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Mapping the genetic basis of complex traits is critical to uncovering the biological mechanisms 23 
that underlie disease and other phenotypes. Genome-wide association studies (GWAS) in 24 
humans and quantitative trait locus (QTL) mapping in model organisms can now explain much of 25 
the observed heritability in many traits, allowing us to predict phenotype from genotype. 26 
However, constraints on power due to statistical confounders in large GWAS and smaller sample 27 
sizes in QTL studies still limit our ability to resolve numerous small-effect variants, map them to 28 
causal genes, identify pleiotropic effects across multiple traits, and infer non-additive 29 
interactions between loci (epistasis). Here, we introduce barcoded bulk quantitative trait locus 30 
(BB-QTL) mapping, which allows us to construct, genotype, and phenotype 100,000 offspring of a 31 
budding yeast cross, two orders of magnitude larger than the previous state of the art. We use 32 
this panel to map the genetic basis of eighteen complex traits, finding that the genetic 33 
architecture of these traits involves hundreds of small-effect loci densely spaced throughout the 34 
genome, many with widespread pleiotropic effects across multiple traits. Epistasis plays a central 35 
role, with thousands of interactions that provide insight into genetic networks. By dramatically 36 
increasing sample size, BB-QTL mapping demonstrates the potential of natural variants in high-37 
powered QTL studies to reveal the highly polygenic, pleiotropic, and epistatic architecture of 38 
complex traits. 39 
 40 
Significance statement 41 
Understanding the genetic basis of important phenotypes is a central goal of genetics. However, the 42 
highly polygenic architectures of complex traits inferred by large-scale genome-wide association studies 43 
(GWAS) in humans stand in contrast to the results of quantitative trait locus (QTL) mapping studies in 44 
model organisms. Here, we use a barcoding approach to conduct QTL mapping in budding yeast at a 45 
scale two orders of magnitude larger than the previous state of the art. The resulting increase in power 46 
reveals the polygenic nature of complex traits in yeast, and offers insight into widespread patterns of 47 
pleiotropy and epistasis. Our data and analysis methods offer opportunities for future work in systems 48 
biology, and have implications for large-scale GWAS in human populations.  49 
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INTRODUCTION 50 
 51 
In recent years, the sample size and statistical power of genome-wide association studies (GWAS) in 52 
humans has expanded dramatically (1–3). Studies investigating the genetic basis of important 53 
phenotypes such as height, BMI, and risk for diseases such as schizophrenia now involve sample sizes 54 
of hundreds of thousands or even millions of individuals. The corresponding increase in power has 55 
shown that these traits are very highly polygenic, with a large fraction of segregating polymorphisms 56 
(hundreds of thousands of loci) having a causal effect on phenotype (4, 5). However, the vast majority of 57 
these loci have extremely small effects, and we remain unable to explain most of the heritable variation 58 
in many of these traits (the “missing heritability” problem) (3).  59 
  60 
In contrast to GWAS, quantitative trait locus (QTL) mapping studies in model organisms such as budding 61 
yeast tend to have much smaller sample sizes of at most a few thousand individuals (6–9). Due to their 62 
lower power, most of these studies are only able to identify relatively few loci (typically at most dozens, 63 
though see below) with a causal effect on phenotype. Despite this, these few loci explain most or all of 64 
the observed phenotypic variation in many of the traits studied (10).  65 
  66 
The reasons for this striking discrepancy between GWAS and QTL mapping studies remain unclear. It 67 
may be that segregating variation in human populations has different properties than the between-strain 68 
polymorphisms analyzed in QTL mapping studies, or the nature of the traits being studied may be 69 
different. However, it is also possible that the discrepancy arises for more technical reasons associated 70 
with the limitations of GWAS and/or QTL mapping studies. For example, GWAS studies suffer from 71 
statistical confounders due to population structure, and the low median minor allele frequencies in these 72 
studies limit power and mapping resolution (6, 11–13). These factors make it difficult to distinguish 73 
between alternative models of genetic architecture, or to detect specific individual small-effect causal 74 
loci. Thus it may be the case that the highly polygenic architectures apparently observed in GWAS 75 
studies are at least in part artifacts introduced by these confounding factors. Alternatively, the limited 76 
power of existing QTL mapping studies in model organisms such as budding yeast (perhaps combined 77 
with the relatively high functional density of these genomes) may cause them to aggregate numerous 78 
linked small-effect causal loci into single large-effect “composite” QTL. This would allow these studies to 79 
successfully explain most of the observed phenotypic heritability in terms of an apparently small number 80 
of causal loci, even if the true architecture was in fact highly polygenic (10).  81 
  82 
More recently, numerous studies have worked to advance the power and resolution of QTL mapping 83 
studies, and have begun to shed light on the discrepancy with GWAS (6, 14–17). One direction has been 84 
to use advanced crosses to introduce more recombination breakpoints into mapping panels (15). This 85 
improves fine-mapping resolution and under some circumstances may be able to resolve composite QTL 86 
into individual causal loci, but it does not in itself improve power to detect small-effect alleles. Another 87 
approach is to use a multiparental cross (18) or multiple individual crosses (e.g. in a round-robin mating). 88 
Several recent studies have constructed somewhat larger mapping panels with this type of design (as 89 
many as 14,000 segregants (16)); these offer the potential to gain more insight into trait architecture by 90 
surveying a broader spectrum of natural variation that could potentially contribute to phenotype. 91 
However, because multiparental crosses reduce the allele frequency of each variant (and in round-robin 92 
schemes each variant is present in only a few matings), these studies also have limited power to detect 93 
small-effect alleles. Finally, several recent studies have constructed large panels of diploid genotypes by 94 
mating smaller pools of haploid parents (e.g. a 384x104 mating leading to 18,126 F6 diploids (19)). 95 
These studies are essential to understand potential dominance effects. However, the ability to identify 96 
small-effect alleles scales only with the number of unique haploid parents rather than the number of 97 
diploid genotypes, so these studies also lack power for this purpose. Thus, previous studies have been 98 
unable to observe the polygenic regime of complex traits or to offer insight into its consequences. 99 
 100 
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Here, rather than adopting any of these more complex study designs, we sought to increase the power 101 
and resolution of QTL mapping in budding yeast simply by dramatically increasing sample size. To do so, 102 
we introduce a barcoded bulk QTL (BB-QTL) mapping approach that allows us to construct and measure 103 
phenotypes in a panel of 100,000 F1 segregants from a single yeast cross, a sample size almost two 104 
orders of magnitude larger than the current state of the art (Fig. 1A). We combined several recent 105 
technical advances to overcome the challenges of QTL mapping at the scale of 100,000 segregants: (i) 106 
unique DNA barcoding of every strain, which allows us to conduct sequencing-based bulk phenotype 107 
measurements; (ii) a highly multiplexed sequencing approach that exploits our knowledge of the parental 108 
genotypes to accurately infer the genotype of each segregant from low-coverage (<1x) sequence data; 109 
(iii) liquid handling robotics and combinatorial pooling to create, array, manipulate, and store this 110 
segregant collection in 96/384-well plates; and (iv) a highly conservative cross-validated forward search 111 
approach to confidently infer large numbers of small-effect QTL. 112 
 113 
Using this BB-QTL approach, we mapped the genetic basis of eighteen complex phenotypes. Despite 114 
the fact that earlier lower-powered QTL mapping studies in yeast have successfully explained most or all 115 
of the heritability of similar phenotypes with models involving only a handful of loci, we find that the 116 
increased power of our approach reveals that these traits are in fact highly polygenic, with more than a 117 
hundred causal loci contributing to almost every phenotype. We also exploit our increased power to 118 
investigate widespread patterns of pleiotropy across the eighteen phenotypes, and to analyze the role of 119 
epistatic interactions in the genetic architecture of each trait.  120 
 121 
RESULTS 122 
 123 
Construction of the barcoded segregant panel 124 
To generate our segregant collection, we began by mating a laboratory (BY) and vineyard (RM) strain, 125 
which differ at 41,594 SNPs and vary in many relevant phenotypes (see SI). We labeled each parent 126 
strain with diverse DNA barcodes (a random sequence of 16 nucleotides), to create pools of each parent 127 
that are isogenic except for this barcode (12 and 23 pools of ~1,000 unique barcodes in the RM and BY 128 
parental pools, respectively). Barcodes are integrated at a neutral locus containing Cre-Lox machinery 129 
for combining barcodes, similar to the “renewable” barcoding system we introduced in recent work ((20), 130 
see SI). We then created 276 sets by mating all combinations of parental pools to create heterozygous 131 
RM/BY diploids, each of which contains one barcode from each parent. After mating, we induce Cre-Lox 132 
recombination to assemble the two barcodes onto the same chromosome, creating a 32-basepair double 133 
barcode. After sporulating the diploids and selecting for doubly-barcoded haploid MATa offspring, we 134 
used single-cell sorting to select ~100,000 random segregants and to array them into individual wells in 135 
1,104 96-well plates. Because there are over 1 million possible barcodes per set, and only 384 offspring 136 
selected per set, this random sorting is highly unlikely to select duplicates, allowing us to produce a strain 137 
collection with one uniquely barcoded genotype in each well that can be manipulated with liquid handling 138 
robotics. Finally, we identified the barcode associated with each segregant by constructing orthogonal 139 
pools (e.g. all segregants in a given 96-well plate, all segregants in row A of any 96-well plate, all 140 
segregants from a set, etc.), and sequencing the barcode locus in each pool. This combinatorial pooling 141 
scheme allows us to infer the barcode associated with each segregant in each individual well, based on 142 
the unique set of pools in which a given barcode appears ((21); see SI).  143 
 144 
Inferring segregant genotypes 145 
We next conducted whole-genome sequencing of every strain using an automated library preparation 146 
pipeline that makes use of custom indexed adapters to conduct tagmentation in 384-well plates, after 147 
which samples can be pooled for downstream library preparation (Fig. 1A). To limit sequencing costs, we 148 
infer segregant genotypes from low-coverage sequencing data (median coverage of 0.6x per segregant; 149 
Fig. 1B). We can obtain high genotyping accuracy despite such low coverage due to our cross design: 150 
because we use an F1 rather than an advanced cross, we have a high density of SNPs relative to 151 
recombination breakpoints in each individual (>700 SNPs between recombination breakpoints on 152 
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average). Exploiting this fact in combination with our knowledge of the parental genotypes, we developed 153 
a Hidden Markov Model (HMM) to infer the complete segregant genotypes from this data (see SI). This 154 
HMM is similar in spirit to earlier imputation approaches (22, 23); it infers genotypes at unobserved loci 155 
(and corrects for sequencing errors and index-swapping artifacts) by assuming that each segregant 156 
consists of stretches of RM and BY loci, separated by relatively sparse recombination events. We note 157 
that this model produces probabilistic estimates of genotypes (i.e. the posterior probability that segregant 158 
genotypes is either RM or BY at each SNP; Fig. 1C), which we account for in our analysis below.  159 
 160 
We assessed two key aspects of the performance of this sequencing approach: the confidence with 161 
which it infers genotypes, and the accuracy of the genotypes assigned. We find that at 0.1x coverage 162 
and above, our HMM approach confidently assigns genotypes at almost all loci (posterior probability of 163 
>92% of the inferred genotype at >99% of loci; see Fig. S12 and SI for a discussion of our validation of 164 
these posterior probability estimates). Loci not confidently assigned to either parental genotype largely 165 
correspond to SNPs in the immediate vicinity of breakpoints, which cannot be precisely resolved with 166 
low-coverage sequencing. To assess the accuracy of our genotyping, we conducted high-coverage 167 
sequencing of a small subset of segregants and compared the results to the inferred genotypes from our 168 
low-coverage data. We find that the genotyping is accurate (Fig. 1D), with detectable error only very near 169 
recombination breakpoints. In addition, we find that our posterior probabilities are well calibrated (e.g. 170 
80% of the loci with an RM posterior probability of 0.8 are indeed RM; see SI). We also note that, as 171 
expected, most SNPs are present across our segregant panel at an allele frequency of 0.5 (Fig. S1), 172 
except for a few marker loci that are selected during engineering of the segregants. 173 
 174 
Barcoded bulk phenotype measurements 175 
Earlier QTL mapping studies in budding yeast have typically assayed phenotypes for each segregant in 176 
their mapping panels independently, primarily by measuring colony sizes on solid agar plates (6, 14–16, 177 
19). These colony size phenotypes can be defined on a variety of different solid media, but while they are 178 
relatively high throughput (often conducted in 384-well format), they are not readily scalable to 179 
measurements of 100,000 segregants.  180 
 181 
Here, we exploit our barcoding system to instead measure phenotypes for all segregants in parallel, in a 182 
single bulk pooled assay for each phenotype. The basic idea is straightforward: we combine all 183 
segregants into a pool, sequence the barcode locus to measure the relative frequency of each 184 
segregant, apply some selection pressure, and then sequence again to measure how relative 185 
frequencies change. These bulk assays are easily scalable and can be applied to any phenotype that 186 
can be measured based on changes in relative strain frequencies. Because we only need to sequence 187 
the barcode region, we can sequence deeply to obtain high-resolution phenotype measurements at 188 
modest cost. In addition, we can correct sequencing errors because the set of true barcodes is known in 189 
advance from combinatorial pooling (see above). Importantly, this system allows us to track the 190 
frequency changes of each individual in the pool, assigning a phenotype to each specific segregant 191 
genotype. This stands in contrast to “bulk segregant analysis” approaches that use whole-genome 192 
sequencing of pooled segregant panels to track frequency changes of alleles rather than individual 193 
genotypes; our approach increases power and allows us to study interaction effects between loci across 194 
the genome.  195 
 196 
Using this BB-QTL system, we investigate eighteen complex traits, defined as competitive fitness in a 197 
variety of liquid growth conditions (“environments”), including minimal, natural, and rich media with 198 
several carbon sources and a range of chemical and temperature stressors (Table 1). To measure these 199 
phenotypes, we pool all strains and track barcode frequencies through 49 generations of competition. 200 
We use a maximum likelihood model to jointly infer the relative fitness of each segregant in each assay—201 
a value related to the instantaneous exponential rate of change in frequency of a strain during the course 202 
of the assay (Fig. 1A, lower-right inset; see SI). These measurements are consistent between replicates 203 
(average R2 between replicate assays of 0.77), although we note that the inherent correlation between 204 
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fitness and barcode read counts means that errors are inversely correlated with fitness (Fig. 1E; Fig. S2). 205 
While genetic changes such as de novo mutations and ploidy changes can occur during bulk selection, 206 
we estimate their rates to be sufficiently low such that they impact only a small fraction of barcode 207 
lineages (see SI) and thus do not significantly bias the inference of QTL effects over the strain collection.   208 
 209 
Modified stepwise cross-validated forward search approach to mapping QTL 210 
With genotype and phenotype data for each segregant in hand, we next sought to map the locations and 211 
effects of QTL. The typical approach to inferring causal loci would be to use a forward stepwise 212 
regression (6, 22). This method proceeds by first computing a statistic such as p-value or LOD score for 213 
each SNP independently, to test for a statistical association between that SNP and the phenotype. The 214 
most-significant SNP is identified as a causal locus, and its estimated effect size is regressed out of the 215 
data. This process is then repeated iteratively to identify additional causal loci. These iterations proceed 216 
until no loci are identified with a statistic that exceeds a predetermined significance threshold, which is 217 
defined based on a desired level of genome-wide significance (e.g. based on a null expectation from 218 
permutation tests or assumptions about the numbers of true causal loci). However, although this 219 
approach is fast and simple and can identify large numbers of QTL, it is not conservative. Variables 220 
added in a stepwise approach do not follow the claimed F or chi-squared distribution, so using p-values 221 
or related statistics as a selection criterion is known to produce false positives, especially at large sample 222 
sizes or in the presence of strong linkage (24). Because our primary goal is to dissect the extent of 223 
polygenicity by resolving small-effect loci and decomposing “composite” QTL, these false positives are 224 
particularly problematic and we therefore cannot use this traditional approach.  225 
 226 
Fortunately, due to the high statistical power of our study design, we are better positioned to address the 227 
question of polygenicity using a more conservative method with lower false discovery rate. To do so, we 228 
carried out QTL mapping through a modified stepwise regression approach, with three key differences 229 
compared to previous methods. First, we use cross-validation rather than statistical significance to 230 
terminate the model search procedure, which reduces the false positive rate. Specifically, we divide the 231 
data into training and test sets (90% and 10% of segregants respectively, chosen randomly), and add 232 
QTL iteratively in a forward stepwise regression on the training set. We terminate this process when 233 
performance on the test set declines, and use this point to define an L0-norm sparsity penalty on the 234 
number of QTL. We repeat this process for all possible divisions of the data to identify the average 235 
sparsity penalty, and then use this sparsity penalty to infer our final model from all the data (in addition, 236 
an outer loop involving a validation set is also used to assess the performance of our final model, see 237 
SI). The second key difference in our method is that we jointly re-optimize inferred effect sizes (i.e. 238 
estimated effect on fitness of having the RM versus the BY version of a QTL) and lead SNP positions 239 
(i.e. our best estimate of the actual causal SNP for each QTL) at each step. This further reduces the bias 240 
introduced by the greedy forward search procedure. Finally, the third key difference in our approach is to 241 
estimate the 95% credible interval around each lead SNP using a Bayesian method rather than LOD-242 
drop methods, which is more suitable in polygenic architectures. We describe and validate this modified 243 
stepwise regression approach in detail in the SI. Simulations under various QTL architectures show that 244 
this approach has a low false positive rate, accurately identifies lead SNPs and credible intervals even 245 
with strong linkage, and generally calls fewer QTL than in the true model, only missing QTL of extremely 246 
small effect sizes (see SI).  247 
 248 
Resolving the highly polygenic architecture of complex phenotypes in yeast 249 
We used our modified stepwise cross-validated forward search to infer the genetic basis of the eighteen 250 
phenotypes described in Table 1, assuming an additive model. We find that these phenotypes are highly 251 
polygenic: we identify well over 100 QTL spread throughout the genome for almost every trait, an order 252 
of magnitude more than that found for similar phenotypes in most earlier studies (~0.3% of SNPs in our 253 
panel; Fig. 2, Fig. 3, Fig. S3). This increase can be directly attributed to our large sample size: inference 254 
on a downsampled dataset of 1,000 individuals detects no more than 30 QTL for any trait (see SI).  255 
 256 
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The distribution of effect sizes of detected QTL shows a large enrichment of small-effect loci, and has 257 
similar shape (though different scale) across all phenotypes (Fig. 3C), consistent with an exponential 258 
distribution above the limit of detection. This distribution suggests that further increases in sample size 259 
would reveal a further enrichment of even smaller-effect loci. While our SNP density is high relative to the 260 
recombination rate, our sample size is large enough that there are many individuals with a recombination 261 
breakpoint between any pair of neighboring SNPs (over 100 such individuals with breakpoints between 262 
each SNP on average). This allows us to precisely fine-map many of these QTL to causal genes or even 263 
nucleotides. We find that most QTL with substantial effect sizes are mapped to one or two genes, with 264 
dozens mapped to single SNPs (Fig. 3D). In many cases these genes and precise causal nucleotides 265 
are consistent with previous mapping studies (e.g. MKT1 (25), PHO84 (26), HAP1 (27)); in some cases 266 
we resolve for the first time the causal SNP within a previously identified gene (e.g. IRA2 (28)); and in 267 
others we detect novel causal genes (e.g. VPS70). However, we note that because our SNP panel does 268 
not capture all genetic variation, such as transposon insertions or small deletions, some QTL lead 269 
positions may tag linked variation rather than being causal themselves.  270 
 271 
The SNP density in our panel and resolution of our approach highly constrain these regions of linked 272 
variation, providing guidance for future studies of specific QTL, but as a whole we find that our collection 273 
of lead SNPs displays some characteristic features of causal variants. Across all identified lead SNPs, 274 
we observe a significant enrichment of nonsynonymous substitutions, especially when considering lead 275 
SNPs with posterior probability above 0.5 (Fig. 3E; p < 10-10 , F2 test, df=2), as expected for causal 276 
changes in protein function. Lead SNPs are also more likely to be found within disordered regions of 277 
proteins (1.22x fold increase, p < 10-5), even when constrained to nonsynonymous variants (1.28x fold 278 
increase beyond the enrichment for nonsynonymous variants in disordered regions, p < 10-4), indicating 279 
potential causal roles in regulation (29). Lead SNP alleles, especially those with large effect size, are 280 
observed at significantly lower minor allele frequencies (MAF) in the 1,011 Yeast Genomes collection 281 
(30) compared to random SNPs (Fig. 3F; p=0.0004, Fisher’s exact test considering alleles with effect 282 
>1% and rare alleles with MAF <5%) and minor alleles are more likely to be deleterious (p=0.006, 283 
permutation test) regardless of which parental allele is rarer. These results are consistent with the view 284 
that rare, strongly deleterious alleles subject to negative selection can contribute substantially to complex 285 
trait architecture (16, 31). 286 
 287 
Patterns of pleiotropy 288 
Our eighteen assay environments range widely in their similarity to each other: some groups of traits 289 
exhibit a high degree of phenotype correlation, such as rich medium at a gradient of temperatures, while 290 
other groups of traits are almost completely uncorrelated, such as molasses, rich medium with suloctidil, 291 
and rich medium with guanidinium (Fig. 3A). Because many of these phenotypes are likely to involve 292 
overlapping aspects of cellular function, we expect the inferred genetic architectures to exhibit substantial 293 
pleiotropy, where individual variants are causal for multiple traits. In addition, in highly polygenic 294 
architectures, pleiotropy across highly dissimilar traits is also expected to emerge due to properties of the 295 
interconnected cellular network. For example, SNPs in regulatory genes may affect key functional targets 296 
(some of them regulatory themselves) that directly influence a given phenotype, as well as other 297 
functional targets that may, in turn, influence other phenotypes (32).  298 
 299 
Consistent with these expectations, we observe diverse patterns of shared QTL across traits (Fig. 3B). 300 
To examine these pleiotropic patterns at the gene level, we group QTL across traits whose lead SNP is 301 
within the same gene (or in the case of intergenic lead SNPs, the nearest gene). In total, we identify 449 302 
such pleiotropic genes with lead SNPs affecting multiple traits (see SI). These genes encompass the 303 
majority of QTL across all phenotypes, and are highly enriched for regulatory function (Table S1) and for 304 
intrinsically disordered regions, which have been implicated in regulation (29) (p < 0.005, Fisher’s exact 305 
test, see SI). The most pleiotropic genes (Fig. S5) correspond to known variants frequently associated 306 
with quantitative variation in yeast (e.g. MKT1, HAP1, IRA2) as well as previously unidentified ones (e.g. 307 
VPS70).  308 
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 309 
The highly polygenic nature of our phenotypes highlights the difficulty in identifying modules of target 310 
genes with interpretable functions related to the measured traits (33). However, we can take advantage 311 
of our high-powered mapping approach to explore how pleiotropy leads to diverging phenotypes in 312 
different environments. Specifically, to obtain a global view of pleiotropy and characterize the shifting 313 
patterns of QTL effects across traits, we adopt a method inspired by sequence alignment strategies to 314 
match (or to leave unmatched) QTL from one trait with QTL from another trait, in a way that depends on 315 
the similarity in their effect sizes and distance between lead SNPs (see SI). From this, for each pair of 316 
environments we can find the change in effect size for each QTL, as well as an overall metric of model 317 
similarity. We find that pairwise model similarity scores recapitulate the phenotype correlation structure 318 
(Fig. 3G), including smoothly varying similarity across the temperature gradient (Fig. 3H), indicating that 319 
changes in our inferred model coefficients accurately capture patterns of pleiotropy. 320 
 321 
For most comparisons between environments, substantial effect size changes are distributed over all 322 
QTL, indicating a broad response to the environmental shift (Fig. 3I). For example, while growth in Li 323 
(rich medium + lithium) is strongly affected by a single locus directly involved in salt tolerance (3 tandem 324 
repeats of the ENA cluster in S288C (34), corresponding to 82% of explained variance), 63 of the 325 
remaining 82 QTL are also detected in 30C (rich medium only), explaining a further 15% of variance. To 326 
some extent these 63 QTL may represent a “module” of genes with functional relevance for growth in 327 
rich medium, but their effect sizes are far less correlated than would be expected from noise or for a 328 
similar pair of environments (e.g. 30C and 27C, Fig. S6). For the temperature gradient, while we observe 329 
high correlations between similar temperatures overall, these are not due to specific subsets of genes 330 
with simple, interpretable monotonic changes in effect size. Indeed, effect size differences between 331 
temperature pairs are typically uncorrelated; thus, QTL that were more beneficial when moving from 30C 332 
to 27C may become less beneficial when moving from 27C to 25C or 25C to 23C (Fig. S6). Together, 333 
these patterns of pleiotropy reveal large numbers of regulatory variants with widespread, important, and 334 
yet somewhat unpredictable effects on diverse phenotypes, implicating a highly interconnected cellular 335 
network while obscuring potential signatures of specific functional genes or modules. 336 
 337 
Epistasis 338 
To characterize the structure of this complex cellular network in more detail, numerous studies have 339 
used genetic perturbations to measure epistatic interactions between genes, which in turn shed light on 340 
functional interactions (35–40). However, the role of epistasis in GWAS and QTL mapping studies 341 
remains controversial; these studies largely focus on variance partitioning to measure the strength of 342 
epistasis, as they are underpowered to infer specific interaction terms (41). We sought to leverage the 343 
large sample size and high allele frequencies of our study to infer epistatic interactions, by extending our 344 
inference method to include potential pairwise interactions among the loci previously identified as having 345 
an additive effect (see SI). Our approach builds on the modified stepwise cross-validated search 346 
described above: after obtaining the additive model, we perform a similar iterative forward search on 347 
pairwise interactions, re-optimizing both additive and pairwise effect sizes at each step and applying a 348 
second L0-norm sparsity penalty, similarly chosen by cross-validation, to terminate the model search. 349 
We note that restricting our analysis of epistasis to loci identified as having an additive effect does not 350 
represent a major limitation. This is because a pair of loci that have a pairwise interaction but no additive 351 
effects will tend to be (incorrectly) assigned additive effects in our additive-only model, since the epistatic 352 
interaction will typically lead to background-averaged associations between each locus and the 353 
phenotype. These spurious additive effects will then tend to be reduced upon addition of the pairwise 354 
interaction term.  355 
 356 
Using this approach, we detect widespread epistasis: hundreds of pairwise interactions for each 357 
phenotype (Fig. 4A,B, Table 1, Fig. S7), which corresponds to an average of 1.7 epistatic interactions per 358 
QTL, substantially more than has been detected in previous mapping studies (14). To interpret these 359 
epistatic interactions in the context of cellular networks, we can represent our model as a graph for each 360 
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phenotype, where nodes represent genes with QTL lead SNPs and edges represent epistatic 361 
interactions between those QTL (this perspective is distinct from and complementary to Ref. (40), where 362 
nodes represent gene deletions and edges represent similar patterns of interaction). Notably, in contrast 363 
to a random graph, the epistatic graphs across phenotypes show heavy-tailed degree distributions, high 364 
clustering coefficients, and small average shortest paths (~3 steps between any pair of genes; Fig. 4C); 365 
these features are characteristic of the small-world networks posited by the “omnigenic” view of genetic 366 
architecture (33). These results hold even when accounting for ascertainment bias (i.e. loci with large 367 
additive effects have more detected epistatic interactions; see SI).  368 
 369 
We also find that hundreds of epistatic interactions are repeatedly found across environments (Fig. 4D, 370 
Fig. S8). Overall, epistatic interactions are more likely to be detected in multiple environments than 371 
expected by chance, even when considering only uncorrelated environments (p < 10-3, see SI), as 372 
expected if these interactions accurately represent the underlying regulatory network. Considering 373 
interactions found in all environments, we see a small but significant overlap of detected interactions with 374 
previous genome-wide deletion screens (39) (p = 0.03, F 2 = 4.46, df = 1; see SI). Taken together, these 375 
results suggest that inference of epistatic interactions in a sufficiently high-powered QTL mapping study 376 
provides a consistent and complementary method to reveal both global properties and specific features 377 
of underlying functional networks.  378 
 379 
Validating QTL inferences with reconstructions 380 
We next sought to experimentally validate the specific inferred QTL and their effect sizes from our 381 
additive and additive-plus-pairwise models. To do so, we reconstructed 6 individual and 9 pairs of RM 382 
SNPs on the BY background and measured their competitive fitness in 11 of the original 18 conditions in 383 
individual competition assays (though note that for technical reasons these measurement conditions are 384 
not precisely identical to those used in the original bulk fitness assays; see SI). We find that the QTL 385 
effects inferred with the additive-only models are correlated with the phenotypes of these reconstructed 386 
genotypes, although the predicted effects are systematically larger than the measured phenotypes (Fig. 387 
5A, cyan). To some extent, these errors may arise from differences in measurement conditions, 388 
undetected smaller-effect linked loci that bias inferred additive effect sizes, and from the confidence 389 
intervals around the lead SNP, which introduce uncertainty about the identity of the precise causal locus, 390 
among other factors. However, this limited power is also somewhat unsurprising even if our inferred lead 391 
SNPs are correct, because the effect sizes inferred from the additive-only model measure the effect of a 392 
given locus averaged across the F1 genetic backgrounds in our segregant panel. Thus, if there is 393 
significant epistasis, we expect the effect of these loci in the specific strain background chosen for the 394 
reconstruction (the BY parent in this case) to differ from the background-averaged effect inferred by BB-395 
QTL.  396 
 397 
In agreement with this interpretation, we find that the predictions from our additive-plus-pairwise 398 
inference agree better with the measured values in our reconstructed mutants (Fig. 5A, magenta). 399 
Specifically, we find that the correlation between predicted and measured phenotypes is similar to the 400 
additive-only model, but the systematic overestimates of effect sizes are significantly reduced (Fig. 5A, 401 
inset; p < 0.0001 from permutation test; see SI). This suggests a substantial effect of nonlinear terms, 402 
although the predictive power of our additive-plus-pairwise model remains modest. As above, this limited 403 
predictive power could be a consequence of undetected linked loci or errors in the identification of 404 
interacting loci. However, it may also indicate the presence of further epistasis of higher order than the 405 
pairwise terms we infer. To explore these potential effects of higher-order interactions, we trained a 406 
dense neural network to jointly predict 17 out of our 18 phenotypes from genotype data (see SI). The 407 
network architecture involves three densely connected layers, allowing it to capture arbitrary nonlinear 408 
mappings. Indeed, we find that this neural network approach does explain slightly more phenotypic 409 
variance (on average 1% more variance than the additive-plus-pairwise QTL model, Fig. 5B, see SI), 410 
although specific interactions and causal SNPs are harder to interpret in this case. Together, these 411 
results suggest that although our ability to pinpoint precise causal loci and their effect sizes is likely 412 
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limited by a variety of factors, the models with epistasis do more closely approach the correct genetic 413 
architecture despite explaining only marginally more variance than the additive model (Fig. S4), as 414 
suggested by previous studies (42). 415 
 416 
 417 
DISCUSSION 418 
 419 
The BB-QTL mapping approach we have introduced in this study increases the scale at which QTL 420 
mapping can be performed in budding yeast, primarily by taking advantage of automated liquid handling 421 
techniques and barcoded phenotyping. While the initial construction of our segregant panel involved 422 
substantial brute force, this has now generated a resource that can be easily shared (particularly in 423 
pooled form) and used for similar studies aiming to investigate a variety of related questions in 424 
quantitative genetics. In addition, the approaches we have developed here provide a template for the 425 
systematic construction of additional mapping panels in future work, which would offer the opportunity to 426 
survey the properties of a broader range of natural variation. While our methods are largely specific to 427 
budding yeast, conceptually similar high-throughput automated handling systems and barcoding 428 
methods may also offer promise in studying quantitative genetics in other model organisms, though 429 
substantial effort would be required to develop appropriate techniques in each specific system.  430 
 431 
Here, we have used our large segregant panel to investigate the genetic basis of eighteen phenotypes, 432 
defined as competitive fitness in a variety of different liquid media. The increased power of our study 433 
reveals that these traits are all highly polygenic: using a conservative cross-validation method, we find 434 
more than 100 QTL at high precision and low false-positive rate for almost every environment in a single 435 
F1 cross. Our detected QTL include many of the key genes identified in earlier studies, along with many 436 
novel loci. These QTL overall are consistent with statistical features observed in previous studies. For 437 
example, we find an enrichment in nonsynonymous variants among inferred causal loci in regulatory 438 
genes, and a tendency for rare variants (as defined by their frequency in the 1,011 Yeast Genomes 439 
collection) to have larger effect sizes.  440 
 441 
While the QTL we detect do explain most of the narrow-sense heritability across all traits (Fig. S4), this 442 
does not represent a substantial increase relative to the heritability explained by earlier, smaller studies 443 
with far fewer QTL detected (6, 14, 16). Instead, the increased power of our approach allows us to 444 
dissect multiple causal loci within broad regions previously detected as a single “composite” QTL (Fig. 2A 445 
insets), and to detect numerous novel small-effect QTL. Thus, our results suggest that, despite their 446 
success in explaining observed phenotypic heritability, these earlier QTL mapping studies in budding 447 
yeast fail to accurately resolve the highly polygenic nature of these phenotypes. This in turn implies that 448 
the apparent discrepancy in the extent of polygenicity inferred by GWAS compared to QTL mapping 449 
studies in model organisms arises at least in part as an artifact of the limited sample sizes and power of 450 
the latter.  451 
 452 
Our finding that increasing power reveals increasingly polygenic architectures of complex traits is broadly 453 
consistent with several other recent studies that have improved the scale and power of QTL mapping in 454 
yeast in different ways. For example, advanced crosses have helped to resolve composite QTL into 455 
multiple causal loci (15), and multiparental or round-robin crosses have identified numerous additional 456 
causal loci by more broadly surveying natural variation in yeast (16, 18). In addition, recent work has 457 
used very large panels of diploid genotypes to infer highly polygenic trait architectures, though this study 458 
involves a much more permissive approach to identifying QTL that may lead to a substantial false 459 
positive rate (19). Here, we have shown that by simply increasing sample size we can both resolve 460 
composite QTL into multiple causal loci and also identify numerous additional small-effect loci that 461 
previous studies have been underpowered to detect. The distribution of QTL effect sizes we infer is 462 
consistent with an exponential distribution up to our limit of detection, suggesting that there may be many 463 
more even smaller-effect causal loci that could be revealed by further increases in sample size.  464 
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 465 
By applying BB-QTL mapping to eighteen different fitness traits, we explored how the effects of individual 466 
loci shift across small and large environmental perturbations. Quantifying the structure of these 467 
pleiotropic effects is technically challenging, particularly for many QTL of modest effect that are not 468 
resolved to a single SNP or gene. In these cases, it is difficult to determine whether a particular region 469 
contains a single truly pleiotropic locus, or multiple linked variants that each influence a different trait. 470 
While we have used one particular approach to this problem, other choices are also possible, and ideally 471 
future work to jointly infer QTL using data from all phenotypes simultaneously could provide a more 472 
rigorous method for identifying pleiotropic loci. However, we do find that the structure of the pleiotropy in 473 
our inferred models largely recapitulates the observed correlations between phenotypes, suggesting that 474 
the causal loci we identify are largely sufficient to explain these patterns. Many of the same genes are 475 
implicated across many traits, often with similar strong effect sizes in distinct environments, and as we 476 
might expect these highly pleiotropic QTL are enriched for regulatory function. However, dividing QTL 477 
into modules that affect subsets of environments, predicting how their effect sizes change across 478 
environments (even our temperature gradient), and identifying core or peripheral genes (as in (33)) 479 
remains difficult. Future work to assay a larger number and wider range of phenotypes could potentially 480 
provide more detailed insight into the structure of relationships between traits and how they arise from 481 
shared genetic architectures. 482 
 483 
We also leveraged the statistical power of our approach to explore the role of epistatic interactions 484 
between QTL. Previous studies have addressed this question through the lens of variance partitioning, 485 
concluding that epistasis contributes less than additive effects to predicting phenotype (14). However, it 486 
is a well-known statistical phenomenon that variance partitioning alone cannot determine the relative 487 
importance of additive, epistatic, or dominance factors in gene action or genetic architectures (41). Here, 488 
we instead explore the role of epistasis by inferring specific pairwise interaction terms and analyzing their 489 
statistical and functional patterns. We find that epistasis is widespread, with nearly twice as many 490 
interaction terms as additive QTL. The resulting interaction graphs show characteristic features of 491 
biological networks, including heavy-tailed degree distributions and small shortest paths, and we see a 492 
significant overlap with interaction network maps from previous studies despite the different sources of 493 
variation (naturally occurring SNPs versus whole-gene deletions). Notably, the set of genes with the most 494 
numerous interactions overlaps with the set of highly pleiotropic genes, which are themselves enriched 495 
for regulatory function. Together, these findings indicate that we are capturing features of underlying 496 
regulatory and functional networks, although we are far from revealing the complete picture. In particular, 497 
we expect that we fail to detect many interactions that have small effect sizes below our detection limit, 498 
that the interactions we observe are limited by our choice of phenotypes, and that higher-order 499 
interactions may also be widespread.  500 
 501 
To validate our QTL inference, we reconstructed a small set of single and double mutations by 502 
introducing RM alleles into the BY parental background. We find that our ability to predict the effects of 503 
these putatively causal loci remains somewhat limited: the inferred effect sizes in our additive plus 504 
pairwise epistasis models have relatively modest power to predict the fitness effects of reconstructed 505 
mutations and pairs of mutations. Thus, despite the unprecedented scale and power of our study, we still 506 
cannot claim to precisely infer the true genetic architecture of complex traits. This failure presumably 507 
arises in part from limitations to our inference, which could lead to inaccuracies in effect sizes or the 508 
precise locations of causal loci. In addition, the presence of higher-order epistatic interactions (or 509 
interactions with the mitochondria) would imply that we cannot expect to accurately predict phenotypes 510 
for genotypes far outside of our F1 segregant panel, such as single- and double-SNP reconstructions on 511 
the BY genetic background. While both of these sources of error could in principle be reduced by further 512 
increases in sample size and power, it is unlikely that substantial improvements are likely to be realized 513 
in the near future.  514 
 515 
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However, despite these limitations, our BB-QTL mapping approach helps bridge the gap between well-516 
controlled laboratory studies and high-powered, large-scale GWAS, revealing that complex trait 517 
architecture in model organisms is indeed influenced by large numbers of previously unobserved small-518 
effect variants. We examined in detail how this architecture shifts across a spectrum of related traits, 519 
observing that while pleiotropy is common, changes in effects are largely unpredictable, even for similar 520 
traits. Further, we characterized specific epistatic interactions across traits, revealing not only their 521 
substantial contribution to phenotype but also the underlying network structure, in which a subset of 522 
genes occupy central roles. Future work in this and related systems is needed to illuminate the 523 
landscape of pleiotropy and epistasis more broadly, which will be crucial not merely for phenotype 524 
prediction but for our fundamental understanding of cellular organization and function. 525 
  526 
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Table 1: Phenotyping growth conditions. Summary of the eighteen competitive fitness phenotypes 
we analyze in this study. All assays were conducted at 30°C, except when stated otherwise. YP: 1% 
yeast extract, 2% peptone. YPD: 1% yeast extract, 2% peptone, 2% glucose. SD: synthetic defined 
medium, 2% glucose. YNB: yeast nitrogen base, 2% glucose. Numbers of inferred additive QTL and 
epistatic interactions are also shown.  
 

 
 

Name Description Additive QTL Epistatic QTL

23C YPD, 23C 112 185

25C YPD, 25C 134 189

27C YPD, 27C 149 255

30C YPD, 30C 159 247

33C YPD, 33C 147 216

35C YPD, 35C 117 250

37C YPD, 37C 128 265

4NQO SD, 0.05 g/ml 4-nitroquinoline 1-oxide 153 394

cu YPD, 1mM copper(II) sulfate 143 225

eth YPD, 5% (v/v) ethanol 149 247

gu YPD, 6 mM guanidinium chloride 185 277

li YPD, 20 mM lithium acetate 83 42

mann YP, 2% (w/v) mannose 169 341

mol molasses, diluted to 20% (w/v) sugars 111 235

ra↵ YP, 2% (w/v) ra�nose 167 221

sds YPD, 0.005% (w/v) SDS 175 263

suloc YPD, 50 M suloctidil 173 314

ynb YNB, w/o AAs, w/ ammonium sulfate 145 303
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Figure 1: Cross design, genotyping, phenotyping, and barcode association. A, 
Construction, genotyping, and phenotyping of segregant panel. Founding strains BY (blue) and 
RM (red) are transformed with diverse barcode libraries (colored rectangles) and mated in bulk. 
Cre recombination combines barcodes onto the same chromosome. After meiosis, sporulation, 
and selection for barcode retention, we sort single haploid cells into 96-well plates. Top: whole- 
genome sequencing of segregants via multiplexed tagmentation. Middle: barcode-well 
association by combinatorial pooling. Bottom: bulk phenotyping by pooled competition assays 
and barcode frequency tracking. B, Histogram and cumulative distribution function (CDF) of 
genotyping coverage of our panel. C, Inferred probabilistic genotypes for two representative 
individuals from low coverage (solid) and high coverage (dashed) sequencing, with the 
genotyping error (difference between low and high coverage probabilistic genotypes) indicated 
by shaded blue regions. D, Distribution of genotyping error by SNP for the two individuals shown 
in (C). E, Reproducibility of phenotype measurements in 30C environment (see Fig. S2 for other 
environments).  
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Figure 2: High-resolution QTL mapping. A,B, QTL mapping for (A) YPD at 30°C and (B) YPD 
with 4-nitroquinoline (4NQO). Inferred QTL are shown as red bars; bar height shows effect size 
and red shaded regions represent credible intervals. For contrast, effect sizes inferred by a 
Student’s t-test at each locus are shown in blue. Gray bars at top indicate loci with log-odds (LOD) 
scores surpassing genome-wide significance in this t-test, with shading level corresponding to 
log-LOD score. See Fig. S3 for other environments.  
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Figure 3: Genetic architecture and pleiotropy. A, Pairwise Pearson correlations between 
phenotype measurements, ordered by hierarchical clustering. B, Inferred genetic architecture for 
each trait. Each inferred QTL is denoted by a red or blue line for a positive or negative effect of 
the RM allele, respectively; color intensity denotes effect size on a log scale. Notable genes are 
indicated above. C, Smoothed distribution of absolute effect sizes for each trait, normalized by 
the median effect for each trait. D, Distribution of the number of genes within the 95% credible 
interval for each QTL. E, Distribution of SNP types. “High posterior” lead SNPs are those with 
>50% posterior probability. F, Fractions of synonymous SNPs, nonsynonymous SNPs, and QTL 
lead SNPs as a function of their frequency in the 1,011 Yeast Genomes panel. G, Pairwise model 
similarity scores (which quantify differences in QTL positions and effect sizes between traits; see 
SI) across traits.  H, Pairwise model similarity scores for each temperature trait against all other 
temperature traits. I, Cumulative distribution functions (CDFs) of differences in effect size for each 
locus between each pair of traits (orange). Grey traces represent the null expectation (between 
cross-validation sets for the same trait). The least and most similar trait pairs are highlighted in 
red and purple, respectively, and indicated in the legend.  
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Figure 4: Pairwise epistasis. A, B, Inferred pairwise epistatic interactions between QTL (with 
additive effects as shown in outer ring) for (A) the 4NQO environment and (B) the ynb 
environment. Interactions that are also observed for at least one other trait are highlighted in 
purple. See Fig. S7 for other environments. C, Network statistics across environments. The 
pooled degree distribution for the eighteen phenotype networks is compared with 50 network 
realizations generated by an Erdos-Renyi random model (white) or an effect-size-correlation-
preserving null model (orange; see SI). Inset: average clustering coefficient for the eighteen 
phenotypes, compared to 50 realizations of the null and random models. D, Consensus network 
of inferred epistatic interactions. Nodes represent genes (with size scaled by degree) and edges 
represent interactions that were detected in more than one environment (with color and weight 
scaled by the number of occurrences). Notable genes are labeled.  
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Figure 5: Evaluating model performance. A, Comparison between measured fitness effects of 
reconstructions of 6 single (crosses) and 9 double mutants (circles) in 11 environments, and their 
fitness in those environments as predicted by our inferred additive-only (cyan) or additive-plus-
pairwise-epistasis models (magenta). The one-to-one line is shown in gray. R2 values correspond 
to to shown fitted linear regressions for each type of model (colored lines), excluding MKT1 
mutants measured in gu environment (outliers indicated by arrows; see SI). Inset shows the 
histogram of the absolute difference between observed and predicted reconstruction fitness under 
our two models, with the p-value from the permutation test of the difference between these 
distributions indicated (see SI) B, Comparison between estimated phenotypic variance explained 
by the additive-plus-pairwise-epistasis model and a trained dense neural network of optimized 
architecture (see SI).  
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