

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

1
2 **Cortical dopamine reduces the impact of motivational biases governing automated behaviour**
3
4
5 Vanessa Scholz^{1,2*}, Roxanne W. Hook³, Mojtaba Rostami Kandroodi^{1,4}, Johannes Algermissen¹,
6 Konstantinos Ioannidis^{3,5,6}, David Christmas^{3,5}, Stephanie Valle⁷, Trevor W. Robbins⁸, Jon E. Grant⁷,
7 Samuel R. Chamberlain^{3,9# *}, Hanneke EM den Ouden^{1# *}
8 1 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The
9 Netherlands
10 2 University Hospital Würzburg, Department of Child and Adolescent Psychiatry, Psychosomatics and
11 Psychotherapy, Würzburg, Germany
12 3 Department of Psychiatry, University of Cambridge, Cambridge, UK
13 4 School of Electrical and Computer Engineering, University of Tehran, Iran
14 5 Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
15 6 Department of International Health, Care and Public Health Research Institute, Maastricht
16 University, Maastricht, Netherlands.
17 7 Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, United
18 States
19 8 Department of Psychology, and Behavioural and Clinical Neuroscience Institute, University of
20 Cambridge, Cambridge, UK
21 9 Department of Psychiatry, Faculty of Medicine, University of Southampton, Southampton, UK.
22 Southern Health NHS Foundation Trust, Southampton, UK.
23 # joint senior authors
24
25 * Corresponding authors:
26 Vanessa Scholz (vanessa.scholz@donders.ru.nl or scholz_v@ukw.de); Hanneke E.M. den Ouden
27 (hanneke.denouden@donders.ru.nl) and Samuel R. Chamberlain (srchamb@gmail.com)
28
29

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

30 Abstract

31 Motivations shape our behaviour: the promise of reward invigorates, while in the face of punishment,
32 we hold back. Abnormalities of motivational processing are implicated in clinical disorders
33 characterised by excessive habits and loss of top-down control, notably substance and behavioural
34 addictions. Striatal and frontal dopamine have been hypothesised to play complementary roles in the
35 respective generation and control of these motivational biases. However, while dopaminergic
36 interventions have indeed been found to modulate motivational biases, these previous
37 pharmacological studies used regionally non-selective pharmacological agents. Here, we tested the
38 hypothesis that frontal dopamine controls the balance between Pavlovian, bias-driven automated
39 responding and instrumentally learned action values. Specifically, we examined whether selective
40 enhancement of cortical dopamine either (i) enables *adaptive* suppression of Pavlovian control when
41 biases are maladaptive; or (ii) *non-specifically* modulates the degree of bias-driven automated
42 responding. Healthy individuals (n=35) received the catechol-o-methyltransferase (COMT) inhibitor
43 tolcapone in a randomized, double-blind, placebo-controlled cross-over design, and completed a
44 motivational Go NoGo task known to elicit motivational biases. In support of hypothesis (ii), tolcapone
45 globally decreased motivational bias. Specifically, tolcapone improved performance on trials where
46 the bias was unhelpful, but impaired performance in bias-congruent conditions. These results indicate
47 a non-selective role for cortical dopamine in the regulation of motivational processes underpinning
48 top-down control over automated behaviour. The findings have direct relevance to understanding
49 neurobiological mechanisms underpinning addiction and obsessive-compulsive disorders, as well as
50 highlighting a potential trans-diagnostic novel mechanism to address such symptoms.

51

52

53 Keywords: Decision-making, frontal dopamine, tolcapone

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

54 Introduction

55 We generally feel that we are in control of our actions and make our decisions rationally. Yet, many of
56 us eat that extra slice of cake, buy that expensive phone, or fail to save sufficiently for our retirement.
57 While our behaviour is indeed to a large extent driven by 'rational' (instrumental) learning from
58 experience, a key observation is that motivational prospects shape our behaviours in a seemingly
59 hardwired way: the promise of rewards invigorates behaviour, while we hold back under the threat of
60 punishment ¹⁻⁴. These motivational biases are thought to simplify decision-making by providing
61 sensible default actions ('priors') ⁴. Such decision heuristics can be particularly helpful in situations
62 requiring rapid responding, or in an unfamiliar environment ⁵. Still, it has long been known that these
63 Pavlovian processes shape behaviour even when the responses they prompt are maladaptive ^{6,7}. In
64 contrast, through instrumental learning of stimulus-response-outcome contingencies we can flexibly
65 learn which actions are advantageous in any given, specific environment, which, once learnt, will lead
66 to more optimal choices. Thus, adaptive behaviour requires a careful balance between a fast but
67 inflexible Pavlovian 'controller', and an instrumental 'controller' that flexibly but more slowly learns
68 adaptive behaviour in specific environments. Abnormalities in motivational processing have been
69 implicated in clinical disorders characterised by habitual behaviours that are functionally severely
70 impairing, for example in substance and behavioural addictions ^{8,9} as well as disorders from the
71 obsessive-compulsive spectrum ¹⁰⁻¹². Furthermore, there is evidence that Pavlovian biases governing
72 instrumental behaviour may predict psychiatric relapse and symptom progression in certain clinical
73 contexts ¹³ and recovery ¹⁴.

74 Influential theories and computational models posit that motivational biases arise through ventral
75 striatal dopamine action ^{2,4,15-17}, based on observations that Pavlovian cues elicit dopamine release in
76 the ventral striatum ^{18,19}. Also, in humans, dopaminergic interventions can modulate the expression of
77 motivational bias ^{3,20,21}. However, these effects are puzzling in the sense that their direction is
78 inconsistent across studies. One cause of this seeming inconsistency may lie in the systemic nature of
79 typical human psychopharmacological interventions (e.g. L-DOPA or psychostimulants), which typically
80 impact both striatal and prefrontal dopamine function. Indeed, in addition to an important role of the
81 striatum eliciting motivational bias, we posit a putative role of *frontal* dopamine in controlling these
82 biases. In this study, we leveraged a regionally specific pharmacological intervention to ask whether
83 and how prefrontal dopamine acts in determining the degree to which motivation biases instrumental
84 behaviour.

85 While most dopaminergic agents affect sub-cortical and cortical dopamine, the catechol-o-methyl
86 transferase (COMT) inhibitor tolcapone has a highly specific effect in modulating frontal dopamine ²².
87 In contrast to the striatum, where dopamine metabolism is dominated by action of the dopamine
88 transporters, dopamine metabolism in the prefrontal cortex (PFC) primarily relies on COMT ^{22,23}. The
89 COMT enzyme plays a cardinal role in the regulation of cortical dopamine ^{22,23}. Evidence from pre-
90 clinical models demonstrates that COMT knock-out leads to substantial increase in prefrontal
91 dopamine levels in the absence of marked effects on striatal dopamine ^{23,24}. Tolcapone prevents the
92 COMT enzyme from breaking down dopamine in the PFC, leading to elevated frontal DA measured
93 using microdialysis in rats ²⁵. Tolcapone modulates aspects of flexible responding and executive control
94 in pre-clinical and human experimental models ²⁵. There is also emerging evidence that tolcapone may
95 constitute a new therapeutic direction for disorders characterised by loss of control over habitual
96 patterns of behaviour ²⁶⁻²⁹. For example, in an open-label study, over the course of 12-weeks tolcapone
97 was associated with symptom reduction in gambling disorder, the extent of which correlated with
98 enhancement of frontal lobe activation during an executive planning task ²⁸. In a recent controlled
99 study, two-week treatment with tolcapone led to significant improvements in OCD versus placebo ²⁹.

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

100 Furthermore, single-dose tolcapone has also been found to modulate activation of the right inferior
101 frontal gyrus in people with disordered gambling, versus placebo²⁶ – a key region heavily implicated
102 in exerting top-down control over learnt behaviours^{30–32}.

103 Given the selective effects of tolcapone on cortical as opposed to striatal dopamine, as well as the
104 initial evidence indicating tolcapone may offer therapeutic promise in the treatment of disorders
105 associated with excessive habitual patterns of behaviour, we used a single-dose challenge in
106 conjunction with an established probabilistic reinforcement learning task. In this task, participants
107 need to learn to make (Go) or withhold (NoGo) responding in order to obtain desired outcomes. Cues
108 signal both the action requirement (Go / NoGo response) and outcome valence (i.e. whether for this
109 cue a reward can be won, or rather a punishment needs to be avoided). Participants perform better
110 for cues that require actions congruent with the outcome valence (i.e. make a Go response to win a
111 reward, or a NoGo response to avoid a punishment) relative to incongruent cues (NoGo to win a
112 reward, Go to avoid a punishment). This difference in performance on action-valence congruent
113 relative to incongruent cues reflects the strength of the (ability to control the) motivational bias that
114 prompts actions based on the cue valence. This task thus robustly evokes motivational biasing of
115 action, which needs to be suppressed on so-called ‘incongruent’ trials to perform well. We used this
116 motivational Go-NoGo task to characterise the role of cortical dopamine in determining the balance
117 between automated and controlled responding in healthy volunteers.

118 Using a double-blind, randomized, cross-over, within-subject design, we examined whether tolcapone
119 would facilitate a shift from bias-dictated automated behaviour towards more flexible responding,
120 through elevation of frontal dopamine levels. Specifically, we tested the following two competing
121 accounts. **Hypothesis 1:** Dopamine enhances suppression of Pavlovian biases when these conflict with
122 instrumental requirements. This hypothesis follows from previous work indicating that i) the frontal
123 cortical EEG activity predicts adaptive suppression of motivational biases within³³ and across³⁴
124 individuals, and ii) higher frontal dopamine, either through pharmacological intervention³⁵ or owing
125 to a genetic phenotype impacting the COMT enzyme³⁶, can lead to the employment of more adaptive
126 decision strategies. **Hypothesis 2:** Dopamine enables general disengagement from the automatic
127 response systems, i.e. irrespective of whether biases are conducive to or interfering with selecting the
128 correct instrumental response.

129 Automatic response tendencies can be suppressed by prefrontal circuits, notably the inferior frontal
130 gyrus (IFG)^{31,37,38}, interfering with subcortical action selection processes. The IFG projects to the
131 subthalamic nucleus (STN) and is believed to raise the threshold needed to elicit a motor response,
132 which prevents impulsive responses^{15,39–42}. Administration of catecholamine agonists such as
133 methylphenidate, modafinil, and atomoxetine have been found to improve response inhibition, e.g.,
134 in the stop-signal task^{43–46}. Tonic increases in IFG activation by tolcapone could thus diminish the
135 impact of automatic, bias-driven responses and facilitate the enactment of controlled, instrumental
136 responses⁴⁴. Based on this literature, our second hypothesis was that tolcapone might enhance
137 prefrontally driven response inhibition, leading to a global shift away from automatic, bias-driven
138 responding, irrespective of whether this supports or hinders adaptive decision-making.

139 Materials and Methods

140 Sample

141 Forty-four healthy subjects meeting inclusion criteria (for an outline see Suppl. Material) took part in
142 a double-blind, randomized, within-subjects, placebo-controlled study examining effects of a single
143 dose of tolcapone (200 mg, dose based on previous work^{47–49}). They were recruited at two test sites,

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

144 University of Cambridge ($N = 23$) and University of Chicago ($N = 21$). Additional data exclusion (see data
145 availability), left an available sample of $N = 35$ for subsequent analysis (see Table 1).

Demographic data	Mean	Median	SD	Range
Age	31.3	30.0	8.8	18 - 49
MADRS ¹	0.7	0	1.9	0 - 10
NART IQ ¹	107.6	108.0	6.9	87 - 119
BIS-11 ¹	60.9	61.0	10.7	40 - 85
Padua Obsessive-Compulsive Inventory ¹	10.3	8.0	8.5	0 - 32
Gender (Male : Female)	26 : 9			
Education Level	n	%		
Some College	12	34.3		
College degree	9	25.7		
Post-College	12	34.3		
Missing	2			
Deblinding		χ^2	df	p-value
Participants (n/%)		11.4	33	1
Correct belief	(12 / 34%)			
Incorrect belief	(13 / 37%)			
Unsure	(9 / 26%)			
Missing	(1 / 3%)			
Researchers (n/%) ^b		8.9	33	1
Correct belief	(13/37%)			
Incorrect belief	(7 / 20%)			
Unsure	(14 / 40%)			
Missing	(1 / 3%)			

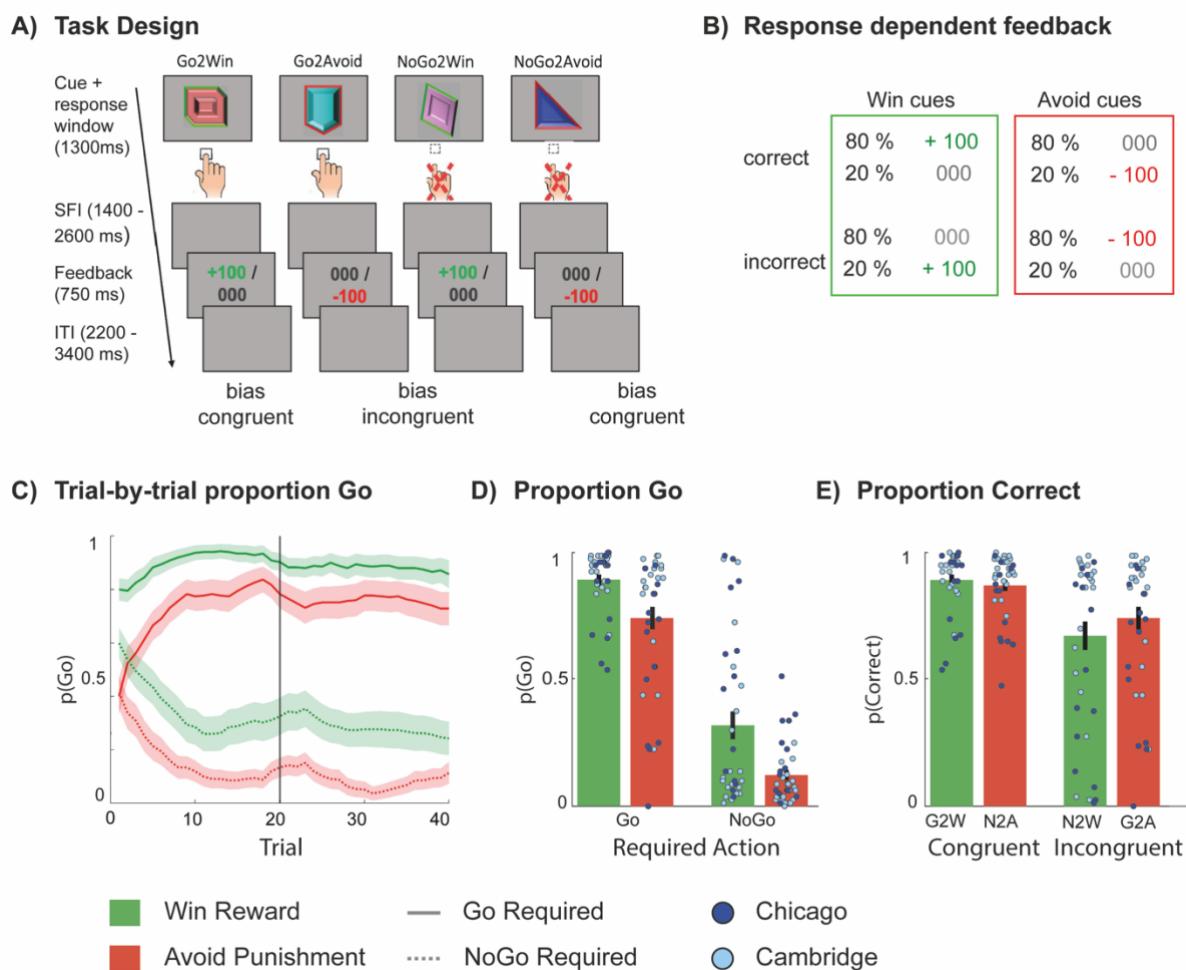
146 **Table 1.** Sample characteristics and deblinding information. ¹ scores measured at baseline testing day. ² After
147 having completed the study, participants were asked to indicate their belief about when they had received the
148 active medication, i.e. on the first or second visit; similarly, the research team was asked whether they felt a
149 particular individual had received active treatment on the first or second visit. MADRS: Montgomery-Asberg
150 Depression Rating Scale. NART IQ: National Adult Reading Test Intelligence Quotient; BIS-11: Barratt Impulsivity
151 Scale 11. These variables were collected to characterize the sample in terms of IQ, and traits of
152 impulsivity/compulsivity. χ^2 = Pearson's Chi-squared test

153 Experimental procedure

154 Participation consisted of two test days separated by a period of at least one week in-between test-
155 sessions to ensure full drug washout. The first test day included a clinical interview, a medical
156 screening, and clinical questionnaires (outlined in more detail in the suppl. material). Participants then
157 orally received a capsule containing either 200 mg of tolcapone or a placebo. Capsules were
158 manufactured by an independent pharmacy and were of identical appearance and weight; the
159 randomization was done using a computer-generated randomization algorithm by the independent
160 pharmacy. Peak plasma levels of tolcapone are achieved approximately one hour post administration
161 and its half-life is around 4 hours ⁵⁰. After one hour, subjects performed the motivational Go NoGo
162 task. This was conducted as part of a broader study also including neuroimaging, results for which will
163 be reported separately. After completion of the study, participants and experimenters were debriefed
164 about what session they believed comprised the active treatment, enabling us to assess actual success

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

165 of the blinding procedure. We confirmed successful blinding, i.e. individuals' ability to indicate the
166 session of active treatment did not differ from chance, for participants and experimenters (see Table
167 1). Participants were reimbursed with £75/100\$ for study completion, plus additional travel expenses.
168 Before taking part, all participants provided informed consent. Both ethics committees approved the
169 study procedure (East of England- Cambridge East Research Ethics Committee IRB: 16/EE/0260 and
170 Ethics Committee University of Chicago, IRB 16-0738), which was in accordance with the Declaration
171 of Helsinki 1975.


172 Motivational Go NoGo task

173 We employed a well-established reinforcement learning task to evoke and measure motivational
174 biases (identical to van Nuland et al. (2020)²¹, originally adapted from Guitart-Masip et al. (2011)⁵¹). In
175 the motivational Go NoGo task, participants were presented with one cue out of four possible cue
176 categories (Go2Win, Go2Avoid, NoGo2Win, NoGo2Avoid), on each trial (1300 ms) and needed to
177 decide on a Go (button press) or a NoGo response (withholding a button press) (Figure 1) before cue
178 offset. On each test day, the task consisted of two blocks of 80 trials with each cue category presented
179 40 times, thus 160 trials in total per test day. For each test day, a different cue set was employed to
180 alleviate training effects. On the first day, participants performed practice trials before the task.

181 For Win cues, participants could receive a reward (desired) or neutral feedback (non-desired). In
182 contrast, for Avoid Punishment cues, participants could receive either a neutral feedback (desired) or
183 a punishment (non-desired). Outcome valence was signalled by the colour of the cue edge (red for
184 Avoid cues, green for Win cues). Feedback was displayed in the centre of the screen for 750 ms. (Figure
185 1). Guided by this feedback, participants had to learn by trial and error which response was best for
186 each cue. Feedback was probabilistic: A correct response (e.g. a Go response for a Go2Win or Go2Avoid
187 cue) resulted in the desired outcome on 80% of trials, while for 20% of correct responses, participants
188 received a non-desired outcome. Vice versa, incorrect responses led to the non-desired outcome on
189 80% of trials, and to the desired outcome on the remaining 20% of trials. Importantly, Go2Win and
190 NoGo2Avoid cues are bias-congruent cues, as their required action is in line with the actions prompted
191 by the valence of the cue (i.e. motivational bias). Accuracy on these congruent trials is expected to be
192 high. In contrast, Go2Avoid and NoGo2Win cues are bias-incongruent cues, i.e. their instrumental
193 action requirement conflict with the action facilitated by motivational biases resulting in reduced
194 accuracy (Figure 1D/E and Suppl.).

195 Trials were interspersed with inter-trial-intervals (ITI) 2200 - 3400 ms, in steps of 200 ms. Each step-
196 size was presented the same number of times, for each cue and step-size. Within each cue, the
197 temporal sequence of ITIs was randomised. Cue-feedback intervals were also jittered using the same
198 procedure, now using a range of 1400-2600 ms, again with stepsize of 200 ms.

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

Figure 1: Motivational Go-NoGo task design and overview of main task effects. A) Go NoGo task trial sequence for each of the four cue categories: Go-to-Win, Go-to-Avoid, NoGo-to-Win, and NoGo-to-Avoid. Go-to-Win and NoGo-to-Avoid are bias congruent cue categories, as their action requirement is in line with the stimulus-response coupling strengthened by the motivational bias. Go-to-Avoid and NoGo-to-Win are bias-incongruent response-stimulus couplings, which are usually harder to execute for participants. On each trial, a cue was presented for 1300 milliseconds (ms) and subjects could decide to make a Go response by pressing a button or choosing a NoGo response by withholding a response. After this, subjects were presented with the outcome (reward, neutral, punishment) for 750 ms, the valence of which was determined by the cue category and the probabilistic feedback schedule. The inter-trial-interval (ITI) was 2200 - 3400 ms, in steps of 200 ms **B)** The feedback contingencies for this task version were 80% : 20%. **C)** Trial-by-trial behaviour. Depiction of the probability of making a Go response, $P(\text{Go})$, (\pm SEM) and plotted with a sliding window of 5 trials for Go cues (solid lines) and NoGo cues (dashed lines) across trials per cue category, here collapsed across both treatments (tolcapone and placebo). Choice biases are evident from the first trial onwards, as the green lines characterizing $P(\text{Go})$ for Win cues are always above the red lines depicting the probability of making a go response for cues requiring a NoGo response as optimal action choice. **D)** Probability of making a Go response for each cue condition, grouped by required action. Learning is evident from the increased proportion of 'Go' responses to Go cues. Motivational/ Pavlovian biases is evident from the reduced probability of Go responses to Avoid cues **E)** Probability of making a correct response (i.e. $1-p(\text{Go})$ for NoGo cues), reorganised so that now bias-congruent and bias-incongruent cues are grouped together. Note that this means that the data plotted here are the same as in panel D for Go cues, and the inverse for NoGo cues. This more clearly illustrates the reduced accuracy on bias-incongruent cues, regardless of action requirement. Cue categories abbreviated as follows: G2W = Go to Win, G2A = Go to Avoid Punishment, N2W = NoGo to Win, N2A = NoGo to Avoid Punishment

199

200 Data availability

201 Data inspection and analyses were conducted by team members who remained blind to drug
202 condition, until after all analyses were completed. We analyzed participants who completed both
203 sessions (placebo and tolcapone) and for whom sufficient behavioural data were available ($N = 35$).

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

204 From the original sample of 44 subjects: 5 participants had to be excluded due to technical issues
205 resulting in data loss, 2 had been accidentally presented with the same cue set twice rendering their
206 performance incomparable to other participants and 1 participant did not return for the second visit.
207 Data were subsequently screened in terms of data quality and missing data (see Suppl. for the *a-priori*
208 defined criteria). Based on this assessment, 1 participant was excluded due to missing data.

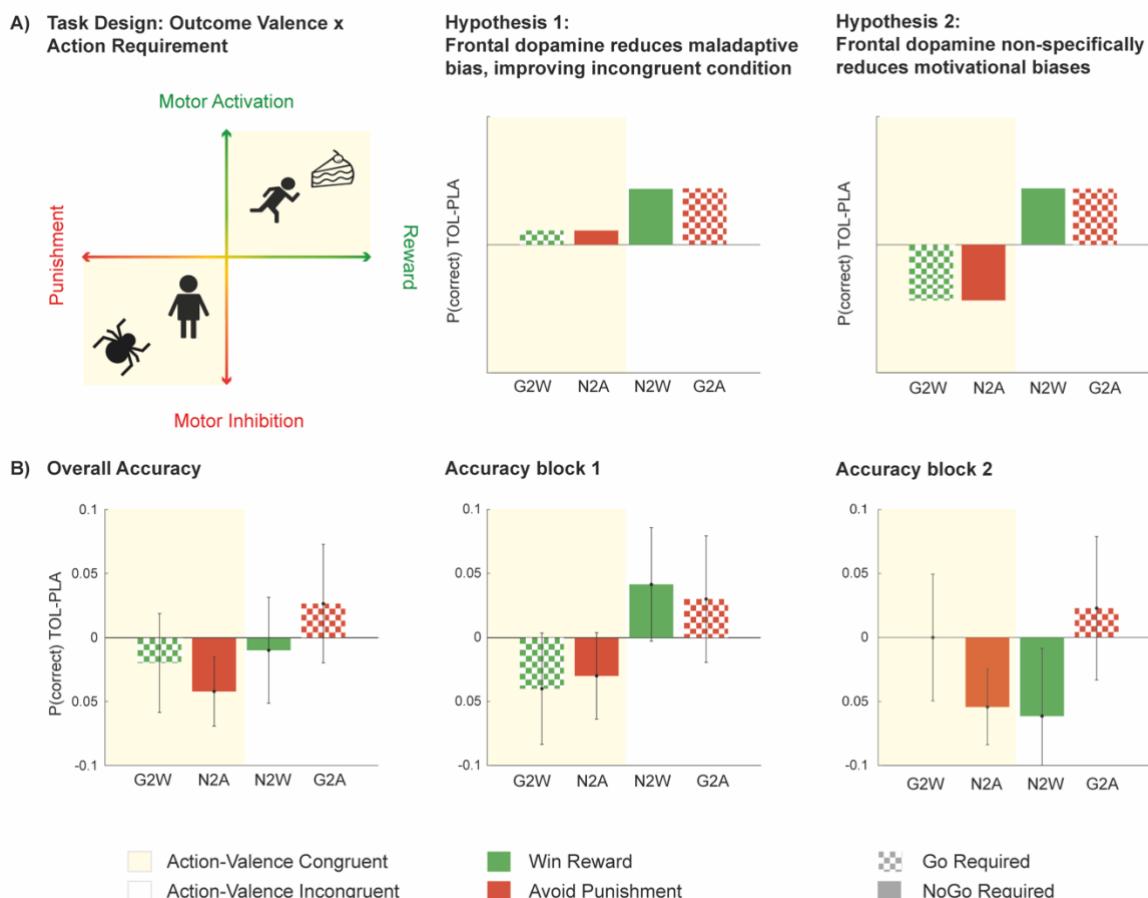
209 Analytic Approaches

210 We used two complementary statistical approaches to analyse the data. The first used conventional
211 logistic mixed-effects models; and the second tested computational models based on a priori
212 literature.

213 First, we analyzed how the probability of making a Go response $P(\text{Go})$ was affected by the following
214 three within-subject factors and their interactions: required action (Go, NoGo), valence (Win; Avoid),
215 and treatment (tolcapone, placebo). We focused on the following effects of interest: i) Main effect of
216 required action. This reflects a differential tendency to make a Go response as a function of the
217 required (Go or NoGo) response, capturing learning to make the correct response. ii) Main effect of
218 valence. This reflects a differential tendency to make a Go response to Win vs. Avoid cues, capturing
219 motivational bias. iii) Valence \times Drug interaction. This reflects a differential motivational bias as
220 function of tolcapone administration. As data was acquired at two sites, we included a between-
221 subject factor 'Site', as a control variable, which was allowed to interact with all model terms of the
222 initial model (see supplemental materials for the full model equations. Next, in a follow-up analysis,
223 we also tested whether the (effect of tolcapone on) motivational bias was constant over time, by
224 adding 'task block' as a within-subject factor interacting with the above effects.

225 Finally, we verified that testing order (tolcapone vs. placebo on session 1) did not interact with the
226 observed Valence \times Drug interaction, by including between-subject Testing Order (refer to Suppl. for
227 full report of results). For general interest, we also report analyses of reaction time (RT) data (see
228 Suppl.). All models contained the full random effects structure for the within-subject variables.
229 Generalized logistic mixed-models analysis was conducted using lme4, version 1.1-23⁵² in R 4.0.2.
230 Statistical significance was determined as p-values with $\alpha < 0.05$, two-sided.

231 Second, to dissect the computational mechanisms sub-serving motivational action bias and evolving
232 instrumental learning, we fitted three hierarchically nested reinforcement learning (RL) models³.
233 Model equations are provided in the Supplements. In brief, M1 was a basic Rescorla Wagner model⁵³
234 and contained a parameter for feedback sensitivity and a learning rate that together would learn the
235 Q values. M2 extended model 2 with a 'Go bias' parameter b that captured the overall tendency to
236 make Go responses. M3 extended M2 with a motivational bias parameter π which could capture the
237 differential tendency to make more Go responses to Win cues. We then established through model
238 comparison (Suppl.), whether additional model parameters increased model evidence. After
239 establishing the winning model (M3), we extended this winning model to model M4, where all
240 parameters were allowed to be modulated by tolcapone. Model M4 comprised two separate
241 parameters sets for the placebo (p_{pla} , ϵ_{pla} , b_{pla} , π_{pla}) and drug session (p_{tolc} , ϵ_{tolc} , b_{tolc} , π_{tolc}). We then ran
242 a second model comparison comparing models M1-4 to establish evidence for tolcapone modulating
243 the model parameters. To assess the specific effect of tolcapone on each model parameters, we
244 compared parameters of both drug conditions while controlling for site.


245 Results

246 Generalized linear mixed models for choice data

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

247 We regressed participants' choices onto cue valence, required action, and drug condition, with test
 248 site as between-subjects factor. We observed significant main effects of required action, indicating
 249 that participants learned the task; and valence, indicating that participants' choices were affected by
 250 motivational biases, with more Go responses to Win cues than Avoid cues (Table 2). The interaction
 251 of required action and valence was non-significant, providing no evidence for motivational biases
 252 differing in size for Go vs. NoGo cues.

253 There was a significant Drug x Valence interaction effect ($\chi^2(1) = 6.1$, p-value = .01) indicating that the
 254 main modulatory effect of cue valence on 'Go' responding, i.e. the motivational bias, was modulated
 255 by tolcapone. The direction of this effect was such that under tolcapone, there was less bias than under
 256 placebo (c.f. post-hoc simple effects). Importantly, there was no 'Required Action x Valence x Drug'
 257 interaction ($\chi^2(1) = 0.3$, p-value = .6). This meant that there was no evidence for the degree of biased
 258 responding to be different as a function of required action (i.e. the degree of 'Go' responding for Win
 259 cues increased regardless of whether a Go was required or not, i.e. whether the bias was congruent or
 260 incongruent with the action requirements. Thus, these results support Hypothesis 2 that tolcapone
 261 globally reduced motivational bias. Further examining the effect of task block, this effect of tolcapone
 262 on motivational bias was not constant across the task (Block x Valence x Drug: $\chi^2(1) = 4.6$, p-value =
 263 .03) (report of full analysis results in Suppl.). Post-hoc simple effects on each block showed that
 264 motivational biases were significantly reduced under tolcapone in the first block only (Block 1: $\chi^2(1) =$
 265 7.6, p-value = 0.006; Block 2: $\chi^2(1) < 0.01$, p-value = 1 c.f. Figure 2 E-F).

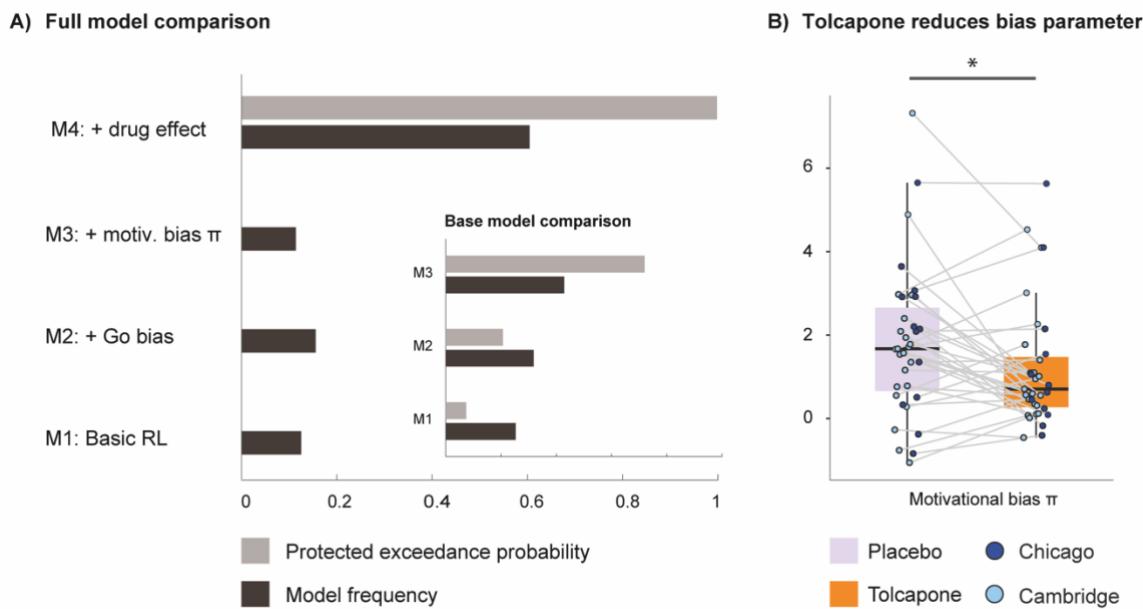
Figure 2 Hypothesised and measured effect of tolcapone administration: **A)** Illustration of task design to capture motivational biases- through coupling of the orthogonalized axes of motivational valence (Reward, Punishment) and action (motor activation | Go) or (motor inhibition | NoGo). Yellow: valence-action bias-congruent responses is required; White: bias-incongruent responses is required **B+C)** Predicted change in

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

choice accuracy following tolcapone administration relative to placebo, for each of the 4 conditions. The right 2 panels represent the hypothesised effects of tolcapone. **Hypothesis 1:** Tolcapone enhances adaptive control, i.e. suppresses Pavlovian bias on incongruent trials, thereby increases the proportion of correct responses (accuracy) on incongruent trials. Speculatively, performance on congruent trials may improve also. **Hypothesis 2:** Tolcapone promotes a general shift away from automated responding, reducing bias overall. This would lead to improved choice accuracy on incongruent trials (as for Hypothesis 1), but crucially, to reduced choice accuracy for congruent trials (highlighted in yellow). **B)** Data: Mean (\pm SE) accuracy, i.e. proportion of correct responses, under tolcapone relative to placebo, shown across all trials, for the first half of the trials (block 1) only, and for the 2nd half of the trials (block 2) only. In line with hypothesis 2, performance on congruent trials is reduced, while performance on incongruent trials is reduced. This is particularly evident for block 1. *G2W = Go to Win, G2A = Go to Avoid Punishment, NG2W = NoGo to Win, NG2A = NoGo to Avoid Punishment*

	β estimates	SE	χ^2	p-value
Main effects				
valence	-0.801	0.15	27.4	<.001 ***
required action	1.954	0.20	95.3	<.001 ***
drug	-0.091	0.08	1.4	.2
site	-0.006	0.12	<0.01	1
Interaction effects				
required action x valence	-0.010	0.07	0.02	0.9
drug x site	0.061	0.08	0.6	0.4
valence x drug	-0.200	0.08	6.1	0.01 *
valence x site	0.139	0.14	0.8	0.4
required action x drug	0.102	0.12	0.8	0.4
required action x site	0.570	0.20	8.1	0.004 **
valence x drug x site	0.070	0.08	0.8	0.4
required action x drug x site	-0.991	0.12	0.7	0.4
valence x required action x drug	0.032	0.06	0.3	0.6
valence x required action x site	0.039	0.07	0.3	0.6
valence x req. action x drug site	0.007	0.06	0.01	0.9
Post hoc simple effects (Win – Avoid)				
Placebo	-0.954	0.19	26.4	<.001 ***
Tolcapone	-0.583	0.14	14.7	<.001 ***

266 **Table 2.** Full statistics report of the main mixed-effects regression model for choice data, and follow up simple
267 effects analysis to characterize the treatment effect. Abbreviations: SE = Standard Error


268 Computational modelling and model comparison

269 Replicating many previous studies ^{3,51,54}, base model comparison (M1-M3) indicated the highest
270 evidence for model M3, which extended a basic reinforcement learning model with 'go' and
271 motivational bias parameter (Figure 3; model frequency: 42.9%; protected exceedance probability
272 (PXP)=0.7). Addition to the model space of an extension of this winning model with separate tolcapone
273 and placebo parameters provided very strong evidence that this again improved the model (M4 model
274 frequency = 60.5 %, PXP = 1.0, see also Suppl. Table S4)

275 The motivational bias parameter π was significantly reduced under tolcapone relative to placebo ($\chi^2(1)$
276 = 5.4, p-value = .02; Figure 3) and this effect did not differ as a function of test site (Drug x Testing site:
277 $\chi^2(1) < 0.1$, p-value = .9; for full report for the interaction of the other parameters with testing site, see
278 Suppl. Table S5). We also verified that there were no significant tolcapone-induced differences for any
279 of the other parameters (all p-values > .1, see Suppl. Fig S3 and Table S5). Finally, through data
280 simulation using the winning model's estimated parameters, and refitting them to the simulated data,

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

281 we were also able to recover the tolcapone effect on the bias parameter π ($\chi^2(1) = 6.3$, p-value = .01
282 (see supplemental for more information on absolute model fit and effect recovery).

Figure 3. Tolcapone induced changes in model parameter estimates. A) Full model comparison showing Model M4 including four parameters, namely feedback sensitivity, a learning rate, a Go bias and a motivational bias parameter to outperform the other three base models. As a small inset, the base model comparison is shown. Here, model M3 outperformed the simpler models M1 and M2. Model frequency and protected exceedance probability were employed as model fit indices. B) The π parameter capturing effects of motivational biases was significantly reduced under tolcapone administration. The remaining parameters feedback sensitivity, learning rate and Go bias were not significantly affected by tolcapone, indicated by p-values $> .01$ for all main effects of condition or interaction terms.

283 Discussion

284 This study's primary goal was to examine the impact of a cortical dopamine challenge on motivational
285 biases using the COMT inhibitor tolcapone, to evaluate two alternative hypotheses regarding the role
286 of cortical dopamine in motivational processing. The first hypothesis posited adaptive bias reduction
287 under tolcapone, supressing motivational biases whenever instrumental and Pavlovian control
288 conflicted, while the second hypothesis proposed a global reduction in motivational biases, regardless
289 of whether these aligned with or opposed instrumentally learnt action values. Our key finding was that
290 tolcapone significantly decreased motivational biases across both bias-congruent and incongruent
291 Pavlovian-instrumental trials, supporting the second hypothesis that cortical dopamine non-selectively
292 dampens the impact of motivational biases on behaviour. This effect was established using both
293 conventional statistical analysis and computational modelling. Due to the global bias reduction,
294 tolcapone did not generally improve performance, but rather decreased performance on bias-
295 congruent trials, while improving performance on bias-incongruent trials. We objectively confirmed
296 that the study was successfully double-blinded.

297 Our findings accord with previous findings on catecholaminergic agonists improving response
298 inhibition ^{11,41,55}. A stronger tonic drive from IFG via the subthalamic nucleus might raise response
299 thresholds in the striatum and in this way prevent the enactment of automatic, prepotent responses
300 ^{31,37,39,40,56}. Importantly, modulation of frontal dopamine can thus have opponent effects to modulation
301 of striatal dopamine. A recent study in rodents directly compared effects of dopamine transporter
302 (DAT) blockade, with DAT putatively forming the primary mechanism of striatal dopamine clearance,

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

303 with COMT inhibition. In this study DAT blockade selectively impaired, and COMT inhibition improved
304 performance after reward reversals⁵⁷. This finding is particularly noteworthy given the opposite effects
305 of two interventions that both increase dopamine, yet presumably in different locations, namely the
306 striatum and prefrontal cortex respectively. Stimulation of the meso-cortical dopamine pathway in this
307 study also provides a clue as to the kind of cognitive effects we may expect to see from COMT inhibition
308 both in this study as well as in the clinical domain. Especially noteworthy is that COMT inhibition did
309 not affect fast ventral-tegmental-evoked dopamine transients in the PFC⁵⁷, despite well-known
310 associations between COMT activity and dopamine levels recorded over longer timescales by
311 microdialysis²⁵. The observation that COMT inhibition may affect dopamine on longer rather than
312 shorter timescales can provide a biological level understanding of the observation in the current study
313 that COMT inhibition through tolcapone affected the *overall* tendency of biased responding, rather
314 than fast, trial-specific adaptive modulation. This effect could be of particular clinical relevance for
315 disorders characterized by an excessive reliance of automated and habitual responding, as this
316 generalized effect might not only modulate biased responding as reported here, but potentially also
317 affect reliance on habits, i.e. reduce over-habitual behaviour.

318 Importantly, the effect of tolcapone was present only in the first task block on each study visit, when
319 instrumental learning had not yet reached asymptote (c.f. Figure 1C). This is relevant because
320 Pavlovian biases have been shown to affect behaviour most strongly when there is high uncertainty
321 about the instrumentally learnt action values⁵⁸, in line with more general ideas that the balance
322 between decision controllers is determined by their relative (un)certainty^{58–60}. As such, during the
323 early stages of the task, individuals are more prone to rely on default priors, i.e. motivational action
324 biases, which have been established through experience. However, as we repeatedly observe the
325 consequences of our actions in the current task environment, the instrumental controller ‘gains
326 confidence’ in the learnt action values associated with each cue, and takes over as the dominant
327 system guiding choice. Here, we then show that boosting frontal dopamine causes individuals to
328 reduce this early reliance on the Pavlovian system. This earlier shift could be due to perceived increase
329 of control, or perceived down-weighting of the cost of reliance on a more cognitively effortful strategy
330^{61–63}. Support for this also comes from a study by Westbrook and colleagues (2020), who showed
331 changes in striatal dopamine to promote the willingness to exert cognitive effort on a cognitive task
332 by altering the subjective cost-benefit ratio of cognitive control in favor of benefits⁶⁴.

333 An alternative interpretation of our findings of tolcapone-induced bias reduction is that tolcapone
334 reduces the integration of Pavlovian and instrumental knowledge. Neurally, this integration could be
335 implemented through interaction between the orbitofrontal cortex (OFC), processing Pavlovian values,
336 and the rostral anterior cingulate cortex, processing instrumental action values. This idea is supported
337 by a recent study in marmoset monkeys by Duan et al (2021)⁶⁵ showing that the rostral anterior
338 cingulate cortex is necessary for detecting instrumental control of actions over outcomes, while the
339 anterior orbitofrontal cortex (OFC) mediates Pavlovian influences on goal-directed behaviour. In line
340 with this we have also recently shown that BOLD activity in the orbitofrontal / ventromedial prefrontal
341 cortex predicts the degree of valence-induced invigoration⁶⁶. This notion would align with previous
342 work showing that modulating frontal dopamine can reconfigure connectivity patterns between OFC
343 and other brain regions suggesting a key role in shaping functional brain circuitry⁶⁷. More specifically
344 in relation to the function of prefrontal COMT activity, COMT genetic phenotype modulated functional
345 connectivity patterns of frontal regions including the anterior cingulate cortex with higher enzymatic
346 activity corresponding to stronger connectivity compared to lower COMT activity⁶⁸. Future studies
347 should investigate whether the reported changes in biased responding under tolcapone corresponds
348 to changes in functional connectivity strength during the task.

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

349 Altered motivational biases have been linked to psychiatric disorders such as substance and
350 behavioural addictions^{8,9} as well as obsessive-compulsive related disorders¹⁰⁻¹². Given the observed
351 effects of tolcapone on motivational processing in healthy volunteers, it may be a valuable avenue for
352 future work to examine effects of tolcapone on motivational processing and symptoms in psychiatric
353 conditions characterised by over-expression of automated behaviours. In addition to tolcapone, other
354 brain-penetrant COMT inhibitors are likely to become available in future⁶⁹. The clinical potential of
355 COMT inhibitors is suggested by recently reported improvements following two-week tolcapone
356 treatment in OCD, as compared to placebo; as well as by other contextual studies in healthy controls
357 suggestive of cortically-relevant cognitive effects^{28,29,70}.

358 Whilst we show robust effects of tolcapone, there are some limitations that need to be considered.
359 First, this was a single-dose study in healthy volunteers; as such, findings may differ if smaller/larger
360 pill doses are used, or medication is administered over a different time frame; or may also vary as a
361 function of basal levels of cortical dopamine. Indeed, pharmacological dopaminergic effects on the
362 trade-off between cognitive flexibility and stability have often been shown to depend on baseline
363 dopamine levels such that dopamine levels and performance on set-shifting and reversal tasks
364 followed an inverted U-shape^{56,71-74}. Therefore, future work may wish to include larger number of sites
365 and sample sizes to identify variables that may contribute to differential effects of tolcapone across
366 individuals.

367 In sum, we showed that tolcapone significantly reduced the reliance on automatic behaviour in healthy
368 individuals, in an experimental medicine study using a laboratory-based task assessing motivational
369 processes. The data suggest that cortical dopamine enhancement using COMT inhibitors merits further
370 research as a candidate trans-diagnostic treatment approach for disorders characterized by excessive
371 habits. Employing computational modelling to characterize the latent mechanism underlying
372 dopamine induced changes in motivational choice behaviour under tolcapone, this study helps to
373 address a previous translational gap. Future work should use similar approaches alongside clinical
374 outcome measures to confirm mechanisms in clinical contexts using tolcapone and other COMT
375 inhibitors.

376 Acknowledgements

377 This research was funded by Wellcome via grants [110049/Z/15/Z & 110049/Z/15/A] to SRC. For the
378 purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted
379 Manuscript version arising from this submission. VS was supported by a research scholarship by the
380 German Research Foundation (SCHO 1815/1-1 & SCHO 1815/2-1). HEMdO was supported by a Vidi
381 Award from the Netherlands Organization for Scientific Research (175.450). The funders had no role
382 in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

383 Authors Contribution

384 SRC was the Chief Investigator on this study, responsible for the over-arching protocol design and the
385 conduct of the trial in the UK. JEG was Principal Investigator at the University of Chicago and
386 responsible for the conduct of the trial in the USA. HEMdO designed the cognitive paradigm. HEMdO,
387 KI, JEG, TWR, DC and SRC all contributed to aspects of the study design. RWH and SV collected the
388 data. VS and HEMdO designed and conducted data analysis. VS, JA, MRK, JEG, SRC and HEMdO
389 discussed statistical analyses and results. VS, SRC, JA, HEMdO wrote the manuscript. All authors
390 commented on or edited the manuscript.

391

392

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

393 Disclosure

394 SRC receives an honorarium for editorial work at Elsevier; and previously consulted for Promentis. JEG
395 has received research grants from the TLC Foundation for Body-Focused Repetitive Behaviors, and
396 Otsuka, Biohaven, and Avanir Pharmaceuticals. TWR discloses consultancies with Cambridge
397 Cognition, Arcadia, Greenfield Bioventures, Heptares, Takeda, Lundbeck, Merck, Sharp and Dohme.
398 Royalties with Cambridge Cognition. Research Grants with Shionogi and GlaxoSmithKline and editorial
399 honoraria with Springer Nature and Elsevier. The remaining authors report no disclosures of relevance.

400 Competing Interests

401 The authors declare no competing interests.

402

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

403 References:

404 1. Dayan, P., Niv, Y., Seymour, B. & Daw, N. D. The misbehavior of value and the discipline of the
405 will. *Neural Networks* **19**, (2006).

406 2. Guitart-Masip, M., Duzel, E., Dolan, R. & Dayan, P. Action versus valence in decision making.
407 *Trends Cogn. Sci.* **18**, 194–202 (2014).

408 3. Swart, J. C. *et al.* Catecholaminergic challenge uncovers distinct Pavlovian and instrumental
409 mechanisms of motivated (in)action. *Elife* **6**, 1–36 (2017).

410 4. Boureau, Y. L. & Dayan, P. Opponency revisited: Competition and cooperation between
411 dopamine and serotonin. *Neuropsychopharmacology* vol. 36 74–97 (2011).

412 5. Boureau, Y. L., Sokol-Hessner, P. & Daw, N. D. Deciding How To Decide: Self-Control and
413 Meta-Decision Making. *Trends in Cognitive Sciences* vol. 19 (2015).

414 6. Hershberger, W. A. An approach through the looking-glass. *Anim. Learn. Behav.* **14**, 443–451
415 (1986).

416 7. Breland, K. & Breland, M. The misbehavior of organisms. *Am. Psychol.* **16**, (1961).

417 8. Everitt, B. J. & Robbins, T. W. Drug addiction: Updating actions to habits to compulsions ten
418 years on. *Annu. Rev. Psychol.* **67**, (2016).

419 9. Everitt, B. J., Dickinson, A. & Robbins, T. W. The neuropsychological basis of addictive
420 behaviour. *Brain Research Reviews* vol. 36 (2001).

421 10. Graybiel, A. M. & Rauch, S. L. Toward a neurobiology of obsessive-compulsive disorder.
422 *Neuron* vol. 28 (2000).

423 11. Chamberlain, S. R., Blackwell, A. D., Fineberg, N. A., Robbins, T. W. & Sahakian, B. J. The
424 neuropsychology of obsessive compulsive disorder: The importance of failures in cognitive
425 and behavioural inhibition as candidate endophenotypic markers. *Neuroscience and
426 Biobehavioral Reviews* vol. 29 (2005).

427 12. Robbins, T. W., Vaghi, M. M. & Banca, P. Obsessive-Compulsive Disorder: Puzzles and
428 Prospects. *Neuron* vol. 102 (2019).

429 13. Hallquist, M. N., Hall, N. T., Schreiber, A. M. & Dombrovski, A. Y. Interpersonal dysfunction in
430 borderline personality: a decision neuroscience perspective. *Current Opinion in Psychology*
431 vol. 21 (2018).

432 14. Huys, Q. J. M. *et al.* The specificity of Pavlovian regulation is associated with recovery from
433 depression. *Psychol. Med.* **46**, 1027–1035 (2016).

434 15. Frank, M. J. Dynamic dopamine modulation in the basal ganglia: A neurocomputational
435 account of cognitive deficits in medicated and nonmedicated Parkinsonism. *J. Cogn. Neurosci.*
436 **17**, 51–72 (2005).

437 16. Collins, A. G. E. & Frank, M. J. Opponent actor learning (OpAL): Modeling interactive effects of
438 striatal dopamine on reinforcement learning and choice incentive. *Psychol. Rev.* **121**, 337–366
439 (2014).

440 17. Cools, R., Nakamura, K. & Daw, N. D. Serotonin and dopamine: Unifying affective, activational,
441 and decision functions. *Neuropsychopharmacology* vol. 36 98–113 (2011).

442 18. Kienast, T. & Heinz, A. Dopamine and the Diseased Brain. *CNS Neurol. Disord. - Drug Targets* **5**,
443 (2008).

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

444 19. Flagel, S. B. *et al.* A selective role for dopamine in stimulus-reward learning. *Nature* **469**,
445 (2011).

446 20. Guitart-Masip, M. *et al.* Differential, but not opponent, effects of L-DOPA and citalopram on
447 action learning with reward and punishment. *Psychopharmacology (Berl)*. **231**, 955–966
448 (2014).

449 21. van Nuland, A. J. *et al.* Effects of dopamine on reinforcement learning in Parkinson's disease
450 depend on motor phenotype. *Brain* **143**, (2020).

451 22. Männistö, P. T. & Kaakkola, S. Catechol-O-methyltransferase (COMT): Biochemistry, molecular
452 biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors.
453 *Pharmacological Reviews* vol. 51 (1999).

454 23. Yavich, L., Forsberg, M. M., Karayiorgou, M., Gogos, J. A. & Männistö, P. T. Site-specific role of
455 catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal
456 striatum. *J. Neurosci.* **27**, (2007).

457 24. Käenmäki, M. *et al.* Quantitative role of COMT in dopamine clearance in the prefrontal cortex
458 of freely moving mice. *J. Neurochem.* **114**, (2010).

459 25. Tunbridge, E. M., Bannerman, D. M., Sharp, T. & Harrison, P. J. Catechol-o-methyltransferase
460 inhibition improves set-shifting performance and elevates stimulated dopamine release in the
461 rat prefrontal cortex. *J. Neurosci.* **24**, 5331–5335 (2004).

462 26. Kayser, A. S., Vega, T., Weinstein, D., Peters, J. & Mitchell, J. M. Right inferior frontal cortex
463 activity correlates with tolcapone responsivity in problem and pathological gamblers.
464 *NeuroImage Clin.* **13**, 339–348 (2017).

465 27. Coker, A. R. *et al.* The catechol-O-methyltransferase inhibitor tolcapone modulates alcohol
466 consumption and impulsive choice in alcohol use disorder. *Psychopharmacology (Berl)*. **237**,
467 (2020).

468 28. Grant, J. E. *et al.* A proof of concept study of tolcapone for pathological gambling:
469 Relationships with COMT genotype and brain activation. *Eur. Neuropsychopharmacol.* **23**,
470 1587–1596 (2013).

471 29. Grant, J. E., Chamberlain, S. R., Hook, R., Valle, S. & Chesivoir, E. Tolcapone in obsessive
472 compulsive disorder: a randomized double-blind placebo-controlled crossover trial. *Int. Clin.
473 Psychopharmacol.* (2021).

474 30. Arnsten, A. F. T. Toward a new understanding of attention-deficit hyperactivity disorder
475 pathophysiology: An important role for prefrontal cortex dysfunction. *CNS Drugs* vol. 23
476 (2009).

477 31. Aron, A. R., Robbins, T. W. & Poldrack, R. A. Inhibition and the right inferior frontal cortex:
478 One decade on. *Trends in Cognitive Sciences* vol. 18 (2014).

479 32. Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J. & Owen, A. M. The role of the
480 right inferior frontal gyrus: inhibition and attentional control. *Neuroimage* **50**, (2010).

481 33. Swart, J. C. *et al.* Frontal network dynamics reflect neurocomputational mechanisms for
482 reducing maladaptive biases in motivated action. *PLoS Biol.* **16**, e2005979 (2018).

483 34. Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q. & Frank, M. J. Frontal theta overrides
484 pavlovian learning biases. *J. Neurosci.* **33**, 8541–8548 (2013).

485 35. Wunderlich, K., Smittenaar, P. & Dolan, R. J. Dopamine Enhances Model-Based over Model-

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

486 Free Choice Behavior. *Neuron* **75**, 418–424 (2012).

487 36. Doll, B. B., Hutchison, K. E. & Frank, M. J. Dopaminergic genes predict individual differences in
488 susceptibility to confirmation bias. *J. Neurosci.* **31**, 6188–6198 (2011).

489 37. Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J. & Robbins, T. W. Stop-signal
490 inhibition disrupted by damage to right inferior frontal gyrus in humans. *Nat. Neurosci.* **6**,
491 (2003).

492 38. Aron, A. R., Herz, D. M., Brown, P., Forstmann, B. U. & Zaghloul, K. Frontosubthalamic circuits
493 for control of action and cognition. in *Journal of Neuroscience* vol. 36 (2016).

494 39. Cavanagh, J. F. *et al.* Subthalamic nucleus stimulation reverses mediofrontal influence over
495 decision threshold. *Nat. Neurosci.* **14**, (2011).

496 40. Wiecki, T. V & Frank, M. J. A computational model of inhibitory control in frontal cortex and
497 basal ganglia. *Psychol. Rev.* **120**, 329–355 (2013).

498 41. Bari, A. & Robbins, T. W. Inhibition and impulsivity: Behavioral and neural basis of response
499 control. *Progress in Neurobiology* vol. 108 (2013).

500 42. Herz, D. M., Zavala, B. A., Bogacz, R. & Brown, P. Neural Correlates of Decision Thresholds in
501 the Human Subthalamic Nucleus. *Curr. Biol.* **26**, (2016).

502 43. Chamberlain, S. R. *et al.* Neurochemical modulation of response inhibition and probabilistic
503 learning in humans. *Science (80-.).* **311**, 861–863 (2006).

504 44. Chamberlain, S. R. *et al.* Atomoxetine Modulates Right Inferior Frontal Activation During
505 Inhibitory Control: A Pharmacological Functional Magnetic Resonance Imaging Study. *Biol.
506 Psychiatry* **65**, (2009).

507 45. Arnsten, A. F. T. & Dudley, A. G. Methylphenidate improves prefrontal cortical cognitive
508 function through α 2 adrenoceptor and dopamine D1 receptor actions: Relevance to
509 therapeutic effects in Attention Deficit Hyperactivity Disorder. *Behav. Brain Funct.* **1**, (2005).

510 46. Eagle, D. M., Bari, A. & Robbins, T. W. The neuropsychopharmacology of action inhibition:
511 Cross-species translation of the stop-signal and go/no-go tasks. *Psychopharmacology* vol. 199
512 (2008).

513 47. Apud, J. A. & Weinberger, D. R. Treatment of cognitive deficits associated with schizophrenia.
514 *CNS Drugs* **21**, 535–557 (2007).

515 48. Bhakta, S. G. *et al.* Tolcapone-enhanced neurocognition in healthy adults: Neural basis and
516 predictors. *Int. J. Neuropsychopharmacol.* **20**, (2017).

517 49. Magalona, S. C. *et al.* Effect of tolcapone on brain activity during a variable attentional control
518 task: A double-blind, placebo-controlled, counter-balanced trial in healthy volunteers. *CNS
519 Drugs* **27**, 663–673 (2013).

520 50. Jorga, K. M., Fotteler, B., Heizmann, P. & Zürcher, G. Pharmacokinetics and
521 pharmacodynamics after oral and intravenous administration of tolcapone, a novel adjunct to
522 Parkinson's disease therapy. *Eur. J. Clin. Pharmacol.* **54**, (1998).

523 51. Guitart-Masip, M. *et al.* Action dominates valence in anticipatory representations in the
524 human striatum and dopaminergic midbrain. *J. Neurosci.* **31**, 7867–7875 (2011).

525 52. Bates, D. Mächler, M Bolker, B Walker, S. Fitting Linear Mixed-Effects Models Using lme4. *J.
526 Stat. Softw.* **67**, 1–48 (2015).

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

527 53. Rescorla, R. A. & Wagner, A. R. A Theory of Pavlovian Conditioning: Variations in the
528 Effectiveness of Reinforcement and Nonreinforcement. *Classical Cond. II Curr. Res. theory*
529 (1972).

530 54. Guitart-Masip, M. *et al.* Go and no-go learning in reward and punishment: interactions
531 between affect and effect. *Neuroimage* **62**, 154–166 (2012).

532 55. Chamberlain, S. R. *et al.* Orbitofrontal dysfunction in patients with obsessive-compulsive
533 disorder and their unaffected relatives. *Science* **321**, 421–422 (2008).

534 56. Frank, M. J. & O'Reilly, R. C. A mechanistic account of striatal dopamine function in human
535 cognition: Psychopharmacological studies with cabergoline and haloperidol. *Behav. Neurosci.*
536 **120**, (2006).

537 57. Korn, C. *et al.* Distinct roles for dopamine clearance mechanisms in regulating behavioral
538 flexibility. *Mol. Psychiatry* (2021) doi:<https://doi.org/10.1038/s41380-021-01194-y>.

539 58. Gershman, S. J., Guitart-Masip, M. & Cavanagh, J. F. Neural signatures of arbitration between
540 Pavlovian and instrumental action selection. *PLOS Comput. Biol.* **17**, (2021).

541 59. Dorfman, H. M. & Gershman, S. J. Controllability governs the balance between Pavlovian and
542 instrumental action selection. *Nat. Commun.* **10**, (2019).

543 60. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and
544 dorsolateral striatal systems for behavioral control. *Nat. Neurosci.* **8**, 1704–1711 (2005).

545 61. Westbrook, A. & Braver, T. S. Dopamine Does Double Duty in Motivating Cognitive Effort.
546 *Neuron* vol. 89 (2016).

547 62. Yee, D. M. & Braver, T. S. Interactions of motivation and cognitive control. *Current Opinion in
548 Behavioral Sciences* vol. 19 (2018).

549 63. Botvinick, M. & Braver, T. Motivation and cognitive control: From behavior to neural
550 mechanism. *Annu. Rev. Psychol.* **66**, (2015).

551 64. Westbrook, A. *et al.* *Dopamine promotes cognitive effort by biasing the benefits versus costs
552 of cognitive work* Downloaded from. <http://science.sciencemag.org/> (2020).

553 65. Duan, L. Y. *et al.* Controlling one's world: Identification of sub-regions of primate PFC
554 underlying goal-directed behavior. *Neuron* **109**, (2021).

555 66. Algermissen, J., Swart, J. C., Scheeringa, R., Cools, R. & den Ouden, H. E. M. Striatal BOLD and
556 midfrontal theta power express motivation for action. *bioRxiv* **31**, (2020).

557 67. Kahnt, T. & Tobler, P. N. Dopamine modulates the functional organization of the orbitofrontal
558 cortex. *J. Neurosci.* **37**, (2017).

559 68. Tunbridge, E. M., Farrell, S. M., Harrison, P. J. & Mackay, C. E. Catechol-O-methyltransferase
560 (COMT) influences the connectivity of the prefrontal cortex at rest. *Neuroimage* **68**, 49–54
561 (2013).

562 69. Byers, S. *et al.* Novel, non-nitrocatechol catechol-O-methyltransferase inhibitors modulate
563 dopamine neurotransmission in the frontal cortex and improve cognitive flexibility.
564 *Psychopharmacology (Berl.)* **237**, (2020).

565 70. Kayser, A. S., Allen, D. C., Navarro-Cebrian, A., Mitchell, J. M. & Fields, H. L. Dopamine,
566 corticostriatal connectivity, and intertemporal choice. *J. Neurosci.* **32**, (2012).

567 71. Cools, R. & D'Esposito, M. Inverted-U-shaped dopamine actions on human working memory

Cortical dopamine reduces the impact of motivational biases governing automated behaviour

568 and cognitive control. *Biological Psychiatry* vol. 69 (2011).

569 72. Cools, R. *et al.* Striatal dopamine predicts outcome-specific reversal learning and its sensitivity
570 to dopaminergic drug administration. *J. Neurosci.* **29**, 1538–1543 (2009).

571 73. Kimberg, D. Y., D'Esposito, M. & Farah, M. J. Effects of bromocriptine on human subjects
572 depend on working memory capacity. *Neuroreport* **8**, (1997).

573 74. Samanez-Larkin, G. R. *et al.* A thalamocorticostratial dopamine network for psychostimulant-
574 enhanced human cognitive flexibility. *Biol. Psychiatry* **74**, (2013).

575