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Abstract 

Recently it has been proposed, that the holobiont, i.e., the host and its associated microbiome, 

constitute a distinct biological entity, on which selection operates. This is a fascinating idea that so far 

has limited empirical justification. Here Drosophila melanogaster lines from a large-scale artificial 

selection experiment, where we selected for stress resistance traits and for longevity, were used to test 

the hologenome hypothesis. We raised flies from all selection regimes, including a regime where flies 

were kept at benign standard laboratory condition (control regime) throughout the duration of the 

experiment, under common garden conditions and sequenced the microbiome of the flies. We found 

abundant differences in microbial communities between control and selection regimes, but not 

between replicate lines within the regimes, and microbial diversity was higher in selected relative to 

control lines. Several major core Drosophila bacterial species were differentially abundant in the 

different selection regimes despite flies being exposed to similar nutritional and general environmental 

conditions. Our results support the idea that the host and microbiome genomes have evolved in 

concert and provide experimental support for the hologenome theory of evolution.  
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Introduction 

Genetic variation is a prerequisite for evolution to occur and selection on standing genetic variation 

can lead to marked changes in genotypes and phenotypes; thus, selection is a strong driver for 

evolutionary changes within species and partly governs the process of speciation. The field of 

evolutionary biology dating back to Darwin’s and Mendel’s revolutionary discoveries and the modern 

synthesis are important for almost all biological fields including animal and plant breeding, 

evolutionary adaptation, conservation genetics and for understanding human disease etiologies [1–3]. 

New tools in molecular biology allow for assessment of endophenotypes such as the transcriptome, 

the proteome and the metabolome but also for sequencing not only host organisms but also the myriad 

of microorganisms that coexist with these hosts [4,5]. The simultaneous study of hosts and their 

microorganisms is a fast developing and novel research field that opens up for investigating the 

importance of microbial diversity and how the abundance and distribution of different microbes affect 

the host’s fitness and whether evolutionary forces shape the host and its microbes uniformly [6].  

 

Numerous studies have documented that the microbiome has strong impact on host fitness 

components including lifespan, fecundity, immune responses, disease resistance, growth or 

development, and environmental stress tolerance [7–14]. It has also been revealed, that the host can 

exert some control of the microbial composition, e.g. through nutrient availability by diet choice or 

host metabolism [15–17], by immune factors [14], or mechanical control such as gut peristalsis [18]. 

For example, high abundance of certain species of Lactobacillus or Acetobacter in nutrient poor 

environments can critically increase Drosophila melanogaster larvae growth so that growth levels 

reach those normally observed on high-protein diets [19,20], suggesting a rescue effect offered by 

these microbes. Thus, interactions between the host genotype and the microbiota can have strong 

consequences for the host [21] but the impact of these interactions on evolutionary changes in natural 

populations is currently poorly understood [22,23].  

 

The growing realization that interactions between microbes and their hosts shape many aspects of life 

is fundamentally changing the way we think about many fields of biology including evolutionary 

genetics, disease etiology, and adaptation to changing environmental conditions [24–27]. The 

‘holobiont’ concept describes the idea that eukaryote individuals do not act as autonomous units, but 

rather as networks consisting of the host and all its associated microorganisms. Their collective 

genomes, the ‘hologenome’, may form a single unit of selection and it has been proposed that this 

hologenome can evolve [28,29]. For instance, it has recently been shown that selection for increased 

cold tolerance in the blue tilapia (Oreochromis aureus) led to significant alteration of the microbial 

composition and modulated the microbes’ response to temperature stress in this tropical fish [30]. 
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Likewise, a study investigating symbiosis between the aphid Acyrthosiphon pisum and the bacterium 

Buchnera aphidicola, has revealed how a single nucleotide deletion in the bacterium affects the heat-

shock transcriptional promoter for ibpA, encoding a small heat-shock protein and that this mutation 

governs thermal tolerance of the aphid hosts [31]. As a last example providing support for the 

holobiont theory we have found that the resident microbes in D. melanogaster can respond to thermal 

acclimation, and subsequently contribute to improve the hosts survival to more extreme thermal 

conditions [13]. Studies like these suggest that the microbiome and symbiont microevolution have 

strong importance for host’s ability to cope with variable and periodically stressful environmental 

conditions and thereby for the evolutionary adaptation to such challenges and they support the idea 

that host and microbiomes may evolve in concert. 

 

Genomic studies aiming at pinpointing signatures of selection often report little evidence for selection 

at the genomic or endophenotypic level despite strong directional selection and apparent phenotypic 

responses to selection [32]. One reason for this is that most variation in quantitative genetic traits is 

influenced by a very large number of genes each contributing with a small effect on the trait in 

question [33]. Identifying these genes, transcripts or proteins of small effect is a challenge from a 

statistical point of view [34]. However, an overlooked reason for apparent lack of strong signatures of 

selection may be that only part of the hologenome, the host genome, is traditionally being investigated 

in these studies. Evolution of the myriad of microbial genomes impacted by selection may explain a 

significant proportion of the response in host phenotypes not captured by analysis of changes in host 

genomes.     

 

Current knowledge suggests that the microbial composition of the host is important for multiple 

fitness components. It is also clear that the host exerts some control over the microbiota, that the host 

and microbiota genomes interact on host fitness, leading to the idea that the combined hologenome 

may evolve and dictate evolutionary changes [35]. This knowledge provides a background for testing 

how directional selection for host fitness components has affected the distribution and abundance of 

associated microbes. This is highly relevant to investigate because we have little knowledge on how 

artificial selection for specific host traits impacts and may be facilitated by evolution of the 

microbiome. We propose that interactions between host and microbial genomes govern evolutionary 

responses. This is investigated using D. melanogaster lines from a highly replicated artificial selection 

experiment. We do this by sequencing the microbiome of populations of D. melanogaster selected for 

different stress resistance traits and longevity and from their corresponding non-selected control 

populations [36,37]. Lines from each selection regime and lines that had not experienced artificial 

directional selection, i.e., the unselected control lines, were all reared at similar benign environmental 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.09.09.459587doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459587
http://creativecommons.org/licenses/by-nd/4.0/


 - 5 -

conditions, and they subsequently had their microbiome sequenced. This unique material allows us to 

test the hypothesis that directional selection for numerous fitness components in D. melanogaster, 

leads to marked and selection-regime-specific changes in microbial composition. We find strong 

support that the microbiome has evolved alongside the host and that a mutualistic relationship 

between host and microbiome partly explains the evolved phenotypic characteristics of the host. These 

results constitute convincing support for the hologenome hypothesis of evolution and suggest that 

adaptation to stressful environmental conditions critically depends on interactions between host and 

microbial genomes.     

 

Material and Methods  

Description of selection regimes and original experimental setup 

The flies used in the current study originated from a large environmental-stress and life-history trait 

selection experiment described previously [36]. In short, initially a mass-bred laboratory population of 

D. melanogaster was established and maintained at 25 °C in 12-hour light-dark cycles, on standard 

oatmeal-sugar-yeast-agar medium. Six artificial selection regimes were established together with one 

unselected control (UC) line. For each selection regime (and control) five independent replicated lines 

were generated. In each selection regime there was selected for one of the following traits: increased 

desiccation resistance (DS), increased longevity (LS), increased cold-shock resistance (CS), increased 

heat-shock resistance (HS), increased heat knockdown resistance (KS) and increased starvation 

resistance (SS). The selection was applied every second generation to allow for recovery and to avoid 

transgenerational effects [38,39].  

 

The initial phenotypic assessment was performed after 21 generations of selection (45 generations in 

total), except for LS and SS which were selected for 11 and 26 generations, respectively [36]. Flies 

from each of the selection regimes (and the unselected controls) have previously been characterized at 

the genomic level [40], and on a range of different endophenotypic levels [41–44]. The flies used in 

the current study were collected after 32 generations of selection (i.e., 67 generations of maintenance) 

for the HS, CS, KS, DS and UC regimes, whereas flies from the SS lines were from generation 81 

(i.e., 37 selection events), and flies from the LS regime were from generation 31 (i.e., 14 generations 

of selection). Phenotypic assessments of selection responses were not performed in the generation 

where flies were harvested for microbiome analysis and therefore the responsiveness to selection is 

based on results from the data provided in Bubliy and Loeschcke [36]. 

 

Microbiome community analysis by 16S rRNA quantification 
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A total of 20 females were sampled from each of the biological replicates of the selection and control 

lines, snap frozen in liquid nitrogen, and stored at -80 °C for 14 years before performing the 

microbiome analysis reported here. 

 

DNA extraction and sequencing of 16S rRNA were conducted externally by DNASense ApS 

(Aalborg, Denmark, https://dnasense.com/). DNA was extracted from pools of 20 female flies using 

DNeasy Blood and Tissue kit following the manufacturer’s recommendations (Qiagen, Germany). 

Bacterial 16S V1-V3 rRNA libraries were prepared using a custom protocol based on Caporaso et al. 

(2012) and amplified using V1-V3 specific primers: [27F] AGAGTTTGATCCTGGCTCAG and 

[534R] ATTACCGCGGCTGCTGG [45]. The amplicon libraries were purified using a standard 

protocol for Agencourt Ampure XP Beads (Beckman Coulter, USA) with a bead to sample ratio of 

4:5. Purified libraries were pooled in equimolar concentrations and diluted to 6 nM. Samples were 

paired-end sequenced (2x300 bp) on a MiSeq platform (Illumina, USA) using the MiSeq Reagent kit 

v3 (Illumina, USA) according to standard guidelines. 

 

Bioinformatic processing and analysis 

Demultiplexed fastq files were processed with QIIME2 v2019.10 [46]. Forward and reverse primers 

were removed using the cutadapt plugin v2019.10 [47]. To infer amplicon sequence variants (ASVs), 

trimmed reads were quality filtered, denoised, merged, and PCA chimeras were removed using the 

DADA2 plugin v2019.10 [48]. For quality filtration, paired-end sequences were truncated at 297 and 

261 bp for forward and reverse reads, respectively (50-percentile Phred score quality drop below 30 

and 28, respectively). DADA2 default parameter settings were applied otherwise. A total of 304 ASVs 

were detected. ASVs were taxonomically assigned using a 16S V1-V3 specific Naive Bayes classifier 

[49]. The classifier was trained on 99% similarity clustered 16S rRNA gene sequences extracted from 

the SILVA v132 reference database [50], and trimmed to only include the V1-V3 region bound by the 

27F/534R primer pair. For phylogenetic inference, ASV sequences were aligned with Mafft v7.310 

[51], highly variable positions were masked, an unrooted phylogenetic tree was constructed with 

FastTree v2.1.10 [52], and the tree was rooted by the midpoint of the longest tip-to-tip distance in 

QIIME2. 

 

Subsequent microbial data analyses were performed with R v3.6.2 [53]. ASVs unassigned at phylum 

level and ASVs assigned as chloroplasts, mitochondria, or cyanobacteria were removed from further 

analyses (303 ASVs remaining). Rarefaction curves were generated with the vegan package v2.5-6 

[54] and uneven sampling depth was scaled to minimum read depth by rarefying data to the minimum 

number of reads across all samples (13.723 sequence reads per sample; 297 ASVs remaining) using 
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the rarefy_even_depth function implemented in the phyloseq package v1.30.0 [55]. Overall microbial 

composition was investigated in rarefied data. Top 10 most abundant bacterial genera across, as well 

as within, selection regimes were identified and visualized as heatmaps using the ampvis2 package 

v2.5 [56]. ASV counts were converted to within-sample relative abundances and for each sample, 

microbial compositions were visualized at phylum and family level using the microbiome package 

v1.8.0 [57]. For subsequent diversity comparisons, the rarefied count data were pruned based on ASV 

prevalence, removing ASVs present in less than two samples and with total abundance less than 

0.01% across all samples resulting in 141 remaining ASVs (99.4% of rarefied and 48.3% of processed 

sequence reads). If not stated directly, subsequent analyses were conducted for filtered, rarefied and 

pruned ASV data. Inter-sample complexity (alpha diversity) was investigated using ASV count data, 

whereas for intra-sample diversity (beta diversity) ASV count data were converted to relative 

abundances.  

 

Inter-sample complexity 

Alpha diversity estimates including the observed number of ASVs (richness) and the Shannon´s 

diversity index (considering richness and evenness of ASV abundances) were computed with 

phyloseq. Faith´s phylogenetic diversity (PD) index, a measure of diversity which incorporates 

phylogenetic diversity between ASVs, was estimated with the picante package v1.8.2 [58]. Normality 

of data was tested using the Shapiro-Wilk test. Overall differences in alpha diversity between 

selection regimes were tested using a one-way ANOVA followed by Tukey’s multiple comparison of 

means test for pairwise comparisons of selection lines. 

 

Intra-sample complexity 

Beta diversity of the selection and control lines was investigated by Principal Coordinate Analysis 

(PCoA) using Bray–Curtis dissimilarity distances. Bray-Curtis dissimilarity distances among samples 

were estimated using phyloseq. PCoA ordination plots were generated with the ggplot2 package 

v3.3.1 [59]. To determine differences in microbial diversity between selection regimes a 

permutational multivariate analysis of variance (PERMANOVA) was computed for Bray-Curtis 

distances using the adonis function implemented in vegan, applying 999 permutations and default 

settings otherwise. Homogeneity of group dispersions (variance) was verified using the betadisper 

function implemented in vegan. P-values ≤ 0.05 were considered statistically significant. In addition, 

a hierarchical cluster analysis for Bray–Curtis dissimilarity distances was computed using the hclust 

function implemented in the stats package [53] applying default settings and visualized as dendrogram 

using ggplot2.  

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.09.09.459587doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.09.459587
http://creativecommons.org/licenses/by-nd/4.0/


 - 8 -

Differential abundance analysis 

Differential ASV abundances between selection regimes were determined at genus level using a 

negative binomial generalized linear model approach implemented in the DESeq2 package v1.2.6. 

[60]. Briefly, taxonomic assignments were agglomerated to genus level using the tax_glom function 

implemented in phyloseq. ASV counts were normalized applying the variance-stabilizing 

transformation approach implemented in DESeq2, returning log2 scale transformed data. Size factors 

for each ASV were estimated applying a median-ratio-method. Dispersions of ASV counts were 

computed and a negative binomial WaldTest was performed [60,61]. For ASV with zero counts a 

pseudo-count of one was added [62]. Pairwise comparisons were computed for the following six 

contrasts: CS vs. UC, DS vs. UC, HS vs. UC, KS vs. UC, LS vs. UC, and SS vs. UC. To correct for 

multiple hypothesis testing, P-values were adjusted using the Benjamini-Hochberg procedure [63]. 

ASVs were considered differentially abundant for adjusted P-values ≤ 0.01 and an FDR cut-off of 5%. 

Results were visualized using ggplot2. 

 

Results 

Illumina 16S rRNA amplicon sequencing returned 1,538,911 raw sequence reads across all 35 

samples, ranging from 21,712 to 70,668 reads per sample (mean 43,969). After pre-processing with 

Qiime2 988,415 sequencing reads remained, representing 64.27% of the raw sequence reads on 

average. Pre-processed reads detected per sample ranged from 13,723 to 52,185 (mean 28,240). 

Model based inference of amplicon sequence variants revealed 304 bacterial amplicon sequence 

variants (ASVs) across all samples, ranging from 12 to 110 unique ASVs detected per sample (mean 

59). A total of 141 bacterial ASVs passed filtration procedures (per-sample range: 9 to 86 ASVs; 

mean: 48 ASVs).  

 

Microbial Composition 

Detected ASVs were assigned to four phyla: Firmicutes (N=228), Actinobacteria (N=34), 

Proteobacteria (N=32), and Bacteroidetes (N=3). Relative abundances at phylum and family level are 

summarized in Figure 1.  
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Figure 1 | Relative abundance of amplicon sequence variants (ASVs) assigned to the classification level phylum (A) and 

family (B) for the six selection regimes (CS: cold-shock resistance, DS: desiccation resistance, HS: heat-shock resistance, 

KS: heat knockdown resistance, LS: longevity, SS: starvation resistance) and the unselected control lines (UC). Each 

column within selection type represents a biological replicate. 

 

Comparison across selection lines revealed a change in microbial composition following exposure to 

artificial selection (Figure 1). At phylum level (Figure 1A), samples separated into two groups – 

samples characterized by high abundance of Proteobacteria (CS, DS, KS, LS, SS) or high abundance 

of Firmicutes (HS and UC). At family level (Figure 1B), four microbial profiles were identified: 

samples with high abundance of i) Anaplasmataceae (CS, DS, SS), ii) Acetobacteraceae (KS, LS), iii) 

Planococcaceae (HS), or iv) Leuconostocaceae (UC). Moreover, the most abundant genus within each 

selection line was sufficient to unambiguously separate selection lines into the four microbial profiles 

detected at family level (Figure S1). Top abundant genera identified included Wolbachia 

representative for the CS, DS, and SS lines, Acetobacter representative for KS and LS lines, 

Lysinibacillus representative for the HS line, and Leuconostoc representative for the UC line. 

Compared to the other detected key genera, Leuconostoc was exclusively found in the UC lines.  
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Inter-sample complexity (α-diversity) 

Within-sample diversity was investigated for rarefied and prevalence pruned data, only including 

ASVs with an overall abundance >0.01% (141 ASVs; range: 9 to 86; mean: 48). Shapiro-Wilk tests 

confirmed normality of all α-diversity estimates (Observed species richness: P=0.80; Shannon´s 

diversity index: P=0.31; Faith´s phylogenetic diversity (PD) index: P=0.66, respectively). Global 

comparison of α-diversity estimates between regimes (six selection regimes and the unselected control 

regime) showed that α-diversity differed between them (Table 1).  

 

Table 1 | Analysis of variance for three �-diversity metrics. 

 Df Sum Sq Mean Sq F value P value 

Species richness      

 Selection regime 6 9533        1588.8       12.66        < 0.001 

 Residuals 28 3514          125.5   

Shannon’s index      

 Selection regime 6 6.053         1.0089       2.775         < 0.05 

 Residuals 28 10.179      0.3635   

Faith’s Phylogenetic      

 Selection regime 6 14.02 2.3370         13.58         < 0.001 

 Residuals 28 4.82            0.1721   

Df: degrees of freedom; Sq: Squares 

 

Parametric test statistics (Tukey´s HSD test) were applied for pairwise comparison and showed 

abundant differences in α-diversity metrics between pairs of regimes (Supplementary Tables S1-S3). 

In general, selection lines showed higher within-sample diversities than the control lines (Figure 2, 

Supplementary Tables S1-S3).  
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Figure 2 | Boxplot for observed (A), Shannon’s (B) and Faith’s Phylogenetic (C) �-diversity metrics. Letters above each 
boxplot indicate pairwise statistical differences in �-diversity metrics between regimes (CS: cold-shock resistance, DS: 
desiccation resistance, HS: heat-shock resistance, KS: heat knockdown resistance, LS: longevity, SS: starvation resistance, 
UC: unselected controls). Full statistical reports are found in Supplementary Tables S1-S3. 

Three different α-diversity metrics were estimated to account for differences in richness, evenness, 

and phylogenetic distance. The observed bacterial richness quantifies the total number of ASV within 

a sample. The UC line showed significantly less richness compared with the selected lines (Figure 

2A). The SS and DS lines displayed highest ASV abundances compared with the other selection lines 

(Figure 2A). The Shannon’s Index accounts for ASV abundance and evenness, such that samples with 

comparable numbers of ASVs will show a lower diversity measure when one or few ASVs are 

overrepresented (uneven distribution). The Shannon’s Index only differed significantly between HS 

and the control line (Figure 2B), suggesting that ASVs detected in the HS line were more evenly 

distributed compared to the control line. Finally, the Faith’s phylogenetic diversity metric incorporates 

the phylogenetic distance between AVSs, such that related ASVs increase the measure of 

phylogenetic biodiversity less than unrelated ASVs. Like with the observed richness, the control line 

had a significant lower estimate of Faith’s diversity metric than any of the other selection regimes, and 

the SS regime displayed the highest diversity metric (Figure 2C). 

 

Intra-sample complexity (β-diversity) 

Among-sample β-diversity was visualized with Principal Coordinate Analysis (PCoA) ordination 

plots based on Bray-Curtis distances (Figure 3).  
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Figure 3. Principal Coordinate (PCo) ordination plot of axis 1 and 2, with proportion of variance explained noted (A), and 
cluster analysis (B). Roman numbers indicate distinct separate clusters. 

 
Differences in microbial communities between lines were detected (Figure 3). Based on PCo1 (50.6% 

of microbial diversity explained) and PCo2 (16.1% of microbial diversity explained), samples 

separated into three discrete clusters with CS, DS, and SS samples forming cluster I, UC samples 

forming cluster II, and HS, KS and LS samples forming cluster III. Microbial diversity within the 

three clusters was highest for UC samples, and lowest among samples belonging to cluster I, 

indicating a high microbial resemblance among the CS, DS, and SS lines. Permutational multivariate 

analysis of variance (PERMANOVA) revealed that microbial diversity detected in selection lines 

clearly differed from that observed in the control lines (Table 3A). Moreover, within-cluster diversity 

between HS, KS, and LS (cluster III) differed (Table 3C), whereas microbial diversity between CS, 

DS, and SS (cluster I) did not differ (Table 3B). 
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Table 3 | Permutational multivariate analysis of variance (PERMANOVA) for (A) selection regimes compared 

with the unselected control lines, (B) pairwise comparison of selection lines belonging to cluster I (CS, DS, 

SS), and (C) pairwise comparison of selection lines belonging to cluster III (HS, KS, LS). PERMANOVA was 

computed on Bray-Curtis distances. 

A) Df Sum Sq Mean Sq F value R2  Pr(>F) 
UC vs. CS       

 Selection regime 1 0.93624 0.93624 12.722 0.61394 0.009 

 Residuals 8 0.58873 0.07359  0.38606  

UC vs. DS       

 Selection regime 1 0.94849 0.94849 7.5781 0.48646 0.013 

 Residuals 8 1.00129 0.12516  0.51354  

UC vs. HS       

 Selection regime 1 1.95212 1.95212 16.362 0.67162 0.012 

 Residuals 8 0.95447 0.11931  0.32838  

UC vs. KS       

 Selection regime 1 1.99204 1.99204 24.728 0.75556 0.004 

 Residuals 8 0.64446 0.08056  0.24444  

UC vs. LS       

 Selection regime 10 1.69650 1.69650 14.596 0.64596 0.01 

 Residuals 8 0.92983 0.11623  0.35404  

UC vs. SS       

 Selection regime 1 0.95193 0.95193 14.068 0.63748 0.012 

 Residuals 8 0.54134 0.06767  0.36252  

B) Df Sum Sq Mean Sq F value R2  Pr(>F) 
CS vs. DS       

 Selection regime 1 0.13416 0.134160 1.3507 0.14445 0.22 
 Residuals 8 0.79458 0.099323  0.85555  
CS vs. SS       

 Selection regime 1 0.03764 0.037644 0.89994 0.10112 0.531 
 Residuals 8 0.33464 0.041830  0.89888  
SS vs. DS       

 Selection regime 1 0.18038 0.180377 1.9312 0.19446 0.074 
 Residuals 

8 0.74719 0.093399  0.80554  
C) Df Sum Sq Mean Sq F value R2  Pr(>F) 
KS vs. LS       

 Selection regime 1 0.37951 0.37951 3.8982 0.32763 0.007 
 Residuals 8 0.77885 0.09736  0.67237  
HS vs. KS       

 Selection regime 1 0.88727 0.88727 8.8341 0.52478 0.009 
 Residuals 

8 0.80350 0.10044  0.47522  
HS vs. LS       

 Selection regime 
1 0.55765 0.55765 4.0971 0.33869 0.019 

 Residuals 
8 1.08887 0.13611  0.66131  
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Differential abundance 

Microbial abundance of the unselected control lines, agglomerated at genus level, was compared with 

each of the selection regimes, respectively. Of the 32 assigned genera, a total of 20 genera belonging 

to 13 different families were significantly affected by at least one selection regime (Figure 4).  

 

 
Figure 4 | Differential abundance analysis comparing different selection regimes at the genus level. CS: cold-shock 

resistance, DS: desiccation resistance, HS: heat-shock resistance, KS: heat knockdown resistance, LS: longevity, SS: 

starvation resistance, UC: unselected controls. Colour code applied represents family assignment. Full statistical reports 

are found in Supplementary Tables S4-S9. 

 

The number of differentially abundant genera ranged from 8 in the KS line to 14 in the CS, SS, and 

HS lines. The majority of the differentially detected genera (Acetobacter, Anaerocolumna, 

Anaerosporobacter, Brevibacillus, Glutamicibacter, Lachnoclostridium 5, Leucobacter, 

Lysinibacillus, Microbacterium, Morganella, Paenibacillus, Providencia, Psychrobacillus, 

Rhodococcus, Tyzzerella, Vagococcus) showed larger abundances in selection lines, with 

Anaerocolumna, Anaerosporobacter, Brevibacillus, Lysinibacillus, and Paenibacillus being more 

abundant across all selection regimes, whereas Morganella and Psychrobacillus were detected 

differentially abundant in one selection regime (HS; Figure 4). For the remaining four differentially 
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detected genera (Leuconostoc, Lactobacillus, Wolbachia and Corynebacterium 1) abundances were 

lower in selection regimes compared to the control line, with lower Leuconostoc abundance detected 

across all selection regimes, lower Lactobacillus abundance detected in the DS and HS selection 

regimes, and lower Corynebacterium 1 and Wolbachia abundances detected in the HS regime, only. 

Considering the clusters detected based on β-diversity, Providencia was found differentially abundant 

in all selection regimes belonging to cluster I (CS, DS, SS) but in none of the selection regimes 

belonging to cluster III (HS, KS, and LS). Vice versa, Acetobacter was found differentially abundant 

in all selection regimes belonging to cluster III but in none of the selection regimes belonging to 

cluster I.  

 

Discussion 

Advances in sequencing technologies have allowed detailed studies of host and microbiome genomes 

and thereby provided new opportunities for studying interactions between host and associated 

microorganisms [27,64–67]. Therefore, we can now test the hypothesis that the combination of the 

host’s and its associated microorganisms’ genomes in concert with environmental variability 

constitutes an individual’s fitness and comprises the unit of selection. This is the focus of the current 

study where we utilized a unique set of highly replicated D. melanogaster selection and control lines 

to provide strong experimental support for the hologenome theory of evolution.  

 

We investigated the interactions between host genotype and microbial composition by assessing 

whether genetic and phenotypic differentiated D. melanogaster lines had distinct microbiomes. We 

investigated microbiomes in replicate control lines, in lines selected for increased longevity, and in 

lines selected for each of five environmental stress resistance traits, namely increased desiccation 

resistance (DS), increased cold-shock resistance (CS), increased heat-shock resistance (HS), increased 

heat knockdown resistance (KS) and increased starvation resistance (SS). Strong functional 

phenotypic responses to selection in these lines have previously been shown [36,37] along with 

transcriptome, metabolome, and proteome studies describing the physiological and genomic basis of 

the response to selection [40–42,44,68]. We found that the microbiome detected in the selection lines 

differed markedly from that of the control lines (Figures 1-2) and that replicate lines within selection 

regimes had rather similar microbiomes. This was seen in the form of increased microbial diversity in 

lines selected for increased longevity or stress resistance and differential abundance of core D. 

melanogaster microbes between selection regimes (Figure 4). We identified three clusters with the 

CS, SS and DS selection regimes (and two UC lines) constituting cluster I, UC (three of five) lines 

constituting cluster II and KS, HS, DS and LS selection regimes constituting cluster III (Figure 3). 
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Thus, we convincingly show that the microbial community of the host is strongly linked to fitness 

components of the host; in our case stress resistance traits and longevity [7–14].  

 

The few previous studies that have investigated the effects of within species host genetic variation on 

endosymbionts have mainly focused on genetic variability in the host’s ability to control the presence 

and/or abundance of specific endosymbionts [69,70]. Experimental evidence supporting the 

hologenome hypothesis, i.e., that the host and microbiome genomes in concert constitute the unit of 

selection, is however beginning to emerge. For example, Kokou et al. (2018) showed alteration of the 

microbial composition and microbial response to temperature stress in a tropical fish selected for 

increased cold resistance, which is in line with the results presented here. 

 

The composition of the host’s microbiome has been linked to variation in the host’s phenotype, such 

as immune response, metabolism, fitness and developmental characteristics [22,71–73]. The 

microbiome-associated phenotypic mediations are caused either by the production of metabolites [74] 

or the presence of the bacteria per se [75]. For ectotherms in particular, alteration of energy reserves, 

metabolism, or gene expression as a consequence of alterations in the microbiome may indirectly 

affect an individual’s environmental stress resistance [76]. In the current study, we found abundant 

changes in the microbial community composition between lines under selection and the unselected 

control lines. For example, we found that Acetobacteraceae were enriched in HS, KS and LS selected 

regimes (Figure 1 and 4), as predicted from the biochemical mechanisms of Acetobacteraceae, a group 

of bacteria that reduces lipid storage in the host [73,77]. Consequently, lines with low abundance of 

Acetobacteraceae have increased lipid storage which is favorable in cold environments [78]. The gram 

positive Leuconostocaceae, which have been identified in wild-caught D. melanogaster [23,79], were 

underrepresented in all selection lines compared with the unselected control lines (Figure 4). Some 

members of the Leuconostoc genus are known to ferment fructose [80], helping the host with 

digestion of fruits or other plant materials. Hence, one could speculate whether the costs associated 

with increased stress resistance [81,82] or longevity [83,84] are associated with reduced ability to 

process food. Lactobacillus has been found to be one of the most common genera within the 

Drosophila microbiome [85], and it has been shown that flies with only Lactobacillus microbes can 

recapitulate the natural microbiota growth-promoting effects [86]. Importantly, chronical stress 

dramatically changes the microbiota composition and the following metabolomic signature [87]. Here, 

we found that Lactobacillus was less abundant in lines selected for increased heat stress and 

desiccation resistance (Figure 4). Interestingly, Wolbachia was reduced by almost 15-fold in heat 

stress selected lines compared with unselected control lines (Figure 4). Wolbachia is a maternally 

transmitted bacteria found to infect most insects [88]. Different strains of Wolbachia have been shown 
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to have marked effect on temperature preference. Wolbachia is generally vulnerable to heat stress 

[88,89] and certain Wolbachia genotypes have been found to promote changes in heat stress resistance 

of Drosophila [90]. During the artificial selection procedures executed to generate the HS lines, flies 

were exposed to high temperatures that killed a proportion of the population and surviving flies were 

used to establish the next generation. This heat treatment might have caused high mortality of 

Wolbachia, providing a possible explanation for the lower abundance observed in the HS lines.  

 

Another interesting observation from the HS lines is that we here observed the lowest observed and 

phylogenetic diversity metrics, but the highest Shannon index (Figure 2). This indicates that only few 

ASVs were represented and with an uneven distribution. This could be a consequence of the heat 

exposure selecting for microbes that can tolerate high temperatures (thereby decreasing observed 

alpha diversity but increasing Shannon’s index). This is supported by our differentially abundance 

analysis showing that Paenibacillus – a heat stable bacteria  [91,92] – was the bacteria that was mostly 

increased in abundance comparing HS and UC (Figure 4). 

 

In our study we reared the 35 D. melanogaster lines investigated under common garden conditions 

and found marked differences in their microbiome. Thus, the fact that certain bacteria are more 

abundant in some selection regimes suggests that superior host genotypes for e.g., the ability to 

tolerate low temperatures (CS lines) provide competitive advantages of different microbes compared 

to those in the non-selected control lines. Our data suggests that as the host evolves so does the 

microbiome and that it is the combined effect of host and microbial evolution that governs the 

functional phenotypic responses to artificial selection observed in the investigated lines [36,37]. 

Verifying this hypothesis obviously demands further investigations including microbiome transfer and 

manipulation experiments along the lines proposed by Moghadam et al. [13] and Ericsson and 

Franklin [9]. In interpreting our results it is also important to take into account that the relationship 

between resident microbes and host physiology is very complex and is being influenced by a range of 

factors including host genotype [93], immunity [94], diet [95] and interactions between microbes [96].    
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