to 133 

evaluate the correlation between expression and methylation. To identify genes where 134 

differential methylation may be ultimately leading to differential expression, we calculated the 135 

spearman rank correlation between methylation and expression levels for genes that were 136 

associated with DMRs. In total, 172 genes were significantly correlated (spearman p-value < 137 
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0.05), with 76 genes showing a negative correlation and 96 showing a positive correlation 138 

between methylation and expression (Supplementary Table 9, two examples are shown in Figure 139 

6). These 172 genes were enriched for 32 IPA pathway terms, including leukocyte extravasation 140 

signaling, CCR5 signaling in macrophages, and MIF regulation of innate immunity 141 

(Supplementary Table 10).  142 

 143 

DISCUSSION 144 

Utilizing rhesus macaques that experienced the harsh conditions of the 2008 California wildfire 145 

season in their first three months, we have elucidated some of the long-term effects of early-life 146 

exposure to wildfire smoke. Baseline methylation profiles generally clustered better by exposure 147 

status than expression profiles (Supplementary Figure 3). Many genes (2139) were associated 148 

with differentially methylated regions between exposed and control macaques (empirical p < 149 

0.05), while only 1 gene (FLOT2) was differentially expressed between these groups after 150 

multiple hypothesis correction (FDR < 0.05). Out of the genes associated with differentially 151 

methylated regions, 172 had methylation levels that significantly correlated with expression 152 

levels across samples, indicating that the overall epigenetic regulatory landscape ultimately led 153 

to few significant differences in baseline expression. However, the changes in DNA methylation 154 

were significantly enriched at promoters and enhancers, and located at regions that transcription 155 

factors may bind, suggesting that they may have an impact on gene regulation. 156 

FLOT2 (flotillin 2) encodes a caveolae-associated, integral membrane protein that 157 

belongs to the lipid raft family. Flotillins are implicated in variety of cellular functions, including 158 

regulation of G-protein coupled receptor signaling (20), endocytosis (21), cell-cell adhesion (22), 159 

uropod formation and migratory capacity of neutrophils and monocytes (23) and T cells (24). 160 
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FLOT2 also protected lung epithelial cells from Fas-signaling mediated apoptosis (25), and silica 161 

nanoparticles were found in Flotillin-1 and -2 marked vesicles in alveolar epithelial cell (26). 162 

However, its role in response to wildfire smoke exposure has not been reported. One potential 163 

explanation for the few gene expression changes despite more widespread methylation 164 

differences is that many of these DMRs are in regions associated with bivalent chromatin marks. 165 

The differential methylation at these regions may not affect gene expression because the bivalent 166 

chromatin marks generally keep expression repressed, but poised for rapid activation during 167 

early development (27) or in cancer (28). This would imply that some of the methylation 168 

differences were due to early-life events that were not reflected in baseline transcript levels later 169 

in life. Additionally, although baseline gene expression was relatively similar between exposed 170 

and control macaques, one hypothesis is that the altered regulatory landscape could lead to 171 

differences in expression upon additional immune (or other) challenges. This hypothesis is 172 

supported by a previous study on macaques from these same cohorts that found differences in 173 

IL-6 (significant in males) and IL-8 (significant in females) production in peripheral blood 174 

mononuclear cells (PBMC) from wildfire smoke-exposed macaques compared to controls after a 175 

challenge with media, LPS, or flagellin (11). Out of 84 genes tested, only two (RELB and REL) 176 

showed significant differences in expression following a media challenge (essentially a 177 

comparison of baseline expression), while five genes were differentially expressed following a 178 

challenge with either LPS or flagellin (11). RELB was the only gene that was differentially 179 

expressed in all three tests, but the direction of change in challenged cells (increased RELB in 180 

cells from exposed animals) was opposite of what was found at baseline (decreased RELB in 181 

cells from exposed animals) (11). In summary, there were very few differences in baseline 182 

expression in the previous study between exposed and control cells, and even when there was 183 
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differential expression, those patterns changed or became non-significant following an immune 184 

challenge. While the sample types (PBMCs vs. nasal epithelium) and ages of the macaques 185 

(adolescents vs. adults) differ between the prior study and the current study, they both support 186 

that early exposure to wildfire smoke did not lead to drastic differences in baseline expression 187 

profiles between samples. Another potential explanation for differences in the degree of 188 

differential expression and differential methylation is that we had fewer samples for our 189 

differential expression analysis, potentially limiting our ability to identify differential expression 190 

compared to our ability to identify differential methylation. If there were widespread differences 191 

in expression due to exposure status, however, we expect that wildfire smoke-exposed samples 192 

would have clustered together in the principal component analysis and in hierarchical clustering 193 

analyses, so we postulate that this is not the major reason for the lack of differential expression.  194 

 195 

Long-term effects of wildfire smoke exposure on the methylome 196 

Our data implies that there are long-term effects on the methylome due to wildfire smoke 197 

exposures during infancy. DMRs were enriched for many pathways linked to asthma, COPD, or 198 

other pulmonary diseases, including IL-15 production (29, 30), CXCR4 signaling (31, 32), Actin 199 

cytoskeleton signaling (33, 34), VDR/RXR activation (35, 36), Th1 and Th2 activation pathway 200 

(37, 38),  and Wnt/β-catenin signaling (39, 40) (Supplementary Table 2). Cytokines derived from 201 

T helper type 2 (Th2) cells have long been thought to play a critical role in allergic asthma 202 

through regulation of immunoglobulin E (IgE) synthesis (38, 41), but other T helper subsets 203 

(such as Th1) are starting to gain recognition for their role in asthma as well. Increased levels of 204 

the Th1 cytokine IFN- γ have been shown to exacerbate existing asthmatic responses (42) and 205 

increase airway hyperresponsiveness (41) in transgenic mice. IFNGR2 (interferon gamma 206 
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receptor 2) was differentially methylated in our comparison (as were several other Th1 related 207 

genes, including IL6R, LOC694631/IFNA1/13-like, and NFATC1), perhaps indicating that the 208 

early life wildfire smoke exposure has altered Th1 responses and resulted in differential 209 

responses to bacterial and viral infection. Additionally, hypermethylation of IL6 and IFNA13 210 

was associated with idiopathic pulmonary fibrosis (IPF) (43), while hypermethylation of IL6R 211 

was associated with COPD in prior studies (44). IL6R and IFNA13 were also hypermethylated in 212 

exposed macaques in our current study (Supplementary Table 11), indicating that changes in the 213 

Th1 pathway may contribute to the reduction in lung function noted in macaques exposed to 214 

wildfire smoke early in life (11). Th2-related genes that were differentially methylated in our 215 

dataset include IL4R and TIMD4, while there were several genes associated with DMRs that 216 

were related to both the Th1 and Th2 pathways (including CD4, IL10, IL12RB2, NFATC2, 217 

RUNX3, and SOCS3). Hypermethylation of NFATC2 (44), RUNX3 (44), and SOCS3 (45) has 218 

been associated with COPD (Supplementary Table 11). These three genes were also 219 

hypermethylated in wildfire smoke-exposed macaques versus controls.  220 

Deletion of Fra1, the transcription factor with the most enriched motif in the DMRs 221 

(Table 2, Supplementary Table 5), in mice led to greater levels of progressive interstitial fibrosis 222 

(46). Fra1 is a bZIP transcription factor and bZIP transcription factor binding is generally 223 

inhibited by methylation (15, 16). Meanwhile, overexpression of Fra2 (another highly enriched 224 

bZIP TF motif in the DMRs) in mice lead to non-allergic asthma development (47). The other 225 

bZIP transcription factors whose motifs were among the top ten enriched motifs have also all 226 

been linked to pulmonary disease (ATF3 (48), JunB (49), BATF (50), and AP-1 (46, 51)). The 227 

role of bZIP transcription factors in pulmonary disease pathogenesis combined with the 228 

sensitivity of bZIP to changes in methylation imply that the differences in methylation noted 229 
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between wildfire smoke-exposed and non-exposed macaques could greatly impact how bZIP 230 

targets are regulated following a respiratory challenge. Overall, differences in methylation in Th1 231 

and Th2-related genes (and the relation of those genes to asthma, IPF, and COPD pathogenesis; 232 

see Supplementary Table 11) may explain the long-term differences in lung function previously 233 

observed between wildfire smoke-exposed macaques and controls (11).  234 

Interestingly, there is also recent research that suggests that exposure to air pollution can 235 

have negative neuropsychological effects in children (52, 53). The DMRs from our dataset were 236 

enriched in multiple IPA neurological pathways, including axonal guidance signaling (most 237 

significant pathway), synaptogenesis signaling pathway (third most significant pathway), and 238 

neuropathic pain signaling in dorsal horn neurons (Supplementary Table 2). Additionally, the 239 

top enriched biological process term in GOfuncR (54) was neuron differentiation, while the top 240 

enriched cellular component term was synapse (Supplementary Figure 5). The effect of wildfire 241 

smoke on neurological development is understudied, but studies have shown that particles less 242 

than 0.1 µm in diameter (which are produced by wildfires) can cross the blood-brain barrier (55). 243 

Additionally, exposure to these ultrafine particles has been associated with ADHD, autism, and 244 

declines in school performance and memory in children (53). Along with this evidence from 245 

prior studies, the differential methylation of regions near genes involved in neurological 246 

pathways indicates that early-life wildfire smoke exposure could have a long-lasting impact on 247 

nervous system function. 248 

 249 

Genes with correlated changes in methylation and expression are enriched for pathways 250 

associated with respiratory diseases 251 
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In addition to directly studying genes and enriched pathways associated with DMRs, we also 252 

wanted to identify genes that showed correlations between expression and methylation to get a 253 

better understanding of how differences in methylation modify mRNA expression. Though only 254 

one gene was differentially expressed between our groups following multiple hypothesis 255 

correction (FLOT2), there were many more genes associated with DMRs that had a significant 256 

correlation between methylation and expression (172 in total; Supplementary Table 9). MAPK10 257 

(Spearman’s ρ ~ 0.75) and WNT8B (Spearman’s ρ ~ 0.82) were two other genes that were 258 

associated with DMRs that showed a significant correlation between methylation and expression 259 

(Supplementary Table 9). Wnt signaling has been linked to in utero lung development and 260 

development/maturation during early life (alveologenesis) (56-58). Prior studies have shown that 261 

Wnt/β-catenin and the mitogen-activated protein kinase (MAPK) signaling pathway take part in 262 

the airway remodeling process in asthma (39). In a mouse model of asthma, blocking Wnt 263 

signaling reduced airway remodeling, while p38 MAPK expression was increased in asthmatic 264 

mice compared to controls (39). MAPK10 expression was slightly higher on average in wildfire 265 

smoke-exposed macaques than control macaques, and methylation was significantly positively 266 

correlated with expression (hypermethylated in exposed animals). WNT8B expression was 267 

slightly lower on average in exposed macaques, while methylation was significantly negatively 268 

correlated with methylation (hypomethylated in exposed animals). Neither of these genes were 269 

significantly differently expressed, however. Given the role of Wnt signaling and MAPK 270 

signaling in airway remodeling, it seems possible that changes in gene regulation could have 271 

contributed to the reduced lung function noted in wildfire smoke-exposed macaques (11).  272 

 273 
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Our study had several limitations. As previously touched upon, our current study 274 

included only female rhesus macaques, but a prior study with these macaques noted significant 275 

sex-specific differences in PBMCs challenged with LPS or flagellin. Male wildfire smoke-276 

exposed macaques had significantly higher levels of IL-8 compared to controls, while female 277 

wildfire smoke-exposed macaques had significantly higher levels of IL-6 compared to controls 278 

(11). While IL-6 was not differentially expressed or methylated in our exposed macaques 279 

compared to controls, this does underscore that we may have missed some sex-specific 280 

differences in gene expression or methylation by sampling only female macaques for our current 281 

study. Indeed, studies have shown that there are sex-specific differences in expression between 282 

female and male asthmatics (59, 60), implying that the molecular underpinnings of asthma and 283 

other pulmonary issues may differ between the sexes. Additionally, our cohort of wildfire 284 

smoke-exposed macaques was roughly one year older than our cohort of control macaques. 285 

Studies have indicated that methylation patterns are associated with aging (epigenetic clocks) in 286 

humans (61, 62), so this is likely the case for rhesus macaques as well. Out of 2139 genes that 287 

were associated with DMRs in our dataset, 20 were differentially methylated in a pattern that 288 

was consistent with the models from the previously referenced studies on epigenetic clocks. 289 

Based on these results, most of the differential methylation we observed cannot be explained by 290 

known differences in how methylation correlates with age. Another potential alternative 291 

explanation is that the differences in methylation we observed were due to greater cumulative 292 

exposure to pollutants in the older macaques. Table 1 shows that the difference in cumulative 293 

exposures to high levels of PM2.5 and ozone between the two groups were roughly equivalent to 294 

the differences observed in the first three months of life, implying that these early exposures 295 

were key drivers of the noted differences between the groups. However, cumulative exposures 296 
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below the current U.S. EPA standards were associated with increased mortality in a Medicare 297 

population (63), and they may also have an impact on the epigenome. The epigenetic effects of 298 

acute and chronic wildfire smoke exposure are worthy of further investigation. As previously 299 

discussed, we had a smaller sample size for our expression dataset (n = 13 after removing two 300 

outliers) than our methylation dataset (n = 22). This could explain why we saw fewer changes in 301 

expression overall, however samples appeared to cluster more closely based on exposure status 302 

for the methylation dataset than the expression dataset (Supplementary Figure 3). The p-values 303 

from DMRichR were empirical p-values calculated from permutation tests (64, 65). Although 304 

this puts our study at a higher risk of false-positive findings, these permutation p-values 305 

calculated by DMRichR were used to determine DMR significance in multiple published studies 306 

in combination with effect size (64-67). Given that our analysis of chromatin states relied on 307 

human hg38 annotations, we compared our macaque rheMac10 annotations to the hg38 308 

annotations to make sure they were similar enough. About 67% of the DMR gene annotations 309 

were exact matches after lifting over the coordinates to hg38. While 30% of DMRs had a 310 

different annotation, some of these differences were just due to differences in gene naming 311 

convention between the species. For example, one DMR was annotated to LOC694631 312 

(IFNA1/13-like) in rheMac10, while the lifted over DMR was annotated to IFNA13 in hg38. In a 313 

broader pathway analysis, 90% of the IPA pathways enriched in DMRs using rheMac10 314 

annotations were also enriched when we used hg38 annotations. We also focused our discussion 315 

on genes that were consistent between the two annotations. 316 

 One area of interest for future studies would be the stability of these changes. The 317 

exposure event took place in 2008, while samples were collected from the macaques in 2019. 318 

Over that relatively long course of time (the average lifespan for macaques in captivity is ~27 319 
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years (68)), the methylation profiles still clustered based on exposure status (Figure 2, 320 

Supplementary Figure 3). This implies that there are long-term impacts of wildfire smoke 321 

exposure on methylation, and that at least some of these changes are highly stable. An early 322 

study on DNA methylation stability involved sampling individuals three days apart to check for 323 

differences in DNA methylation. This study on 12 gene promoters indicated that methylation 324 

stability was marker dependent and varied based on sequence composition (69). Meanwhile, a 325 

large-scale study on how storage conditions affect methylation stability indicated that storing 326 

DNA samples in temperatures as high as four degrees Celsius for up to 20 years had no 327 

significant impact on methylation (70). 328 

 329 

CONCLUSIONS: 330 

In summary, our study revealed differences in methylation and gene expression in nasal 331 

epithelial samples between macaques that were exposed to wildfire smoke during early life and 332 

macaques that were not exposed to wildfire smoke during early life. The wildfire smoke 333 

associated DMRs were enriched for a variety of immune processes, but there were few 334 

significant expression differences at baseline between exposed and non-exposed macaques. 335 

Given the differences in methylation, perhaps differences in expression between these two 336 

groups would become apparent following an immune/respiratory challenge, but future studies 337 

would be required to explore this hypothesis. Our study indicates that wildfire smoke exposure in 338 

early life can have long-term impacts on the epigenome. 339 

 340 

 METHODS: 341 
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Animals 342 

Wildfire smoke-exposed rhesus macaque monkeys born between April 1 and June 8, 2008 were 343 

housed in outdoor facilities at the CNPRC from birth to now (Table 1). Monkeys born between 344 

April 1 and June 8, 2009 were used as controls. PM2.5 and ozone were measured by a California 345 

Air Resources Board air monitoring station (site no. 57,577) located 2.7 miles southeast of the 346 

California National Primate Research Center on the University of California Davis campus 347 

(Figure 1). Care and housing of animals complied with the provisions of the Institute of 348 

Laboratory Animal Resources and conformed to practices established by the American 349 

Association for Accreditation of Laboratory Animal Care. Procedures in this study were 350 

approved by the UC Davis Institutional Animal Care and Use Committee. 351 

 352 

Sample Collection and DNA/RNA Extraction 353 

Nasal epithelium samples were collected from 22 female rhesus macaques (Macaca mulatta) 354 

housed at the California National Primate Research Center. Exposures of these animals to 355 

wildfire smoke were previously estimated (11). Eight of these macaques were born in 2008 and 356 

exposed to wildfire smoke from birth to 3 months old, while the other 14 were born in 2009 with 357 

low wildfire exposure from birth to 3 months old (Table 1, demographic comparison of two 358 

groups). We collected these nasal epithelium samples in 2019. RNA and DNA were isolated 359 

using the Allprep DNA and RNA kit (Qiagen) according to the manufacturer’s instructions.  360 

 361 

Library preparation for whole genome bisulfite sequencing (WGBS) 362 
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Whole genome bisulfite sequencing (WGBS) libraries were prepared for all 22 samples. Library 363 

quality was checked prior to sequencing using an Agilent 2100 Bioanalyzer system; library 364 

concentration was measured using a Qubit DNA high sensitivity assay. Each library was 365 

comprised of sample from a single individual; these individually barcoded libraries were then 366 

pooled and sequenced on two lanes from a NovaSeq 6000 S4 flow cell at PE150 using Swift’s 367 

Accel-NGS Methyl-Seq Kit at the DNA Technologies and Expression Analysis Cores at the UC 368 

Davis Genome Center. We sequenced approximately 475 million paired end reads per sample 369 

that passed initial filters. Reads were demultiplexed using the bcl2fastq Illumina software.  370 

 371 

WGBS read alignment, differential methylation analysis, pathway analysis, and chromatin state 372 

analysis 373 

The CpG_Me pipeline (71-74) was utilized to align the WGBS data. Reads were trimmed using 374 

Trim Galore (73) to address methylation biases at the 5’ and 3’ end of reads (10 bases were 375 

trimmed from the 3’ end of both read 1 and read 2, and 10 and 20 bases were trimmed from the 376 

5’ end of reads 1 and 2 respectively). The reads were aligned to the M. mulatta genome using 377 

Bismark (72), which was also used to deduplicate the aligned reads and generate CpG count 378 

matrices. Read quality and mapping quality were assessed using MultiQC (74). Differentially 379 

methylated regions between exposed and non-exposed macaques were identified using 380 

DMRichR (64, 75, 76), which uses the dmrseq (75) and bsseq (76) algorithms. Animal weight 381 

was adjusted for as a covariate. We used the default paramters for DMRichR, including requiring 382 

at least 1x coverage for all samples for a CpG, requiring a minimum of 5 CpGs for a DMR, 383 

performing 10 permutations for DMR and block analyses, and setting the single CpG coefficient 384 

required to discover testable background regions to be at least 0.05. Using DMRichR, candidate 385 
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regions are identified based on differences in mean methylation between groups, then region-386 

level metrics that account for mean methylation, CpG correlation, and coverage are computed. 387 

These region-level metrics are then compared to a pooled null distribution generated via 388 

permutations to calculate an empirical p value for each candidate region (64, 65). Bsseq (76) was 389 

used to generate individual smoothed methylation values and heatmap visualizations. IPA 390 

(QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) was 391 

used for pathway enrichment analysis. We also used GOfuncR (54) for GO enrichments based 392 

on DMR coordinates rather than gene names. HOMER (13) was used to identify enriched 393 

transcription factor binding motifs in the DMRs (p < 0.05) , while we utilized MethMotif (14) to 394 

characterize methylation frequency of transcription factors whose binding motifs were enriched 395 

in the DMRs. We used the UCSC liftover tool (77) to lift DMR coordinates from rheMac10 to 396 

hg38 because chromatin state information was not available for M. mulatta. Locus Overlap 397 

Analysis (LOLA) (78) was used to determine whether DMRs were enriched for chromHMM 398 

(79) states relative to the background regions. The spearman correlation coefficient between 399 

gene expression and methylation levels for genes associated with DMRs was used to determine 400 

whether significant methylation changes were associated with changes in gene expression (p< 401 

0.05). 402 

 403 

Library preparation for RNA-seq 404 

RNAseq libraries were prepared for a total of 15 samples: 6 from wildfire smoke-exposed 405 

individuals and 9 from non-exposed individuals (Supplementary Table 12, comparison of these 406 

two groups). As some of the RNA samples were of low quantity, a special low-input RNA-seq 407 

pipeline were applied at the Genomics, Epigenomics and Sequencing Core of University of 408 
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Cincinnati (80, 81). Briefly, polyA RNA was isolated using NEBNext Poly(A) mRNA Magnetic 409 

Isolation Module (New England BioLabs, Ipswich, MA) and enriched using SMARTer Apollo 410 

NGS library prep system (Takara Bio USA, Mountain View, CA). Libraries were prepared using 411 

NEBNext Ultra II Directional RNA Library Prep Kit (New England BioLabs), indexed, pooled 412 

and sequenced using Nextseq 550 sequencer (Illumina, San Diego, CA). Approximately 40 413 

million reads passing filter per sample were generated under the sequencing setting of single read 414 

1x85 bp. Reads were demultiplexed and adapters were trimmed using the bcl2fastq Illumina 415 

software. 416 

RNA-seq read alignment, differential expression analysis, pathway analysis, and co-expression 417 

analysis 418 

Read quality was checked using FastQC (82), then the reads were aligned to the Macaca mulatta 419 

genome (rheMac10, GenBank assembly accession: GCA_003339765.3) with Bowtie2 (83). 420 

Transcripts were quantified using RSEM (84). The data from RSEM was congregated and 421 

converted into DESeq2 (85) format using tximport (86). Sample clustering by expression 422 

(investigated via principal component analysis and hierarchical clustering) and detection of 423 

differentially expressed genes between wildfire smoke-exposed and non-exposed samples was 424 

done using DESeq2 (85). Individual weight was included as a covariate in the differential 425 

expression analysis. Two samples (one wildfire smoke-exposed and one non-exposed sample) 426 

were excluded from all subsequent RNA-sequencing analyses because they were identified as 427 

outliers in the hierarchical clustering analysis (Supplementary Figure 6). The resulting log-fold 428 

change values were shrunken (following the recommendation from the DESeq2 reference 429 

manual) using apeglm (87). Differentially expressed genes had FDR < 0.05 and an absolute 430 

shrunken fold change of at least 1.2. The Ingenuity Pathway Analysis (IPA) software (QIAGEN 431 
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Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) was used for 432 

pathway analysis. Significantly enriched pathways in IPA had a p-value < 0.05.  433 

Co-expressed modules of genes were found using WGCNA (19). The soft threshold (power) was 434 

set to 8 based on a plot of soft threshold vs scale free topology model fit. Modules that were too 435 

similar to one another (below a height of 0.5) were merged into one module. After merging, the 436 

final co-expression modules were tested for significant associations with wildfire smoke 437 

exposure and animal weight. Pathways enriched in genes in modules of interest were identified 438 

using IPA. 439 
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Table 1: Demographic characteristics of animal populations 467 

 2008 Birth Year 2009 Birth year P 

Participants    

     N 8 14  

     Age at sample collection (yr) 11.2±0.2 10.3±0.1 P<0.001 

     Weight at sample collection (kg) 8.61±1.60 10.11±2.78 0.12 

     Genetic background    

           Indian 7 13 1.0 

           Mixed Indian-Chinese 1 1  

     Corral diversity 8 13 1.0 

Maternal Background    

     Age at parturition (yr) 5.5±1.7 5.8±2.5 0.8 

     Genetic background    

   Indian 7 12 1.0 

   Mixed Indian-Chinese 1 2  

     Corral diversity 8 14 1.0 

Ambient pollutants months 0-3    

           Days with PM2.5 higher than 35ug/m3 10±1.0 0±0 P<0.0001 

           Mean PM2.5 concentration (µg/m3) 14.6±16.3 9.1±3.7 P<0.0001 

           Median PM2.5 concentration (µg/m3) 9.5 (6.0-15.6) 8.8 (6.4-11.4) P<0.0001 

           Hours over California 1-h ozone standard 13±2.9 0±0 P<0.0001 

           Mean ozone level (ppm) 0.032±0.020 0.029±0.017 P<0.001 

           Median ozone level (ppm) 0.030 (0.016-0.045) 0.027 (0.016-0.040) P<0.001 

Cumulative exposures through sampling date     
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           Days with PM2.5 higher than 35ug/m3 40±0 29±0.4 P<0.0001 

           Mean PM2.5 concentration (µg/m3) 9.3±8.0 9.1±7.7 P<0.0001 

           Median PM2.5 concentration (µg/m3) 8.4 (5.5-13.4) 8.6 (6.3-11.4) P<0.0001 

           Hours over California 1-h ozone standard     24±0 7±0 N/A (0 SD) 

           Mean ozone level (ppm) 0.026±0.015 0.026±0.015 P<0.001 

           Median ozone level (ppm) 0.025 (0.015-0.036) 0.025 (0.015-0.036) P<0.001 

Note: Age, weight and exposures are shown as mean ± (SD) or median (interquartile range), and compared using t 

test. Categorical variables (genetic background and corral diversity) are reported as group-specific numerical 

frequency and compared using Fisher’s exact tests. 35ug/m3 is the 24-hour PM2.5 National Ambient Air Quality 

Standard. 0.09ppm is the California 1-h ozone standard.  

  468 
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Figure legends 469 

Figure 1: Average daily PM2.5 from April 2008 through October 2019 at the California Air 470 

Resources Board air monitoring station (site no. 57,577) located 2.7 miles southeast of the 471 

California National Primate Research Center on the University of California Davis campus. The 472 

dotted line at 35ug/m3 represent the 24-hour PM2.5 National Ambient Air Quality Standard. Note 473 

the arrow pointing to the early-life exposure event in macaques born in 2008. All other exposure 474 

events were shared between the two groups. 475 

 476 

Figure 2: Heatmap showing sample clustering based on methylation. The heatmap includes only 477 

differentially methylated regions (DMRs). The heatmap was normalized on a per row basis for 478 

visualization, therefore the values on the scales are relative rather than absolute. 479 

 480 

Figure 3: Examples of differentially methylated regions (DMRs) between rhesus macaques 481 

exposed in the first three months of life to wildfire smoke and those that were not. A) IL4R. B) 482 

RXRG. C) TLR5. D) ITGB6. Each dot represents the methylation percentage of one individual 483 

at one CpG site, while each line represents the smoothed average methylation level moving 484 

across the region. The red shaded boxes denote the specific DMR locations. Tracks for CpG 485 

islands (if present) or genes are included underneath each plot. For the gene tracks, a solid box 486 

indicates an exon, while the arrows indicate the direction of transcription. 487 

 488 

Figure 4: Enriched pathway analyses for differentially methylated regions (DMRs). Only the top 489 

ten (out of 186) enriched Ingenuity Pathway Analysis (IPA) canonical pathways are shown. 490 
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Figure 5: Enrichment in chromHMM (79) states in A) all differentially methylated regions 491 

(DMRs), B) DMRs that were hypomethylated in wildfire smoke-exposed macaques, and C) 492 

DMRs that were hypermethylated in wildfire smoke-exposed macaques. The rows in the plot 493 

represent different datasets from different cell types from the NIH Roadmap Epigenomics 494 

Consortium (88). Epithelial and IMR90 are highlighted in the plots, as these are the closest to the 495 

nasal epithelial samples in our current study. 496 

 497 

Figure 6. Correlation plots between expression and methylation for A) MAPK10and B) CD44. 498 

Each individual point represents one sample. Expression and methylation were significantly 499 

correlated (spearman p-value < 0.05) for both genes. 500 

  501 
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Motif unmethylated partially methylated methylated
Fra1/FOSL1 0.68 0.32 0.00

Atf3 0.82 0.18 0.01
JunB 0.88 0.12 0.00
BATF 0.69 0.28 0.03

Fra2/FOSL2 0.90 0.10 0.00
AP-1/Jun 0.81 0.19 0.00
p63/TP53 0.46 0.35 0.19

NF1-halfsite(CTF)/NFIA 0.64 0.31 0.05

Table 2
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Supplementary Table 1. Differentially methylated regions between rhesus macaques exposed to 

wildfire smoke in early life and rhesus macaques with no early life exposure to wildfire smoke. 

Note: betaCoefficient is presented with respect to exposed macaques (i.e. a positive 

betaCoefficient implies hypermethylation in exposed macaques compared to control macaques) 

 

Supplementary Table 2. Canonical pathways from Ingenuity Pathway Analysis that were 

enriched in all differentially methylated regions. 

 

Supplementary Table 3. Canonical pathways from Ingenuity Pathway Analysis that were 

enriched in differentially methylated regions hypermethylated in macaques exposed to wildfire 

smoke in early life. 

 

Supplementary Table 4. Canonical pathways from Ingenuity Pathway Analysis that were 

enriched in differentially methylated regions hypomethylated in macaques exposed to wildfire 

smoke in early life. 

 

Supplementary Table 5. Transcription factor binding site motifs that were significantly 

enriched in differentially methylated regions (from HOMER (1)). 

 

Supplementary Table 6. The differentially expressed gene between rhesus macaques exposed to 

wildfire smoke in early life and rhesus macaques with no early life exposure to wildfire smoke. 

Note: log2FoldChange is presented with respect to exposed macaques (i.e. a positive 
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log2FoldChange implies greater expression in exposed macaques compared to control 

macaques). 

 

Supplementary Table 7. Genes in the purple module (the module most significantly associated 

with exposure) from the weighted gene coexpression network analysis (WGCNA (2)). 

 

Supplementary Table 8. Canonical pathways from Ingenuity Pathway Analysis that were 

enriched in genes in the purple module from the WGCNA (2) analysis. 

 

Supplementary Table 9. Genes that showed significant correlation (p ≤ 0.05) between 

methylation and expression across all samples. 

 

Supplementary Table 10. Canonical pathways from Ingenuity Pathway Analysis that were 

enriched in genes that had significantly correlated methylation and expression. 

 

Supplementary Table 11. Comparison between differentially methylated genes from the current 

study and other studies on respiratory diseases. 

 

Supplementary Table 12. Extended information on the samples in our current study. 

 

 

Supplementary Figure 1. Enrichment of different CpG features associated with all differentially 

methylated regions, regions hypermethylated in wildfire-exposed macaques, and regions 
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hypomethylated in wildfire-exposed macaques. Asterisks indicate a significant deficit or 

enrichment of the feature in a given set (p ≤ 0.05). 

 

Supplementary Figure 2. Enrichment of different genic features associated with all 

differentially methylated regions, regions hypermethylated in wildfire-exposed macaques, and 

regions hypomethylated in wildfire-exposed macaques. Asterisks indicate a significant deficit or 

enrichment of the feature in a given set (p ≤ 0.05). 

 

Supplementary Figure 3. Heatmaps showing sample clustering by A) methylation and B) gene 

expression, and principal component analysis showing sample clustering by C) methylation and 

D) gene expression. 

 

Supplementary Figure 4. Module-trait relationship between clusters identified in WGCNA and 

either exposure or animal weight. The top number in each box is the correlation value (ranging 

from -1 to 1), while the bottom number in parentheses is the p-value for this correlation. 

 

Supplementary Figure 5. Top enriched biological process, cellular component, and molecular 

function gene ontology terms identified by GOfuncR (3) associated with differentially 

methylated regions between wildfire-exposed macaques and control macaques. 

 

 

Supplementary Figure 6. Heatmap showing all samples clustering by gene expression. Gene 

expression data from the two leftmost samples were removed from the study as outliers. 
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Supplemntary Figure 1
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