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Abstract

Recently it has been proposed, that the holobiont, i.e., the host and its associated microbiome,
constitute a distinct biological entity, on which selection operates. Thisis afascinating idea that so far
has limited empirical justification. Here Drosophila melanogaster lines from a large-scale artificial
selection experiment, where we selected for stress resistance traits and for longevity, were used to test
the hologenome hypothesis. We raised flies from all selection regimes, including a regime where flies
were kept at benign standard laboratory condition (control regime) throughout the duration of the
experiment, under common garden conditions and sequenced the microbiome of the flies. We found
abundant differences in microbial communities between control and selection regimes, but not
between replicate lines within the regimes, and microbial diversity was higher in selected relative to
control lines. Several major core Drosophila bacterial species were differentially abundant in the
different selection regimes despite flies being exposed to similar nutritional and general environmental
conditions. Our results support the idea that the host and microbiome genomes have evolved in

concert and provide experimental support for the hologenome theory of evolution.
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I ntroduction

Genetic variation is a prerequisite for evolution to occur and selection on standing genetic variation
can lead to marked changes in genotypes and phenotypes; thus, selection is a strong driver for
evolutionary changes within species and partly governs the process of speciation. The field of
evolutionary biology dating back to Darwin’s and Mendel’ s revolutionary discoveries and the modern
synthesis are important for almost all biological fields including animal and plant breeding,
evolutionary adaptation, conservation genetics and for understanding human disease etiologies [1-3].
New tools in molecular biology alow for assessment of endophenotypes such as the transcriptome,
the proteome and the metabolome but also for sequencing not only host organisms but aso the myriad
of microorganisms that coexist with these hosts [4,5]. The simultaneous study of hosts and their
microorganisms is a fast developing and novel research field that opens up for investigating the
importance of microbia diversity and how the abundance and distribution of different microbes affect

the host’ s fithess and whether evolutionary forces shape the host and its microbes uniformly [6].

Numerous studies have documented that the microbiome has strong impact on host fithess
components including lifespan, fecundity, immune responses, disease resistance, growth or
development, and environmental stress tolerance [7-14]. It has also been revealed, that the host can
exert some control of the microbial composition, e.g. through nutrient availability by diet choice or
host metabolism [15-17], by immune factors [14], or mechanical control such as gut peristalsis [18].
For example, high abundance of certain species of Lactobacillus or Acetobacter in nutrient poor
environments can critically increase Drosophila melanogaster larvae growth so that growth levels
reach those normally observed on high-protein diets [19,20], suggesting a rescue effect offered by
these microbes. Thus, interactions between the host genotype and the microbiota can have strong
consequences for the host [21] but the impact of these interactions on evolutionary changes in natural
populationsis currently poorly understood [22,23].

The growing realization that interactions between microbes and their hosts shape many aspects of life
is fundamentally changing the way we think about many fields of biology including evolutionary
genetics, disease etiology, and adaptation to changing environmental conditions [24-27]. The
‘holobiont’ concept describes the idea that eukaryote individuals do not act as autonomous units, but
rather as networks consisting of the host and all its associated microorganisms. Their collective
genomes, the ‘hologenome’, may form a single unit of selection and it has been proposed that this
hologenome can evolve [28,29]. For instance, it has recently been shown that selection for increased
cold tolerance in the blue tilapia (Oreochromis aureus) led to significant alteration of the microbial

composition and modulated the microbes response to temperature stress in this tropical fish [30].
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Likewise, a study investigating symbiosis between the aphid Acyrthosiphon pisum and the bacterium
Buchnera aphidicola, has revealed how a single nucleotide deletion in the bacterium affects the heat-
shock transcriptional promoter for ibpA, encoding a small heat-shock protein and that this mutation
governs thermal tolerance of the aphid hosts [31]. As a last example providing support for the
hol obiont theory we have found that the resident microbes in D. melanogaster can respond to thermal
acclimation, and subsequently contribute to improve the hosts survival to more extreme thermal
conditions [13]. Studies like these suggest that the microbiome and symbiont microevolution have
strong importance for host’s ability to cope with variable and periodically stressful environmental
conditions and thereby for the evolutionary adaptation to such challenges and they support the idea

that host and microbiomes may evolve in concert.

Genomic studies aiming at pinpointing signatures of selection often report little evidence for selection
at the genomic or endophenotypic level despite strong directional selection and apparent phenotypic
responses to selection [32]. One reason for this is that most variation in quantitative genetic traits is
influenced by a very large number of genes each contributing with a small effect on the trait in
guestion [33]. Identifying these genes, transcripts or proteins of small effect is a challenge from a
statistical point of view [34]. However, an overlooked reason for apparent lack of strong signatures of
selection may be that only part of the hologenome, the host genome, is traditionally being investigated
in these studies. Evolution of the myriad of microbial genomes impacted by selection may explain a
significant proportion of the response in host phenotypes not captured by analysis of changes in host

genomes.

Current knowledge suggests that the microbial composition of the host is important for multiple
fitness components. It is also clear that the host exerts some control over the microbiota, that the host
and microbiota genomes interact on host fitness, leading to the idea that the combined hologenome
may evolve and dictate evolutionary changes [35]. This knowledge provides a background for testing
how directional selection for host fithess components has affected the distribution and abundance of
associated microbes. This is highly relevant to investigate because we have little knowledge on how
artificial selection for specific host traits impacts and may be facilitated by evolution of the
microbiome. We propose that interactions between host and microbial genomes govern evolutionary
responses. Thisisinvestigated using D. melanogaster lines from a highly replicated artificial selection
experiment. We do this by sequencing the microbiome of populations of D. melanogaster selected for
different stress resistance traits and longevity and from their corresponding non-selected control
populations [36,37]. Lines from each selection regime and lines that had not experienced artificial

directional selection, i.e., the unselected control lines, were all reared at similar benign environmental
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conditions, and they subsequently had their microbiome sequenced. This unique material allows us to
test the hypothesis that directional selection for numerous fitness components in D. melanogaster,
leads to marked and selection-regime-specific changes in microbia composition. We find strong
support that the microbiome has evolved aongside the host and that a mutualistic relationship
between host and microbiome partly explains the evolved phenotypic characteristics of the host. These
results constitute convincing support for the hologenome hypothesis of evolution and suggest that
adaptation to stressful environmental conditions critically depends on interactions between host and

microbia genomes.

Material and Methods

Description of selection regimes and original experimental setup

The flies used in the current study originated from a large environmental-stress and life-history trait
selection experiment described previously [36]. In short, initially a mass-bred laboratory population of
D. melanogaster was established and maintained at 25 °C in 12-hour light-dark cycles, on standard
oatmeal-sugar-yeast-agar medium. Six artificial selection regimes were established together with one
unselected control (UC) line. For each selection regime (and control) five independent replicated lines
were generated. In each selection regime there was selected for one of the following traits: increased
desiccation resistance (DS), increased longevity (LS), increased cold-shock resistance (CS), increased
heat-shock resistance (HS), increased heat knockdown resistance (KS) and increased starvation
resistance (SS). The selection was applied every second generation to alow for recovery and to avoid
transgenerational effects [38,39].

The initial phenotypic assessment was performed after 21 generations of selection (45 generations in
total), except for LS and SS which were selected for 11 and 26 generations, respectively [36]. Flies
from each of the selection regimes (and the unselected controls) have previously been characterized at
the genomic level [40], and on arange of different endophenotypic levels [41-44]. The flies used in
the current study were collected after 32 generations of selection (i.e., 67 generations of maintenance)
for the HS, CS, KS, DS and UC regimes, whereas flies from the SS lines were from generation 81
(i.e., 37 selection events), and flies from the LS regime were from generation 31 (i.e., 14 generations
of selection). Phenotypic assessments of selection responses were not performed in the generation
where flies were harvested for microbiome analysis and therefore the responsiveness to selection is
based on results from the data provided in Bubliy and Loeschcke [36].

Microbiome community analysis by 16SrRNA quantification
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A total of 20 females were sampled from each of the biological replicates of the selection and control
lines, snap frozen in liquid nitrogen, and stored a -80 °C for 14 years before performing the

microbiome analysis reported here.

DNA extraction and sequencing of 16S rRNA were conducted externally by DNASense ApS
(Aalborg, Denmark, https://dnasense.com/). DNA was extracted from pools of 20 female flies using

DNeasy Blood and Tissue kit following the manufacturer’s recommendations (Qiagen, Germany).
Bacterial 16S V1-V3 rRNA libraries were prepared using a custom protocol based on Caporaso et al.
(2012) and amplified using V1-V3 specific primers: [27F] AGAGTTTGATCCTGGCTCAG and
[534R] ATTACCGCGGCTGCTGG [45]. The amplicon libraries were purified using a standard
protocol for Agencourt Ampure XP Beads (Beckman Coulter, USA) with a bead to sample ratio of
4:5. Purified libraries were pooled in equimolar concentrations and diluted to 6 nM. Samples were
paired-end sequenced (2x300 bp) on a MiSeq platform (Illumina, USA) using the MiSeq Reagent kit
v3 (Illumina, USA) according to standard guidelines.

Bioinformatic processing and analysis

Demultiplexed fastq files were processed with QIIME2 v2019.10 [46]. Forward and reverse primers
were removed using the cutadapt plugin v2019.10 [47]. To infer amplicon sequence variants (ASVs),
trimmed reads were quality filtered, denoised, merged, and PCA chimeras were removed using the
DADAZ2 plugin v2019.10 [48]. For quality filtration, paired-end sequences were truncated at 297 and
261 bp for forward and reverse reads, respectively (50-percentile Phred score quality drop below 30
and 28, respectively). DADA?2 default parameter settings were applied otherwise. A total of 304 ASVs
were detected. ASVs were taxonomically assigned using a 16S V1-V 3 specific Naive Bayes classifier
[49]. The classifier was trained on 99% similarity clustered 16S rRNA gene sequences extracted from
the SILVA v132 reference database [50], and trimmed to only include the V1-V 3 region bound by the
27F/534R primer pair. For phylogenetic inference, ASV sequences were aligned with Mafft v7.310
[51], highly variable positions were masked, an unrooted phylogenetic tree was constructed with
FastTree v2.1.10 [52], and the tree was rooted by the midpoint of the longest tip-to-tip distance in
QIIME2.

Subsequent microbial data analyses were performed with R v3.6.2 [53]. ASV's unassigned at phylum
level and ASVs assigned as chloroplasts, mitochondria, or cyanobacteria were removed from further
analyses (303 ASVs remaining). Rarefaction curves were generated with the vegan package v2.5-6
[54] and uneven sampling depth was scaled to minimum read depth by rarefying data to the minimum

number of reads across all samples (13.723 sequence reads per sample; 297 ASVs remaining) using
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the rarefy_even_depth function implemented in the phyloseq package v1.30.0 [55]. Overall microbial
composition was investigated in rarefied data. Top 10 most abundant bacterial genera across, as well
as within, selection regimes were identified and visualized as heatmaps using the ampvis2 package
v2.5 [56]. ASV counts were converted to within-sample relative abundances and for each sample,
microbial compositions were visualized at phylum and family level using the microbiome package
v1.8.0 [57]. For subsequent diversity comparisons, the rarefied count data were pruned based on ASV
prevalence, removing ASVs present in less than two samples and with total abundance less than
0.01% across all samples resulting in 141 remaining ASV's (99.4% of rarefied and 48.3% of processed
sequence reads). If not stated directly, subsequent analyses were conducted for filtered, rarefied and
pruned ASV data. Inter-sample complexity (alpha diversity) was investigated using ASV count data,
whereas for intrasample diversity (beta diversity) ASV count data were converted to relative

abundances.

Inter-sample complexity

Alpha diversity estimates including the observed number of ASVs (richness) and the Shannon’s
diversity index (considering richness and evenness of ASV abundances) were computed with
phyloseq. Faith’s phylogenetic diversity (PD) index, a measure of diversity which incorporates
phylogenetic diversity between ASV's, was estimated with the picante package v1.8.2 [58]. Normality
of data was tested using the Shapiro-Wilk test. Overall differences in alpha diversity between
selection regimes were tested using a one-way ANOV A followed by Tukey’s multiple comparison of

means test for pairwise comparisons of selection lines.

Intra-sample complexity

Beta diversity of the selection and control lines was investigated by Principal Coordinate Analysis
(PCoA) using Bray—Curtis dissimilarity distances. Bray-Curtis dissimilarity distances among samples
were estimated using phyloseq. PCoA ordination plots were generated with the ggplot2 package
v3.3.1 [59]. To determine differences in microbia diversity between selection regimes a
permutational multivariate analysis of variance (PERMANOVA) was computed for Bray-Curtis
distances using the adonis function implemented in vegan, applying 999 permutations and default
settings otherwise. Homogeneity of group dispersions (variance) was verified using the betadisper
function implemented in vegan. P-values < 0.05 were considered statistically significant. In addition,
a hierarchical cluster analysis for Bray—Curtis dissimilarity distances was computed using the hclust
function implemented in the stats package [53] applying default settings and visualized as dendrogram
using ggplot2.
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Differential abundance analysis

Differential ASV abundances between selection regimes were determined at genus level using a
negative binomial generalized linear model approach implemented in the DESeq2 package v1.2.6.
[60]. Briefly, taxonomic assignments were agglomerated to genus level using the tax_glom function
implemented in phyloseg. ASV counts were normalized applying the variance-stabilizing
transformation approach implemented in DESeg?2, returning log2 scale transformed data. Size factors
for each ASV were estimated applying a median-ratio-method. Dispersions of ASV counts were
computed and a negative binomial WaldTest was performed [60,61]. For ASV with zero counts a
pseudo-count of one was added [62]. Pairwise comparisons were computed for the following six
contrasts: CSvs. UC, DSvs. UC, HSvs. UC, KSvs. UC, LSvs. UC, and SSvs. UC. To correct for
multiple hypothesis testing, P-values were adjusted using the Benjamini-Hochberg procedure [63].
ASVs were considered differentially abundant for adjusted P-values < 0.01 and an FDR cut-off of 5%.

Results were visualized using ggplot2.

Results

[llumina 16S rRNA amplicon sequencing returned 1,538,911 raw sequence reads across all 35
samples, ranging from 21,712 to 70,668 reads per sample (mean 43,969). After pre-processing with
Qiime2 988,415 sequencing reads remained, representing 64.27% of the raw sequence reads on
average. Pre-processed reads detected per sample ranged from 13,723 to 52,185 (mean 28,240).
Model based inference of amplicon sequence variants revealed 304 bacterial amplicon sequence
variants (ASVs) across all samples, ranging from 12 to 110 unique ASV's detected per sample (mean
59). A total of 141 bacterial ASVs passed filtration procedures (per-sample range: 9 to 86 ASVs;
mean: 48 ASVS).

Microbial Composition
Detected ASVs were assigned to four phyla Firmicutes (N=228), Actinobacteria (N=34),
Proteobacteria (N=32), and Bacteroidetes (N=3). Relative abundances at phylum and family level are

summarized in Figure 1.
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Figure 1 | Relative abundance of amplicon sequence variants (ASV's) assigned to the classification level phylum (A) and
family (B) for the six selection regimes (CS: cold-shock resistance, DS desiccation resistance, HS: heat-shock resistance,
KS: heat knockdown resistance, LS: longevity, SS. starvation resistance) and the unselected control lines (UC). Each
column within selection type represents a biological replicate.

Comparison across selection lines revealed a change in microbial composition following exposure to
artificial selection (Figure 1). At phylum level (Figure 1A), samples separated into two groups —
samples characterized by high abundance of Proteobacteria (CS, DS, KS, LS, SS) or high abundance
of Firmicutes (HS and UC). At family level (Figure 1B), four microbid profiles were identified:
samples with high abundance of i) Anaplasmataceae (CS, DS, SS), ii) Acetobacteraceae (KS, LS), iii)
Planococcaceae (HS), or iv) Leuconostocaceae (UC). Moreover, the most abundant genus within each
selection line was sufficient to unambiguously separate selection lines into the four microbial profiles
detected at family level (Figure Sl1). Top abundant genera identified included Wolbachia
representative for the CS, DS, and SS lines, Acetobacter representative for KS and LS lines,
Lysinibacillus representative for the HS line, and Leuconostoc representative for the UC line.
Compared to the other detected key genera, Leuconostoc was exclusively found in the UC lines.
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Inter-sample complexity (a-diversity)

Within-sample diversity was investigated for rarefied and prevalence pruned data, only including
ASV's with an overall abundance >0.01% (141 ASVs, range: 9 to 86; mean: 48). Shapiro-Wilk tests
confirmed normality of all a-diversity estimates (Observed species richness: P=0.80; Shannon’s
diversity index: P=0.31; Faith’s phylogenetic diversity (PD) index: P=0.66, respectively). Global
comparison of a-diversity estimates between regimes (six selection regimes and the unselected control
regime) showed that a-diversity differed between them (Table 1).

Table 1| Analysisof variance for three a-diversity metrics.

Df Sum Sq Mean Sq F value P value
Speciesrichness
Selection regime 6 9533 1588.8 12.66 <0.001
Residuals 28 3514 1255
Shannon’sindex
Selection regime 6 6.053 1.0089 2775 <0.05
Residuals 28 10.179 0.3635
Faith’s Phylogenetic
Selection regime 6 14.02 2.3370 13.58 <0.001
Residuals 28 4.82 0.1721

Df: degrees of freedom; Sq: Squares

Parametric test statistics (Tukey’'s HSD test) were applied for pairwise comparison and showed
abundant differences in a-diversity metrics between pairs of regimes (Supplementary Tables S1-S3).
In general, selection lines showed higher within-sample diversities than the control lines (Figure 2,
Supplementary Tables S1-S3).
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Figure 2 | Boxplot for observed (A), Shannon’s (B) and Faith’s Phylogenetic (C) a-diversity metrics. Letters above each
boxplot indicate pairwise statistical differences in a-diversity metrics between regimes (CS: cold-shock resistance, DS:
desiccation resistance, HS: heat-shock resistance, KS: heat knockdown resistance, LS: longevity, SS: starvation resistance,
UC: unselected controls). Full statistical reportsare found in Supplementary Tables S1-S3.

Three different a-diversity metrics were estimated to account for differences in richness, evenness,
and phylogenetic distance. The observed bacterial richness quantifies the total number of ASV within
a sample. The UC line showed significantly less richness compared with the selected lines (Figure
2A). The SS and DS lines displayed highest ASV abundances compared with the other selection lines
(Figure 2A). The Shannon’s Index accounts for ASV abundance and evenness, such that samples with
comparable numbers of ASVs will show a lower diversity measure when one or few ASVs are
overrepresented (uneven distribution). The Shannon’'s Index only differed significantly between HS
and the control line (Figure 2B), suggesting that ASVs detected in the HS line were more evenly
distributed compared to the control line. Finally, the Faith’s phylogenetic diversity metric incorporates
the phylogenetic distance between AVSs, such that related ASVs increase the measure of
phylogenetic biodiversity less than unrelated ASVs. Like with the observed richness, the control line
had asignificant lower estimate of Faith’s diversity metric than any of the other selection regimes, and
the SS regime displayed the highest diversity metric (Figure 2C).

Intra-sample complexity (B-diversity)

Among-sample g-diversity was visualized with Principal Coordinate Analysis (PCoA) ordination
plots based on Bray-Curtis distances (Figure 3).
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Figure 3. Principal Coordinate (PCo) ordination plot of axis 1 and 2, with proportion of variance explained noted (A), and
cluster analysis (B). Roman numbers indicate distinct separate clusters.

Differences in microbial communities between lines were detected (Figure 3). Based on PCol (50.6%
of microbial diversity explained) and PCo2 (16.1% of microbial diversity explained), samples
separated into three discrete clusters with CS, DS, and SS samples forming cluster 1, UC samples
forming cluster 11, and HS, KS and LS samples forming cluster I1l. Microbial diversity within the
three clusters was highest for UC samples, and lowest among samples belonging to cluster I,
indicating a high microbial resemblance among the CS, DS, and SS lines. Permutational multivariate
analysis of variance (PERMANOVA) reveaded that microbia diversity detected in selection lines
clearly differed from that observed in the control lines (Table 3A). Moreover, within-cluster diversity
between HS, KS, and LS (cluster I1I) differed (Table 3C), whereas microbial diversity between CS,
DS, and SS (cluster 1) did not differ (Table 3B).
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Table 3 | Permutational multivariate analysis of variance (PERMANOVA) for (A) selection regimes compared

with the unselected control lines, (B) pairwise comparison of selection lines belonging to cluster | (CS, DS,
SS), and (C) pairwise comparison of selection lines belonging to cluster I11 (HS, KS, LS). PERMANOVA was

computed on Bray-Curtis distances.

A) Df Sum Sq Mean Sq F value R2 Pr(>F)
UCvs CS
Selection regime 1 0.93624 0.93624 12.722 0.61394 0.009
Residuals 8 0.58873 0.07359 0.38606
UC vs. DS
Selection regime 1 0.94849 0.94849 7.5781 0.48646 0.013
Residuals 8 1.00129 0.12516 0.51354
UC vs. HS
Selection regime 1 1.95212 1.95212 16.362 0.67162 0.012
Residuals 8 0.95447 0.11931 0.32838
UCvs. KS
Selection regime 1.99204 1.99204 24.728 0.75556 0.004
Residuals 8 0.64446 0.08056 0.24444
UCvs LS
Selection regime 10 1.69650 1.69650 14,59 0.64596 0.01
Residuals 8 0.92983 0.11623 0.35404
UCvs. SS
Selection regime 0.95193 0.95193 14,068 0.63748 0.012
Residuals 8 0.54134 0.06767 0.36252
B) Df Sum §q Mean Sq F value R2 Pr(>F)
CSvs DS
Selection regime 0.13416 0.134160 1.3507 0.14445 0.22
Residuals 8 0.79458 0.099323 0.85555
CSvs SS
Selection regime 0.03764 0.037644 0.89994 0.10112 0.531
Residuals 8 0.33464 0.041830 0.89888
SSvs. DS
Selectionregime 4 0.18038 0.180377 1.9312 0.19446 0.074
Residuals 8 0.74719 0.093399 0.80554
C) Df Sum Sq Mean Sq F value R2 Pr(>F)
KSvs LS
Selectionregime 4 0.37951 0.37951 3.8082 0.32763 0.007
Residuals 8 0.77885 0.09736 0.67237
HSvs KS
Selectionregime 4 0.88727 0.88727 8.8341 0.52478 0.009
Residuals 8 0.80350 0.10044 0.47522
HSvs. LS
Selection regime 0.55765 0.55765 4.0071 0.33869 0.019
Residuals 8 1.08887 0.13611 0.66131
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Differential abundance

Microbial abundance of the unselected control lines, agglomerated at genus level, was compared with
each of the selection regimes, respectively. Of the 32 assigned genera, a total of 20 genera belonging

available under aCC-BY-ND 4.0 International license.

to 13 different families were significantly affected by at |east one selection regime (Figure 4).

A CSvs. UC B HS vs. UC
Leuconostoc olbachia
Microbacteriu Leuconostoc
Brevibacillu: Lactobacillus
Providenci orynebacterium 1
Lysinibacillu: Anaerosporobacter]
2 Tyzzerell 2 Acetobacter|
g Lachnoclostridium g Lachnoclostridium 5|
o Anaerosporobacte o Microbacterium|
Glutamicibacte Anaerocolumnaj
Leucobacte Rhodococcus|
Anaerocolumn: Morganella|
Rhodococcu Brevibacillus|
Paenibacillu: Lysinibacillus|
Vagococcu: Paenibacillus|
20 ) 0 10 20 20 o 20
log2FoldChange log2FoldChange
CDsvs.UC D KSvs.UC family
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Figure 4 | Differential abundance analysis comparing different selection regimes at the genus level. CS: cold-shock
resistance, DS: desiccation resstance, HS: heat-shock resistance, KS: heat knockdown resistance, LS: longevity, SS:
starvation resistance, UC: unselected controls. Colour code applied represents family assignment. Full datistical reports

are found in Supplementary Tables $4-S0.

The number of differentially abundant genera ranged from 8 in the KS line to 14 in the CS, SS, and
HS lines. The maority of the differentially detected genera (Acetobacter, Anaerocolumna,
Glutamicibacter, Lachnoclostridium 5, Leucobacter,

Anaerosporobacter,  Brevibacillus,

Lysinibacillus, Microbacterium, Morganella, Paenibacillus, Providencia, Psychrobacillus,
Rhodococcus, Tyzzerella, Vagococcus) showed larger abundances in selection lines, with
Anaerocolumna, Anaerosporobacter, Brevibacillus, Lysinibacillus, and Paenibacillus being more
abundant across all selection regimes, whereas Morganella and Psychrobacillus were detected

differentially abundant in one selection regime (HS; Figure 4). For the remaining four differentially
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detected genera (Leuconostoc, Lactobacillus, Wolbachia and Corynebacterium 1) abundances were
lower in selection regimes compared to the control line, with lower Leuconostoc abundance detected
across all selection regimes, lower Lactobacillus abundance detected in the DS and HS selection
regimes, and lower Corynebacterium 1 and Wolbachia abundances detected in the HS regime, only.
Considering the clusters detected based on 3-diversity, Providencia was found differentially abundant
in al selection regimes belonging to cluster | (CS, DS, SS) but in none of the selection regimes
belonging to cluster I11 (HS, KS, and LS). Vice versa, Acetobacter was found differentially abundant
in al selection regimes belonging to cluster Il but in none of the selection regimes belonging to

cluster I.

Discussion

Advances in sequencing technologies have allowed detailed studies of host and microbiome genomes
and thereby provided new opportunities for studying interactions between host and associated
microorganisms [27,64-67]. Therefore, we can now test the hypothesis that the combination of the
host’'s and its associated microorganisms’ genomes in concert with environmental variability
constitutes an individual’s fitness and comprises the unit of selection. Thisis the focus of the current
study where we utilized a unique set of highly replicated D. melanogaster selection and control lines

to provide strong experimental support for the hologenome theory of evolution.

We investigated the interactions between host genotype and microbial composition by assessing
whether genetic and phenotypic differentiated D. melanogaster lines had distinct microbiomes. We
investigated microbiomes in replicate control lines, in lines selected for increased longevity, and in
lines selected for each of five environmental stress resistance traits, namely increased desiccation
resistance (DS), increased cold-shock resistance (CS), increased heat-shock resistance (HS), increased
heat knockdown resistance (KS) and increased starvation resistance (SS). Strong functional
phenotypic responses to selection in these lines have previously been shown [36,37] along with
transcriptome, metabolome, and proteome studies describing the physiological and genomic basis of
the response to selection [40-42,44,68]. We found that the microbiome detected in the selection lines
differed markedly from that of the control lines (Figures 1-2) and that replicate lines within selection
regimes had rather similar microbiomes. This was seen in the form of increased microbial diversity in
lines selected for increased longevity or stress resistance and differentia abundance of core D.
melanogaster microbes between selection regimes (Figure 4). We identified three clusters with the
CS, SS and DS selection regimes (and two UC lines) congtituting cluster I, UC (three of five) lines
constituting cluster Il and KS, HS, DS and LS selection regimes constituting cluster 11 (Figure 3).
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Thus, we convincingly show that the microbial community of the host is strongly linked to fitness

components of the host; in our case stress resistance traits and longevity [7-14].

The few previous studies that have investigated the effects of within species host genetic variation on
endosymbionts have mainly focused on genetic variability in the host’s ability to control the presence
and/or abundance of specific endosymbionts [69,70]. Experimental evidence supporting the
hologenome hypothesis, i.e., that the host and microbiome genomes in concert constitute the unit of
selection, is however beginning to emerge. For example, Kokou et al. (2018) showed alteration of the
microbial composition and microbial response to temperature stress in a tropical fish selected for

increased cold resistance, which isin line with the results presented here.

The composition of the host’s microbiome has been linked to variation in the host’s phenotype, such
as immune response, metabolism, fitness and developmental characteristics [22,71-73]. The
microbiome-associated phenotypic mediations are caused either by the production of metabolites [74]
or the presence of the bacteria per se [75]. For ectotherms in particular, alteration of energy reserves,
metabolism, or gene expression as a consequence of aterations in the microbiome may indirectly
affect an individual’s environmental stress resistance [76]. In the current study, we found abundant
changes in the microbial community composition between lines under selection and the unselected
control lines. For example, we found that Acetobacteraceae were enriched in HS, KS and LS selected
regimes (Figure 1 and 4), as predicted from the biochemical mechanisms of Acetobacteraceae, a group
of bacteria that reduces lipid storage in the host [73,77]. Consequently, lines with low abundance of
Acetobacteraceae have increased lipid storage which is favorable in cold environments [78]. The gram
positive Leuconostocaceae, which have been identified in wild-caught D. melanogaster [23,79], were
underrepresented in all selection lines compared with the unselected control lines (Figure 4). Some
members of the Leuconostoc genus are known to ferment fructose [80], helping the host with
digestion of fruits or other plant materials. Hence, one could speculate whether the costs associated
with increased stress resistance [81,82] or longevity [83,84] are associated with reduced ability to
process food. Lactobacillus has been found to be one of the most common genera within the
Drosophila microbiome [85], and it has been shown that flies with only Lactobacillus microbes can
recapitulate the natural microbiota growth-promoting effects [86]. Importantly, chronical stress
dramatically changes the microbiota composition and the following metabolomic signature [87]. Here,
we found that Lactobacillus was less abundant in lines selected for increased heat stress and
desiccation resistance (Figure 4). Interestingly, Wolbachia was reduced by almost 15-fold in heat
stress selected lines compared with unselected control lines (Figure 4). Wolbachia is a maternally

transmitted bacteria found to infect most insects [88]. Different strains of Wolbachia have been shown
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to have marked effect on temperature preference. Wolbachia is generally vulnerable to heat stress
[88,89] and certain Wolbachia genotypes have been found to promote changesin heat stress resistance
of Drosophila [90]. During the artificial selection procedures executed to generate the HS lines, flies
were exposed to high temperatures that killed a proportion of the population and surviving flies were
used to establish the next generation. This heat treatment might have caused high mortality of

Wolbachia, providing a possible explanation for the lower abundance observed in the HS lines.

Another interesting observation from the HS lines is that we here observed the lowest observed and
phylogenetic diversity metrics, but the highest Shannon index (Figure 2). This indicates that only few
ASV's were represented and with an uneven distribution. This could be a consequence of the heat
exposure selecting for microbes that can tolerate high temperatures (thereby decreasing observed
alpha diversity but increasing Shannon’s index). This is supported by our differentially abundance
analysis showing that Paenibacillus — a heat stable bacteria [91,92] — was the bacteria that was mostly
increased in abundance comparing HS and UC (Figure 4).

In our study we reared the 35 D. melanogaster lines investigated under common garden conditions
and found marked differences in their microbiome. Thus, the fact that certain bacteria are more
abundant in some selection regimes suggests that superior host genotypes for e.g., the ability to
tolerate low temperatures (CS lines) provide competitive advantages of different microbes compared
to those in the non-selected control lines. Our data suggests that as the host evolves so does the
microbiome and that it is the combined effect of host and microbial evolution that governs the
functional phenotypic responses to artificial selection observed in the investigated lines [36,37].
Verifying this hypothesis obviously demands further investigations including microbiome transfer and
manipulation experiments along the lines proposed by Moghadam et a. [13] and Ericsson and
Franklin [9]. In interpreting our results it is aso important to take into account that the relationship
between resident microbes and host physiology is very complex and is being influenced by a range of

factors including host genotype [93], immunity [94], diet [95] and interactions between microbes [96].
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