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ABSTRACT: Automated data pre-processing (DPP) forms the basis of any liquid chromatography-high resolution mass 
spectrometry-driven non-targeted metabolomics experiment. However, current strategies for quality control of this im-
portant step have rarely been investigated or even discussed. We exemplified how reliable benchmark peak lists could 
be generated for eleven publicly available datasets acquired across different instrumental platforms. Moreover, we 
demonstrated how these benchmarks can be utilized to derive performance metrics for DPP and tested whether these 
metrics can be generalized for entire datasets. Relying on this principle, we cross-validated different strategies for quality 
assurance of DPP, including manual parameter adjustment, variance of replicate injection-based metrics, unsupervised 
clustering performance, automated parameter optimization, and deep learning-based classification of chromatographic 
peaks. Overall, we want to highlight the importance of assessing DPP performance on a regular basis. 

Liquid chromatography – high-resolution mass spectrometry 

(LC-HRMS) is the most widely used tool for advancing re-

search in non-targeted metabolomics, lipidomics, and exposom-

ics. A crucial step in hypothesis-free extraction of information 

from complex LC-HRMS data is automated non-targeted data 

pre-processing (NPP). NPP typically consists of a cascade of 

steps, including chromatogram extraction, chromatographic 

peak picking, peak alignment, and aligned feature processing 

(e.g., gap-filling) leading to so-called feature-tables (FT; Figure 

S1), which typically form the basis of any subsequent interpre-

tation. Over the past years, numerous algorithms and software 

packages enabling NPP have been published (e.g., XCMS1, 

XCMS-online2, MZmine 23, MS-DIAL4, El-MAVEN5, 

OpenMS6, and others7,8). Reproducing results on different tools 

and optimizing parameters has been recognized as one of the 

main challenges in non-targeted data processing, impacting data 

interpretation and ultimately study outcome.9–15 The emerging 

unease regarding the under-utilization of data12,13, calls for eval-

uation strategies that enable benchmarking of different tools, al-

gorithms, and parameter choices on a regular basis.  Undenia-

bly, validation of LC-HRMS NPP poses several challenges. 

First, the true number of peaks (and their properties such as 

area, height, etc.) in a raw dataset is typically unknown. This is 

even true when measuring a defined set of LC-HRMS grade an-

alytical standards due to unavoidable chemical impurities, con-

taminations, unexpected adducts, and gradient artifacts. Sec-

ond, no accepted gold-standard NPP method which would al-

low the generation of reliable reference FT as benchmarks ex-

ists. Finally, datasets differ in their characteristics (peak widths, 

mass precision, etc.), which implies that conclusions on NPP 

performance drawn from a benchmark might only allow con-

clusions for other datasets with similar characteristics. State-of-

the-art NPP reliability assessment strategies include peak/fea-

ture classification16–18, unsupervised clustering18–21, and bench-

mark recovery-based9,22,23 techniques, with the first two being 

applied almost routinely, while recovery-based approaches 

were mainly limited to dedicated NPP assessment studies. Up 

to date, there is no standardized catalog of metrics enabling the 

assessment and reporting of general figures of merit. In fact, the 

opposite is the case: there is vast heterogeneity in used metrics 

and their ability to describe NPP performance. 

Figure 1 provides an overview of current classification-based 

NPP assessment strategies, their metrics, and general capabili-

ties. Generally, classification discerns reliable from unreliable 

peaks/features (e.g., reliable LC-HRMS peaks should co-elute 

with isotopologues identifiable via specific mz distances), and 

many principles can be easily implemented as NPP perfor-

mance tests. However, key aspects of NPP quality remain blind 

spots. First, for peaks/features classified as unreliable, it is gen-

erally not possible to differentiate between cases where chro-

matographic noise has been erroneously picked as peak and 

cases where chromatographic peaks have been picked poorly. 

Moreover, the majority of principles allowing to assess the 

quality of reported abundances yields a checkpoint only after 

alignment. Therefore, it is difficult to trace the problems back 

to the peak picking or alignment step. Finally, classification-

based methods do not assess the proportion of undetected peaks 

(false negatives). 

NPP assessment through comparison with targeted data eval-

uation, denoted as benchmark recovery-based approaches, has 

the potential to investigate these blind spots. While the concept 

is straightforward, it is rarely applied in routine non-targeted 

experiments, as its implementation can be tedious. This is be-

cause benchmark generation requires meticulous manual cura-

tion of peaks, which can be very time-consuming and is often 

considered to be too subjective for ground-truth generation. In 

fact, a recent study showed that three experts in mass spectrom-

etry strongly disagreed on what constitutes an actual chromato-

graphic peak in ~20% of cases (n = 1071)24, demonstrating how 

vague boundaries between differences in opinion carry the risk 

of overinterpreting differences between benchmarks and NPP 

results. Moreover, the manual work of benchmark curation 

leads to rather small sets of benchmark peak lists, potentially 

hampering the representativeness of the benchmarks for the 

whole dataset.14,21  

We recently introduced mzRAPP, a tool that allows simpli-

fying benchmark recovery-based NPP assessment while also in-

creasing its reliability and providing functionality for their 
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Figure 1. Selected strategies for classification-based performance assessment for non-targeted data pre-processing (NPP) of LC-HRMS data. 

(a) Five principles distinguishing reliable high quality (HQ) from unreliable peaks/features have been summarized. While some approaches 

require only peak picking for their application, others can only be utilized after alignment. (b) Different principles allow for the assessment 

of data properties. Notably, in cases where multiple criteria have to be fulfilled, all of them have to pass for a peak/feature to be considered 

HQ. (c)  Typically, classification-based approaches suffer from a number of blind spots. 

 

utilization.25 Briefly, it takes the outputs of traditional targeted 

metabolomics data evaluation (molecular formulas with reten-

tion time boundaries per sample) as an input and automatically 

increases the number and reliability of benchmark peaks via 

consideration of isotopologues. In this way, benchmark peak 

abundances can be confirmed by predicted isotopologue ratios 

(IRs), rather than solely by human judgment. Finally, the con-

sideration of isotopic relations allows the introduction of per-

formance metrics dissecting the individual steps of NPP (e.g., 

see Figure S2). 

NPP results obtained following the steps of peak-picking, 

alignment, and gap-filling, respectively are benchmarked using 

metrics such as the recovery of benchmark peaks and isotope 

ratio biases (IRbs). The latter reflects the accuracy of the peak 

abundances obtained as visualized in Figure Figure S2a. As an-

other key advantage, metrics on the NPP alignment process can 

be retrieved without requiring tedious curation of the correct 

alignment of all benchmark peaks. By simply counting cases 

where the alignment performed on a given isotopologue is in 

conflict with the alignment of another isotopologue of the same 

molecular species (see Figure S2b). Building upon these princi-

ples, mzRAPP generates benchmarks and performs reliability 

NPP assessment at different stages of the process (picked peaks, 

peak alignment, and processed features). Currently, mzRAPP 

supports outputs from more than five of the most commonly 

used NPP tools (XCMS, XCMS-online, MZmine 2, MS-DIAL, 

OpenMS, El-MAVEN, MetaboanalystR 3.026, etc.). 

In this work, we show the power and necessity of this novel 

validation scheme. We scrutinize current NPP execution and as-

sessment strategies by adding a new validation layer as enabled 

by representative high-quality benchmarks created case by case. 

Moreover, we explore the most common NPP optimization/as-

sessment strategies, including the most recent NPP classifica-

tion approaches based on artificial intelligence, by showing 

their capability and limitations in an unprecedented manner. For 

the first time, cross-validation, including the quantitative di-

mension of features/peaks, is within reach in the otherwise 

black-box-like environment of NPP. 

Methods 

Datasets. Datasets used for benchmark generation were 

downloaded from Metabolights27 or thankfully provided by the 

authors of the respective studies.9,22,24,28–31 References and/or re-

pository IDs are provided in column ‘Reference’ of Table S1. 

Where not already provided as centroided mzML files, raw files 

were centroided and converted to mzML format via ProteoWiz-

ards msConvert32 (version 3.0.21045-7732b6429). Names of 
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raw files used are provided in Table S2. Files acquired via fast 

polarity switching were filtered to contain only positive scans. 

Benchmark generation. Targeted data evaluation was per-

formed via Skyline33 (version 21.1.0.146) and for the most 

abundant isotopologue of each molecule, for which retention 

time and molecular formula were known, in all datasets. Then, 

manual set retention time boundaries were exported for each 

molecule and mzML file. These and the mzML files formed the 

input for mzRAPP, which also extracted other predictable 

isotopologues for each molecular formula. Only isotopologues 

with a Pearson Correlation Coefficient (PCC) > 0.85, below an 

isotopologue ratio bias (as calculated by peak areas) of 35%, an 

isotopologue ratio bias (as calculated by peak heights) of 30%, 

and a difference between ratio bias (height) and ratio bias (area) 

below 30% points were accepted.  

Extraction of non-targeted data pre-processing perfor-

mance metrics. Extraction of NPP performance metrics was 

conducted via mzRAPP (version 1.1.6). Exact criteria and rules 

for matching between signals of the benchmark and those of the 

unaligned and aligned NPP outputs can be found in the original 

mzRAPP publication25 and on Github 

(https://github.com/YasinEl/mzRAPP). Isotopologue ratio bi-

ases (IRbs), as calculated from NPP outputs, were considered 

to be recovered if they were less than 20 %points higher than 

respective BM IRbs. Confidence intervals (confidence level = 

0.99), for all NPP metrics were derived via bootstrapping of 

benchmark molecules (R = 1000) using the boot package (ver-

sion 1.3-28). 

Application of non-targeted data pre-processing. All data 

pre-processing experiments were performed via XCMS3 (ver-

sion 3.14.1) using R 4.1.0 and MZmine 2 (version 2.53). Pa-

rameter optimizations were performed manually or via auto-

mated optimization tools. The automated optimization tools 

were IPO17 (version 1.18.0), AutoTuner34 (version 1.6.0), 

MetaboanalystR 3.026, and SLAW35 (version 1.0.0). Classifica-

tion of peaks of peaks by quality was performed via NeatMS 

version (0.9), which was run via Python 3.7. For the parameter 

sensitivity study, the coefficient of variance investigation, and 

the parameter optimization dataset (DS) 5 was processed. For 

the unsupervised clustering investigation, and the assessment of 

NeatMS DS 1 was processed. Additional details on set parame-

ters for all performed studies are given in the supplementary 

material. 

Data analysis and figures. All further data analysis was per-

formed using R (version 4.1.0) and R studio (version 1.4.1717) 

using the data.table package. Plots were generated using 

ggplot2, patchwork, and ggradar. Figures and diagrams were 

further processed using Adobe Illustrator (25.3.1).  

Results and Discussion 

The quality of automated benchmark curation and exten-

sion. Ideally, a BM used for NPP assessment should be pro-

duced from the same dataset or a dataset generated via the same 

instrumental platform as the dataset of interest. In this 

study,  BMs from 11 different public and in-house raw datasets 

(listed in Table S1) were generated via mzRAPP. The case by 

case generated BMs covered five different MS-systems, cou-

pled to hydrophilic interaction chromatography (HILIC) or re-

versed-phase chromatography (RPC), as well as different sam-

ple types (including analytical standard mixtures, blood serum, 

  

Figure 2. A benchmark was generated for dataset 1 considering 

712 molecules and utilized for NPP assessment. Stepwise reduction 

of molecules used for BM generation (molecules were sampled at 

random from all 712 molecules (n = 100) for molecule numbers 

ranging from 20 to 712) largely affected the size of confidence in-

tervals (CI; as estimated by mzRAPP via bootstrapping with R = 

1000 and confidence level = 0.99), while true metrics, as estimated 

from the original BM (green lines) stayed largely within within the 

reported CI of respective NPP assessments. (CI values above 100 

were reduced to 100) 

red blood cell extracts, and cell culture extracts) and compound 

classes (polar metabolites, lipids, and exogenous small mole-

cules). Targeted extraction of the most abundant isotopologue 

of each known molecule was done manually, but was automat-

ically extended to all lower-abundance isotopologues. Quanti-

tative properties of the thereby generated benchmarks are visu-

alized in Figure S3. In Figure S3a all 46742 BM peak areas of 

low abundant isotopologues (LAITs) were plotted against the 

area predicted from the respective most abundant isotopologue 

(MAIT), showing excellent linearity. It should be noted that 

only peaks within the linear dynamic range of the instrumental 

platform were added to the BMs. Figure S3b shows the absolute 

peak area bias of all LAITs, with 94% of all calculated isotop-

ologue ratio biases < 25%. Comparison of biases (Figure S3c) 

as calculated via peak areas versus peak heights (which are gen-

erally more robust as they are not affected by poor setting of RT 

boundaries) revealed good agreement, further strengthening the 

evidence of accurate “ground-truth” for an extensive number of 

peaks. Finally, for DS1, the benchmark reliability was evalu-

ated upon comparison with reported fold changes assessed in an 

independent laboratory. Figure S3d shows the excellent repro-

ducibility for the mzRAPP approach applied here. For this spe-

cific dataset, the number of peaks with reliable quantitative 

properties increased by > 200% by integrating LAITs. The ad-

dition of LAITs increased not only the BM size but also the 

covered dynamic range. Figure S4a and b quantifies this signif-

icant extension for all eleven investigated datasets. 
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Figure 3. Multiple non-targeted data pre-processing experiments with parameter sweeps for the peak-picking and the alignment step were 

performed on the same dataset via XCMS3 and MZmine 2. The peak picking parameter referring to the maximum peak width allowed 

(MPW) was incrementally increased for both tools, with three retention time tolerances tested for each peak picking step. (a) The proportion 

of recovered BM peaks was strongly and often abruptly affected by the MPW parameter. While the proportion of increased isotopologue 

ratio biases (IRbs) was more strongly influenced after alignment, this effect was primarily dependent on the MPW parameter during peak 

picking. (b) In MZmine 2, an increase of the MPW never led to a reduction in the proportion of recovered BM peaks. 

 

Peak metrics such as the full width half maximum (FWHM) 

of chromatographic peaks and the mass precision given by mz 

ranges of individual peaks are important for any dataset to be 

analyzed via NPP. In fact, most NPP tools require parameters 

corresponding to these variables to be set for any dataset to be 

processed. Therefore, it is worth noting that generated BMs 

showed large differences in all these metrics as a result of dif-

ferent measurement methods (see Figure S4c and d). Next to 

these characteristics, the peak shape as reflected by the zigzag 

index39, sharpness40, and other metrics (Figure S5) show signif-

icant differences across investigated datasets. This highlights 

the importance of using benchmarks very similar to the dataset 

of interest (and at best generated from the very same dataset) 

for potential NPP assessment studies.   

Ultimately, benchmarks can be utilized to derive perfor-

mance metrics for NPP experiments conducted on the same raw 

datasets. As outlined above, mzRAPP enables automated as-

sessment of the proportion of recovered benchmark peaks and 

the proportion of recovered isotopologue ratio biases (IRbs) be-

fore and after alignment as key NPP performance metrics. 

Moreover, other metrics such as the proportion of NPP peaks 

with reported integration boundaries close to the intensity max-

imum of a benchmark peak are reported. 

Finally, the metrics derived from the benchmark should be 

translatable into an actual proportion for the underlying dataset. 

Representative sampling of the benchmark peaks/features is a 

prerequisite. To show the validity of our approach, we estimated 

confidence intervals (CI) for all metrics by bootstrapping 

benchmark molecules. In Figure 2 and Figure S6 we show how 

the number of molecules used for BM generation affects met-

rics derived from NPP reliability assessment. This was done by 

bootstrapping different numbers of molecules from BM 1 (con-

taining 712 molecules and > 30000 peaks). It can be observed 

how a reduction of the number of BM molecules increases the 

CI while the assessed metric was in agreement in almost all 

cases. Therefore, even < 100 BM molecules can lead to reason-

able estimates of the performance of NPP, as long as the in-

crease in CI can be accepted.  

Sensitivity of NPP parameters. NPP requires the adaptation 

of different parameters to the analyzed dataset. These parame-

ters can appear more or less intuitive to users with different sci-

entific backgrounds and experiences. Generally, parameters in-

volving expected chromatographic peak widths and retention 

time shifts are often considered to be among the more intuitive 

parameters. In the following, we showcase examples that em-

phasize the need for case-by-case benchmarking strategies, as 

even intuitive parameter settings in the NPP could have an ad-

verse impact on the NPP output.   
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Figure 3a shows how a stepwise increase of XCMS's cent-

wave's maximum peak width parameter (MPW) using 2 s incre-

ments heavily affected the proportion of missed BM peaks and 

increased BM isotopologue ratio biases (IRbs). In the most ex-

treme case, an increase in MPW from 26 to 28 s led to an in-

crease in the proportion of missed BM peaks (before alignment) 

from 6 to 93%. Considering that the median of BM peaks full-

width half maxima (FWHM) ranged from 4 to 18 s with a me-

dian of ~7 s, there was no trivial dependence of the optimal 

MPW on the FWHM of peaks to be detected. While fewer peaks 

were missed after alignment and gap-filling, this improvement 

was insufficient to make up for errors introduced during peak 

detection. It is worth noting that even in cases where gap filling 

recovered most peaks, such as with an MPW of 14 s, the result-

ing peak areas led to worse IRbs than when peaks were already 

detected in the peak detection step (e.g., with MPW set to 12 s). 

While the highest observed retention time shift in the BM peaks 

was below 10 s, the maximum allowed shift, as set via the band-

width (bw) parameter in the group density algorithm, did not 

affect NPP results to the same extent as MPW. Interestingly, 

there was almost no effect of the set MPW on IRbs after peak 

picking. However, there was a significant impact on IRbs after 

peak alignment and gap-filling, which depended on the MPW 

set during the peak picking step rather than set alignment pa-

rameters.  

The same dataset was processed via MZmine 2 and incre-

mental increase of the MPW using its Local Minimum Search 

peak detection algorithm as visualized in Figure 3b. Here, the 

relationship between the set MPW and the proportion of recov-

ered peaks was found to be as expected, with more BM peaks 

being recovered with increasing MPW. However, the absolute 

MPW necessary to reach the optimum of ~20% missing BM 

peaks after peak detection was > 72 s, a factor of ~10 higher 

than the median BM FWHM of ~7 s. While this algorithm as-

sessed the MPW at the base of peaks rather than at half maxi-

mum, this might still lead to problems since the base width of a 

chromatographic peak can vary widely for real-world applica-

tions. The IRbs were almost unaffected by the MPW, with only 

one outlier for an MPW of 12 s and a retention time tolerance 

of 15 s. 

For this specific data set, the optimum of all parameter sets 

tested was found by XCMS (MPW of 12 s and retention time 

tolerance of 6 s, leading to a proportion of missed BM peaks < 

1% and IRbs < 5%). It should be noted that this finding cannot 

be generalized, but it holds true for the processed data set, rep-

resenting a use case of parameter adjustment. In fact, the con-

clusion that MZmine 2 is generally underperforming as com-

pared to XCMS would be wrong since testing the entire param-

eter space was beyond the scope of this study. The example 

clarifies that the common practice of manual parameter adjust-

ment to metrics derived from the analytical performance of the 

instrumental setup can lead to suboptimal NPP results. 

Application of NPP parameter optimization tools. Current 

NPP parameter optimization tools (as implemented in IPO17, 

AutoTuner34, MetaboanalystR 3.026, and SLAW35) undoubtedly 

facilitate the NPP step in non-targeted analysis and improve 

quality. Here we test the classification-based tools applying our 

benchmark-recovery approach. This way, the otherwise missing 

metrics of missing peaks and accuracy of peak abundances are 

 

Figure 4. Non-targeted data pre-processing (NPP) parameters for 

the processing of dataset 5 have been optimized using different op-

timization tools (IPO and AutoTuner, both adjusted and default, as 

well as MetaboanalystR 3.0 and SLAW). Outcomes were assessed 

via five benchmark recovery-based metrics, namely the proportion 

of missed benchmark (BM) peaks (before and after alignment), the 

proportion of increased isotopologue ratio biases (before and after 

alignment), and the proportion of split peaks (before alignment). 

Confidence intervals of all metrics for the underlying dataset are 

given in Table S3. 

validated.  Figure 4 compares the quality of NPP-parameter op-

timization performed for the NPP of DS 5 via different metrics 

as exported by mzRAPP. As can be seen, the differences be-

tween the optimization attempts were observable for the pro-

portion of missed benchmark peaks and increased IRbs before 

and after alignment, as well as the proportion of BM peaks lead-

ing to split peaks. It turned out that the initially defined values 

for the parameter optimization process is crucial and was unique 

for each tool. For example, in the case of IPO, manual adjust-

ment of starting parameters led to a decrease in the proportion 

of BM peaks missing after alignment from ~25% to ~1%. 

Again, this test emphasizes that NPP evaluation is not redun-

dant when using automated parameter optimization algorithms.  

NPP assessment or filtering via Coefficient of Variance. A 

widely accepted metric in NPP assessment is the Coefficient of 

Variance (CV) obtained from replicate measurements. It is 

common practice to report the number or proportion of NPP 

features with a Coefficient of Variance (CV) below a certain 

threshold (commonly 30%). In Figure 5, this otherwise straight-

forward approach is investigated. CV-based quality metrics are 

plotted versus proportions of recovered BM peaks and IRbs for 

a total of 78 NPP experiments (using different values for the 

maximum allowed peak width in the peak-picking step and dif-

ferent values for bw in the peak alignment step) performed on 

DS 5. The number and proportion of features with a CV < 30% 

(nCV30 and pCV30, respectively) were assessed. For a given 

bw setting, the metric nCV30 was well correlated with the pro-

portion of BM peaks recovered post-alignment (e.g., PCC = 0.9
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Figure 5. A dataset consisting of 9 replicate injections was processed via XCMS using different values for the maximum allowed peak width 

(MPW) parameter and the bandwidth (bw) parameter, leading to a total of 78 non-targeted data pre-processing experiments. Four different 

quality metrics including the number of features with CV < 30%, the proportion of features with CV < 30%, and the proportion of recovered 

benchmark peaks and isotopologue ratio biases (IRb) (pre-alignment, post-alignment, and post-filtering (only features without missing values 

and with CV < 30%)) were then plotted (sorted by increasing number of features with CV < 30%). 

for bw = 0.5), while the proportion of features with CV < 30% 

reflected the proportion of IRb recovered post-alignment (e.g., 

PCC = 0.97 for bw = 0.5). Filtering NPP features to remove 

features with missing peaks and setting a threshold of CV > 

30% led to an increase in the proportion of recovered IRbs 

(post-alignment) in all cases. In contrast, the proportion of over-

all recovered peaks decreased. Thus, the trends in nCV30 were 

indicative of the proportion of found peaks, while the trends in 

pCV30 corresponded to the proportion of high-quality peaks. 

The application of this filter successfully removed low-quality 

features contributing to increased IRbs. This highlights how 

classification-based NPP assessment approaches do not distin-

guish between noise and badly detected peaks, as discussed 

above (as well as in Figure 1). It should be noted that the high 

correlation of pCV30 with the proportion of recovered IRb 

(post-alignment) persisted only as long as the bw parameter was 

kept constant. For example, while the trends of pCV30 were 

very similar in all settings of bw, the proportion of recovered 

IRb (post-alignment) for bw = 0.5 decreased for all MPW val-

ues. As a consequence, pCV30 is not a suitable metric to eval-

uate whether one given NPP result has higher quality than an-

other. The same is true for nCV30. In fact, the highest nCV30 

(for bw = 0.5) would have led to ~75% recovered IRbs (after 

alignment), which is far from the optimum of approximately 

100% (with values > 2 or 18). Thus, both CV metrics have their 

valid role in quality assessment. However, simple NPP optimi-

zation based on CV metrics is precluded. Neither optimizing 

nCV30 nor the pCV30 led to a complete recovery of BM peaks 

and BM IRb and thus to an optimum result.   
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NPP assessment via unsupervised clustering. Unsuper-

vised clustering approaches such as Principal Component Anal-

ysis (PCA) are an integral part of non-targeted workflows and 

their role in discovery is undisputed. However, they are not suit-

able for NPP-quality assessment, as emphasized in Figure S7 

and Figure S8. PCAs performed on the NPP outputs showed 

good separation of sample groups, not reflecting the benchmark 

recovery metrics, and thus not validating the reliability of the 

NPP output. 

Application of peak classification via artificial intelli-

gence. Novel tools such as NeatMS use artificial intelligence 

for the classification of NPP peaks by their quality. As a major 

breakthrough, noise removal is accomplished without relying 

on replicate injections. Successful application of machine learn-

ing algorithms requires good training data, which (in the case 

of NeatMS) have to be labeled by users with different skill sets. 

In this work, we scrutinized NeatMS. NPP peaks generated 

from nine NPP experiments performed on the same dataset (DS 

1; containing 10 samples), were classified accordingly, into 

three categories ‘High quality’, ‘Low quality’ and ‘Noise’. We 

then applied different filters to the aligned NPP features and re-

quired them to contain 0, 1, 3, 5, 8, or 10 ‘High quality’ peaks. 

Subsequently, the proportion of recovered peaks and IRbs after 

alignment was assessed. For this purpose, we filtered our BM 

to contain only features with peaks in all 10 samples. As can be 

seen in Figure 6, removing all NPP features which did not in-

clude at least 1 ‘High quality’ peak reduced the number of NPP 

features by ~40 to ~60%, while having almost no effect on the 

proportion of recovered BM peaks or IRbs, demonstrating how 

NeatMS can be applied successfully for removing false posi-

tives from NPP results. However, requiring more ‘High quality’ 

peaks reduced the proportion of recovered BM peaks by multi-

ple %points in many cases. When all 10 samples were required 

to contain only ‘High quality’ peaks for a feature to be retained, 

the proportion of recovered BM peaks dropped <10% in all 

cases. Our validation confirms that tools such as NeatMS for 

efficiently removing false-positive signals from NPP results 

significantly advance NPP. Despite this undisputed role, the 

quality and size of training data strongly affects the procedure 

and is defined by a user, case by case. Thus, independent vali-

dation continues to be of great value.   

Conclusion 

The study emphasized the need of case-by-case optimization 

and validation of NPP. Due to the described obstacles in manu-

ally adjusting parameters, even when applying cutting-edge op-

timization tools, we reason that NPP performance should be 

evaluated on a regular basis. Moreover, discussed problems in 

finding NPP optima via strategies such as unsupervised cluster-

ing or Coefficient of Variance-based metrics entail the necessity 

for alternative assessment methods. NPP can perform in unpre-

dictable ways, and outputs should be assessed against a solid 

ground-truth which cannot be generalized in the form of a 

golden dataset, against which all NPP algorithms are optimized. 

We demonstrated how case-by-case benchmark recovery-based 

approaches can satisfy this need. The fact that benchmark infor-

mation can be based on a solid foundation of orthogonal infor-

mation allows for increased reliability and accuracy. mzRAPP 

can produce representative and reliable benchmarks for each in-

vestigated dataset, which can be integrated for routine valida-

tion of non-targeted NPP. Finally, the performance ranking of 

  

Figure 6. Dataset 1, consistent of 10 samples, was processed with 

9 different sets of XCMS-parameters. All peaks produced via 

XCMS were classified by NeatMS into different categories, includ-

ing high quality (HQ), or noise. Different numbers of peaks within 

an aligned feature were required to be of HQ for a feature to be 

retained. The plot on the bottom shows the proportion of all XCMS 

features satisfying these criteria for each parameter set. The plots 

above show metrics on the proportions of recovered benchmark 

peaks and recovered isotopologue ratio biases (IRbs). The x axis 

was sorted by increasing values of HQ features [%] for more than 

or equal to 1 HQ peaks. 

different NPP tools (as reported elsewhere) is not useful. 
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