

1 Barcoded Bulk QTL mapping reveals highly polygenic and 2 epistatic architecture of complex traits in yeast

3
4 **Alex N. Nguyen Ba^{1,†,*}, Katherine R. Lawrence^{2,3,4*}, Artur Rego-Costa^{1,*}, Shreyas Gopalakrishnan^{1,5},**
5 **Daniel Temko^{6,7,8}, Franziska Michor^{6,7,8,9,10,11}, Michael M. Desai^{1,2,3,12,§}**

6 *¹Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138, ²NSF-*
7 *Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge MA*
8 *02138, ³Quantitative Biology Initiative, Harvard University, Cambridge MA 02138, ⁴Department of*
9 *Physics, Massachusetts Institute of Technology, Cambridge MA 02139, ⁵Department of Molecular and*
10 *Cellular Biology, Harvard University, Cambridge, MA 02138, ⁶Department of Data Science, Dana-Farber*
11 *Cancer Institute, Boston MA 02215, ⁷Department of Biostatistics, Harvard T.H. Chan School of Public*
12 *Health, Boston MA 02115, ⁸Department of Stem Cell and Regenerative Biology, Harvard University,*
13 *Cambridge MA 02138, ⁹Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston MA 02215,*
14 *¹⁰The Ludwig Center at Harvard, Boston MA 02215, ¹¹The Broad Institute of MIT and Harvard,*
15 *Cambridge MA 02139, ¹²Department of Physics, Harvard University, Cambridge, MA 02138.*

16 [†]Department of Cell and Systems Biology, University of Toronto, Toronto ON Canada

17 ^{*}These authors contributed equally to this work.

18 [§]mdesai@oeb.harvard.edu

19 Classification: Biological sciences, genetics

20 Keywords: Quantitative trait loci, polygenic traits, pleiotropy, epistasis

21
22
23 **Mapping the genetic basis of complex traits is critical to uncovering the biological mechanisms**
24 **that underlie disease and other phenotypes. Genome-wide association studies (GWAS) in**
25 **humans and quantitative trait locus (QTL) mapping in model organisms can now explain much of**
26 **the observed heritability in many traits, allowing us to predict phenotype from genotype.**
27 **However, constraints on power due to statistical confounders in large GWAS and smaller sample**
28 **sizes in QTL studies still limit our ability to resolve numerous small-effect variants, map them to**
29 **causal genes, identify pleiotropic effects across multiple traits, and infer non-additive**
30 **interactions between loci (epistasis). Here, we introduce barcoded bulk quantitative trait locus**
31 **(BB-QTL) mapping, which allows us to construct, genotype, and phenotype 100,000 offspring of a**
32 **budding yeast cross, two orders of magnitude larger than the previous state of the art. We use**
33 **this panel to map the genetic basis of eighteen complex traits, finding that the genetic**
34 **architecture of these traits involves hundreds of small-effect loci densely spaced throughout the**
35 **genome, many with widespread pleiotropic effects across multiple traits. Epistasis plays a central**
36 **role, with thousands of interactions that provide insight into genetic networks. By dramatically**
37 **increasing sample size, BB-QTL mapping demonstrates the potential of natural variants in high-**
38 **powered QTL studies to reveal the highly polygenic, pleiotropic, and epistatic architecture of**
39 **complex traits.**

40 41 **Significance statement**

42 Understanding the genetic basis of important phenotypes is a central goal of genetics. However, the
43 highly polygenic architectures of complex traits inferred by large-scale genome-wide association studies
44 (GWAS) in humans stand in contrast to the results of quantitative trait locus (QTL) mapping studies in
45 model organisms. Here, we use a barcoding approach to conduct QTL mapping in budding yeast at a
46 scale two orders of magnitude larger than the previous state of the art. The resulting increase in power
47 reveals the polygenic nature of complex traits in yeast, and offers insight into widespread patterns of
48 pleiotropy and epistasis. Our data and analysis methods offer opportunities for future work in systems
49 biology, and have implications for large-scale GWAS in human populations.

50 **INTRODUCTION**

51
52 In recent years, the sample size and statistical power of genome-wide association studies (GWAS) in
53 humans has expanded dramatically (1–3). Studies investigating the genetic basis of important
54 phenotypes such as height, BMI, and risk for diseases such as schizophrenia now involve sample sizes
55 of hundreds of thousands or even millions of individuals. The corresponding increase in power has
56 shown that these traits are very highly polygenic, with a large fraction of segregating polymorphisms
57 (hundreds of thousands of loci) having a causal effect on phenotype (4, 5). However, the vast majority of
58 these loci have extremely small effects, and we remain unable to explain most of the heritable variation
59 in many of these traits (the “missing heritability” problem) (3).

60
61 In contrast to GWAS, quantitative trait locus (QTL) mapping studies in model organisms such as budding
62 yeast tend to have much smaller sample sizes of at most a few thousand individuals (6–9). Due to their
63 lower power, most of these studies are only able to identify relatively few loci (typically at most dozens,
64 though see below) with a causal effect on phenotype. Despite this, these few loci explain most or all of
65 the observed phenotypic variation in many of the traits studied (10).

66
67 The reasons for this striking discrepancy between GWAS and QTL mapping studies remain unclear. It
68 may be that segregating variation in human populations has different properties than the between-strain
69 polymorphisms analyzed in QTL mapping studies, or the nature of the traits being studied may be
70 different. However, it is also possible that the discrepancy arises for more technical reasons associated
71 with the limitations of GWAS and/or QTL mapping studies. For example, GWAS studies suffer from
72 statistical confounders due to population structure, and the low median minor allele frequencies in these
73 studies limit power and mapping resolution (6, 11–13). These factors make it difficult to distinguish
74 between alternative models of genetic architecture, or to detect specific individual small-effect causal
75 loci. Thus it may be the case that the highly polygenic architectures apparently observed in GWAS
76 studies are at least in part artifacts introduced by these confounding factors. Alternatively, the limited
77 power of existing QTL mapping studies in model organisms such as budding yeast (perhaps combined
78 with the relatively high functional density of these genomes) may cause them to aggregate numerous
79 linked small-effect causal loci into single large-effect “composite” QTL. This would allow these studies to
80 successfully explain most of the observed phenotypic heritability in terms of an apparently small number
81 of causal loci, even if the true architecture was in fact highly polygenic (10).

82
83 More recently, numerous studies have worked to advance the power and resolution of QTL mapping
84 studies, and have begun to shed light on the discrepancy with GWAS (6, 14–17). One direction has been
85 to use advanced crosses to introduce more recombination breakpoints into mapping panels (15). This
86 improves fine-mapping resolution and under some circumstances may be able to resolve composite QTL
87 into individual causal loci, but it does not in itself improve power to detect small-effect alleles. Another
88 approach is to use a multiparental cross (18) or multiple individual crosses (e.g. in a round-robin mating).
89 Several recent studies have constructed somewhat larger mapping panels with this type of design (as
90 many as 14,000 segregants (16)); these offer the potential to gain more insight into trait architecture by
91 surveying a broader spectrum of natural variation that could potentially contribute to phenotype.
92 However, because multiparental crosses reduce the allele frequency of each variant (and in round-robin
93 schemes each variant is present in only a few matings), these studies also have limited power to detect
94 small-effect alleles. Finally, several recent studies have constructed large panels of diploid genotypes by
95 mating smaller pools of haploid parents (e.g. a 384x104 mating leading to 18,126 F6 diploids (19)).
96 These studies are essential to understand potential dominance effects. However, the ability to identify
97 small-effect alleles scales only with the number of unique haploid parents rather than the number of
98 diploid genotypes, so these studies also lack power for this purpose. Thus, previous studies have been
99 unable to observe the polygenic regime of complex traits or to offer insight into its consequences.

101 Here, rather than adopting any of these more complex study designs, we sought to increase the power
102 and resolution of QTL mapping in budding yeast simply by dramatically increasing sample size. To do so,
103 we introduce a barcoded bulk QTL (BB-QTL) mapping approach that allows us to construct and measure
104 phenotypes in a panel of 100,000 F1 segregants from a single yeast cross, a sample size almost two
105 orders of magnitude larger than the current state of the art (Fig. 1A). We combined several recent
106 technical advances to overcome the challenges of QTL mapping at the scale of 100,000 segregants: (i)
107 unique DNA barcoding of every strain, which allows us to conduct sequencing-based bulk phenotype
108 measurements; (ii) a highly multiplexed sequencing approach that exploits our knowledge of the parental
109 genotypes to accurately infer the genotype of each segregant from low-coverage (<1x) sequence data;
110 (iii) liquid handling robotics and combinatorial pooling to create, array, manipulate, and store this
111 segregant collection in 96/384-well plates; and (iv) a highly conservative cross-validated forward search
112 approach to confidently infer large numbers of small-effect QTL.
113

114 Using this BB-QTL approach, we mapped the genetic basis of eighteen complex phenotypes. Despite
115 the fact that earlier lower-powered QTL mapping studies in yeast have successfully explained most or all
116 of the heritability of similar phenotypes with models involving only a handful of loci, we find that the
117 increased power of our approach reveals that these traits are in fact highly polygenic, with more than a
118 hundred causal loci contributing to almost every phenotype. We also exploit our increased power to
119 investigate widespread patterns of pleiotropy across the eighteen phenotypes, and to analyze the role of
120 epistatic interactions in the genetic architecture of each trait.
121

122 RESULTS

124 Construction of the barcoded segregant panel

125 To generate our segregant collection, we began by mating a laboratory (BY) and vineyard (RM) strain,
126 which differ at 41,594 SNPs and vary in many relevant phenotypes (see SI). We labeled each parent
127 strain with diverse DNA barcodes (a random sequence of 16 nucleotides), to create pools of each parent
128 that are isogenic except for this barcode (12 and 23 pools of ~1,000 unique barcodes in the RM and BY
129 parental pools, respectively). Barcodes are integrated at a neutral locus containing Cre-Lox machinery
130 for combining barcodes, similar to the “renewable” barcoding system we introduced in recent work ((20),
131 see SI). We then created 276 sets by mating all combinations of parental pools to create heterozygous
132 RM/BY diploids, each of which contains one barcode from each parent. After mating, we induce Cre-Lox
133 recombination to assemble the two barcodes onto the same chromosome, creating a 32-basepair double
134 barcode. After sporulating the diploids and selecting for doubly-barcoded haploid MATa offspring, we
135 used single-cell sorting to select ~100,000 random segregants and to array them into individual wells in
136 1,104 96-well plates. Because there are over 1 million possible barcodes per set, and only 384 offspring
137 selected per set, this random sorting is highly unlikely to select duplicates, allowing us to produce a strain
138 collection with one uniquely barcoded genotype in each well that can be manipulated with liquid handling
139 robotics. Finally, we identified the barcode associated with each segregant by constructing orthogonal
140 pools (e.g. all segregants in a given 96-well plate, all segregants in row A of any 96-well plate, all
141 segregants from a set, etc.), and sequencing the barcode locus in each pool. This combinatorial pooling
142 scheme allows us to infer the barcode associated with each segregant in each individual well, based on
143 the unique set of pools in which a given barcode appears ((21); see SI).
144

145 Inferring segregant genotypes

146 We next conducted whole-genome sequencing of every strain using an automated library preparation
147 pipeline that makes use of custom indexed adapters to conduct fragmentation in 384-well plates, after
148 which samples can be pooled for downstream library preparation (Fig. 1A). To limit sequencing costs, we
149 infer segregant genotypes from low-coverage sequencing data (median coverage of 0.6x per segregant;
150 Fig. 1B). We can obtain high genotyping accuracy despite such low coverage due to our cross design:
151 because we use an F1 rather than an advanced cross, we have a high density of SNPs relative to
152 recombination breakpoints in each individual (>700 SNPs between recombination breakpoints on

153 average). Exploiting this fact in combination with our knowledge of the parental genotypes, we developed
154 a Hidden Markov Model (HMM) to infer the complete segregant genotypes from this data (see SI). This
155 HMM is similar in spirit to earlier imputation approaches (22, 23); it infers genotypes at unobserved loci
156 (and corrects for sequencing errors and index-swapping artifacts) by assuming that each segregant
157 consists of stretches of RM and BY loci, separated by relatively sparse recombination events. We note
158 that this model produces probabilistic estimates of genotypes (i.e. the posterior probability that segregant
159 genotypes is either RM or BY at each SNP; Fig. 1C), which we account for in our analysis below.
160

161 We assessed two key aspects of the performance of this sequencing approach: the confidence with
162 which it infers genotypes, and the accuracy of the genotypes assigned. We find that at 0.1x coverage
163 and above, our HMM approach confidently assigns genotypes at almost all loci (posterior probability of
164 >92% of the inferred genotype at >99% of loci; see Fig. S12 and SI for a discussion of our validation of
165 these posterior probability estimates). Loci not confidently assigned to either parental genotype largely
166 correspond to SNPs in the immediate vicinity of breakpoints, which cannot be precisely resolved with
167 low-coverage sequencing. To assess the accuracy of our genotyping, we conducted high-coverage
168 sequencing of a small subset of segregants and compared the results to the inferred genotypes from our
169 low-coverage data. We find that the genotyping is accurate (Fig. 1D), with detectable error only very near
170 recombination breakpoints. In addition, we find that our posterior probabilities are well calibrated (e.g.
171 80% of the loci with an RM posterior probability of 0.8 are indeed RM; see SI). We also note that, as
172 expected, most SNPs are present across our segregant panel at an allele frequency of 0.5 (Fig. S1),
173 except for a few marker loci that are selected during engineering of the segregants.
174

175 **Barcoded bulk phenotype measurements**

176 Earlier QTL mapping studies in budding yeast have typically assayed phenotypes for each segregant in
177 their mapping panels independently, primarily by measuring colony sizes on solid agar plates (6, 14–16,
178 19). These colony size phenotypes can be defined on a variety of different solid media, but while they are
179 relatively high throughput (often conducted in 384-well format), they are not readily scalable to
180 measurements of 100,000 segregants.
181

182 Here, we exploit our barcoding system to instead measure phenotypes for all segregants in parallel, in a
183 single bulk pooled assay for each phenotype. The basic idea is straightforward: we combine all
184 segregants into a pool, sequence the barcode locus to measure the relative frequency of each
185 segregant, apply some selection pressure, and then sequence again to measure how relative
186 frequencies change. These bulk assays are easily scalable and can be applied to any phenotype that
187 can be measured based on changes in relative strain frequencies. Because we only need to sequence
188 the barcode region, we can sequence deeply to obtain high-resolution phenotype measurements at
189 modest cost. In addition, we can correct sequencing errors because the set of true barcodes is known in
190 advance from combinatorial pooling (see above). Importantly, this system allows us to track the
191 frequency changes of each individual in the pool, assigning a phenotype to each specific segregant
192 genotype. This stands in contrast to “bulk segregant analysis” approaches that use whole-genome
193 sequencing of pooled segregant panels to track frequency changes of alleles rather than individual
194 genotypes; our approach increases power and allows us to study interaction effects between loci across
195 the genome.
196

197 Using this BB-QTL system, we investigate eighteen complex traits, defined as competitive fitness in a
198 variety of liquid growth conditions (“environments”), including minimal, natural, and rich media with
199 several carbon sources and a range of chemical and temperature stressors (Table 1). To measure these
200 phenotypes, we pool all strains and track barcode frequencies through 49 generations of competition.
201 We use a maximum likelihood model to jointly infer the relative fitness of each segregant in each assay—
202 a value related to the instantaneous exponential rate of change in frequency of a strain during the course
203 of the assay (Fig. 1A, lower-right inset; see SI). These measurements are consistent between replicates
204 (average R^2 between replicate assays of 0.77), although we note that the inherent correlation between

205 fitness and barcode read counts means that errors are inversely correlated with fitness (Fig. 1E; Fig. S2).
206 While genetic changes such as de novo mutations and ploidy changes can occur during bulk selection,
207 we estimate their rates to be sufficiently low such that they impact only a small fraction of barcode
208 lineages (see SI) and thus do not significantly bias the inference of QTL effects over the strain collection.
209

210 **Modified stepwise cross-validated forward search approach to mapping QTL**

211 With genotype and phenotype data for each segregant in hand, we next sought to map the locations and
212 effects of QTL. The typical approach to inferring causal loci would be to use a forward stepwise
213 regression (6, 22). This method proceeds by first computing a statistic such as p-value or LOD score for
214 each SNP independently, to test for a statistical association between that SNP and the phenotype. The
215 most-significant SNP is identified as a causal locus, and its estimated effect size is regressed out of the
216 data. This process is then repeated iteratively to identify additional causal loci. These iterations proceed
217 until no loci are identified with a statistic that exceeds a predetermined significance threshold, which is
218 defined based on a desired level of genome-wide significance (e.g. based on a null expectation from
219 permutation tests or assumptions about the numbers of true causal loci). However, although this
220 approach is fast and simple and can identify large numbers of QTL, it is not conservative. Variables
221 added in a stepwise approach do not follow the claimed F or chi-squared distribution, so using p-values
222 or related statistics as a selection criterion is known to produce false positives, especially at large sample
223 sizes or in the presence of strong linkage (24). Because our primary goal is to dissect the extent of
224 polygenicity by resolving small-effect loci and decomposing “composite” QTL, these false positives are
225 particularly problematic and we therefore cannot use this traditional approach.
226

227 Fortunately, due to the high statistical power of our study design, we are better positioned to address the
228 question of polygenicity using a more conservative method with lower false discovery rate. To do so, we
229 carried out QTL mapping through a modified stepwise regression approach, with three key differences
230 compared to previous methods. First, we use cross-validation rather than statistical significance to
231 terminate the model search procedure, which reduces the false positive rate. Specifically, we divide the
232 data into training and test sets (90% and 10% of segregants respectively, chosen randomly), and add
233 QTL iteratively in a forward stepwise regression on the training set. We terminate this process when
234 performance on the test set declines, and use this point to define an L0-norm sparsity penalty on the
235 number of QTL. We repeat this process for all possible divisions of the data to identify the average
236 sparsity penalty, and then use this sparsity penalty to infer our final model from all the data (in addition,
237 an outer loop involving a validation set is also used to assess the performance of our final model, see
238 SI). The second key difference in our method is that we jointly re-optimize inferred effect sizes (i.e.
239 estimated effect on fitness of having the RM versus the BY version of a QTL) and lead SNP positions
240 (i.e. our best estimate of the actual causal SNP for each QTL) at each step. This further reduces the bias
241 introduced by the greedy forward search procedure. Finally, the third key difference in our approach is to
242 estimate the 95% credible interval around each lead SNP using a Bayesian method rather than LOD-
243 drop methods, which is more suitable in polygenic architectures. We describe and validate this modified
244 stepwise regression approach in detail in the SI. Simulations under various QTL architectures show that
245 this approach has a low false positive rate, accurately identifies lead SNPs and credible intervals even
246 with strong linkage, and generally calls fewer QTL than in the true model, only missing QTL of extremely
247 small effect sizes (see SI).
248

249 **Resolving the highly polygenic architecture of complex phenotypes in yeast**

250 We used our modified stepwise cross-validated forward search to infer the genetic basis of the eighteen
251 phenotypes described in Table 1, assuming an additive model. We find that these phenotypes are highly
252 polygenic: we identify well over 100 QTL spread throughout the genome for almost every trait, an order
253 of magnitude more than that found for similar phenotypes in most earlier studies (~0.3% of SNPs in our
254 panel; Fig. 2, Fig. 3, Fig. S3). This increase can be directly attributed to our large sample size: inference
255 on a downsampled dataset of 1,000 individuals detects no more than 30 QTL for any trait (see SI).
256

257 The distribution of effect sizes of detected QTL shows a large enrichment of small-effect loci, and has
258 similar shape (though different scale) across all phenotypes (Fig. 3C), consistent with an exponential
259 distribution above the limit of detection. This distribution suggests that further increases in sample size
260 would reveal a further enrichment of even smaller-effect loci. While our SNP density is high relative to the
261 recombination rate, our sample size is large enough that there are many individuals with a recombination
262 breakpoint between any pair of neighboring SNPs (over 100 such individuals with breakpoints between
263 each SNP on average). This allows us to precisely fine-map many of these QTL to causal genes or even
264 nucleotides. We find that most QTL with substantial effect sizes are mapped to one or two genes, with
265 dozens mapped to single SNPs (Fig. 3D). In many cases these genes and precise causal nucleotides
266 are consistent with previous mapping studies (e.g. MKT1 (25), PHO84 (26), HAP1 (27)); in some cases
267 we resolve for the first time the causal SNP within a previously identified gene (e.g. IRA2 (28)); and in
268 others we detect novel causal genes (e.g. VPS70). However, we note that because our SNP panel does
269 not capture all genetic variation, such as transposon insertions or small deletions, some QTL lead
270 positions may tag linked variation rather than being causal themselves.

271
272 The SNP density in our panel and resolution of our approach highly constrain these regions of linked
273 variation, providing guidance for future studies of specific QTL, but as a whole we find that our collection
274 of lead SNPs displays some characteristic features of causal variants. Across all identified lead SNPs,
275 we observe a significant enrichment of nonsynonymous substitutions, especially when considering lead
276 SNPs with posterior probability above 0.5 (Fig. 3E; $p < 10^{-10}$, χ^2 test, $df=2$), as expected for causal
277 changes in protein function. Lead SNPs are also more likely to be found within disordered regions of
278 proteins (1.22x fold increase, $p < 10^{-5}$), even when constrained to nonsynonymous variants (1.28x fold
279 increase beyond the enrichment for nonsynonymous variants in disordered regions, $p < 10^{-4}$), indicating
280 potential causal roles in regulation (29). Lead SNP alleles, especially those with large effect size, are
281 observed at significantly lower minor allele frequencies (MAF) in the 1,011 Yeast Genomes collection
282 (30) compared to random SNPs (Fig. 3F; $p=0.0004$, Fisher's exact test considering alleles with effect
283 $>1\%$ and rare alleles with MAF $<5\%$) and minor alleles are more likely to be deleterious ($p=0.006$,
284 permutation test) regardless of which parental allele is rarer. These results are consistent with the view
285 that rare, strongly deleterious alleles subject to negative selection can contribute substantially to complex
286 trait architecture (16, 31).

287
288 **Patterns of pleiotropy**
289 Our eighteen assay environments range widely in their similarity to each other: some groups of traits
290 exhibit a high degree of phenotype correlation, such as rich medium at a gradient of temperatures, while
291 other groups of traits are almost completely uncorrelated, such as molasses, rich medium with suloctidil,
292 and rich medium with guanidinium (Fig. 3A). Because many of these phenotypes are likely to involve
293 overlapping aspects of cellular function, we expect the inferred genetic architectures to exhibit substantial
294 pleiotropy, where individual variants are causal for multiple traits. In addition, in highly polygenic
295 architectures, pleiotropy across highly dissimilar traits is also expected to emerge due to properties of the
296 interconnected cellular network. For example, SNPs in regulatory genes may affect key functional targets
297 (some of them regulatory themselves) that directly influence a given phenotype, as well as other
298 functional targets that may, in turn, influence other phenotypes (32).

299
300 Consistent with these expectations, we observe diverse patterns of shared QTL across traits (Fig. 3B).
301 To examine these pleiotropic patterns at the gene level, we group QTL across traits whose lead SNP is
302 within the same gene (or in the case of intergenic lead SNPs, the nearest gene). In total, we identify 449
303 such pleiotropic genes with lead SNPs affecting multiple traits (see SI). These genes encompass the
304 majority of QTL across all phenotypes, and are highly enriched for regulatory function (Table S1) and for
305 intrinsically disordered regions, which have been implicated in regulation (29) ($p < 0.005$, Fisher's exact
306 test, see SI). The most pleiotropic genes (Fig. S5) correspond to known variants frequently associated
307 with quantitative variation in yeast (e.g. MKT1, HAP1, IRA2) as well as previously unidentified ones (e.g.
308 VPS70).

309
310
311
312
313
314
315
316
317
318
319
320
321

The highly polygenic nature of our phenotypes highlights the difficulty in identifying modules of target genes with interpretable functions related to the measured traits (33). However, we can take advantage of our high-powered mapping approach to explore how pleiotropy leads to diverging phenotypes in different environments. Specifically, to obtain a global view of pleiotropy and characterize the shifting patterns of QTL effects across traits, we adopt a method inspired by sequence alignment strategies to match (or to leave unmatched) QTL from one trait with QTL from another trait, in a way that depends on the similarity in their effect sizes and distance between lead SNPs (see SI). From this, for each pair of environments we can find the change in effect size for each QTL, as well as an overall metric of model similarity. We find that pairwise model similarity scores recapitulate the phenotype correlation structure (Fig. 3G), including smoothly varying similarity across the temperature gradient (Fig. 3H), indicating that changes in our inferred model coefficients accurately capture patterns of pleiotropy.

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

For most comparisons between environments, substantial effect size changes are distributed over all QTL, indicating a broad response to the environmental shift (Fig. 3I). For example, while growth in Li (rich medium + lithium) is strongly affected by a single locus directly involved in salt tolerance (3 tandem repeats of the ENA cluster in S288C (34), corresponding to 82% of explained variance), 63 of the remaining 82 QTL are also detected in 30C (rich medium only), explaining a further 15% of variance. To some extent these 63 QTL may represent a “module” of genes with functional relevance for growth in rich medium, but their effect sizes are far less correlated than would be expected from noise or for a similar pair of environments (e.g. 30C and 27C, Fig. S6). For the temperature gradient, while we observe high correlations between similar temperatures overall, these are not due to specific subsets of genes with simple, interpretable monotonic changes in effect size. Indeed, effect size differences between temperature pairs are typically uncorrelated; thus, QTL that were more beneficial when moving from 30C to 27C may become less beneficial when moving from 27C to 25C or 25C to 23C (Fig. S6). Together, these patterns of pleiotropy reveal large numbers of regulatory variants with widespread, important, and yet somewhat unpredictable effects on diverse phenotypes, implicating a highly interconnected cellular network while obscuring potential signatures of specific functional genes or modules.

338

Epistasis

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

To characterize the structure of this complex cellular network in more detail, numerous studies have used genetic perturbations to measure epistatic interactions between genes, which in turn shed light on functional interactions (35–40). However, the role of epistasis in GWAS and QTL mapping studies remains controversial; these studies largely focus on variance partitioning to measure the strength of epistasis, as they are underpowered to infer specific interaction terms (41). We sought to leverage the large sample size and high allele frequencies of our study to infer epistatic interactions, by extending our inference method to include potential pairwise interactions among the loci previously identified as having an additive effect (see SI). Our approach builds on the modified stepwise cross-validated search described above: after obtaining the additive model, we perform a similar iterative forward search on pairwise interactions, re-optimizing both additive and pairwise effect sizes at each step and applying a second L0-norm sparsity penalty, similarly chosen by cross-validation, to terminate the model search. We note that restricting our analysis of epistasis to loci identified as having an additive effect does not represent a major limitation. This is because a pair of loci that have a pairwise interaction but no additive effects will tend to be (incorrectly) assigned additive effects in our additive-only model, since the epistatic interaction will typically lead to background-averaged associations between each locus and the phenotype. These spurious additive effects will then tend to be reduced upon addition of the pairwise interaction term.

357
358
359
360

Using this approach, we detect widespread epistasis: hundreds of pairwise interactions for each phenotype (Fig. 4A,B, Table 1, Fig. S7), which corresponds to an average of 1.7 epistatic interactions per QTL, substantially more than has been detected in previous mapping studies (14). To interpret these epistatic interactions in the context of cellular networks, we can represent our model as a graph for each

361 phenotype, where nodes represent genes with QTL lead SNPs and edges represent epistatic
362 interactions between those QTL (this perspective is distinct from and complementary to Ref. (40), where
363 nodes represent gene deletions and edges represent similar patterns of interaction). Notably, in contrast
364 to a random graph, the epistatic graphs across phenotypes show heavy-tailed degree distributions, high
365 clustering coefficients, and small average shortest paths (~3 steps between any pair of genes; Fig. 4C);
366 these features are characteristic of the small-world networks posited by the “omnigenic” view of genetic
367 architecture (33). These results hold even when accounting for ascertainment bias (i.e. loci with large
368 additive effects have more detected epistatic interactions; see SI).
369

370 We also find that hundreds of epistatic interactions are repeatedly found across environments (Fig. 4D,
371 Fig. S8). Overall, epistatic interactions are more likely to be detected in multiple environments than
372 expected by chance, even when considering only uncorrelated environments ($p < 10^{-3}$, see SI), as
373 expected if these interactions accurately represent the underlying regulatory network. Considering
374 interactions found in all environments, we see a small but significant overlap of detected interactions with
375 previous genome-wide deletion screens (39) ($p = 0.03$, $\chi^2 = 4.46$, $df = 1$; see SI). Taken together, these
376 results suggest that inference of epistatic interactions in a sufficiently high-powered QTL mapping study
377 provides a consistent and complementary method to reveal both global properties and specific features
378 of underlying functional networks.
379

380 **Validating QTL inferences with reconstructions**

381 We next sought to experimentally validate the specific inferred QTL and their effect sizes from our
382 additive and additive-plus-pairwise models. To do so, we reconstructed 6 individual and 9 pairs of RM
383 SNPs on the BY background and measured their competitive fitness in 11 of the original 18 conditions in
384 individual competition assays (though note that for technical reasons these measurement conditions are
385 not precisely identical to those used in the original bulk fitness assays; see SI). We find that the QTL
386 effects inferred with the additive-only models are correlated with the phenotypes of these reconstructed
387 genotypes, although the predicted effects are systematically larger than the measured phenotypes (Fig.
388 5A, cyan). To some extent, these errors may arise from differences in measurement conditions,
389 undetected smaller-effect linked loci that bias inferred additive effect sizes, and from the confidence
390 intervals around the lead SNP, which introduce uncertainty about the identity of the precise causal locus,
391 among other factors. However, this limited power is also somewhat unsurprising even if our inferred lead
392 SNPs are correct, because the effect sizes inferred from the additive-only model measure the effect of a
393 given locus averaged across the F1 genetic backgrounds in our segregant panel. Thus, if there is
394 significant epistasis, we expect the effect of these loci in the specific strain background chosen for the
395 reconstruction (the BY parent in this case) to differ from the background-averaged effect inferred by BB-
396 QTL.
397

398 In agreement with this interpretation, we find that the predictions from our additive-plus-pairwise
399 inference agree better with the measured values in our reconstructed mutants (Fig. 5A, magenta).
400 Specifically, we find that the correlation between predicted and measured phenotypes is similar to the
401 additive-only model, but the systematic overestimates of effect sizes are significantly reduced (Fig. 5A,
402 inset; $p < 0.0001$ from permutation test; see SI). This suggests a substantial effect of nonlinear terms,
403 although the predictive power of our additive-plus-pairwise model remains modest. As above, this limited
404 predictive power could be a consequence of undetected linked loci or errors in the identification of
405 interacting loci. However, it may also indicate the presence of further epistasis of higher order than the
406 pairwise terms we infer. To explore these potential effects of higher-order interactions, we trained a
407 dense neural network to jointly predict 17 out of our 18 phenotypes from genotype data (see SI). The
408 network architecture involves three densely connected layers, allowing it to capture arbitrary nonlinear
409 mappings. Indeed, we find that this neural network approach does explain slightly more phenotypic
410 variance (on average 1% more variance than the additive-plus-pairwise QTL model, Fig. 5B, see SI),
411 although specific interactions and causal SNPs are harder to interpret in this case. Together, these
412 results suggest that although our ability to pinpoint precise causal loci and their effect sizes is likely

413 limited by a variety of factors, the models with epistasis do more closely approach the correct genetic
414 architecture despite explaining only marginally more variance than the additive model (Fig. S4), as
415 suggested by previous studies (42).

416

417

418 DISCUSSION

419

420 The BB-QTL mapping approach we have introduced in this study increases the scale at which QTL
421 mapping can be performed in budding yeast, primarily by taking advantage of automated liquid handling
422 techniques and barcoded phenotyping. While the initial construction of our segregant panel involved
423 substantial brute force, this has now generated a resource that can be easily shared (particularly in
424 pooled form) and used for similar studies aiming to investigate a variety of related questions in
425 quantitative genetics. In addition, the approaches we have developed here provide a template for the
426 systematic construction of additional mapping panels in future work, which would offer the opportunity to
427 survey the properties of a broader range of natural variation. While our methods are largely specific to
428 budding yeast, conceptually similar high-throughput automated handling systems and barcoding
429 methods may also offer promise in studying quantitative genetics in other model organisms, though
430 substantial effort would be required to develop appropriate techniques in each specific system.

431

432 Here, we have used our large segregant panel to investigate the genetic basis of eighteen phenotypes,
433 defined as competitive fitness in a variety of different liquid media. The increased power of our study
434 reveals that these traits are all highly polygenic: using a conservative cross-validation method, we find
435 more than 100 QTL at high precision and low false-positive rate for almost every environment in a single
436 F1 cross. Our detected QTL include many of the key genes identified in earlier studies, along with many
437 novel loci. These QTL overall are consistent with statistical features observed in previous studies. For
438 example, we find an enrichment in nonsynonymous variants among inferred causal loci in regulatory
439 genes, and a tendency for rare variants (as defined by their frequency in the 1,011 Yeast Genomes
440 collection) to have larger effect sizes.

441

442 While the QTL we detect do explain most of the narrow-sense heritability across all traits (Fig. S4), this
443 does not represent a substantial increase relative to the heritability explained by earlier, smaller studies
444 with far fewer QTL detected (6, 14, 16). Instead, the increased power of our approach allows us to
445 dissect multiple causal loci within broad regions previously detected as a single “composite” QTL (Fig. 2A
446 insets), and to detect numerous novel small-effect QTL. Thus, our results suggest that, despite their
447 success in explaining observed phenotypic heritability, these earlier QTL mapping studies in budding
448 yeast fail to accurately resolve the highly polygenic nature of these phenotypes. This in turn implies that
449 the apparent discrepancy in the extent of polygenicity inferred by GWAS compared to QTL mapping
450 studies in model organisms arises at least in part as an artifact of the limited sample sizes and power of
451 the latter.

452

453 Our finding that increasing power reveals increasingly polygenic architectures of complex traits is broadly
454 consistent with several other recent studies that have improved the scale and power of QTL mapping in
455 yeast in different ways. For example, advanced crosses have helped to resolve composite QTL into
456 multiple causal loci (15), and multiparental or round-robin crosses have identified numerous additional
457 causal loci by more broadly surveying natural variation in yeast (16, 18). In addition, recent work has
458 used very large panels of diploid genotypes to infer highly polygenic trait architectures, though this study
459 involves a much more permissive approach to identifying QTL that may lead to a substantial false
460 positive rate (19). Here, we have shown that by simply increasing sample size we can both resolve
461 composite QTL into multiple causal loci and also identify numerous additional small-effect loci that
462 previous studies have been underpowered to detect. The distribution of QTL effect sizes we infer is
463 consistent with an exponential distribution up to our limit of detection, suggesting that there may be many
464 more even smaller-effect causal loci that could be revealed by further increases in sample size.

465

466 By applying BB-QTL mapping to eighteen different fitness traits, we explored how the effects of individual
467 loci shift across small and large environmental perturbations. Quantifying the structure of these
468 pleiotropic effects is technically challenging, particularly for many QTL of modest effect that are not
469 resolved to a single SNP or gene. In these cases, it is difficult to determine whether a particular region
470 contains a single truly pleiotropic locus, or multiple linked variants that each influence a different trait.
471 While we have used one particular approach to this problem, other choices are also possible, and ideally
472 future work to jointly infer QTL using data from all phenotypes simultaneously could provide a more
473 rigorous method for identifying pleiotropic loci. However, we do find that the structure of the pleiotropy in
474 our inferred models largely recapitulates the observed correlations between phenotypes, suggesting that
475 the causal loci we identify are largely sufficient to explain these patterns. Many of the same genes are
476 implicated across many traits, often with similar strong effect sizes in distinct environments, and as we
477 might expect these highly pleiotropic QTL are enriched for regulatory function. However, dividing QTL
478 into modules that affect subsets of environments, predicting how their effect sizes change across
479 environments (even our temperature gradient), and identifying core or peripheral genes (as in (33))
480 remains difficult. Future work to assay a larger number and wider range of phenotypes could potentially
481 provide more detailed insight into the structure of relationships between traits and how they arise from
482 shared genetic architectures.

483

484 We also leveraged the statistical power of our approach to explore the role of epistatic interactions
485 between QTL. Previous studies have addressed this question through the lens of variance partitioning,
486 concluding that epistasis contributes less than additive effects to predicting phenotype (14). However, it
487 is a well-known statistical phenomenon that variance partitioning alone cannot determine the relative
488 importance of additive, epistatic, or dominance factors in gene action or genetic architectures (41). Here,
489 we instead explore the role of epistasis by inferring specific pairwise interaction terms and analyzing their
490 statistical and functional patterns. We find that epistasis is widespread, with nearly twice as many
491 interaction terms as additive QTL. The resulting interaction graphs show characteristic features of
492 biological networks, including heavy-tailed degree distributions and small shortest paths, and we see a
493 significant overlap with interaction network maps from previous studies despite the different sources of
494 variation (naturally occurring SNPs versus whole-gene deletions). Notably, the set of genes with the most
495 numerous interactions overlaps with the set of highly pleiotropic genes, which are themselves enriched
496 for regulatory function. Together, these findings indicate that we are capturing features of underlying
497 regulatory and functional networks, although we are far from revealing the complete picture. In particular,
498 we expect that we fail to detect many interactions that have small effect sizes below our detection limit,
499 that the interactions we observe are limited by our choice of phenotypes, and that higher-order
500 interactions may also be widespread.

501

502 To validate our QTL inference, we reconstructed a small set of single and double mutations by
503 introducing RM alleles into the BY parental background. We find that our ability to predict the effects of
504 these putatively causal loci remains somewhat limited: the inferred effect sizes in our additive plus
505 pairwise epistasis models have relatively modest power to predict the fitness effects of reconstructed
506 mutations and pairs of mutations. Thus, despite the unprecedented scale and power of our study, we still
507 cannot claim to precisely infer the true genetic architecture of complex traits. This failure presumably
508 arises in part from limitations to our inference, which could lead to inaccuracies in effect sizes or the
509 precise locations of causal loci. In addition, the presence of higher-order epistatic interactions (or
510 interactions with the mitochondria) would imply that we cannot expect to accurately predict phenotypes
511 for genotypes far outside of our F1 segregant panel, such as single- and double-SNP reconstructions on
512 the BY genetic background. While both of these sources of error could in principle be reduced by further
513 increases in sample size and power, it is unlikely that substantial improvements are likely to be realized
514 in the near future.

515

516 However, despite these limitations, our BB-QTL mapping approach helps bridge the gap between well-
517 controlled laboratory studies and high-powered, large-scale GWAS, revealing that complex trait
518 architecture in model organisms is indeed influenced by large numbers of previously unobserved small-
519 effect variants. We examined in detail how this architecture shifts across a spectrum of related traits,
520 observing that while pleiotropy is common, changes in effects are largely unpredictable, even for similar
521 traits. Further, we characterized specific epistatic interactions across traits, revealing not only their
522 substantial contribution to phenotype but also the underlying network structure, in which a subset of
523 genes occupy central roles. Future work in this and related systems is needed to illuminate the
524 landscape of pleiotropy and epistasis more broadly, which will be crucial not merely for phenotype
525 prediction but for our fundamental understanding of cellular organization and function.
526

527 **REFERENCES CITED**

528

529 1. C. Bycroft, *et al.*, The UK Biobank resource with deep phenotyping and genomic data. *Nature* **562**,
530 203–209 (2018).

531 2. E. E. Eichler, *et al.*, Missing heritability and strategies for finding the underlying causes of complex
532 disease. *Nat. Rev. Genet.* **11**, 446–450 (2010).

533 3. T. A. Manolio, *et al.*, Finding the missing heritability of complex diseases. *Nature* **461**, 747–753
534 (2009).

535 4. J. Yang, *et al.*, Common SNPs explain a large proportion of the heritability for human height. *Nat.*
536 *Genet.* **42**, 565–569 (2010).

537 5. International Schizophrenia Consortium, *et al.*, Common polygenic variation contributes to risk of
538 schizophrenia and bipolar disorder. *Nature* **460**, 748–752 (2009).

539 6. J. S. Bloom, I. M. Ehrenreich, W. T. Loo, T.-L. V. Lite, L. Kruglyak, Finding the sources of missing
540 heritability in a yeast cross. *Nature* **494**, 234–237 (2013).

541 7. A. Burga, E. Ben-David, T. Lemus Vergara, J. Boocock, L. Kruglyak, Fast genetic mapping of
542 complex traits in *C. elegans* using millions of individuals in bulk. *Nat Commun* **10**, 2680 (2019).

543 8. T. F. C. Mackay, W. Huang, Charting the genotype-phenotype map: lessons from the *Drosophila*
544 *melanogaster* Genetic Reference Panel. *Wiley Interdiscip Rev Dev Biol* **7** (2018).

545 9. J. Bergelson, F. Roux, Towards identifying genes underlying ecologically relevant traits in
546 *Arabidopsis thaliana*. *Nat Rev Genet* **11**, 867–879 (2010).

547 10. J. C. Fay, The molecular basis of phenotypic variation in yeast. *Curr Opin Genet Dev* **23**, 672–677
548 (2013).

549 11. M. Sohail, *et al.*, Polygenic adaptation on height is overestimated due to uncorrected stratification in
550 genome-wide association studies. *Elife* **8** (2019).

551 12. E. G. King, S. J. Macdonald, A. D. Long, Properties and power of the *Drosophila* Synthetic
552 Population Resource for the routine dissection of complex traits. *Genetics* **191**, 935–949 (2012).

553 13. Collaborative Cross Consortium, The genome architecture of the Collaborative Cross mouse
554 genetic reference population. *Genetics* **190**, 389–401 (2012).

555 14. J. S. Bloom, *et al.*, Genetic interactions contribute less than additive effects to quantitative trait
556 variation in yeast. *Nature Communications* **6**, 8712 (2015).

557 15. R. She, D. F. Jarosz, Mapping Causal Variants with Single-Nucleotide Resolution Reveals
558 Biochemical Drivers of Phenotypic Change. *Cell* **172**, 478–490.e15 (2018).

559 16. J. S. Bloom, *et al.*, Rare variants contribute disproportionately to quantitative trait variation in yeast.
560 *Elife* **8** (2019).

561 17. F. A. Cubillos, *et al.*, Assessing the complex architecture of polygenic traits in diverged yeast
562 populations. *Mol Ecol* **20**, 1401–1413 (2011).

563 18. F. A. Cubillos, *et al.*, High-resolution mapping of complex traits with a four-parent advanced
564 intercross yeast population. *Genetics* **195**, 1141–1155 (2013).

565 19. C. M. Jakobson, D. F. Jarosz, Molecular Origins of Complex Heritability in Natural Genotype-to-
566 Phenotype Relationships. *Cell Syst* **8**, 363-379.e3 (2019).

567 20. A. N. Nguyen Ba, *et al.*, High-resolution lineage tracking reveals travelling wave of adaptation in
568 laboratory yeast. *Nature* **575**, 494–499 (2019).

569 21. Y. Erlich, *et al.*, DNA Sudoku--harnessing high-throughput sequencing for multiplexed specimen
570 analysis. *Genome Res* **19**, 1243–1253 (2009).

571 22. D. Arends, P. Prins, R. C. Jansen, K. W. Broman, R/qt: high-throughput multiple QTL mapping.
572 *Bioinformatics* **26**, 2990–2992 (2010).

573 23. J. Marchini, B. Howie, Genotype imputation for genome-wide association studies. *Nat Rev Genet*
574 **11**, 499–511 (2010).

575 24. G. Smith, Step away from stepwise. *Journal of Big Data* **5**, 32 (2018).

576 25. A. M. Deutschbauer, R. W. Davis, Quantitative trait loci mapped to single-nucleotide resolution in
577 yeast. *Nat. Genet.* **37**, 1333–1340 (2005).

578 26. E. O. Perlstein, D. M. Ruderfer, D. C. Roberts, S. L. Schreiber, L. Kruglyak, Genetic basis of
579 individual differences in the response to small-molecule drugs in yeast. *Nature Genetics* **39**, 496–
580 502 (2007).

581 27. R. B. Brem, G. Yvert, R. Clinton, L. Kruglyak, Genetic dissection of transcriptional regulation in
582 budding yeast. *Science* **296**, 752–755 (2002).

583 28. E. N. Smith, L. Kruglyak, Gene-environment interaction in yeast gene expression. *PLoS biology* **6**,
584 e83 (2008).

585 29. H. J. Dyson, P. E. Wright, Intrinsically unstructured proteins and their functions. *Nat. Rev. Mol. Cell
586 Biol* **6**, 197–208 (2005).

587 30. J. Peter, *et al.*, Genome evolution across 1,011 *Saccharomyces cerevisiae* isolates. *Nature* **556**,
588 339–344 (2018).

589 31. T. Fournier, *et al.*, Extensive impact of low-frequency variants on the phenotypic landscape at
590 population-scale. *Elife* **8** (2019).

591 32. X. Liu, Y. I. Li, J. K. Pritchard, Trans Effects on Gene Expression Can Drive Omnipotent Inheritance.
592 *Cell* **177**, 1022-1034.e6 (2019).

593 33. E. A. Boyle, Y. I. Li, J. K. Pritchard, An Expanded View of Complex Traits: From Polygenic to
594 Omnipotent. *Cell* **169**, 1177–1186 (2017).

595 34. J. Wieland, A. M. Nitsche, J. Strayle, H. Steiner, H. K. Rudolph, The PMR2 gene cluster encodes
596 functionally distinct isoforms of a putative Na⁺ pump in the yeast plasma membrane. *EMBO J* **14**,
597 3870–3882 (1995).

598 35. A. H. Tong, *et al.*, Systematic genetic analysis with ordered arrays of yeast deletion mutants.
599 *Science* **294**, 2364–2368 (2001).

600 36. M. A. Horlbeck, *et al.*, Mapping the Genetic Landscape of Human Cells. *Cell* **174**, 953-967.e22
601 (2018).

602 37. G. Butland, *et al.*, eSGA: *E. coli* synthetic genetic array analysis. *Nat Methods* **5**, 789–795 (2008).

603 38. S. J. Dixon, *et al.*, Significant conservation of synthetic lethal genetic interaction networks between
604 distantly related eukaryotes. *Proc Natl Acad Sci U S A* **105**, 16653–16658 (2008).

605 39. M. Costanzo, *et al.*, A global genetic interaction network maps a wiring diagram of cellular function.
606 *Science* **353** (2016).

607 40. M. Costanzo, *et al.*, The genetic landscape of a cell. *Science* **327**, 425–431 (2010).

608 41. W. Huang, T. F. C. Mackay, The Genetic Architecture of Quantitative Traits Cannot Be Inferred
609 from Variance Component Analysis. *PLoS genetics* **12**, e1006421 (2016).

610 42. S. K. G. Forsberg, J. S. Bloom, M. J. Sadhu, L. Kruglyak, Ö. Carlborg, Accounting for genetic
611 interactions improves modeling of individual quantitative trait phenotypes in yeast. *Nature Genetics*
612 **49**, 497–503 (2017).

613

614 **ACKNOWLEDGEMENTS**
615 We thank the Bauer Core facility at Harvard and the Broad Institute Genomic Services sequencing core
616 for assistance with sequencing. We thank Alan Moses, Andrew Murray, Hunter Fraser, Dan Rice, and
617 members of the Desai lab for comments on the manuscript. A.N.N.B. acknowledges support from the
618 National Science and Engineering Research Council of Canada (NSERC). K.R.L. acknowledges support
619 from the Fannie & John Hertz Foundation Graduate Fellowship Award, the National Science Foundation
620 (NSF) Graduate Research Fellowship Program, and fellowship award #1764269 from the NSF-Simons
621 Center for Mathematical and Statistical Analysis of Biology at Harvard. M.M.D. acknowledges support
622 from grant PHY-1914916 from the NSF and grant GM104239 from the National Institute of Health (NIH).
623 The computations in this paper were run on the Faculty of Arts and Sciences Research Computing
624 (FASRC) Cannon cluster supported by the FAS Division of Science Research Computing Group at
625 Harvard University.
626

627 **AUTHOR CONTRIBUTIONS**
628 A.N.N.B., K.R.L., A.R.-C., and M.M.D. designed the project; A.N.N.B., K.R.L., and A.R.-C. constructed
629 and genotyped the panel; A.N.N.B., K.R.L., A.R.-C., and S.G. conducted phenotyping; A.N.N.B., K.R.L.,
630 and A.R.-C. developed inference methods and analyzed the data; D.T. and F.M. developed the neural-
631 network model; A.N.N.B., K.R.L., A.R.-C., and M.M.D. wrote the paper.
632

633 **AUTHOR INFORMATION**
634 The authors declare no competing financial interests. Correspondence and requests for materials should
635 be addressed to M.M.D. (mdesai@oeb.harvard.edu).
636

637 **DATA AVAILABILITY**
638 Raw sequencing reads will be uploaded to NCBI SRA upon acceptance. Inferred genotype and
639 phenotype data (25 GB) are publicly available at https://utoronto-my.sharepoint.com/:f/g/personal/alex_nguyenba_utoronto_ca/EIIGeEeuZo9Ok9d03NPm-QAB-ErMYC-stQD14Vd_QKIUGg?e=cYuBKG. Inferred QTL and other data are compiled in Supplementary Data Files
640 S1-8.
641

642 **CODE AVAILABILITY**
643 Custom code and freely available software were used to conduct analyses. All software packages and
644 algorithms used are fully described in the Supplementary Information, and code will be made available
645 upon request.
646

Table 1: Phenotyping growth conditions. Summary of the eighteen competitive fitness phenotypes we analyze in this study. All assays were conducted at 30°C, except when stated otherwise. YP: 1% yeast extract, 2% peptone. YPD: 1% yeast extract, 2% peptone, 2% glucose. SD: synthetic defined medium, 2% glucose. YNB: yeast nitrogen base, 2% glucose. Numbers of inferred additive QTL and epistatic interactions are also shown.

Name	Description	Additive QTL	Epistatic QTL
23C	YPD, 23C	112	185
25C	YPD, 25C	134	189
27C	YPD, 27C	149	255
30C	YPD, 30C	159	247
33C	YPD, 33C	147	216
35C	YPD, 35C	117	250
37C	YPD, 37C	128	265
4NQO	SD, 0.05 g/ml 4-nitroquinoline 1-oxide	153	394
cu	YPD, 1mM copper(II) sulfate	143	225
eth	YPD, 5% (v/v) ethanol	149	247
gu	YPD, 6 mM guanidinium chloride	185	277
li	YPD, 20 mM lithium acetate	83	42
mann	YP, 2% (w/v) mannose	169	341
mol	molasses, diluted to 20% (w/v) sugars	111	235
raff	YP, 2% (w/v) raffinose	167	221
sds	YPD, 0.005% (w/v) SDS	175	263
suloc	YPD, 50 M suloctidil	173	314
ynb	YNB, w/o AAs, w/ ammonium sulfate	145	303

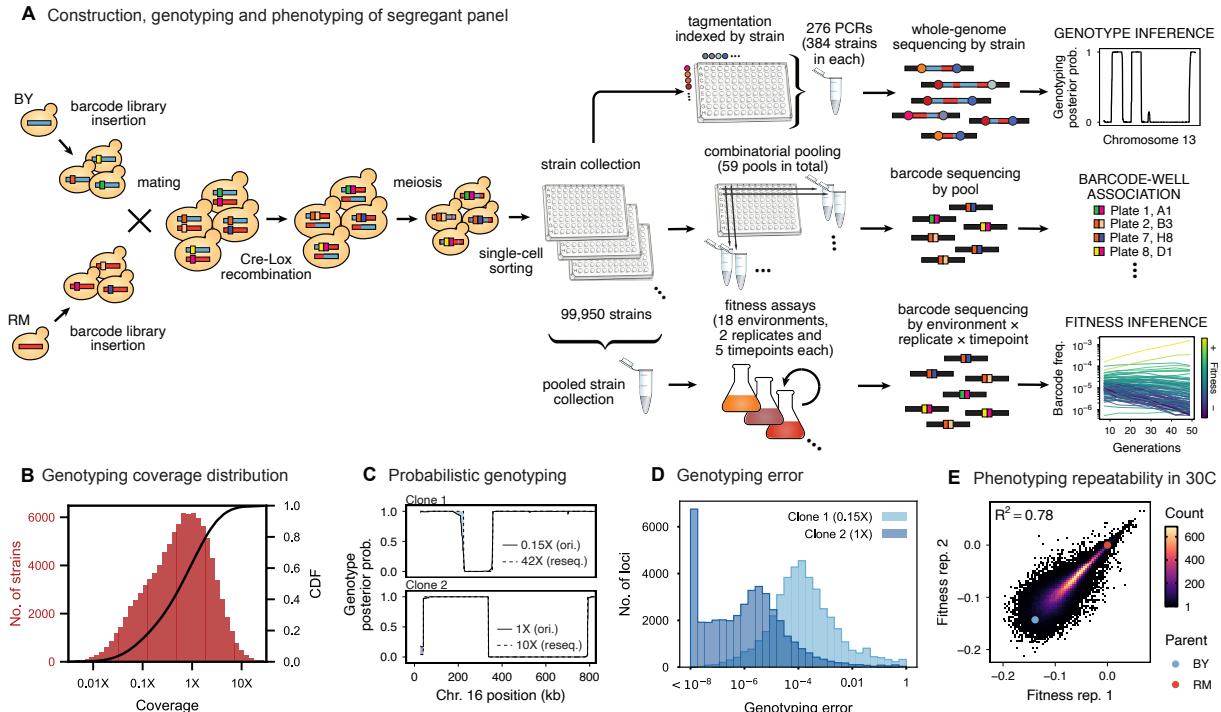
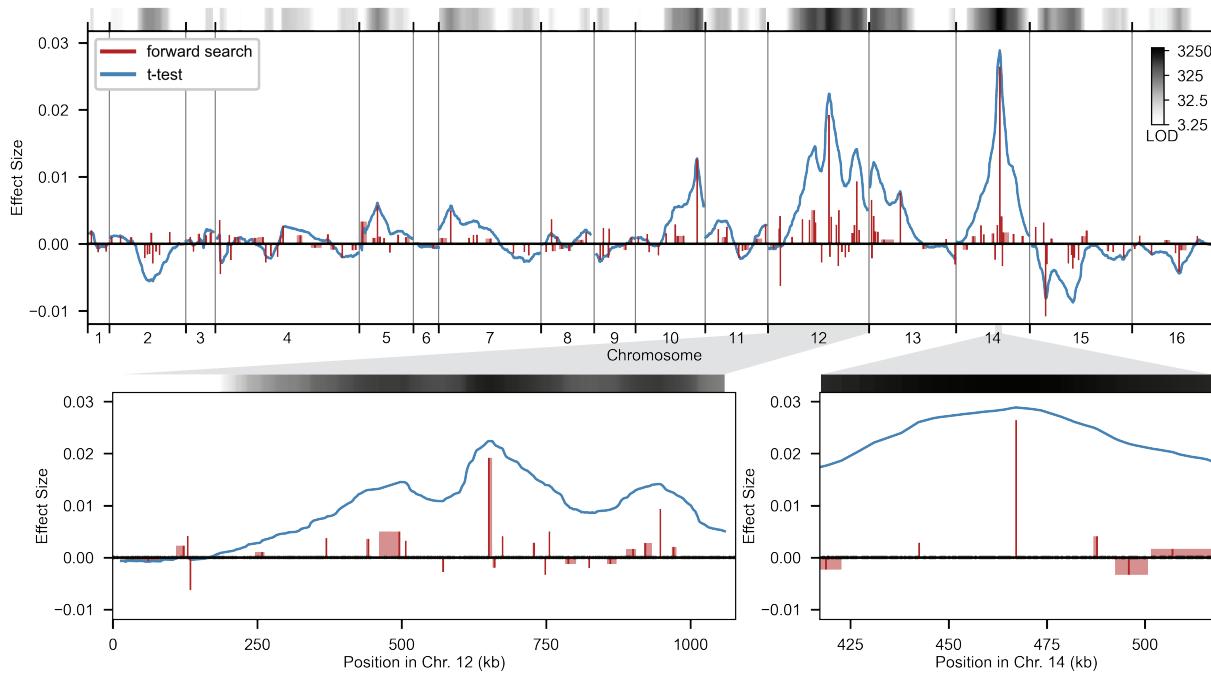


Figure 1: Cross design, genotyping, phenotyping, and barcode association. **A**, Construction, genotyping, and phenotyping of segregant panel. Founding strains BY (blue) and RM (red) are transformed with diverse barcode libraries (colored rectangles) and mated in bulk. Cre recombination combines barcodes onto the same chromosome. After meiosis, sporulation, and selection for barcode retention, we sort single haploid cells into 96-well plates. Top: whole-genome sequencing of segregants via multiplexed fragmentation. Middle: barcode-well association by combinatorial pooling. Bottom: bulk phenotyping by pooled competition assays and barcode frequency tracking. **B**, Histogram and cumulative distribution function (CDF) of genotyping coverage of our panel. **C**, Inferred probabilistic genotypes for two representative individuals from low coverage (solid) and high coverage (dashed) sequencing, with the genotyping error (difference between low and high coverage probabilistic genotypes) indicated by shaded blue regions. **D**, Distribution of genotyping error by SNP for the two individuals shown in (C). **E**, Reproducibility of phenotype measurements in 30C environment (see Fig. S2 for other environments).

A QTL inference of fitness in the 30C environment



B QTL inference of fitness in the 4NQO environment

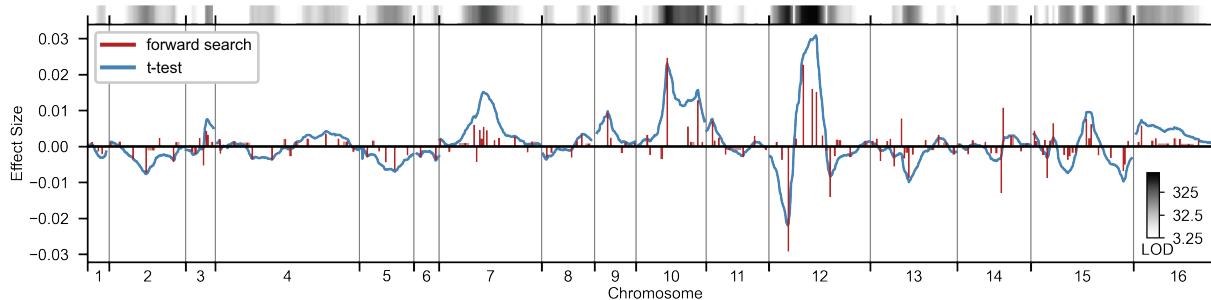


Figure 2: High-resolution QTL mapping. **A,B**, QTL mapping for **(A)** YPD at 30°C and **(B)** YPD with 4-nitroquinoline (4NQO). Inferred QTL are shown as red bars; bar height shows effect size and red shaded regions represent credible intervals. For contrast, effect sizes inferred by a Student's t-test at each locus are shown in blue. Gray bars at top indicate loci with log-odds (LOD) scores surpassing genome-wide significance in this t-test, with shading level corresponding to log-LOD score. See Fig. S3 for other environments.

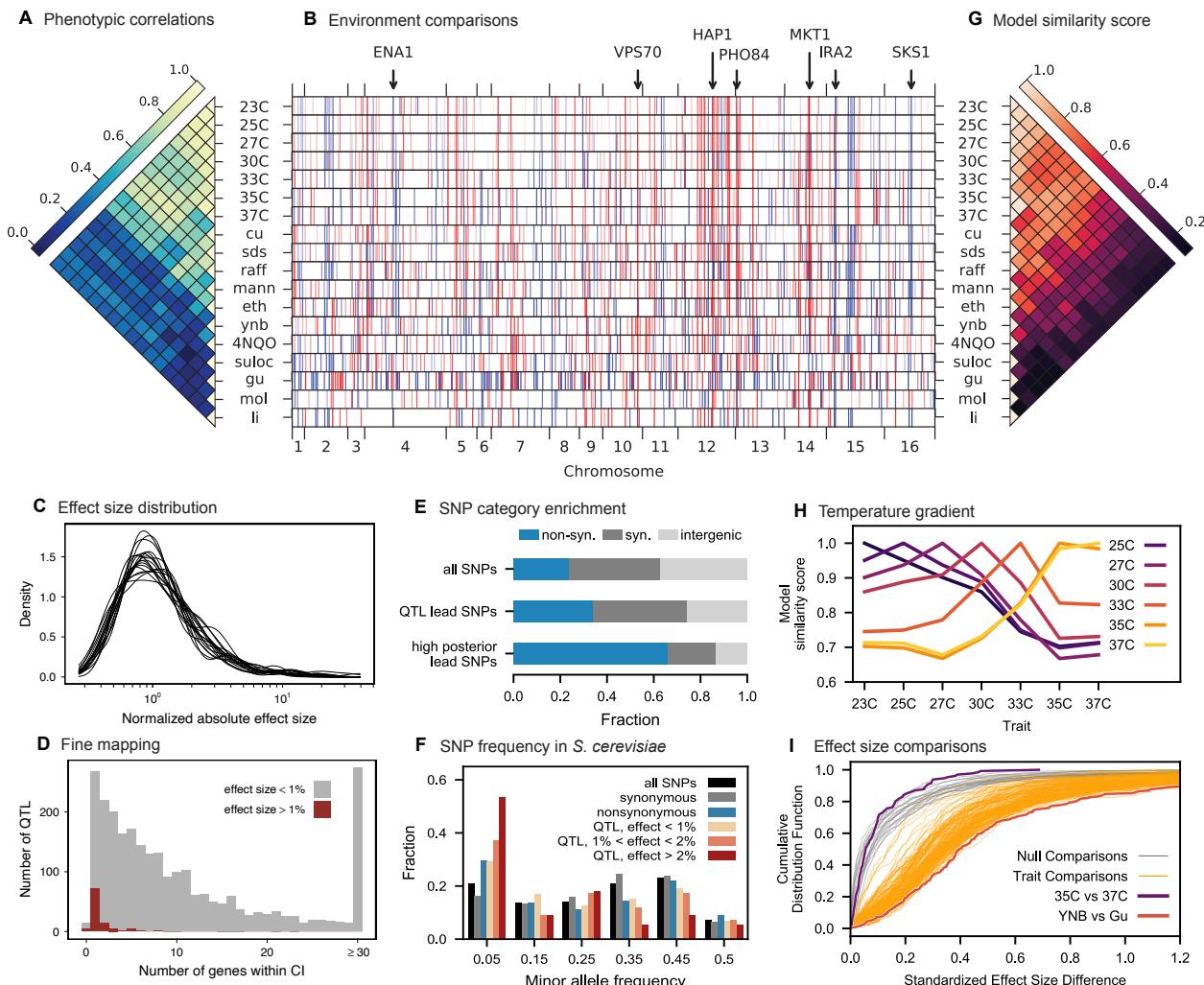


Figure 3: Genetic architecture and pleiotropy. **A**, Pairwise Pearson correlations between phenotype measurements, ordered by hierarchical clustering. **B**, Inferred genetic architecture for each trait. Each inferred QTL is denoted by a red or blue line for a positive or negative effect of the RM allele, respectively; color intensity denotes effect size on a log scale. Notable genes are indicated above. **C**, Smoothed distribution of absolute effect sizes for each trait, normalized by the median effect for each trait. **D**, Distribution of the number of genes within the 95% credible interval for each QTL. **E**, Distribution of SNP types. “High posterior” lead SNPs are those with >50% posterior probability. **F**, Fractions of synonymous SNPs, nonsynonymous SNPs, and QTL lead SNPs as a function of their frequency in the 1,011 Yeast Genomes panel. **G**, Pairwise model similarity scores (which quantify differences in QTL positions and effect sizes between traits; see SI) across traits. **H**, Pairwise model similarity scores for each temperature trait against all other temperature traits. **I**, Cumulative distribution functions (CDFs) of differences in effect size for each locus between each pair of traits (orange). Grey traces represent the null expectation (between cross-validation sets for the same trait). The least and most similar trait pairs are highlighted in red and purple, respectively, and indicated in the legend.

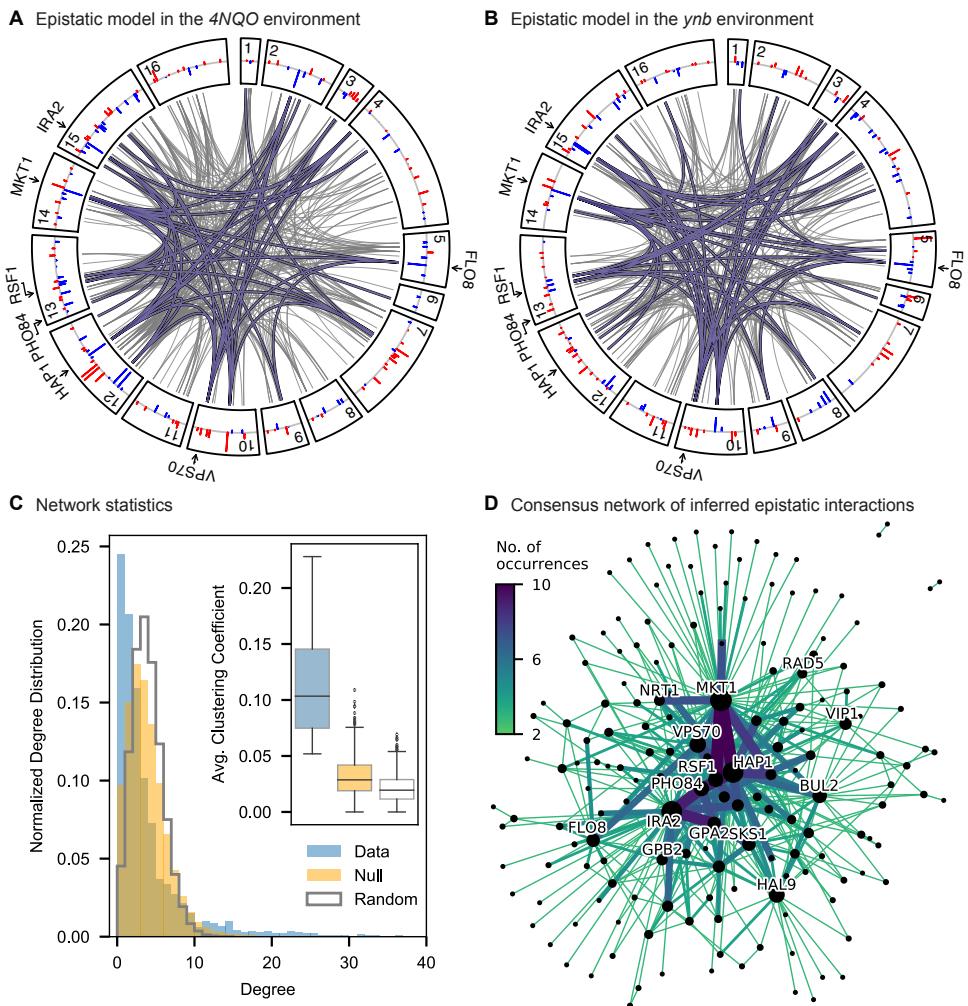


Figure 4: Pairwise epistasis. **A, B**, Inferred pairwise epistatic interactions between QTL (with additive effects as shown in outer ring) for (A) the 4NQO environment and (B) the ynb environment. Interactions that are also observed for at least one other trait are highlighted in purple. See Fig. S7 for other environments. **C**, Network statistics across environments. The pooled degree distribution for the eighteen phenotype networks is compared with 50 network realizations generated by an Erdos-Renyi random model (white) or an effect-size-correlation-preserving null model (orange; see SI). Inset: average clustering coefficient for the eighteen phenotypes, compared to 50 realizations of the null and random models. **D**, Consensus network of inferred epistatic interactions. Nodes represent genes (with size scaled by degree) and edges represent interactions that were detected in more than one environment (with color and weight scaled by the number of occurrences). Notable genes are labeled.

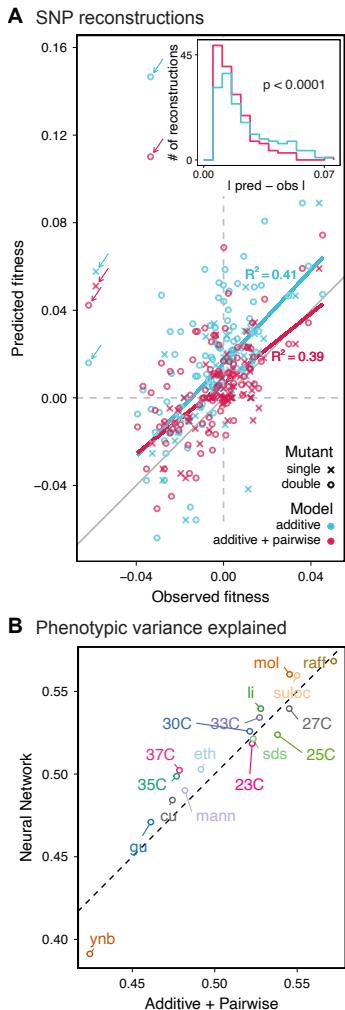


Figure 5: Evaluating model performance. **A**, Comparison between measured fitness effects of reconstructions of 6 single (crosses) and 9 double mutants (circles) in 11 environments, and their fitness in those environments as predicted by our inferred additive-only (cyan) or additive-plus-pairwise-epistasis models (magenta). The one-to-one line is shown in gray. R^2 values correspond to shown fitted linear regressions for each type of model (colored lines), excluding MKT1 mutants measured in *gu* environment (outliers indicated by arrows; see SI). Inset shows the histogram of the absolute difference between observed and predicted reconstruction fitness under our two models, with the p -value from the permutation test of the difference between these distributions indicated (see SI) **B**, Comparison between estimated phenotypic variance explained by the additive-plus-pairwise-epistasis model and a trained dense neural network of optimized architecture (see SI).