

1 **Generation and diversification of recombinant monoclonal antibodies for studying mitosis**

2
3 Keith F. DeLuca^{1*}, Jeanne E. Mick^{1*}, Amy L. Hodges¹, Wanessa C. Lima², Lori Sherman³, Kristin L.
4 Schaller⁴, Steven M. Anderson^{3,5}, Ning Zhao¹, Timothy J. Stasevich^{1,6}, Dileep Varma⁷, Gary J. Gorbsky⁸,
5 Jakob Nilsson⁹, and Jennifer G. DeLuca^{1#}

6
7 ¹Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA

8 ²Geneva Antibody Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland

9 ³CU Cancer Center Cell Technologies Shared Resource, University of Colorado Cancer Center, Anschutz Medical Campus,
10 Aurora, CO

11 ⁴Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado Anschutz Medical
12 Campus, Aurora, CO

13 ⁵Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

14 ⁶Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan

15 ⁷Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, USA

16 ⁸Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA

17 ⁹The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences,
18 Copenhagen, Denmark

19 *Authors contributed equally

20 #For correspondence: Jennifer G. DeLuca, jdeluca@colostate.edu

21
22
23
24
25
26
27 **Abstract**

28 Antibodies are indispensable tools used for a large number of applications in both foundational and
29 translational bioscience research; however, there are drawbacks to using traditional antibodies generated
30 in animals. These include a lack of standardization leading to problems with reproducibility, high costs of
31 antibodies purchased from commercial sources, and ethical concerns regarding the large number of
32 animals used to generate antibodies. To address these issues, we have developed practical
33 methodologies and tools for generating low-cost, high-yield preparations of recombinant monoclonal
34 antibodies and antibody fragments directed to protein epitopes from primary sequences. We describe
35 these methods here, as well as approaches to diversify monoclonal antibodies, including customization
36 of antibody species specificity, generation of genetically encoded small antibody fragments, and
37 conversion of single chain antibody fragments (e.g. scFv) into full-length, bivalent antibodies. This study
38 focuses on antibodies directed to epitopes important for mitotic cell division; however, the methods and
39 reagents described here are applicable to antibodies and antibody fragments for use in any field.

40

41 **Introduction**

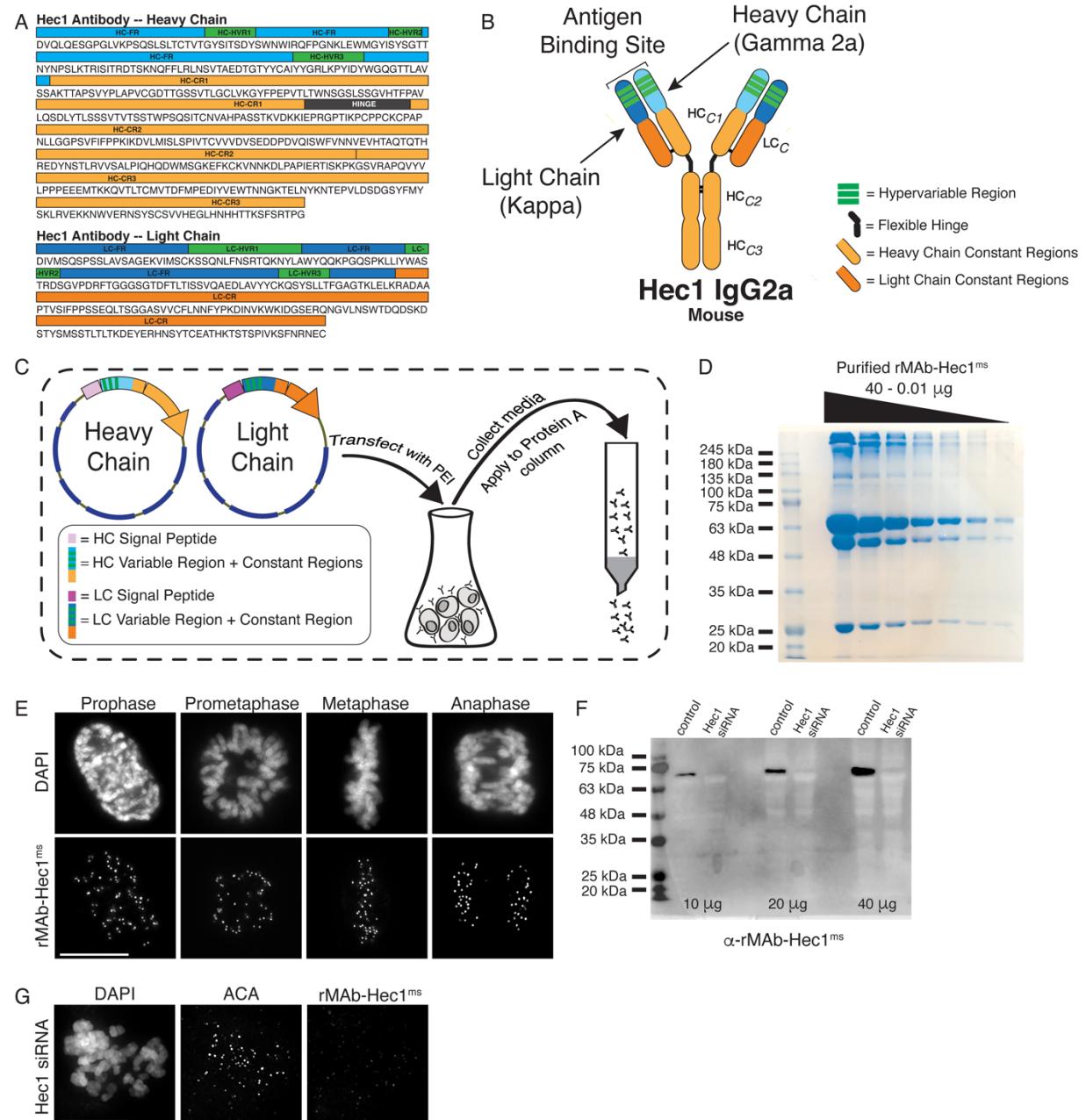
42 Antibodies are used in a diverse array of applications in the biomedical sciences including detection of
43 biomolecules in cells, tissues, and biological fluids; protein purification; functional depletion of proteins
44 from cells and cell extracts; medical diagnostics, and therapeutic medicine. While these reagents are
45 essential for almost all areas of research in the biosciences, there are drawbacks to using traditional
46 antibodies generated in animals. First, there are growing concerns regarding reproducibility, and this is
47 in part due to a lack of standardized and thoroughly defined immunological reagents. In many cases,
48 antibodies are incompletely characterized, not well understood at the molecular level, and variable in
49 performance across lots (Bradbury and Plückthun, 2015; Bordeaux et al., 2010; Bradbury et al., 2018;
50 Baker, 2015; Weller, 2016). Second, the continued availability of traditionally generated antibodies is not
51 guaranteed, as the existence of such reagents depends on active maintenance and storage, or continued
52 production in animals (Cosson and Hartley, 2016). Third, traditional, commercially available antibodies
53 are expensive. For many researchers these costs are prohibitive and in turn, significantly limit productivity
54 and research innovation. Finally, a large number of vertebrate animals are used for the generation of
55 traditional antibodies for biomedical research, which presents ethical concerns (Gray et al., 2020; Gray
56 et al., 2016; Leenaars et al., 1998).

57

58 In recent years, it has been possible to sequence monoclonal antibodies from purified antibody samples
59 and from hybridoma cell lines such that their primary amino acid composition is explicitly identified (Lima
60 et al., 2020; Cosson and Hartley, 2016; Vazquez-Lombardi et al., 2016). In addition, techniques have
61 been developed in which antibodies to nearly any antigen can be isolated through clonal selection of
62 sequence-defined antibody fragments (Gavilondo and Larrick, 2000; Saeed et al., 2017; Alfaleh et al.,
63 2020; Almargo et al., 2019; Laustsen et al., 2021). Using these approaches, the generation of sequence-
64 defined recombinant antibodies and antibody fragments is feasible, which circumvents many of the
65 problems listed above regarding traditionally generated antibodies. First, using recombinant antibodies
66 generated from an invariant primary sequence increases reagent reproducibility. Second, after a primary
67 sequence is determined, recombinant antibodies and their derivatives are accessible in perpetuity. Third,
68 recombinant antibodies can be produced in large quantities using low-cost expression and purification
69 systems, such that researchers can produce large-scale yields of recombinant antibodies for a fraction
70 of the cost of antibodies purchased from commercial sources. In addition, plasmids are easily distributed
71 for direct expression in cell line of choice. Finally, the use of recombinant antibodies significantly reduces
72 the number of animals required for antibody production.

73

74 An additional advantage of recombinant antibodies is the potential for increased reagent versatility. With
75 the primary amino acid sequence of an antibody in-hand, researchers can diversify the original reagent
76 and create derivative tools such as antibody fragments, that can be genetically fused to other protein


77 molecules, such as fluorophores, to generate custom tools with diverse functionalities. Here we describe
78 methods and tools for generating low-cost, high-yield preparations of recombinant monoclonal antibodies
79 and antibody fragments from mammalian cell culture, benchmarking the approach with mitotic epitopes.
80 Furthermore, we describe straightforward and accessible approaches to diversify immunological
81 reagents including customization of antibody species specificity, generation of genetically encoded small
82 antibody fragments, and conversion of single chain antibody fragments (e.g. scFv) into full-length,
83 bivalent antibodies. While this study focuses on antibodies relevant to cell division and mitosis, these
84 approaches are widely applicable for antibodies and antibody fragments across fields.
85

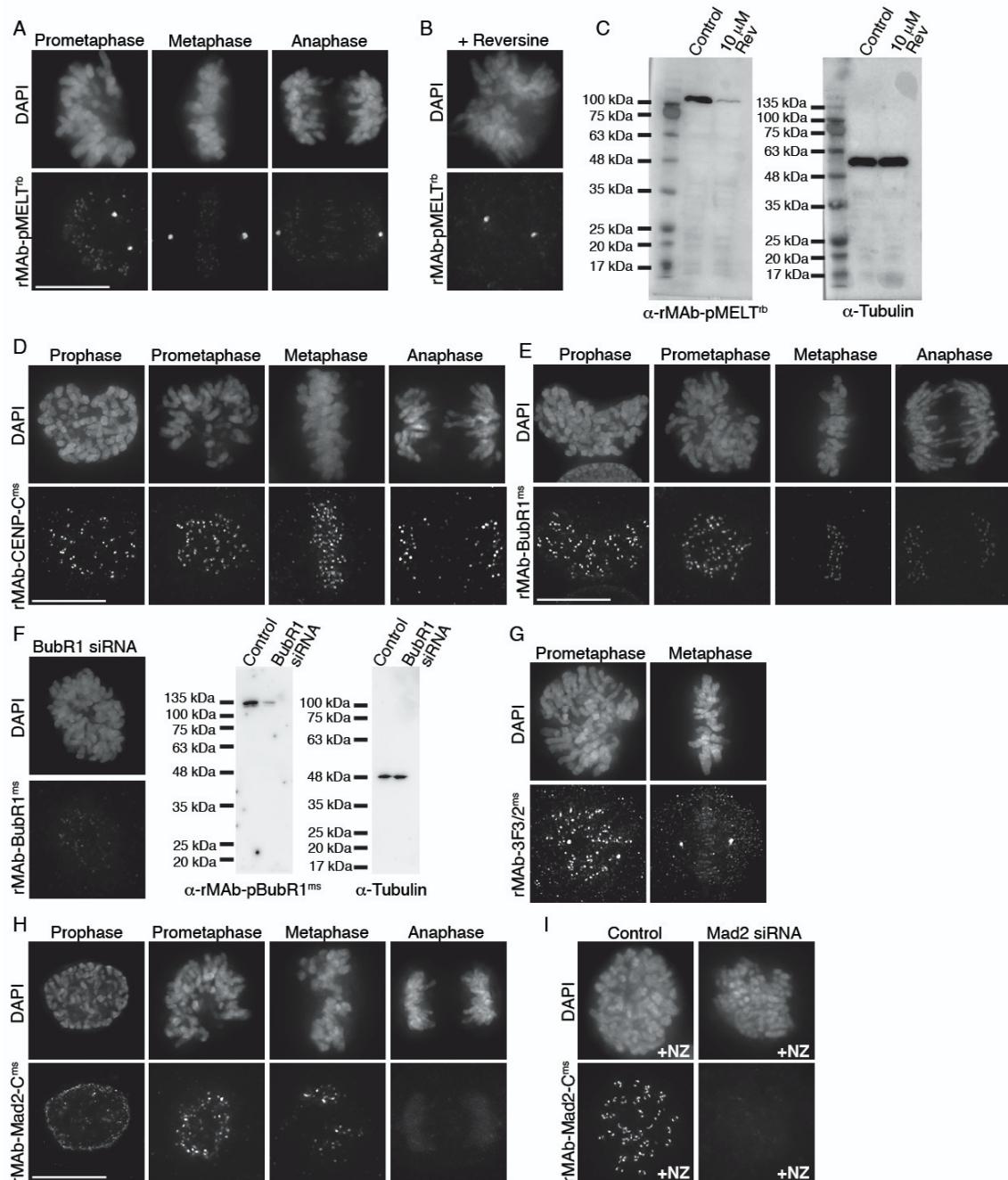
86 **Results**

87 **Generation of recombinant monoclonal antibodies to mitotic targets**

88 In the process of mitosis, chromosomes must properly segregate into two daughter cells in order to
89 maintain genomic integrity. Kinetochores are structures built at the primary constriction of mitotic
90 chromosomes which mediate attachments to spindle microtubules and are largely responsible for both
91 powering and regulating chromosome congression and segregation (Musacchio and Desai, 2017). The
92 primary factor that connects kinetochores to microtubules is the kinetochore associated NDC80 complex,
93 and within this complex the Ndc80/Hec1 subunit serves as the direct link to microtubules (DeLuca and
94 Musacchio, 2011; Varma and Salmon, 2013; Wimbish and DeLuca, 2020). Research in many labs utilizes
95 the Hec1 monoclonal antibody “9G3”, which was originally generated in mice to a purified protein
96 fragment encompassing amino acids 56-632 of the human Hec1 protein (Chen et al., 1997). The specific
97 epitope was later mapped using peptide array analysis to amino acids 200-215, a region which resides
98 within the well-ordered calponin homology domain of the protein (DeLuca et al., 2006). While this antibody
99 is commercially available, the quality of the antibody is variable between lots, which is not uncommon in
100 the case of commercially produced immunological reagents (Pozner-Moulis, 2007; Garg and Loring,
101 2017; Katzman et al., 2017; Bradbury and Plückthun, 2015; Bordeaux et al., 2010; Bradbury et al., 2018;
102 Baker, 2015; Weller, 2016).
103

104 To ensure its continued consistency, we sequenced the 9G3 Hec1 mouse monoclonal antibody (Rapid
105 Novor, Kitchener, Ontario, Canada) using tandem mass spectrometry with W-ion isoleucine and leucine
106 determination (Johnson et al., 1987; Zhokhov et al., 2017). A 100 µg sample of purified monoclonal
107 antibody was used as the source material for sequencing. Figure 1A shows the antibody sequence and
108 annotations for the hyper-variable regions (HVR, also known as complementarity determining regions or
109 CDRs) in green, the framework regions (FR) within the variable regions in blue, as well as the constant
110 regions (CR1, CR2, and CR3 in the heavy chain; CR in the light chain) in orange. The heavy chain was
111 identified as class IgG2a and the light chain as kappa (Figure 1A, B). We next generated geneblocks
112 encoding for both heavy chain and light chain sequences optimized for expression in human cells. The

113


114 **Figure 1. Generation of a recombinant Hec1 monoclonal antibody.** (A) Sequence data obtained for the Hec1 monoclonal antibody is annotated for the heavy chain (HC) and light chain (LC) variable regions (HC=light blue; LC=dark blue), hypervariable regions (green), constant regions (HC=light orange; LC=dark orange), and the flexible hinge (dark gray). (B) rMAb-Hec1^{ms} antibody structure and nomenclature. (C) Cloning, transfection, and purification scheme. Heavy and light chain coding regions were cloned into separate plasmids for transfection into human Expi293F cells. Cell media containing secreted antibodies was collected and applied to a Protein A Sepharose column. After column washing, antibodies were eluted using a low pH buffer. (D) Purified rMAb-Hec1^{ms} antibody was serially diluted and run on a 12% SDS- polyacrylamide gel. The prominent band that runs above the 245 kDa molecular mass marker is likely a population of non-denatured antibody. The bands running at ~63 kDa and ~50 kDa are glycosylated and non-glycosylated heavy chains, respectively. The antibody light chain runs at ~25 kDa. (E) HeLa cells immunostained with the purified rMAb-Hec1^{ms} antibody. Cells were also stained with DAPI to detect chromosomes. (F) Immunoblot of control and Hec1 siRNA-depleted HeLa cell lysates. Increasing amounts of lysates are shown, and the blot is probed with the purified rMAb-Hec1^{ms} antibody. (G) HeLa cell treated with Hec1 siRNA and stained with the rMAb-Hec1^{ms} antibody. Cell is also stained with DAPI to detect chromosomes. Scale bars are 10 μm.

127

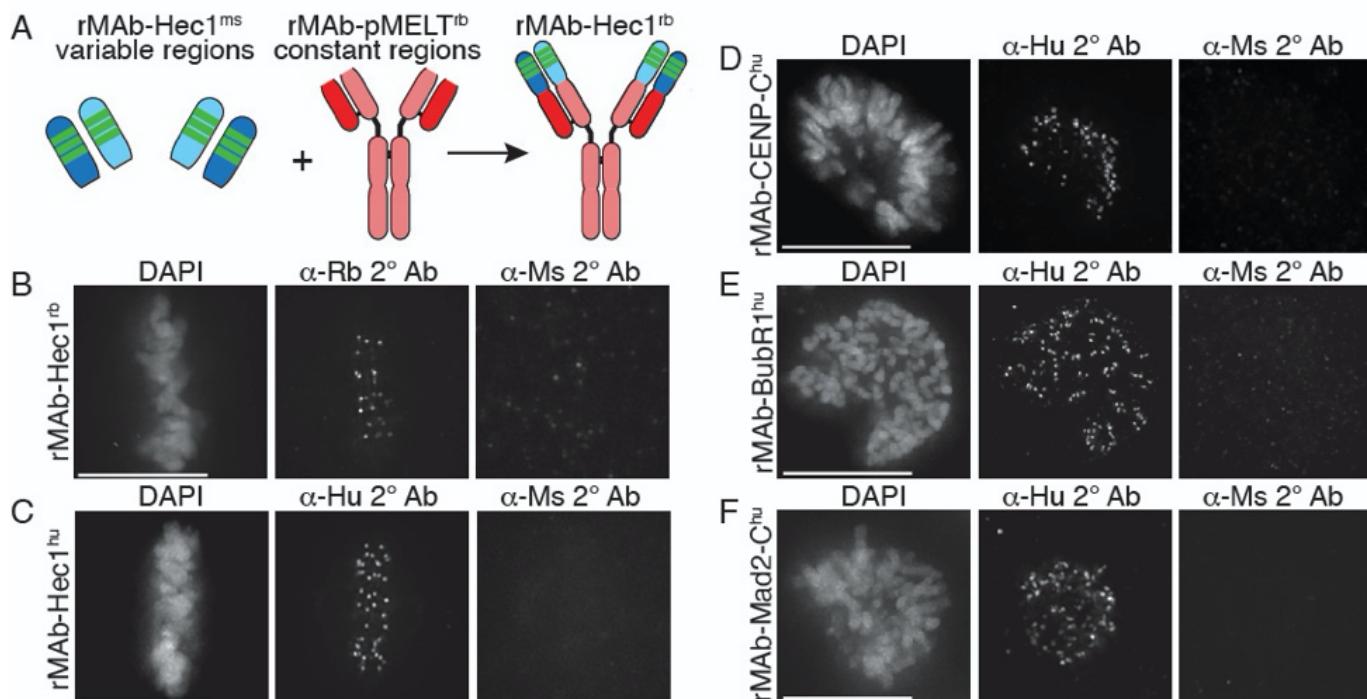
128 geneblocks were cloned separately into GFP-N1 vectors with the GFP removed. Signal peptide
129 sequences for each chain (Burton, 1994; Yu et al., 2006) were cloned N-terminal to the heavy chain and
130 light chain sequences to direct the expressed antibody for secretion into the cell media (Figure 1C). The
131 heavy and light chain-containing expression vectors were co-transfected at a ratio of 2:3 (heavy
132 chain:light chain) into 30 mL cultures of human HEK293 cells grown in suspension (Expi293F cells) using
133 PEI transfection reagent (Figure 1C). The cell supernatant was collected five days post-transfection, and
134 the antibody was purified on a Protein A Sepharose column (Figure 1C). From 30 mL cell suspension
135 cultures, purification yields of the recombinant Hec1 antibody (rMAb-Hec1^{ms}) ranged from 0.5-1.4 mg of
136 purified antibody (Figure 1D). To test the quality and specificity of rMAb-Hec1^{ms}, we carried out
137 immunofluorescence staining and found that in HeLa cells, rMAb-Hec1^{ms} recognized kinetochores during
138 all phases of mitosis, as expected (Figure 1E). We also analyzed mitotic cell lysates from control cells
139 and cells treated with Hec1 siRNA by immunoblotting, and as shown in Figure 1F, rMAb-Hec1^{ms}
140 recognized a single band at ~72 kDa (corresponding to the predicted mass of the 642 amino acid protein,
141 73.9 kDa) in control lysates, but not in lysates depleted of Hec1. Consistently, rMAb-Hec1^{ms} antibodies
142 did not recognize kinetochores in cells treated with Hec1 siRNA (Figure 1G).

143

144 We implemented a similar strategy for generating a recombinant phospho-specific antibody to a
145 conserved, repeating four amino acid motif (“MELT” motif) in the kinetochore scaffolding protein KNL1
146 whose phosphorylation at the threonine (T) residue by the mitotic kinase Mps1 is required to recruit a
147 suite of spindle assembly checkpoint proteins to kinetochores (Shepperd et al., 2012; Yamagishi et al.,
148 2012; London et al., 2012), and a recombinant antibody to CENP-C, an inner kinetochore protein
149 required for kinetochore assembly (Kixmoeller et al., 2020; Hara and Fukagawa, 2020; Navarro and
150 Cheeseman, 2021). The KNL1 pMELT monoclonal antibody (Fisher Scientific) was generated in rabbit
151 against a peptide containing phosphorylated Thr943 and phosphorylated Thr1155 (Nijenhuis et al.,
152 2014). Sequence results revealed that the pMELT rabbit antibody belongs to class IgG with a kappa-
153 class light chain (Supplemental Figure 1A). The CENP-C monoclonal antibody was generated in mice
154 (Abcam), and sequencing identified the heavy chain as IgG2b, and the light chain as belonging to the
155 kappa class (Supplemental Figure 1B). Both the pMELT and CENP-C antibody heavy and light chains
156 were cloned into expression vectors as described for the rMAb-Hec1^{ms} antibody. Expression plasmids
157 were transfected into human Expi293F cells, and the antibodies were purified on Protein A Sepharose
158 columns. Immunofluorescence experiments revealed that the rMAb-pMELT^{rb} antibody recognized
159 kinetochores, and as expected, staining was high at kinetochores in early mitosis and decreased as
160 chromosomes aligned at the spindle equator (Figure 2A) (Nijenhuis et al., 2014; Vleugel et al., 2015).
161 To test the phospho-specificity of the rMAb-pMELT^{rb} antibody, we treated cells with 10 μ M reversine,
162 an Mps1 kinase inhibitor (Santaguida et al., 2010), and found the antibody reactivity was significantly

163 **Figure 2. Characterization of recombinant antibodies to KNL1 pMELT, CENP-C, BubR1, 3F3/2 antigen, and Mad2-C.** (A)
164 HeLa cells immunostained with rMAb-pMELT^b antibodies. (B) HeLa cell treated with 10 μ M reversine and immunostained with
165 rMAb-pMELT^b antibodies. (C) Immunoblots of lysates generated from untreated or reversine-treated HeLa cells expressing a
166 100 kDa fragment of KNL1 containing multiple pMELT domains, and probed with rMAb-pMELT^b antibodies (left) and tubulin
167 antibodies as a loading control (right). (D) HeLa cells immunostained with rMAb-CENP-C^{ms} antibodies. (E) HeLa cells
168 immunostained with rMAb-BubR1^{ms} antibodies. (F) Left: HeLa cell treated with BubR1 siRNA and immunostained with rMAb-
169 BubR1^{ms} antibodies. Right: Immunoblots of lysates generated from control or BubR1 siRNA-treated HeLa cells and probed with
170 rMAb-BubR1^{ms} antibodies (left) and tubulin antibodies as a loading control (right). (G) HeLa cells immunostained with rMAb-
171 3F3/2^{ms} antibodies. (H) HeLa cells immunostained with rMAb-Mad2-C^{ms} antibodies. (I) HeLa cells (+/- Mad2 siRNA) pre-treated
172 with 500 nM nocodazole for 12 hr and immunostained with rMAb-Mad2-C^{ms} antibodies. In all immunofluorescence images, cells
173 were stained with DAPI to detect chromosomes. Scale bars are 10 μ m.

174 reduced upon Mps1 inhibition, as detected by immunofluorescence and immunoblotting (Figure 2B, C).
175 We found that the rMAb-CENP-C^{ms} antibody also recognized kinetochores during mitosis; however, the
176 antibody exhibited low levels of cross-reactivity with rabbit secondary antibodies (not shown). We
177 therefore cloned a new CENP-C antibody by combining the rMAb-Hec1^{ms} antibody constant regions with
178 the sequenced CENP-C antibody variable regions. In this case, immunofluorescence experiments
179 revealed that the new rMAb-CENP-C^{ms} antibody recognized kinetochores at all phases in mitosis as
180 expected (Hara and Fukagawa, 2020) (Figure 2D), and there was no cross-reactivity with rabbit
181 secondary antibodies (not shown).


182
183 We next wanted to obtain primary sequences and generate recombinant antibodies from existing mouse
184 hybridoma cell lines producing monoclonal antibodies to key mitotic epitopes. To this end, we used cell
185 lines expressing antibodies to the following targets: (1) the kinetochore-associated and spindle assembly
186 checkpoint protein BubR1 (Chan et al., 1999; Zhang et al., 2015; Lischetti and Nilsson, 2015); (2) the
187 3F3/2 phospho-epitope which recognize kinetochores that are lacking tension from microtubule pulling
188 forces (Gorbsky and Ricketts, 1993; Nicklas et al., 1995; Waters et al., 1998); and (3) the active form of
189 the kinetochore-associated and spindle assembly checkpoint protein Mad2, which recognize the “closed”
190 conformation of Mad2 molecules found in Mitotic Checkpoint Complexes or bound to Mad1 (Sedgwick et
191 al., 2016; De Antoni et al., 2005; Mapelli et al., 2007). For each hybridoma cell line, the mRNA
192 transcriptome was obtained and used to generate a cDNA library from which the antibody sequences
193 were identified through whole transcriptome shotgun sequencing (Absolute Antibody; Boston, MA).
194 Based on the obtained sequences, the antibodies were classified as follows: BubR1: IgG2b / kappa light
195 chain; 3F3/2: IgG2a / kappa light chain; and Mad2-Closed (Mad2-C): IgG1 / kappa light chain
196 (Supplemental Figure 2A-C). Through this approach, we were able to additionally obtain the sequences
197 of the native N-terminal signal peptides (also referred to as leader peptides) for both heavy and light
198 chains for all three antibodies (Supplemental Figure 2A-C). Heavy and light chain sequences were cloned
199 into expression vectors as described for rMAb-Hec1^{ms} above, with the exception that the native signal
200 peptides were used. Expression plasmids were transfected into human Expi293F cells, and the
201 antibodies were purified on Protein A Sepharose columns. Immunofluorescence experiments revealed
202 that all three antibodies recognized kinetochores during mitosis (Figure 2E, G, and H). As expected,
203 staining for all antibodies was high at kinetochores in early mitosis and decreased as chromosomes
204 aligned at the spindle equator (Skoufias et al., 2001; Hoffman et al., 2001; Campbell and Gorbsky, 1995)
205 (Figure 2E, G, and H). To test the specificity of rMAb-BubR1^{ms}, HeLa cells were treated with an siRNA
206 targeted to BubR1 and processed for immunofluorescence or immunoblotting. As shown in Figure 2F,
207 cells depleted of BubR1 exhibited significantly reduced reactivity with rMAb-BubR1^{ms} antibodies at
208 kinetochores (left), or in cell lysates (right). Similarly, HeLa cells treated with Mad2 siRNA exhibited no
209 reactivity at kinetochores with rMAb-Mad2-C^{ms} antibodies (Figure 2I). In this case, cells were treated with

210 nocodazole to enrich for kinetochore-association of Mad2, which is rapidly evicted from kinetochores in
211 the presence of spindle microtubules in untreated cells.

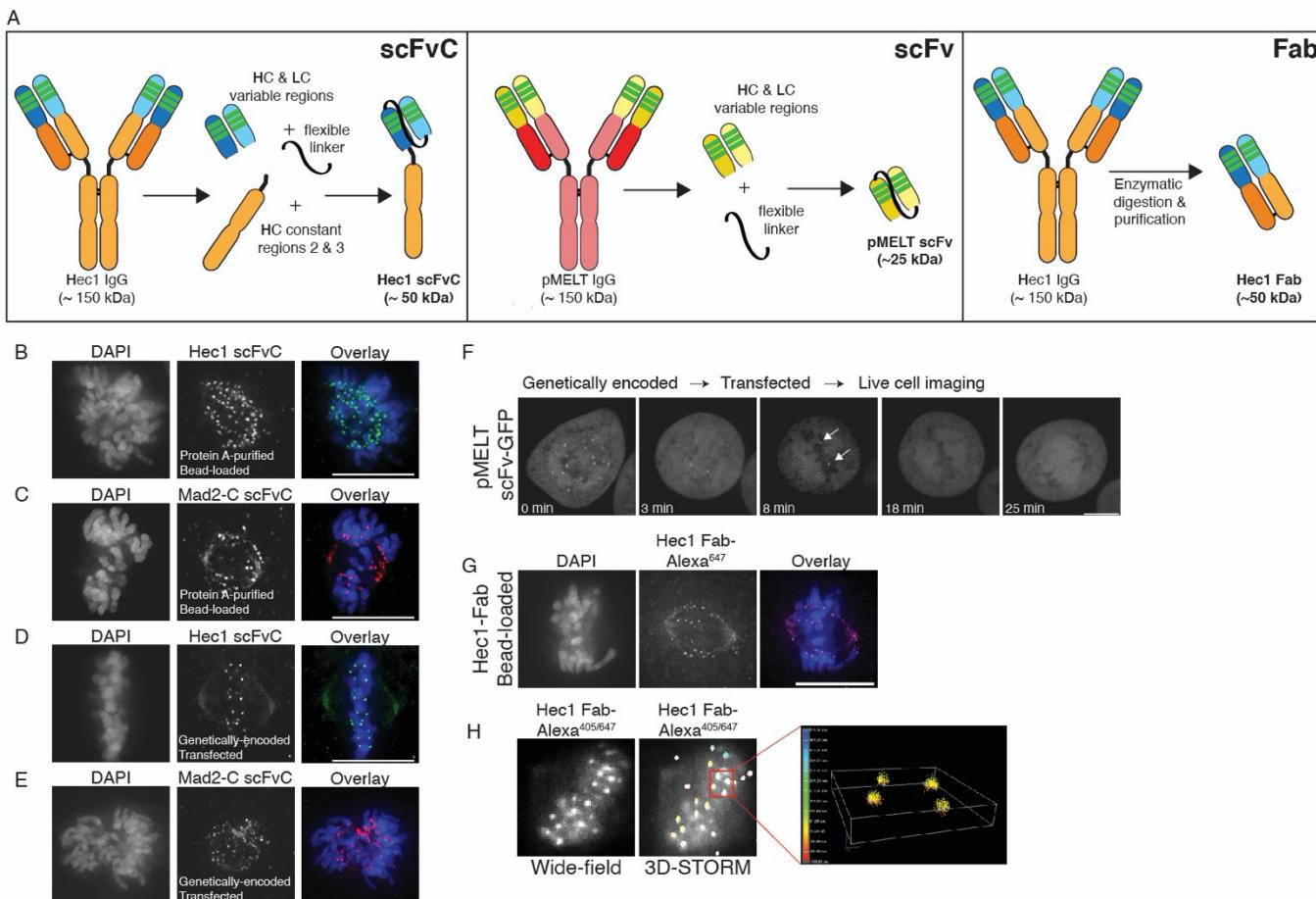
212

213 **Modification of antibody species specificity**

214 For indirect immunofluorescence experiments, a commonly used cell biology approach, a fluorescently
215 tagged secondary antibody recognizes a primary antibody and provides signal detection and
216 amplification. In many cases, commercial primary antibodies directed to target antigens are only available
217 in a single animal specificity, meaning the antibodies were generated in a particular species and contain
218 heavy and light chain constant regions unique to that species. In practice, this limits the number and
219 combinations of targets that can be probed for and detected in such experiments. A solution to this
220 problem is to directly conjugate primary antibodies with fluorescent dyes, obviating the need for
221 secondary antibodies, and allowing for the simultaneous use of two primary antibodies generated in the
222 same host species. However, this approach requires a substantial amount of primary antibody, which
223 may be cost prohibitive if the antibodies are purchased from a commercial source. Furthermore, this
224 approach eliminates secondary antibody-mediated amplification of primary antibody signals. We
225 therefore set out to alter the species specificity of our recombinant monoclonal antibodies to expand our

226 **Figure 3. Generation of recombinant antibodies with modified species specificity.** (A) Schematic of “species swap”
227 approach. (B-F) HeLa cells stained with antibodies to rMAb-Hec1^{rb}, panel B; rMAb-Hec1^{hu}, panel C; rMAb-CENP-C^{hu}, panel D;
228 rMAb-BubR1^{hu}, panel E; and rMAb-Mad2-C^{hu}, panel F. For all panels B-F, cells were probed with the species-appropriate
229 secondary antibody and also with secondary antibodies specific for the original species. Cells were also stained with DAPI to
230 detect chromosomes. Scale bars are 10 μ m.
231

232 toolbox of available reagents. To this end, we generated a new Hec1 primary antibody, termed rMAb-
233 Hec1^{rb}, such that it is recognized by a rabbit secondary antibody. We generated the new sequence by
234 removing the constant regions from both the heavy and light chains of the rMAb-Hec1^{ms} antibody and
235 replacing them with the constant regions from a rabbit IgG antibody (Figure 3A). The new heavy and
236 light chain expression plasmids were transfected into human Expi293F cells and purified on a Protein A
237 Sepharose column as described above. We tested the antibody in immunofluorescence assays and
238 determined that the rMAb-Hec1^{rb} localized to kinetochores in mitotic cells, and importantly, was
239 recognized by rabbit secondary antibodies, but not by mouse secondary antibodies. (Figure 3B). We
240 diversified the Hec1 antibody even further by generating a version that is recognized by a human
241 secondary antibody. In this case, we acquired human IgG amino acid sequences from the UniProt
242 Knowledgebase (UniProt # P01857 and P01834) and generated geneblocks for the heavy and light chain
243 constant regions. We then combined the variable regions of both the heavy and light chains from the
244 rMAb-Hec1^{ms} IgG2a sequence with the human IgG antibody constant sequences to generate plasmids
245 encoding for rMAb-Hec1^{hu} (Figure 3C). We purified and tested this antibody in immunofluorescence
246 assays and determined that the rMAb-Hec1^{hu} localized to kinetochores in mitotic cells, and was
247 recognized by human, but not mouse secondary antibodies (Figure 3C). We went on to use this approach
248 to generate a number of additional species variants, including rMAb-Cenp-C^{hu}, rMAb-Mad2-C^{hu}, and
249 rMAb-BubR1^{hu} antibodies (Figure 3D-F).


250

251 **Generation of recombinant antibody fragments**

252 For some cell biological and biomedical applications, antibody fragments, generated by either proteolysis
253 or genetic engineering, offer advantages over the use of intact, bivalent antibodies. For example, their
254 smaller size allows more efficient penetration of tissue samples and may provide better access to “buried”
255 epitopes; they are able to bind targets without inducing cross-linking; they reduce steric effects (compared
256 with intact antibodies) when monitoring an antigen in living cells, and they have reduced immunogenicity,
257 which may be desirable for therapeutic applications (Hayashi-Takanaka et al., 2011; Cheloha et al., 2020;
258 Zhao et al., 2019; Xenaki et al., 2017; Berland et al., 2021; Ries et al., 2012; Morisaki et al., 2016; Yan
259 et al., 2016; Wang et al., 2016; Stasevich et al., 2014). Another advantage is that single chain antibody
260 fragments can be fused to a fluorescent protein and genetically encoded for expression in living cells for
261 the purpose of real-time antigen tracking. This ability becomes particularly important when an antibody
262 recognizes a post-translational protein modification or specific protein conformation, which cannot be
263 tracked simply by expressing a fluorescently-tagged version of a protein of interest (Sato et al., 2013;
264 Kimura et al., 2015). Finally, the use of antibody fragments is becoming increasingly important in super-
265 resolution microscopy approaches, where the achieved spatial resolution depends not only on the
266 imaging method, but on the size of the probes used (Ries et al., 2012; Traenkle and Rothbauer, 2017;
267 Mikhaylova et al., 2015; Zhao et al., 2019).

268

269 To further diversify our recombinant antibodies and to capitalize on the advantages listed above, we set
270 out to generate three types of antibody fragments: (1) scFvC (single chain variable plus a truncated
271 constant region), (2) scFv (single chain variable fragment), and (3) Fab (antigen binding fragment). We
272 first used the antibody sequences to Hec1 and Mad2-C to generate recombinantly expressed and purified

273

274 **Figure 4. Generation of antibody fragments.** (A) Schematic illustrating the generation of three types of fragments: scFvC
275 (left), scFv (center), and Fab (right). (B and C) Hec1 and Mad2-C scFvC fragments were purified on Protein A Sepharose
276 columns and bead-loaded into HeLa cells. Cells were fixed and stained with anti-rabbit secondary antibodies and DAPI to detect
277 chromosomes. (D and E) HeLa cells were transfected with the scFvC-Hec1 plasmid or the scFvC-Mad2-C plasmid. Cells were
278 fixed and stained with anti-rabbit secondary antibodies and DAPI to detect chromosomes. (F) HeLa cells were transfected with
279 the scFv-pMELT-GFP plasmid and time-lapse imaged using confocal microscopy, and a representative cell is shown. At time=0
280 min, many kinetochores are positive for scFv-pMELT-GFP, and by 18 min, when the cell has reached metaphase, no
281 kinetochore-associated pMELT signals are detected. Arrows in the 8 min timepoint image point to the kinetochores which retain
282 detectable MELT phosphorylation in late prometaphase. (G) Hec1 Fab were generated through proteolysis and directly labeled
283 with an Alexa 647 fluorophore. HeLa cells were bead-loaded with Hec1 Fab⁶⁴⁷, stained with DAPI to detect chromosomes, and
284 imaged. (H) Hec1 Fab were generated through proteolysis and directly labeled with both Alexa 405 and Alexa 647 fluorophores.
285 HeLa cells were fixed, permeabilized, incubated with Hec1 Fab^{405/647}, and subjected to both wide-field (left) and STORM imaging
286 (right). Scale bars are 10 μ m.

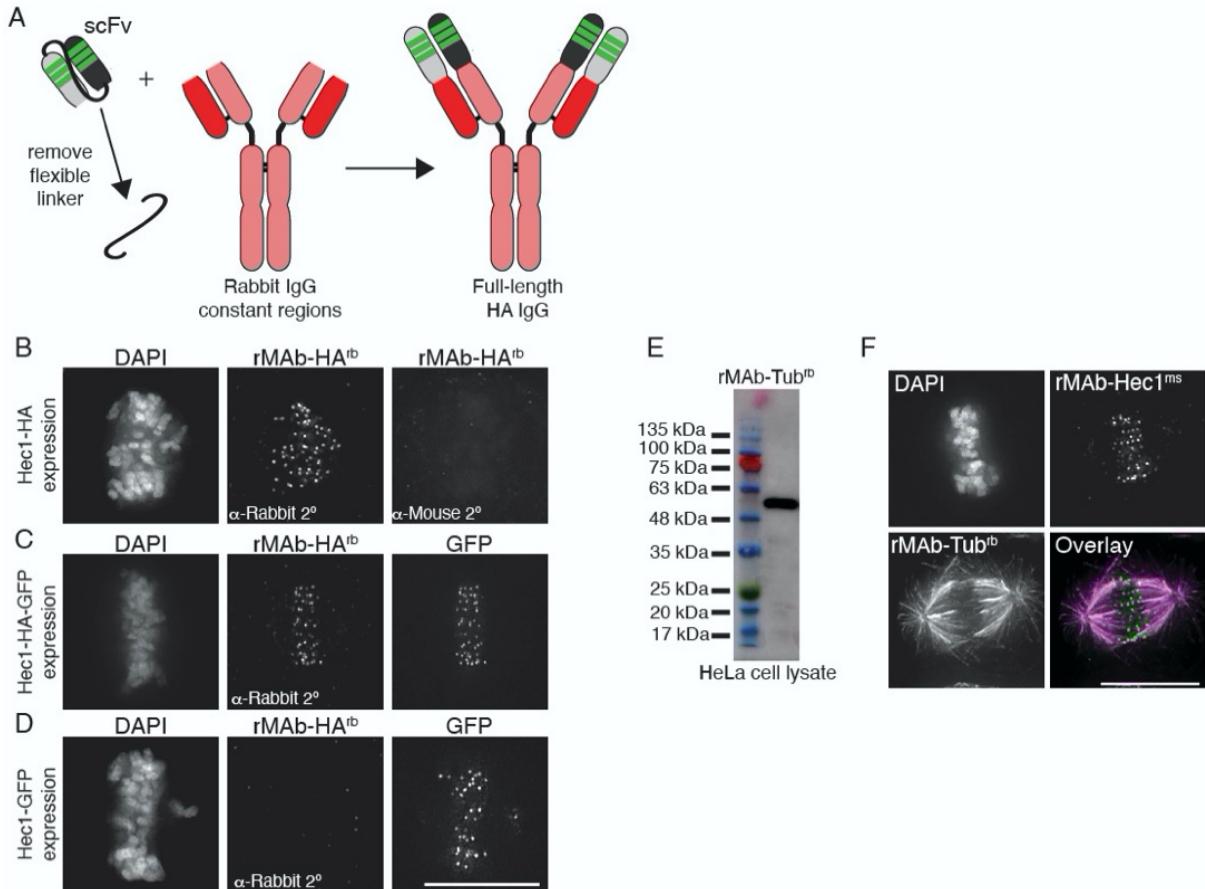
287

288 scFvC fragments, which contain the variable regions of the heavy and light chains connected by a flexible
289 linker, attached to the rabbit IgG-specific heavy chain constant regions (CH2 + CH3) in a single
290 polypeptide chain and totaling ~50 kDa in mass (Figure 4A, left panel). Single plasmids encoding for the
291 Hec1 and Mad2-C scFvC fragments (scFvC-Hec1^{rb} and scFvC-Mad2-C^{rb}), which include signal peptides
292 (Lima and Cosson, 2019), were transfected into human Expi293F cells and purified on Protein A
293 Sepharose columns. We expressed and were able to purify the scFvC fragments on our affinity columns,
294 since they contain a portion of the heavy chain constant region that is recognized by Protein A. The
295 purified Hec1 and Mad2-C scFvC fragments were introduced into cells by bead-loading (McNeil and
296 Warder, 1987; Cialek et al., 2021), and the cells were subsequently fixed and incubated with anti-rabbit
297 secondary antibodies. As shown in Figure 4B and 4C, the fragments recognized kinetochores in mitotic
298 cells, and the results were similar to those obtained with the intact, bivalent antibodies. Next, we
299 generated genetically encoded scFvC fragments using both the Hec1 and Mad2-C antibody sequences.
300 For these constructs, we removed the signal peptide sequence and transiently expressed a single
301 plasmid encoding for the heavy and light chain variable regions connected by the flexible linker, and the
302 rabbit IgG-specific heavy chain constant regions (CH2 + CH3). HeLa cells were transfected with the single
303 plasmids, prepared for immunofluorescence and stained with an anti-rabbit secondary antibody, and as
304 shown in Figure 4D and E, the genetically encoded Hec1 and Mad2-C scFvC fragments both recognized
305 kinetochores in mitotic cells.

306
307 We next used the rMAb-pMELT^{rb} sequence to generate an scFv, comprised of the variable regions of the
308 heavy and light chains connected by a flexible linker and totaling ~25 kDa in mass (Figure 4A, middle
309 panel). In this case, the scFv does not contain the Fc (fragment crystallizable) region (comprised of the
310 heavy chain constant regions CR2 and CR3), which is recognized by Protein A. We therefore did not
311 express and purify the antibody for this experiment. However, we added a GFP tag to the C-terminus of
312 the polypeptide chain, omitted the signal peptide, and expressed the fluorescently tagged scFv in HeLa
313 cells. We collected time-lapse images, and as shown in Figure 4F, the genetically encoded pMELT scFv-
314 GFP recognizes kinetochores in early mitosis when phosphorylation of the KNL1 MELT repeats is high,
315 but much less so in late mitosis, when phosphorylation of the MELT repeats is low. These results
316 demonstrate that small immunological probes can be generated from primary monoclonal antibody
317 sequences and successfully expressed in mitotic cells to detect mitotic antigens, and importantly, post-
318 translational protein modifications of mitotic targets in living cells.

319
320 Finally, we used the recombinant, purified rMAb-Hec1^{ms} antibody to generate antigen binding fragments
321 (Fab), containing a single constant region of each chain and the variable regions from both the heavy
322 and light chains (Figure 4A, right panel). The purified rMAb-Hec1^{ms} antibody was enzymatically digested
323 with papain protease, the digestion reaction was centrifuged through a Protein A spin column, and the

324 antigen binding fragments, which do not bind the Protein A resin, were collected in the flow through. We
325 directly labeled the rMAb-Hec1^{ms} Fab with an Alexa 647 fluorescent dye and bead-loaded the fragment
326 into HeLa cells, and as shown in Figure 4G, the labeled Fab recognizes kinetochores in mitotic cells. We
327 next tested if the labeled rMAb-Hec1^{ms} Fab is appropriate for use in super-resolution STORM imaging.
328 For this experiment, we double-labeled the rMAb-Hec1^{ms} Fab with Alexa 647 and Alexa 405 dyes at a
329 ratio of 1:1. HeLa cells were then fixed and stained with the dually-labeled rMAb-Hec1^{ms} Fab^{405/647}
330 fragment (Figure 4H). Samples were excited with 405 and 640 nm lasers, and images were collected on
331 a Nikon N-STORM imaging system. The Fab robustly recognized kinetochores and the resulting STORM
332 images demonstrate that our recombinantly expressed antibody fragments are compatible with super-
333 resolution imaging approaches (Figure 4H). Importantly, these super-resolution techniques benefit from
334 the use of small, directly labeled probes by preventing loss of spatial resolution that occurs with the use
335 of larger, intact bivalent primary and secondary antibodies (Ries et al., 2012; Traenkle and Rothbauer,
336 2017; Mikhaylova et al., 2015).


337

338 **Reverse engineering antibody fragments into full-length, bivalent antibodies**

339 Advances in genetic engineering techniques such as antibody phage display and hyper-variable domain
340 grafting have provided new routes to generating antibody fragments including scFv (single-chain variable
341 fragments) and single-domain antibodies (sdAbs, also known as nanobodies) (Panikar et al., 2021;
342 Laustsen et al., 2021; Valldorf et al., 2021; Shim, 2017; Shukra et al., 2014; Zhao et al., 2019). As a
343 result, there are growing numbers of published antibody fragment sequences. As discussed above, there
344 are numerous advantages to using such antibody fragments; however, there are also cases in which a
345 full-length, bivalent antibody is preferred. For example, in standard indirect immunofluorescence
346 experiments, multiple secondary antibodies bind to the constant regions of a full-length, bivalent primary
347 antibody, which results in signal amplification and increased sensitivity. Similar arguments can be made
348 for the use of full-length, bivalent antibodies in immunoblotting and immunoprecipitation experiments.
349 Given the rise in availability of antibody fragment sequences, we wanted to use our approach to convert
350 scFv sequences into full-length, bivalent antibodies. For this reason, we modified an HA (hemagglutinin)-
351 tag scFv (also known as the HA-tag “frankenbody”) sequence (Zhao et al., 2019) into a full-length,
352 bivalent antibody. Specifically, we cloned the heavy chain variable regions of the HA-tag scFv onto the
353 heavy chain constant regions from a rabbit IgG antibody (Figure 5A). Similarly, we cloned the light chain
354 variable region of the HA-tag scFv onto the rabbit IgG light chain constant region (Figure 5A). In addition,
355 signal peptides were cloned into both heavy and light chain plasmids. Both plasmids were transfected
356 into human Expi293F cells as described above and full-length, bivalent antibody secreted into the cell
357 media was purified using a Protein A Sepharose column. To test the antibody in cells and to confirm
358 specificity, we expressed the following versions of Hec1 in HeLa cells: HA-tagged (Figure 5B); HA- and
359 GFP-tagged (Figure 5C), and GFP-tagged (Figure 5D). Cells were prepared for immunofluorescence and

360 stained with the rMAb-HA^{rb} antibody and a fluorescently-labeled rabbit secondary. As shown in Figure 5
361 B-D, the rMAb-HA^{rb} antibody recognized Hec1 at kinetochores in cells expressing Hec1-HA and Hec1-
362 HA-GFP, but not in cells expressing Hec1-GFP.

363

364

365 **Figure 5. Generation of full-length, bivalent antibodies from fragment sequences.** (A) Schematic illustrating the generation
366 of a reverse engineered, full-length HA-tag antibody from an scFv. (B-D) HeLa cells were transfected with Hec1-HA (B), Hec1-
367 HA-GFP (C), or Hec1-GFP (C), and immunostained with rMAb-HA^{rb} antibodies. In panels C and D, GFP was imaged. (E)
368 Immunoblot of HeLa lysate probed with reverse engineered, full-length tubulin antibody, rMAb-Tub^{rb}. (F) HeLa cells
369 immunostained with rMAb-Hec1^{ms} and rMAb-Tub^{rb}. In all immunofluorescence images, cells were stained with DAPI to detect
370 chromosomes. Scale bars are 10 μ m.

371

372 Finally, we carried out a similar reverse engineering approach to generate a full-length, bivalent IgG
373 tubulin antibody using the sequence of an alpha tubulin scFvC antibody fragment (Lima and Cosson,
374 2019). Similar to the approach used for the HA-tag scFv described above, we cloned the heavy and light
375 chain variable regions from the tubulin scFvC onto the heavy and light chain constant regions from a
376 rabbit IgG antibody. Additionally, signal peptides were cloned into both the heavy and light chain
377 plasmids. The full-length antibody was expressed and purified from human Expi293F cells. We confirmed
378 that the new, bivalent rMAb-Tub^{rb} antibody recognized a ~55 kDa protein in HeLa cell lysate, which
379 corresponds to the molecular weight of α and β tubulin monomers (Figure 5E). In addition, the antibody

380 recognizes microtubules in cells, and as expected, the primary antibody is recognized by rabbit but not
381 mouse secondary antibodies (Figure 5F).

382

383 **Discussion**

384 Here we describe a set of tools and protocols that can be used to generate high-yield, low-cost antibodies
385 and antibody fragments from primary amino acid sequences. While most of the antibodies and antibody
386 derivatives described here are directed to antigens involved in mitotic cell division and kinetochore
387 function, the plasmids and protocols are applicable to any monoclonal antibody sequence. Using
388 relatively small volumes (~30 mL) of human Expi293F cells grown in suspension, we demonstrate
389 production of up to 1.4 mg of protein per preparation (rMAb-Hec1^{ms}). We note, however, that the yields
390 for individual antibody preparations varied, and our lowest yields were in the range of 0.1 mg of protein
391 from a 30 mL suspension culture. We have not yet defined the source of yield variation, but we are
392 working to normalize these values by optimizing the cloning, expression, and purification conditions for
393 the lower-yield reagents.

394

395 In some cases, the major cost incurred for the approach described here is the protein sequencing itself.
396 Currently, the approximate costs of sequencing a purified monoclonal antibody ranges from ~\$5000-
397 \$12,000. However, obtaining sequence information from a monoclonal hybridoma cell line is much less
398 expensive (~\$500-\$1500), and is offered through many companies and non-profit facilities as a stand-
399 alone service, or as an “add-on” cost for custom monoclonal antibody production services. We propose
400 that if individual research labs submit existing hybridoma cell lines for antibody sequencing and share
401 this information publicly, this would greatly benefit the entire research community by providing a means
402 for individual labs to produce low-cost antibodies and generate customized reagents for use in their own
403 research. Importantly, there are growing numbers of available monoclonal antibody sequences available
404 through databases, obtained through protein sequencing or from atomic structures. These include the
405 ABCD (Antibodies Chemically Defined) database at the Geneva Antibody Facility (Lima et al, 2000);
406 <https://web.expasy.org/abcd/>; the ABG (Antibody Group) directory
407 (<http://pt7mdv.ceingebi.unam.mx/vir/structure/structures.html>); the Kabat database (Johnson and Wu,
408 2000); <http://bigd.big.ac.cn/databasecommons/database/id/5425>); SAbDab
409 (<http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/>); abYbank (www.abybank.org); and the IMGT
410 (International Immunogenetics Information System) monoclonal antibodies database
411 (<http://www.imgt.org/mAb-DB/doc>). The approaches described are intended to facilitate the expression
412 and purification of recombinant antibodies and antibody fragments in individual labs using accessible,
413 non-specialized equipment and reagents; however, we note that many non-profit, institutional core
414 facilities also offer these services at relatively low costs, which provide a convenient and accessible
415 alternative to expressing and purifying antibodies in-house. We also note that costs can be reduced by

416 ordering geneblocks for only the variable regions of a newly sequenced antibody and combining these
417 sequences with previously-validated constant regions of choice (e.g. those described here for rabbit,
418 mouse, and human IgG antibodies). Finally, it is important to consider downstream usage of data
419 generated from antibodies purchased from commercial sources, as different companies may have unique
420 sets of terms and conditions.

421
422 In addition to providing low-cost methods for in-house monoclonal antibody production, the approaches
423 described here allow for diversification of sequenced monoclonal antibodies. One practical example of
424 such diversification is altering the species specificity by “swapping” constant regions. Researchers are
425 typically limited to the combination of antigens they wish to detect in indirect immunofluorescence or
426 immunohistochemical experiments by species specificity of the antibodies. Once a monoclonal antibody
427 sequence is in hand, it is simple and straightforward to produce a new antibody containing the constant
428 regions specific to a different species.

429
430 Another advantage of the methodology described here is the ability to generate antibody fragments from
431 a primary sequence. Advantages of such fragments include more efficient penetration of tissue and cell
432 samples; access to less-accessible epitopes; the ability to bind targets without inducing cross-linking;
433 and reduced steric effects compared with full-length bivalent antibodies. Additionally, antibody fragments
434 can be used for tracking protein modifications and specific protein conformations in living cells. To study
435 protein dynamics in cells, fluorescent proteins such as GFP are typically fused to a protein of interest,
436 expressed, and monitored in living cells. However, such fluorescent protein tags cannot track or identify
437 protein modifications (e.g. phosphorylation), nor can they detect specific protein conformations, both of
438 which may play critical roles in a protein’s cellular function. In recent years, fluorescently labeled antibody
439 fragments such as Fab, scFv, scFvC, and nanobodies have been used for the purpose of tracking post-
440 translational modifications and specific protein conformations (Kimura et al., 2015; Lyon and Stasevich,
441 2017; Sachs et al., 1972). Antibody fragments may be preferable to intact bivalent antibodies for tracking
442 modifications and specific conformations in living cells since their smaller size minimizes steric effects of
443 the probes themselves, which could lead to interference with protein function. Such antibody fragments
444 can be purified, directly labeled with a fluorescent dye, and introduced into cells by microinjection,
445 electroporation, or bead-loading, and visualized in living cells. Alternatively, single chain antibody
446 fragments (e.g. scFv, scFvC) fused to a fluorescent protein such as GFP can be genetically encoded for
447 expression and monitoring in living cells. Here, we describe tools to generate both types of labeled
448 antibody fragments from a primary monoclonal antibody sequence, which will allow for investigations of
449 processes in cells that have previously not been feasible. For example, during mitotic cell division the
450 regulation of kinetochore-microtubule attachments is driven in large part by reversible and dynamic
451 phosphorylation events, yet these events have not yet been monitored in real-time during mitotic

452 progression in living cells. The methodologies described here will enable the generation of reagents for
453 real-time tracking of phosphorylation events on key kinetochore proteins during chromosome
454 congression and spindle assembly checkpoint inactivation, which will provide critical insight into the
455 mechanisms that regulate kinetochore function during mitosis.

456

457 It is important to note that while we were successful in generating a recombinant scFv directed to the
458 KNL1 pMELT domain using the native sequence, we were not successful in generating scFv fragments
459 to Hec1, BubR1, or Mad2-C. Why this is the case is not clear; however, there are other methods to obtain
460 an scFv from the primary sequence that we have not yet explored. For example, it has been demonstrated
461 that the hyper-variable domains, obtained from the primary sequence of a monoclonal antibody, can be
462 grafted onto optimized scFv scaffolds which are known to function in cells (Zhao et al., 2019). This
463 approach has led to the generation of genetically encoded single chain antibody fragments referred to as
464 “frankenbodies,” which are capable of recognizing and tracking specific epitopes in cells (Zhao et al.,
465 2019).

466

467 In this study, we also demonstrated that our recombinant antibody fragments can be directly labeled with
468 fluorescent dyes for use in super-resolution light microscopy approaches. The use of small, directly-
469 labeled probes is desirable for super-resolution imaging approaches, such as PALM/STORM, where the
470 goal is precise molecular mapping of antigens on the nanometer scale. The size of the probe is directly
471 relevant since larger probes, such as intact, bivalent primary and secondary antibodies, will limit the
472 achievable resolution (Ries et al., 2012; Traenkle and Rothbauer, 2017; Mikhaylova et al., 2015). For
473 example, an intact bivalent antibody is approximately 10-15 nm long, and when using an imaging
474 technique with a spatial resolution in the range of 20-30 nm (e.g. STED; PALM/STORM), such a large
475 labeling probe reduces the resolution by approximately 2-fold.

476

477 In summary, we describe methodologies to generate and purify recombinant versions of a suite of
478 antibodies directed to kinetochore and mitotic proteins. We also present a set of molecular biological
479 methods to expand the versatility of these antibodies by altering species specificity and generating
480 antibody fragments that can be either genetically encoded for tracking antigens in cells or recombinantly
481 expressed and purified. As tools such as these become more widely shared, access to low-cost,
482 sequence-defined antibodies will increase, benefiting all fields that utilize antibody and antibody-based
483 tools.

484

485 **Materials and Methods**

486 **Antibody sequencing.** Purified samples (100 µg each) of Hec1 (Genetex), KNL1 pMELT (Fisher
487 Scientific), and CENP-C (Abcam) monoclonal antibodies were sequenced by Rapid Novor (Kitchener,

488 Ontario, Canada) using tandem mass spectrometry. Data obtained from these antibodies presented in
489 the current study are for non-commercial purposes only, in accordance with the terms and conditions of
490 the companies from which the CENP-C, Hec1 9G3, and KNL1 pMELT antibodies were purchased. Cell
491 samples (10^6 cells each) of Mad2, BubR1, and 3F3/2 hybridoma cell lines were submitted to Absolute
492 Antibody (Boston, MA, USA) for sequencing. For each cell sample, the mRNA transcriptome was
493 obtained through whole transcriptome shotgun sequencing, the resulting reads were assembled into
494 contigs, and antibody transcripts were identified based on homology.

495

496 **Plasmid generation.** For full-length Hec1, KNL1 pMELT, CENP-C, Mad2-C, BubR1, and 3F3/2
497 antibodies, the protein sequence for each was used to design DNA geneblocks optimized for expression
498 in human cells using the IDT (Integrated DNA Technologies) codon optimization tool. For full-length Hec1,
499 KNL1 pMELT, and CENP-C antibodies, an N-terminal signal peptide sequence was added to the
500 geneblock (Burton, 1994; Yu et al., 2006). For Mad2-C, BubR1, and 3F3/2 antibodies, the native signal
501 peptides were included in the geneblock design. The resulting DNA fragments/geneblocks were cloned
502 using the Gibson assembly method into the pEGFP-N1 vector (Clontech) with the GFP removed by
503 Sac1/Not1 digestion, henceforth referred to as the rMAbParent plasmid. For each full-length antibody, a
504 heavy chain (HC) and light chain (LC) plasmid was generated for co-expression in HEK293 suspension
505 culture cells (Expi293F cells) (Fisher Scientific). For species specificity swapping experiments,
506 geneblocks corresponding only to the variable regions of the HCs and LCs were designed and ordered.
507 PCR fragments were generated corresponding to the target species constant regions for both HCs and
508 LCs. DNA fragments from the geneblocks for the variable regions were combined with the PCR fragments
509 for the constant regions and cloned into the rMAbParent plasmid using the Gibson assembly method.
510 For construction of each of the Mad2 and Hec1 scFvC plasmids, the following PCR fragments were
511 generated: (1) HC variable region (for expression in Expi293F cells, a signal peptide was also included;
512 for genetic encoding, the signal peptide was not included) (Sasada et al., 1988), (2) flexible linker, (3) LC
513 variable region, and (4) rabbit IgG HC constant regions (CH2 and CH3). PCR fragments were cloned by
514 the Gibson assembly method into the rMAbParent plasmid resulting in a final single scFvC plasmid. For
515 construction of the KNL1 pMELT scFv, the following PCR fragments were generated: (1) HC variable
516 region (for expression in Expi293F cells a signal peptide was also included; for genetic encoding, the
517 signal peptide was not included) (Sasada et al., 1988), (2) flexible linker, and (3) LC variable region. PCR
518 fragments were cloned by the Gibson assembly method into the rMAbParent plasmid (containing the
519 sequence for GFP), resulting in a final single scFv plasmid. To generate the full-length bivalent HA-tag
520 antibody, PCR fragments were generated corresponding to the HC and LC variable regions of the HA-
521 tag scFv, which were generated by grafting the HA-tag HC and LC hyper-variable regions (a.k.a.
522 complementarity determining regions or CDRs) into the 15F11 scaffold (Zhao et al., 2019). The PCR
523 fragments containing the HC and LC variable regions also included N-terminal signal peptide sequences

524 (Burton, 1994; Yu et al., 2006). PCR fragments corresponding to the rabbit IgG-specific LC and HC
525 constant regions were generated and, together with the HC and LC variable regions, were cloned into
526 the rMAbParent plasmid using the Gibson assembly method. To generate the full-length bivalent tubulin
527 antibody, geneblocks corresponding to the HC and LC variable regions of a tubulin scFv-C (AA345) (Lima
528 and Cosson, 2019) were designed. N-terminal signal peptide sequences were added to both the HC and
529 LC variable regions (Burton, 1994; Yu et al., 2006). PCR fragments corresponding to the rabbit IgG-
530 specific LC and HC constant regions were generated and, together with the HC and LC variable regions,
531 were cloned into the rMAbParent plasmid using the Gibson assembly method. Descriptions of all
532 plasmids generated in this study are listed in Table 1.

533
534 **Cell culture.** Human HEK293 suspension culture cells (Expi293F) were cultured in Expi293F expression
535 media (Fisher Scientific) and maintained at 37°C in 8% CO₂ in 125 mL spinner flasks on an orbital shaker
536 rotating at 125 rpm. HeLa cells were cultured in DMEM supplemented with 10% FBS and 1%
537 antibiotic/antimycotic solution and maintained at 37°C in 5% CO₂.

538
539 **Expi293F cell transfection.** HEK293 Expi293F cells were grown to 30 mL volumes in 125 mL spinner
540 flasks. For generation of full-length antibodies, cells were treated as follows: 24 hr prior to transfection,
541 cells were seeded at 0.9 x 10⁶ cells/mL (27 x 10⁶ cells total) with a viability no less than 90% (typically
542 94-99% viability). On the day of transfection, cells were counted and 30 x 10⁶ cells (at >90% viability)
543 were pelleted by centrifugation at 2000 x g for 15 min at 4°C. The resulting supernatant was aspirated
544 off and the pellet was gently resuspended in 15 mL fresh Expi293F media. Spinner flasks were returned
545 to the incubator while transfection reactions were prepared. For transfection, 100 µl of polyethylenimine
546 (PEI) (Polysciences Inc.) at 1 mg/mL was added to 1 mL Optimem media (Gibco). In a second tube, 50
547 µg LC plasmid and 35 µg HC plasmid were mixed with 1 mL Optimem media. The two separate tubes
548 were incubated for 5 min at room temperature with occasional flicking. After 5 min, the contents of the
549 two tubes were combined and mixed by flicking every 3 min for a total of 20 min at room temperature.
550 After 20 min, the mixture was added to the 15 mL Expi293F culture and incubated overnight, rotating at
551 125 rpm. Approximately 15 hr later, 15 mL fresh Expi293F media was added to the original 15 mL culture,
552 as well as 300 µl of 220 mM valproic acid (Sigma). Cells were subsequently cultured for an additional 4
553 days, after which cells were pelleted by centrifugation at 2000 x g for 15 min at 4°C. The supernatant
554 was harvested and filtered through a 0.2 µm filter (GenClone). The volume of the filtered supernatant
555 was measured, and 1.0 M Tris-HCL, pH 7.4 was added to bring the pH to between 7.4-7.7. The filtered
556 supernatant was stored at 4°C until purification, which was optimally within 1 day of harvesting.

557
558 **Antibody purification.** The Protein A slurry was prepared by washing 1.5 g Protein A Sepharose (Sigma)
559 4 times in 1X Tris Buffered Saline (1X TBS: 50 mM Tris-Cl, 150 mM NaCl, pH 7.5), and raised in a final

560 volume of 40 mL 1X TBS, pH 7.5. Three mL of the washed slurry was added to the 30 mL of filtered
561 Expi293F cell supernatant and gently inverted for 12 hr at 4°C. Following the 12 hr incubation, the
562 antibody-containing cell supernatant plus Protein A Sepharose mixture was added to a 9 cm high, 2 ml
563 bed volume (0.8 x 4 cm) empty polypropylene column (BioRad) fitted with a two-way stopcock up to the
564 fill line. A funnel reservoir was attached to the top of the column and the remaining cell
565 supernatant/Protein A slurry was poured into the funnel. The column and the reservoir were transferred
566 to a 4°C cooler, covered loosely, and left to settle for 1 hr. After 1 hr, the stopcock was opened and the
567 flow-through was collected at a flow rate of 1 mL/min. Once the cell supernatant approached the top of
568 compacted Protein A slurry (with ~ 1 mL remaining), the column flow was stopped and the flow-through
569 was added back to the column/funnel for a second round of binding. The column was left to settle for 15
570 min, the stopcock was opened and the flow-through was again collected at 1 mL/min. After the flow-
571 through approached the compacted slurry, 3 mL of 1X TBS (pH 8.0) was added to the column and
572 incubated for 15 min. After 15 min, the flow-through was collected at 1 mL/min. To elute the purified
573 antibody, 9 mL of low pH elution buffer (0.15 M NaCl, 0.1 M glycine, pH 2.95) was added to the column,
574 which was then connected to a peristaltic pump (BioRad). The flow rate was adjusted to 5 mL/min, and
575 the eluate was collected in a 15 mL conical tube containing 0.9 mL 1 M Tris-HCl, pH 8.0. The eluate was
576 then dialyzed and concentrated by transferring it to pre-soaked dialysis membrane (SpectrumLabs),
577 which was then placed into 1 L of 1X phosphate buffered saline (PBS) buffer (137 mM NaCl, 2.7 mM
578 KCl, 4.3 mM Na₂HPO₄, 1.47 mM KH₂PO₄, pH 7.4) and gently stirred at 4°C for 4 hr. After 4 hr, the 1X
579 PBS was replaced and incubated overnight at 4°C. Purified, dialyzed antibodies were retrieved from the
580 dialysis tubing and subsequently concentrated in a 10,000 kDa cutoff concentrator (Millipore) to final
581 volume of between 100-200 uL. The protein concentration was calculated, and glycerol was added to a
582 final concentration of 15%. Purified, concentrated antibodies were stored in 2-10 µl aliquots at -20°C.
583

584 **Cell treatments.** For live-cell imaging experiments, HeLa cells were seeded and imaged in 35-mm glass-
585 bottomed dishes (constructed in-house). For fixed-cell analysis, cells were grown on sterile, acid-washed
586 coverslips in six-well plates. siRNAs were transfected into HeLa cells using 6 µl Oligofectamine (Fisher
587 Scientific) and 160 nM of the appropriate siRNA: siHec1 (5'-CCCUUGGGUCGUGUCAGGAA-3'); siBubR1
588 (5'-AAGGAGACAACUAAACUGCAA-3'); siMad2 (5'-CUGAAAGUAACUCAUAAUCUA -3') (Qiagen). For
589 transfection of the scFv or scFvC plasmids, 2.5 µl of Lipofectamine 3000 (Fisher Scientific) and 0.5-1 µg
590 of DNA were used. All siRNA and DNA transfactions were incubated for 24-30 hr before the cells were
591 either imaged, fixed for immunofluorescence or harvested for immunoblot analysis. For some
592 experiments, cells were incubated with 500 nM nocodazole (Tocris) for 15 hr prior to fixation for
593 immunofluorescence or harvesting for immunoblot analysis. To inhibit Mps1 kinase, cells were treated
594 with 10 µM reversine (Adooq Biosciences) for 1 hr prior to fixation for immunofluorescence or harvesting
595 for immunoblot analysis. For bead loading experiments, directly labeled Fab-Hec1⁶⁴⁷ (see below) was

596 bead loaded into HeLa cells 1 hr prior to fixing (Cialek et al., 2021). Briefly, 10 μ l of Fab-Hec1⁶⁴⁷ were
597 placed directly atop growing HeLa cells in a 35-mm glass-bottomed dish. Glass beads were then
598 sprinkled atop the cells and the dish was agitated by sharply striking against the countertop. Fresh cell
599 media was added to the dish, which was returned to the incubator for 1 hr prior to fixation.
600

601 **Immunofluorescence.** Cells were rinsed in 37°C PHEM buffer (60 mM PIPES, 25 mM HEPES, 10 mM
602 EGTA, and 4 mM MgSO₄, pH 7.0) and then lysed for 5 min in freshly prepared lysis buffer (PHEM buffer
603 + 0.5% Triton X-100). Cells were subsequently fixed for 20 min at room temperature in freshly prepared
604 4% paraformaldehyde in PHEM buffer (37°C). After fixation, cells were washed 5 X 3 min in PHEM-T
605 (PHEM buffer + 0.1% Triton X-100) and then blocked in 10% boiled donkey serum (BDS) in PHEM for 1
606 hr at room temperature. Primary antibodies diluted in 5% BDS were added to coverslips and allowed to
607 incubate for 1 hr at room temperature. The following primary antibody and antibody fragment
608 concentrations were used for immunofluorescence: rMAb-Hec1^{ms} at 1.5 μ g/mL, rMAb-Hec1^{rb} at 0.2
609 μ g/mL, rMAb-Hec1^{hu} at 1 μ g/mL, rMAb-pMELT^{rb} at 1.9 μ g/mL, rMAb-CENP-C^{ms} at 0.66 μ g/mL, rMAb-
610 CENP-C^{hu} at 0.6 μ g/mL, rMAb-BubR1^{ms} at 2.1 μ g/mL, rMAb-BubR1^{hu} at 0.85 μ g/mL, rMAb-3F3/2^{ms} at 0.84
611 μ g/mL, rMAb-Mad2-C^{ms} at 1.6 μ g/mL, rMAb-Mad2-C^{hu} at 1.12 μ g/mL, scFvC-Hec1^{rb} at 0.5 μ g/mL,
612 scFvC-Mad2-C^{rb} at 1.0 μ g/mL, rMAb-tubulin^{rb} at 1.2 μ g/mL, and rMAb-HA^{rb} at 1.2 μ g/mL. After primary
613 antibody incubation, cells were rinsed 5 X 3 min in PHEM-T and then incubated for 45 min at room
614 temperature with secondary antibodies conjugated to either Alexa 647 or Cy3 (Jackson ImmunoResearch
615 Laboratories, Inc.) at 1.5 μ g/mL diluted in 5% BDS. Cells were rinsed 5 X 3 min in PHEM-T, incubated in
616 a solution of 2 ng/ml DAPI diluted in PHEM, rinsed 5 X 3 min, quick-rinsed in PHEM, and then mounted
617 onto glass slides in an antifade solution (90% glycerol + 0.5% N-propyl gallate). Coverslips were sealed
618 with nail polish and stored at 4°C.
619

620 **Imaging.** All fixed cell images were acquired on an Inverted Olympus microscope incorporated into a GE
621 Ultra imaging system (GE Healthcare) with SoftWoRx software (GE Healthcare) using a 60X 1.42 NA
622 differential interference contrast Plan Apochromat oil immersion lens (Olympus) with a final magnification
623 of 107.6 nm/pixel at the camera sensor (edge4.2, PCO Inc.). For live-cell imaging experiments, cells were
624 imaged in 35-mm glass-bottomed dishes (constructed in-house) and imaged in Leibovitz's L-15 media
625 (Invitrogen) supplemented with 10% FBS, 7 mM HEPES, 4.5 g/liter glucose, pH 7.0. Images were
626 captured on a Nikon Ti-E microscope equipped with a Piezo Z-control (Physik Instrumente), stage top
627 incubation system (Okolab), and spinning disk confocal scanner unit (CSUX1; Yokogawa), using a 60X,
628 1.49NA objective and an iXon DU888 EM-CCD camera (Andor). Five z-planes at 0.75 μ m steps, were
629 acquired every 3 min for the duration of filming using the 488 nm laser.
630

631 **Fluorophore conjugations.** For direct labeling of the Fab fragment, full length rMAb-Hec1^{ms} was first
632 digested using a Pierce Fab Preparation Kit (Fisher Scientific) according to the manufacturer's
633 instructions. Purified Hec1 Fab was then directly conjugated with Alexa 647 (Invitrogen) according to the
634 following procedure: 0.065 mg of Fab-Hec1^{ms} was incubated with 6 μ l 1M NaHCO₃ and 1 μ l Alexa 647
635 (final reaction volume 50 μ L). The tube containing the reaction mix was wrapped in foil, rotated for 30 min
636 at room temperature, and then diluted with an additional 140 μ l of 1X PBS. This solution was then added
637 to the center of a Nap-5 gel filtration column and allowed to enter the column via gravity. 500 μ l of 1X
638 PBS was added to the column and the fastest-eluting fluorescent band containing the fluorescently-
639 conjugated protein was collected in a fresh tube. Hec1 Fab⁶⁴⁷ concentration and labeling ratio was
640 calculated.

641

642 **STORM imaging.** Cells were seeded and fixed as above in 35-mm glass-bottomed dishes. The Hec1
643 Fab used for STORM was directly labeled as described above, but in addition to Alexa 647, the Fab was
644 also conjugated with Alexa 405 by adding 3 μ l of the dye to the same reaction volume. The directly
645 labeled Hec1 Fab^{405/647} was used at 1:500 following the above immunofluorescence procedure. For
646 imaging, STORM imaging buffer was made immediately before use according to Nikon STORM protocol:
647 24 μ l glucose oxidase, 280 μ l 1M MEA 2480 μ l (50 mM Tris-HCl + 10 mM NaCl + 10% glucose). 2 mL of
648 the imaging buffer was added to the dish and the cells were imaged on a Nikon Ti-Eclipse microscope
649 using a 1.49NA 100X Plan Apo TIRF lens equipped with an iXon3 DU897 EM-CCD (Andor). STORM
650 images were acquired using 405 nm and 640 nm lasers on N-STORM software, version 3.30.

651

652 **Immunoblotting.** Samples were run on 12% SDS-polyacrylamide gels and subsequently transferred to
653 0.2 μ m polyvinylidene difluoride membrane (PVDF) (Millipore). Membranes were washed with 1X TBS
654 and incubated with a 5% solution of BSA for 1 hr at room temperature. Primary antibodies were added
655 to membranes in quick-seal bags, and incubated, rocking for 1 hr at room temperature. The following
656 primary antibody and antibody fragment concentrations were used for immunoblotting: rMAb-Hec1^{ms} at
657 1.5 μ g/mL, rMAb-BubR1^{ms} at 2.1 μ g/mL, rMAb-pMELT^{rb} at 1.9 μ g/mL and rMAb-Tubulin^{rb} at 1.2 μ g/mL.
658 Membranes were washed with TBS-T (1 X TBS + 0.05% Tween-20) and incubated with HRP-tagged
659 secondary antibodies for 1 hr at room temperature. Membranes were washed with TBS-T and scanned
660 on a chemiluminescence imager IA600 (GE Healthcare). For the KNL1 pMELT immunoblots, a truncated
661 version of KNL1 with a molecular mass of ~100 kDa and containing multiple MELT motifs was transiently
662 expressed in HeLa cells 24 hr prior to processing for SDS-PAGE and immunoblot analysis.

663

664

665

Plasmid name	Description
pDL001_Hec1-ms_IgG_HC	Hec1 heavy chain variable and constant regions (mouse) + exogenous N-term signal peptide
pDL002_Hec1-ms_IgG_LC	Hec1 light chain variable and constant region (mouse) + exogenous N-term signal peptide
pDL003_Hec1-rb_IgG_HC	Hec1 heavy chain variable region + rabbit heavy chain constant regions + exogenous N-term signal peptide
pDL004_Hec1-rb_IgG_LC	Hec1 light chain variable region + rabbit light chain constant region + exogenous N-term signal peptide
pDL005_Hec1-hu_IgG_HC	Hec1 heavy chain variable region + human heavy chain constant regions (UniProt P01857) + exogenous N-term signal peptide
pDL006_Hec1-hu_IgG_LC	Hec1 light chain variable region + human light chain constant region (UniProt P01834) + exogenous N-term signal peptide
pDL007_pMELT-rb_IgG_HC	KNL1 pMELT heavy chain variable and constant regions (rabbit) + exogenous N-term signal peptide
pDL008_pMELT-rb_IgG_LC	KNL1 pMELT light chain variable and constant region (rabbit) + exogenous N-term signal peptide
pDL009_CenpC-ms_IgG_HC	CENP-C heavy chain variable region + mouse heavy chain constant regions (from Hec1 sequence) + exogenous N-term signal peptide
pDL010_CenpC-ms_IgG_LC	CENP-C light chain variable region + mouse light chain constant region (from Hec1 sequence) + exogenous N-term signal peptide
pDL011_CenpC-hu_IgG_HC	Cenp-C heavy chain variable region + human heavy chain constant regions (UniProt P01857) + exogenous N-term signal peptide
pDL012_CenpC-hu_IgG_LC	Cenp-C light chain variable region + human light chain constant region (UniProt P01834) + exogenous N-term signal peptide
pDL013_BubR1-ms_IgG_HC	BubR1 heavy chain variable and constant regions (mouse); (contains endogenous N-term signal peptide)
pDL014_BubR1-ms_IgG_LC	BubR1 light chain variable and constant region (mouse); (contains endogenous N-term signal peptide)
pDL015_BubR1-hu_IgG_HC	BubR1 heavy chain variable region + human heavy chain constant regions (UniProt P01857) (contains endogenous N-term signal peptide)
pDL016_BubR1-hu_IgG_LC	BubR1 light chain variable region + human light chain constant region (UniProt P01834) (contains endogenous N-term signal peptide)
pDL017_Mad2C-ms_IgG_HC	Mad2-C heavy chain variable and constant regions (mouse) (contains endogenous N-term signal peptide)
pDL018_Mad2C-ms_IgG_LC	Mad2-C light chain variable and constant region (mouse) (contains endogenous N-term signal peptide)
pDL019_Mad2C-hu_IgG_HC	Mad2-C heavy chain variable region + human heavy chain constant regions (UniProt P01857) (contains endogenous N-term signal peptide)
pDL020_Mad2C-hu_IgG_LC	Mad2-C light chain variable region + human light chain constant region (UniProt P01834) (contains endogenous N-term signal peptide)
pDL021_3F3/2-ms_IgG_HC	3F3/2 heavy chain variable and constant regions (mouse) (contains endogenous N-term signal peptide)
pDL022_3F3/2-ms_IgG_LC	3F3/2 light chain variable and constant region (mouse) (contains endogenous N-term signal peptide)
pDL023_Tub-rb_IgG_HC	α -tubulin heavy chain variable region + rabbit heavy chain constant regions + exogenous N-term signal peptide
pDL024_Tub-rb_IgG_LC	α -tubulin light chain variable region + rabbit light chain constant region + exogenous N-term signal peptide
pDL025_HA-rb_IgG_HC_15F11	HA-tag heavy chain hypervariable regions grafted into framework 15F11 scaffold (Zhao et al., 2019) + rabbit heavy chain constant regions + exogenous N-term signal peptide
pDL026_HA-rb_IgG_LC_15F11	HA-tag light chain hypervariable regions grafted into framework 15F11 scaffold (Zhao et al., 2019) + rabbit light chain constant regions + exogenous N-term signal peptide
pDL027_scFvC_Hec1-rb	Hec1 heavy and light chain variable regions connected by linker + rabbit heavy chain constant regions 2 and 3 + exogenous N-term signal peptide
pDL028_scFvC_Mad2C-rb	Mad2-C heavy and light chain variable regions connected by linker + rabbit heavy chain constant regions 2 and 3 + exogenous N-term signal peptide
pDL029_scFv_pMELT_GFP_NoSP	KNL1 pMELT heavy and light chain variable regions connected by linker + GFP (no signal peptide included)
pDL030_scFvC_Hec1-rb_NoSP	Hec1 heavy and light chain variable regions connected by linker + rabbit heavy chain constant regions 2 and 3 (no signal peptide included)
pDL031_scFvC_Mad2C-rb_NoSP	Mad2-C heavy and light chain variable regions connected by linker + rabbit heavy chain constant regions 2 and 3 (no signal peptide included)

666

667 Table 1. Descriptions of antibody-related plasmids generated in this study. Plasmids will be made available by contacting
668 the corresponding author. Use of the plasmids and sequence information is for non-commercial purposes only.

669

670 **Acknowledgements**

671 The authors thank members of the DeLuca lab and Dr. Steven Markus for helpful advice on the project.
672 We also thank Drs. Martha Cyert and Marc Kirschner for providing the 3F3/2 hybridoma cell line to the
673 Gorbsky lab. This work was supported by grants from the National Institutes of Health, National Institute
674 of General Medical Sciences to JGD (R35GM130365), TJS (R35GM119728), NZ (K99GM141453), GJG
675 (R35GM126980), and DV (R01GM135391); and a grant from the National Science Foundation to TJS
676 (MCB-1845761). SMA, LS and the Cell Technology Shared Resource are supported by Cancer Center
677 Support Grant (P30CA046934).

678

679 **Competing Interests**

680 The authors have no competing financial interests to declare.
682

683 **References**

684 Alfaleh, M.A., H.O. Alsaab, A.B. Mahmoud, A.A. Alkayyal, M.L. Jones, S.M. Mahler, and A.M. Hashem.
685 2020. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. *Front Immunol.* 11:1986.

686 Almagro, J.C., M. Pedraza-Escalona, H.I. Arrieta, and S.M. Pérez-Tapia. 2019. Phage Display Libraries
687 for Antibody Therapeutic Discovery and Development. *Antibodies (Basel)*. 8.

688 Baker, M. 2015. Reproducibility crisis: Blame it on the antibodies. *Nature*. 521:274-276.

689 Berland, L., L. Kim, O. Abousaway, A. Mines, S. Mishra, L. Clark, P. Hofman, and M. Rashidian. 2021.
690 Nanobodies for Medical Imaging: About Ready for Prime Time? *Biomolecules*. 11.

691 Bordeaux, J., A. Welsh, S. Agarwal, E. Killiam, M. Baquero, J. Hanna, V. Anagnostou, and D. Rimm.
692 2010. Antibody validation. *Biotechniques*. 48:197-209.

693 Bradbury, A., and A. Plückthun. 2015. Reproducibility: Standardize antibodies used in research. *Nature*.
694 518:27-29.

695 Bradbury, A.R.M., N.D. Trinklein, H. Thie, I.C. Wilkinson, A.K. Tandon, S. Anderson, C.L. Bladen, B.
696 Jones, S.F. Aldred, M. Bestagno, O. Burrone, J. Maynard, F. Ferrara, J.S. Trimmer, J. Görnemann, J.
697 Glanville, P. Wolf, A. Frenzel, J. Wong, X.Y. Koh, H.Y. Eng, D. Lane, M.P. Lefranc, M. Clark, and S.
698 Dübel. 2018. When monoclonal antibodies are not monospecific: Hybridomas frequently express
699 additional functional variable regions. *MAbs*. 10:539-546.

700 Burton, D.R., J. Pyati, R. Koduri, S.J. Sharp, G.B. Thornton, P.W. Parren, L.S. Sawyer, R.M. Hendry, N.
701 Dunlop, P.L. Nara, and et al. 1994. Efficient neutralization of primary isolates of HIV-1 by a recombinant
702 human monoclonal antibody. *Science*. 266:1024-1027.

703 Campbell, M.S., and G.J. Gorbsky. 1995. Microinjection of mitotic cells with the 3F3/2 anti-
704 phosphoepitope antibody delays the onset of anaphase. *J Cell Biol.* 129:1195-1204.

705 Chan, G.K., S.A. Jablonski, V. Sudakin, J.C. Hittle, and T.J. Yen. 1999. Human BUBR1 is a mitotic
706 checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. *J Cell*
707 *Biol.* 146:941-954.

708 Cheloha, R.W., T.J. Harmand, C. Wijne, T.U. Schwartz, and H.L. Ploegh. 2020. Exploring cellular
709 biochemistry with nanobodies. *J Biol Chem.* 295:15307-15327.

710 Chen, Y., D.J. Riley, P.L. Chen, and W.H. Lee. 1997. HEC, a novel nuclear protein rich in leucine heptad
711 repeats specifically involved in mitosis. *Mol Cell Biol.* 17:6049-6056.

712 Cialek, C.A., G. Galindo, A.L. Koch, M.N. Saxton, and T.J. Stasevich. 2021. Bead Loading Proteins and
713 Nucleic Acids into Adherent Human Cells. *J Vis Exp.*

714 Cosson, P., and O. Hartley. 2016. Recombinant Antibodies for Academia: A Practical Approach. *Chimia*
715 (*Aarau*). 70:893-897.

716 De Antoni, A., C.G. Pearson, D. Cimini, J.C. Canman, V. Sala, L. Nezi, M. Mapelli, L. Sironi, M. Faretta,
717 E.D. Salmon, and A. Musacchio. 2005. The Mad1/Mad2 complex as a template for Mad2 activation in
718 the spindle assembly checkpoint. *Curr Biol.* 15:214-225.

719 DeLuca, J.G., W.E. Gall, C. Ciferri, D. Cimini, A. Musacchio, and E.D. Salmon. 2006. Kinetochore
720 microtubule dynamics and attachment stability are regulated by Hec1. *Cell.* 127:969-982.

721 DeLuca, J.G., and A. Musacchio. 2012. Structural organization of the kinetochore-microtubule
722 interface. *Curr Opin Cell Biol.* 24:48-56.

723 Garg, B.K., and R.H. Loring. 2017. Evaluating Commercially Available Antibodies for Rat $\alpha 7$ Nicotinic
724 Acetylcholine Receptors. *J Histochem Cytochem.* 65:499-512.

725 Gavilondo, J.V., and J.W. Lerrick. 2000. Antibody engineering at the millennium. *Biotechniques.* 29:128-
726 132, 134-126, 138 passim.

727 Gorbsky, G.J., and W.A. Ricketts. 1993. Differential expression of a phosphoepitope at the kinetochores
728 of moving chromosomes. *J Cell Biol.* 122:1311-1321.

729 Gray, A., A.R.M. Bradbury, A. Knappik, A. Plückthun, C.A.K. Borrebaeck, and S. Dübel. 2020. Animal-
730 free alternatives and the antibody iceberg. *Nat Biotechnol.* 38:1234-1239.

731 Gray, A.C., S.S. Sidhu, P.C. Chandrasekera, C.F.M. Hendriksen, and C.A.K. Borrebaeck. 2016. Animal-
732 Friendly Affinity Reagents: Replacing the Needless in the Haystack. *Trends Biotechnol.* 34:960-969.

733 Hara, M., and T. Fukagawa. 2020. Dynamics of kinetochore structure and its regulations during mitotic
734 progression. *Cell Mol Life Sci.* 77:2981-2995.

735 Hayashi-Takanaka, Y., K. Yamagata, T. Wakayama, T.J. Stasevich, T. Kainuma, T. Tsurimoto, M.
736 Tachibana, Y. Shinkai, H. Kurumizaka, N. Nozaki, and H. Kimura. 2011. Tracking epigenetic histone
737 modifications in single cells using Fab-based live endogenous modification labeling. *Nucleic Acids Res.*
738 39:6475-6488.

739 Hoffman, D.B., C.G. Pearson, T.J. Yen, B.J. Howell, and E.D. Salmon. 2001. Microtubule-dependent
740 changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1
741 kinetochores. *Mol Biol Cell.* 12:1995-2009.

742 Johnson, G., and T.T. Wu. 2000. Kabat database and its applications: 30 years after the first variability
743 plot. *Nucleic Acids Res.* 28:214-218.

744 Johnson, R.S., S.A. Martin, K. Biemann, J.T. Stults, and J.T. Watson. 1987. Novel fragmentation process
745 of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine
746 and isoleucine. *Anal Chem.* 59:2621-2625.

747 Katzman, B.M., K.M. Ness, and A. Algeciras-Schimnich. 2017. Evaluation of the CLSI EP26-A protocol
748 for detection of reagent lot-to-lot differences. *Clin Biochem.* 50:768-771.

749 Kimura, H., Y. Hayashi-Takanaka, T.J. Stasevich, and Y. Sato. 2015. Visualizing posttranslational and
750 epigenetic modifications of endogenous proteins in vivo. *Histochem Cell Biol.* 144:101-109.

751 Kixmoeller, K., P.K. Allu, and B.E. Black. 2020. The centromere comes into focus: from CENP-A
752 nucleosomes to kinetochore connections with the spindle. *Open Biol.* 10:200051.

753 Laustsen, A.H., V. Greiff, A. Karatt-Vellatt, S. Muyldermans, and T.P. Jenkins. 2021. Animal
754 Immunization, in Vitro Display Technologies, and Machine Learning for Antibody Discovery. *Trends
755 Biotechnol.*

756 Leenaars, P.P., M.A. Koedam, P.W. Wester, V. Baumans, E. Claassen, and C.F. Hendriksen. 1998.
757 Assessment of side effects induced by injection of different adjuvant/antigen combinations in rabbits and
758 mice. *Lab Anim.* 32:387-406.

759 Lima, W.C. and Cosson, P. 2019. The AA344 and AA345 antibodies detect human tubulin by
760 immunofluorescence in HeLa cells. *Antib. Rep.* 2(4):e108.

761 Lima, W.C., E. Gasteiger, P. Marcatili, P. Duek, A. Bairoch, and P. Cosson. 2020. The ABCD database:
762 a repository for chemically defined antibodies. *Nucleic Acids Res.* 48:D261-d264.

763 Lischetti, T., and J. Nilsson. 2015. Regulation of mitotic progression by the spindle assembly
764 checkpoint. *Mol Cell Oncol.* 2:e970484.

765 London, N., S. Ceto, J.A. Ranish, and S. Biggins. 2012. Phosphoregulation of Spc105 by Mps1 and PP1
766 regulates Bub1 localization to kinetochores. *Curr Biol.* 22:900-906.

767 Lyon, K., and T.J. Stasevich. 2017. Imaging Translational and Post-Translational Gene Regulatory
768 Dynamics in Living Cells with Antibody-Based Probes. *Trends Genet.* 33:322-335.

769 Mapelli, M., L. Massimiliano, S. Santaguida, and A. Musacchio. 2007. The Mad2 conformational dimer:
770 structure and implications for the spindle assembly checkpoint. *Cell.* 131:730-743.

771 McNeil, P.L., and E. Warder. 1987. Glass beads load macromolecules into living cells. *J Cell Sci.* 88 (Pt
772 5):669-678.

773 Mikhaylova, M., B.M. Cloin, K. Finan, R. van den Berg, J. Teeuw, M.M. Kijanka, M. Sokolowski, E.A.
774 Katrukha, M. Maidorn, F. Opazo, S. Moutel, M. Vantard, F. Perez, P.M. van Bergen en Henegouwen,
775 C.C. Hoogenraad, H. Ewers, and L.C. Kapitein. 2015. Resolving bundled microtubules using anti-tubulin
776 nanobodies. *Nat Commun.* 6:7933.

777 Morisaki, T., K. Lyon, K.F. DeLuca, J.G. DeLuca, B.P. English, Z. Zhang, L.D. Lavis, J.B. Grimm, S.
778 Viswanathan, L.L. Looger, T. Lionnet, and T.J. Stasevich. 2016. Real-time quantification of single RNA
779 translation dynamics in living cells. *Science.* 352:1425-1429.

780 Musacchio, A., and A. Desai. 2017. A Molecular View of Kinetochore Assembly and Function. *Biology*
781 (*Basel*). 6.

782 Navarro, A.P., and I.M. Cheeseman. 2021. Kinetochore assembly throughout the cell cycle. *Semin Cell*
783 *Dev Biol.*

784 Nicklas, R.B., S.C. Ward, and G.J. Gorbsky. 1995. Kinetochore chemistry is sensitive to tension and may
785 link mitotic forces to a cell cycle checkpoint. *J Cell Biol.* 130:929-939.

786 Nijenhuis, W., Vallardi, G., Teixeira, A., Kops, G.J., and A. T. Saurin. 2014. Negative feedback at
787 kinetochores underlies a responsive spindle checkpoint signal. *Nat Cell Biol.* 16:1257-64.

788 Panikar, S.S., N. Banu, J. Haramati, S. Del Toro-Arreola, A. Riera Leal, and P. Salas. 2021. Nanobodies
789 as efficient drug-carriers: Progress and trends in chemotherapy. *J Control Release.* 334:389-412.

790 Pozner-Moulis, S., M. Cregger, R.L. Camp, and D.L. Rimm. 2007. Antibody validation by quantitative
791 analysis of protein expression using expression of Met in breast cancer as a model. *Lab Invest.* 87:251-
792 260.

793 Ries, J., C. Kaplan, E. Platonova, H. Eghlidi, and H. Ewers. 2012. A simple, versatile method for GFP-
794 based super-resolution microscopy via nanobodies. *Nat Methods.* 9:582-584.

795 Sachs, D.H., A.N. Schechter, A. Eastlake, and C.B. Anfinsen. 1972. An immunologic approach to the
796 conformational equilibria of polypeptides. *Proc Natl Acad Sci U S A.* 69:3790-3794.

797 Saeed, A.F., R. Wang, S. Ling, and S. Wang. 2017. Antibody Engineering for Pursuing a Healthier
798 Future. *Front Microbiol.* 8:495.

799 Santaguida, S., A. Tighe, A.M. D'Alise, S.S. Taylor, and A. Musacchio. 2010. Dissecting the role of MPS1
800 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. *J*
801 *Cell Biol.* 190:73-87.

802 Sasada, R., Marumoto, R., and Igarashi, K. 1988. Secretion of human EGF and IgE in mammalian cells
803 by recombinant DNA techniques; use of a IL-2 leader sequence. *Cell Struct Funct.* 13:129-41.

804 Sato, Y., M. Mukai, J. Ueda, M. Muraki, T.J. Stasevich, N. Horikoshi, T. Kujirai, H. Kita, T. Kimura, S.
805 Hira, Y. Okada, Y. Hayashi-Takanaka, C. Obuse, H. Kurumizaka, A. Kawahara, K. Yamagata, N. Nozaki,
806 and H. Kimura. 2013. Genetically encoded system to track histone modification in vivo. *Sci Rep.* 3:2436.

807 Sedgwick, G.G., M.S. Larsen, T. Lischetti, W. Streicher, R.R. Jersie-Christensen, J.V. Olsen, and J.
808 Nilsson. 2016. Conformation-specific anti-Mad2 monoclonal antibodies for the dissection of checkpoint
809 signaling. *MAbs.* 8:689-697.

810 Shepperd, L.A., J.C. Meadows, A.M. Sochaj, T.C. Lancaster, J. Zou, G.J. Buttrick, J. Rappaport, K.G.
811 Hardwick, and J.B. Millar. 2012. Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by
812 Mph1 kinase maintains the spindle checkpoint. *Curr Biol.* 22:891-899.

813 Shim, H. 2017. Antibody Phage Display. *Adv Exp Med Biol.* 1053:21-34.

814 Shukra, A.M., N.V. Sridevi, C. Dev, and M. Kapil. 2014. Production of recombinant antibodies using
815 bacteriophages. *Eur J Microbiol Immunol (Bp).* 4:91-98.

816 Skoufias, D.A., P.R. Andreassen, F.B. Lacroix, L. Wilson, and R.L. Margolis. 2001. Mammalian mad2
817 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. *Proc Natl
818 Acad Sci U S A*. 98:4492-4497.

819 Stasevich, T.J., Y. Hayashi-Takanaka, Y. Sato, K. Maehara, Y. Ohkawa, K. Sakata-Sogawa, M.
820 Tokunaga, T. Nagase, N. Nozaki, J.G. McNally, and H. Kimura. 2014. Regulation of RNA polymerase II
821 activation by histone acetylation in single living cells. *Nature*. 516:272-275.

822 Traenkle, B., and U. Rothbauer. 2017. Under the Microscope: Single-Domain Antibodies for Live-Cell
823 Imaging and Super-Resolution Microscopy. *Front Immunol*. 8:1030.

824 Valldorf, B., S.C. Hinz, G. Russo, L. Pekar, L. Mohr, J. Klemm, A. Doerner, S. Krah, M. Hust, and S.
825 Zielonka. 2021. Antibody display technologies: selecting the cream of the crop. *Biol Chem*.

826 Varma, D., and E.D. Salmon. 2012. The KMN protein network--chief conductors of the kinetochore
827 orchestra. *J Cell Sci*. 125:5927-5936.

828 Vazquez-Lombardi, R., D. Nevoltris, A. Luthra, P. Schofield, C. Zimmermann, and D. Christ. 2018.
829 Transient expression of human antibodies in mammalian cells. *Nat Protoc*. 13:99-117.

830 Vleugel, M., M. Omerzu, V. Groenewold, M.A. Hadders, S.M.A. Lens, and G. Kops. 2015. Sequential
831 multisite phospho-regulation of KNL1-BUB3 interfaces at mitotic kinetochores. *Mol Cell*. 57:824-835.

832 Wang, C., B. Han, R. Zhou, and X. Zhuang. 2016. Real-Time Imaging of Translation on Single mRNA
833 Transcripts in Live Cells. *Cell*. 165:990-1001.

834 Waters, J.C., R.H. Chen, A.W. Murray, and E.D. Salmon. 1998. Localization of Mad2 to kinetochores
835 depends on microtubule attachment, not tension. *J Cell Biol*. 141:1181-1191.

836 Weller, M.G. 2016. Quality Issues of Research Antibodies. *Anal Chem Insights*. 11:21-27.

837 Wimbish, R.T., and J.G. DeLuca. 2020. Hec1/Ndc80 Tail Domain Function at the Kinetochore-
838 Microtubule Interface. *Front Cell Dev Biol*. 8:43.

839 Xenaki, K.T., S. Oliveira, and P.M.P. van Bergen En Henegouwen. 2017. Antibody or Antibody
840 Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors. *Front Immunol*.
841 8:1287.

842 Yamagishi, Y., C.H. Yang, Y. Tanno, and Y. Watanabe. 2012. MPS1/Mph1 phosphorylates the
843 kinetochore protein KNL1/Spc7 to recruit SAC components. *Nat Cell Biol*. 14:746-752.

844 Yan, X., T.A. Hoek, R.D. Vale, and M.E. Tanenbaum. 2016. Dynamics of Translation of Single mRNA
845 Molecules In Vivo. *Cell*. 165:976-989.

846 Yu, X., D.H. Gilden, A.M. Ritchie, M.P. Burgoon, K.M. Keays, and G.P. Owens. 2006. Specificity of
847 recombinant antibodies generated from multiple sclerosis cerebrospinal fluid probed with a random
848 peptide library. *J Neuroimmunol*. 172:121-131.

849 Zhang, G., T. Lischetti, D.G. Hayward, and J. Nilsson. 2015. Distinct domains in Bub1 localize RZZ and
850 BubR1 to kinetochores to regulate the checkpoint. *Nat Commun*. 6:7162.

851 Zhao, N., K. Kamijo, P.D. Fox, H. Oda, T. Morisaki, Y. Sato, H. Kimura, and T.J. Stasevich. 2019. A
852 genetically encoded probe for imaging nascent and mature HA-tagged proteins in vivo. *Nat Commun.*
853 10:2947.

854 Zhokhov, S.S., S.V. Kovalyov, T.Y. Samgina, and A.T. Lebedev. 2017. An EThcD-Based Method for
855 Discrimination of Leucine and Isoleucine Residues in Tryptic Peptides. *J Am Soc Mass Spectrom.*
856 28:1600-1611.

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

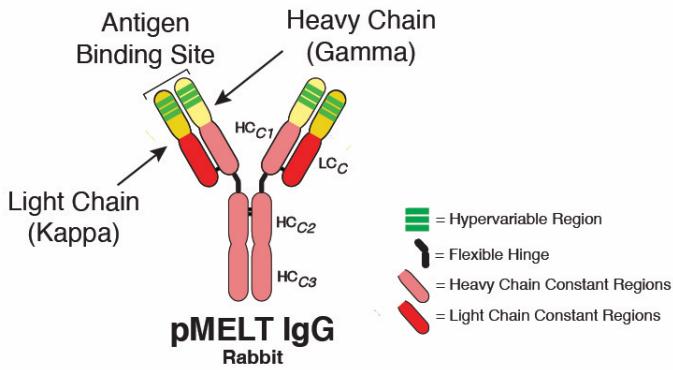
878

879

880

881

882

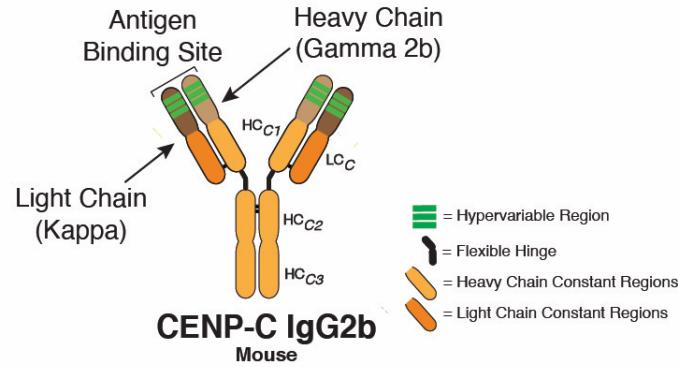

883

884

885

886

A


pMELT Antibody Heavy Chain

HC-FR	HC-HVR1	HC-HVR2
QSVEESGGRLVTPTGTLTLCITSGFSLSEYVMGWRQAPGKGLEWLAIGWSGATY		
HC-FR	HC-HVR3	
YASWVKGRFTISKTSVTDLEISSPITADATYFCVRSRPHGSAATLWGPGLTVSSGGP		
HC-CR1		
KAPSVPPLAPCCGDTPSSTVTLGCLVKGYLPEPVTVWNSTGTLNGVRRTFSPVROSSG		
HC-CR1	Hinge	
LYSLSSVSVTSSSQPTCNVAHPATNTKVDKTVAPSTCSKPTCPPEELLGGPSVIFPP		
HC-CR2		
KPKDTLMISRTPEVTCVVDVSDQDPEVQFTWYINNEQVTRARPPLREQOFNSTIRVVS		
HC-CR2		
TLPIAHODWLRLKEEFCCKVHNKALPAIETISKARGQPLPKVYTMGPVREELSSRSV		
HC-CR3		
SLTCMINGFYPDSIWEKNGKAEDNYYKTPAVLSDSGSYFLYSKLSVPTSEWQRGD		
HC-CR3		
VFTCSVMEALHNHYTQKSISRSPQ		

pMELT Antibody Light Chain

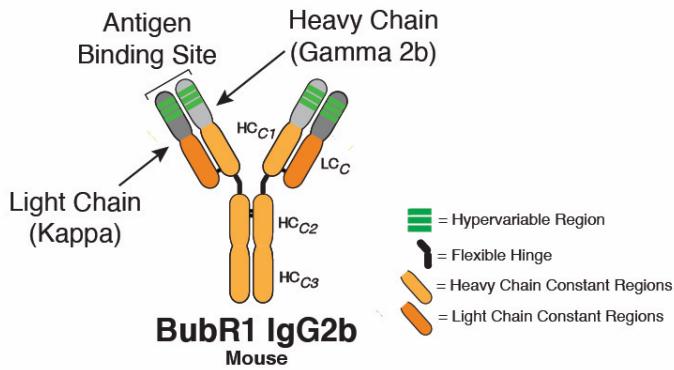
LC-FR	LC-HVR1	LC-HVR2
QVLQTQFASVAAVGGTVTICQSSSEVYKNNYLWYQQKPGQPPKPFLTYCASTLASG		
LC-HVR3		
VPSRFKGSQSGTQFILTSIDLECDDAATYYCAGGVSQNYGFGGGTEVVVKGDPPVAPTV		
LC-CR		
LIFPPAADQVATGTVTIVC VANKYFPDVTVTWEVDGTTQTTGIEINSKTPQNSADCTYNSL		
LC-CR		
STLTLTSTQYNSHKEYTCKVQTGTTSVQSFNRGDC		

B

Cenp-C Antibody Heavy Chain

HC-FR	HC-HVR1	HC-HVR2
DVQLVESGGGLVQPGGSKLSCAASGFTFSSFGMHWVRQAPEKGLEWVAYVSSGN		
HC-FR	HC-HVR3	
TIVYADTVKGRTISRDNPKNLFLQMTSLRSEDTAMYYCAREKDYGYMDYAMDYWGQ		
HC-FR	HC-CR1	
GTSVTVSSAKTTAPPSVYPLAPGCGDTGGSVTLGLCKGYFPESVTVTWNSSGLSS		
HC-CR1	Hinge	
VHTFPALLOSGLYTMSSVTPSSTWPSQTVCVSAHPASSTTVDKKLEPSGFIISTINPC		
HC-CR2		
PPCKECHCKCPAPNPLEGGPSVIFPPNPKDVLMSLTPKTCVVVDVSEDDPDVQISWFVN		
HC-CR3		
NNIVEVHTAQOTTHREDSYNTIRVSTLPQHQDWMSGKEFKCKVNNKDLPSPIERTISK		
HC-CR3		
IKGLVRAPQVYLLPAEQLSRKDVSLLCLVVGFPNGDSVEWTSGNHTEEINYKDAPVLD		
HC-CR3		
SDGSYFIYSKLNMKTSKWEKTDSCFCNVRIEGLKNYYLLKKTISRSPGK		

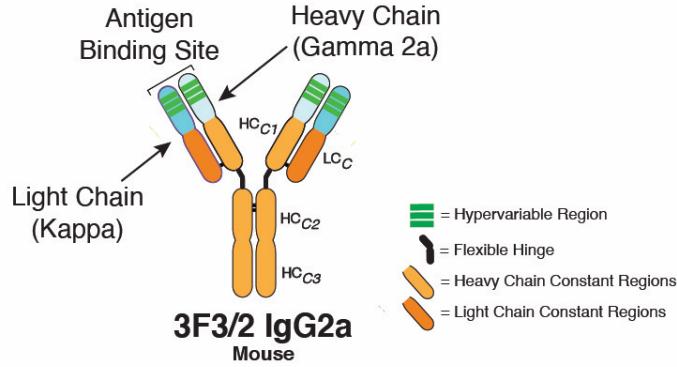
Cenp-C Antibody Light Chain


LC-FR	LC-HVR1	LC-HVR2
DIVMTQAPSVPVTPGESSVSCRSKSLYSLNGNTLYWFLQRPQGSQSPOLLHYMSNL		
LC-FR	LC-HVR3	
ASGVVPDRFSGSGSGTGVYRISRVEAEEDVGVYYCMQHLEYPTFGGGTKLEIKRADAA		
LC-CR		
PTVSIFFPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERONGVNLNSWTDQSKD		
LC-CR		
STYSMSSTLTLKDEYERHNSYTCAEHTKSTSPIVKSFNRFNEC		

887

888

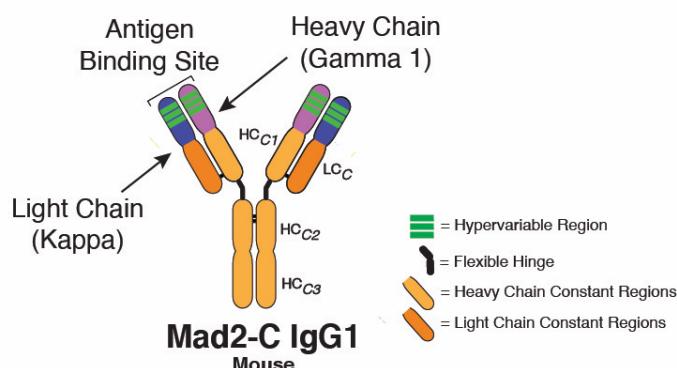
889 **Supplemental Figure 1. KN1 pMELT and CENP-C antibody classification and domain architecture.** (A) Sequence data
890 and domains for the KN1 pMELT antibody are annotated for the heavy chain (HC) and light chain (LC) variable regions
891 (HC=light yellow; LC=dark yellow), hypervariable regions (green), constant regions (HC=light pink; LC=red), and the flexible
892 hinge (dark gray). (B) Sequence data and domains for the CENP-C antibody are annotated for the heavy chain (HC) and light
893 chain (LC) variable regions (HC=light brown; LC=dark brown), hypervariable regions (green), constant regions (HC=light orange;
894 LC=dark orange), and the flexible hinge (dark gray).


A

BubR1 Antibody Heavy Chain

Signal Peptide	HC-FR	HC-HVR1
MDRLTSSLILLIVPAVYLSVTLKESGPGILQPSQTLSTCSFGFSLSTSVMGVSWIRO	HC-HVR2	
PSGKGLEWLAIHWDDDKRYNPSLKSRLTISKDTSSNVFLKISNVDTADATYCAR	HC-HVR3	HC-CR1
RGGPYPMDYWPGPGTSVTVSSAKTTTPSPVYPLAPGCGDTTGSVTLGCLVKGYPFESV	HC-CR1	HC-CR2
TVTWNSGLSSSVHTFPALLQSGLYTMSSSVTPSSTWPSGTVTCSVAPHASSTVDK	HC-CR2	HC-CR3
KLKPSQSTINCPCKECHKCPAPNQKDFVPPNPKDVLMSLTPKVCVVVDS	HC-CR3	HC-CR4
EDDPDVQISWPNVNVEVHTAQTQTHREDYNTIRVSTLPIQHQQDWMSGKEFKCKVN	HC-CR4	HC-CR5
KDLPSPIERTISKIGLVRAPQVYILPPPAEQLSRKDVLTSVCLVGFNPQDSIVEWTSG	HC-CR5	HC-CR6
HTEENYKOTAPVLDSDGSYFIYSKLNKNTSKWEKTDSCNVRH EGLKNNYKLTTSR	HC-CR6	SPGK
		BubR1 Antibody Light Chain
	LC-FR	LC-HVR1
MDFQVQISFLLISVMSMRGENVLTQPSITMSASLGEKVTMCSRASSVYDHYWYQQ	LC-HVR2	LC-HVR3
KSDSPKIIWYIYTTSNLAQPGVPTRSPGSGNSYSLTISMSMEADAATYYCQOFSSPW	LC-HVR3	LC-CR1
TFGGGTTKLEIRKADAAPTVSIFFPSSQELTSGGASVCFLNFFYPKDINVWKWIDSER	LC-CR1	LC-CR2
QNGVLSNWTQDSKDKDSTYSMSSTLTLKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC	LC-CR2	

B


3F3/2 Heavy Chain

Signal Peptide	HC-FR	HC-HVR1
MDSRNLFLVLLIKGQCOQCDVQLVESGGGLVQPGGGSRKLSCAASGFTSTGMHWR	HC-HVR2	
QAPEKGLEWVAYISSGSGTYADATVKGRTFISRDNPKNTLFLOMTSRSEDTAMYCCIR	HC-HVR3	HC-CR1
SGDLSLFAWGGQTLTVSAAKTTAPSVPPLAPVCGDGTGSVTLGCLVKGYFPEPVLT	HC-CR1	HC-CR2
WNSGSGLSLSSGVHTFPAVLQSDLYTLLSSVTVTSSTWPSQSTCNVAHPASSTKVKKIEP	HC-CR2	HC-CR3
RGPTIKPCCPKCPAPNLLGGPSVIFPPKIKDVLMLISLSPIVTCVVVDVSEDDPQVSW	HC-CR3	HC-CR4
FVNNEVHTAGTOHTREDYNTSLRVSPALIPIQHODWMSGKEFKCKVNNKDLAPIERTI	HC-CR4	HC-CR5
SKPKGSVRAPOVYLLPPPEEMTKKQVTLTCMVTDFMPEDIYVEWTTNGKTELNYKNT	HC-CR5	HC-CR6
EPVLDSGDSYFMSKLVNLVEKKNWVERNNSYSCSVVHEGLHNHHTTKSFSTPGK	HC-CR6	

3F3/2 Antibody Light Chain

Signal Peptide	LC-FR	LC-HVR1
MKLPVRLLWVPIWPAASSDVMQTPLSPVSLGDQASFCSRQSLVHSNGNTYIHL	LC-HVR2	LC-HVR3
WYLPKQPGQSPKVLIVKVSNRFPGVPDFRSGSGSGDFTLKLKSIRVEAEDLGVYFCOTT	LC-HVR3	LC-CR1
HVPVTFGGGTKLEIRKADAAPTVSIFFPSSQELTSGGASVCFLNFFYPKDINVWKWIDG	LC-CR1	LC-CR2
SERONGVLSNWTQDSKDKDSTYSMSSTLTLKDEYERHNSYTCEATHKTSTSPIVKSFN	LC-CR2	RNEC

C

Mad2-C Antibody Heavy Chain

Signal Peptide	HC-FR	HC-HVR1
MNFGLSLFLVLLIKGVOCEVOLVESGGGLVKPGGSKLSCAVSGFTLSSYDLSWVQ	HC-HVR2	
PERRLEWAEIRGRGSYTYSSDVTGRFTISRDNNAKNTYLEMSSLRSEDTAMYCCARK	HC-HVR3	HC-CR1
DYVRMFAYWGGQTLTVSAAKTTPSVYPLAPGSAQNTSMVTLGCLVKGYFPEPVTV	HC-CR1	HC-CR2
TWNSSGSGVHTFPAVLQSDLYTLLSSVTPSSTWPSSETVTCNVAHPASSTKVKKIV	HC-CR2	HC-CR3
PRDCGCKPCTVPEVSKVFFPKPKDVLITLTPKVCVVKKISKDPPFVQFWFVDD	HC-CR3	HC-CR4
VEVHTAQTOPREEOFNSTFRSVELPIMHDWLNKEFKCRVNSAAPPPIETKISKT	HC-CR4	HC-CR5
KGRPKAPQVYTPPKKEQAMDKVSLTCLMIDTFPPEDTVWQWNGQPAENYKNTOP	HC-CR5	HC-CR6
IMDTSGSYFVYSSKLNVOKSNWEAGNTFTCSVLHEGLHNHTEKSLSHSPGK	HC-CR6	

Mad2-C Light Chain

Signal Peptide	LC-FR	LC-HVR1
METHSPVLLWVLSGVQEGDNVMTQSHFKMSTSVDGRVNITCKASQDVGTVAVAWYQ	LC-HVR2	LC-HVR3
OKPGSPNLLIVYASTRHTRHTGVPDFRTGSGSGTDFLTITNVQSEDLADYFCQQYFSYF	LC-HVR3	LC-CR1
TFGGGTTKLEIRKADAAPTVSIFFPSSQELTSGGASVCFLNFFYPKDINVWKWIDSER	LC-CR1	LC-CR2
NGVLVLSNWTQDSKDKDSTYSMSSTLTLKDEYERHNSYTCEATHKTSTSPIVKSFN	LC-CR2	RNEC

895

896 **Supplemental Figure 2. BubR1, 3F3/2, and Mad2-C antibody classification and domain architecture.** (A) Sequence data and domains for the BubR1 antibody are annotated for the heavy chain (HC) and light chain (LC) variable regions (HC=light gray; LC=dark gray), hypervariable regions (green), constant regions (HC=light orange; LC=dark orange), and the flexible hinge (dark gray). (B) Sequence data and domains for the 3F3/2 antibody are annotated for the heavy chain (HC) and light chain (LC) variable regions (HC=light turquoise; LC=dark turquoise), hypervariable regions (green), constant regions (HC=light orange; LC=dark orange), and the flexible hinge (dark gray). (C) Sequence data and domains for the Mad2-C antibody are annotated for the heavy chain (HC) and light chain (LC) variable regions (HC=light purple; LC=dark purple), hypervariable regions (green), constant regions (HC=light orange; LC=dark orange), and the flexible hinge (dark gray).

904