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ABSTRACT

Colossoma macropomum known as “tambaqui” is the largest Characiformes fish in the Amazon
River Basin and a leading species in Brazilian aquaculture and fisheries. Good quality meat and great
adaptability to culture systems are some of its remarkable farming features. To support studies into
the genetics and genomics of the tambaqui, we have produced the first high-quality genome for the
species. We combined Illumina and PacBio sequencing technologies to generate a reference genome,
assembled with 39X coverage of long reads and polished to a QV=36 with 130X coverage of short
reads. The genome was assembled into 1,269 scaffolds to a total of 1,221,847,006 bases, with a
scaffold N50 size of 40 Mb where 93% of all assembled bases were placed in the largest 54 scaffolds
that corresponds to the diploid karyotype of the tambaqui. Furthermore, the NCBI Annotation
Pipeline annotated genes, pseudogenes, and non-coding transcripts using the RefSeq database as
evidence, guaranteeing a high-quality annotation. A Genome Data Viewer for the tambaqui was
produced which benefits any groups interested in exploring unique genomic features of the species.
The availability of a highly accurate genome assembly for tambaqui provides the foundation for
novel insights about ecological and evolutionary facets and is a helpful resource for aquaculture

purposes.
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INTRODUCTION

The Amazon basin harbors a massive freshwater ichthyo diversity throughout its rivers and tributaries,
with 2,406 validated freshwater native fish species from 232,936 georeferenced records
[1]. Colossoma macropomum is regarded as the largest Characiformes representative found across the
Amazon River and its tributaries, with individuals reaching one meter in total length and 30 kg in
weight [2] (Figure 1). This species is known by different common names, such as tambaqui in Brazil
and cachama negra in Colombia. Tambaquis are omnivore/frugivore benthopelagic fish, and they have
an essential ecological role as seed dispersers [3]. They are potamodromous fish, with upstream
migration and reproduction taking place in the white waters along the woody shores between
November and February [4]. The tambaqui is an important food and income source for Amazonian
fishing communities, it is the most farmed native fish species in Brazil, with a production amount to
101,079 metric tons in 2019 [5-6].

Both the key ecological and economic roles played by the tambaqui have meant that it is a
comparatively well studied species, with research to date focusing on its biological adaptations to the
Amazon River waters, and on the genetics of production traits to assist selective breeding programs.
Transcriptomic characterization of tambaqui exposed to (i) distinct climate change scenarios and (ii)
during gonadal differentiation have provided a helpful resource for the understanding of the molecular
mechanisms underlying both the adaptation to a future new climate and the process of sex
determination [7,8,9]. Other molecular mechanisms related to enzymatic capacity for long-chain
polyunsaturated fatty acid biosynthesis have also been confirmed by a functional characterization of
core genes in these processes [10,11]. Moreover, the first steps for deciphering the structure and
functional dynamics of the tambaqui genome have already been taken, with large-scale SNP discovery
allowing the building of a high-density genetic linkage map of the species [12], along with preliminary
microRNA identification and characterization [13]. Equally pertinent are the new findings in
morphology: specimens lacking intramuscular bones were identified in a fish farm in Brazil; however,
the genetic and molecular mechanisms underlying the expression of such desirable phenotypes for the
fish market are still unknown [14,15].

Considering the great need for increased genetic resources for the tambaqui to assist fisheries
management and aquaculture [16], we present herein the first high-quality reference genome for C.
macropomum. This complete set of DNA now represents a valuable resource for evolutionary and
functional genomics studies within bony fishes, providing a window of opportunity to reveal tambaqui

genome singularities and help develop molecular techniques to improve selective breeding programs.
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METHODS

DNA isolation, taxonomy identification, and ethics statement.

Genomic DNA was isolated from caudal fin-clip samples from a C. macropomum specimen obtained
from the germplasm bank maintained by the National Center for research and conservation of
freshwater aquatic biodiversity (CEPTA/IBAMA) of the Brazilian Ministry of the Environment. The
specimen was a female with 3,5 Kg (Figure 1). To confirm the taxonomic status of the specimen used
in this work, we have both (i) carried out an external morphological evaluation [17] and (ii) a
preliminary genetic analysis of an initial Illumina run for C. macropomum using the kmer-matching
tool Seal from BBTools package (v 37.90) [18]. We downloaded the sequences of one mitochondrial
and four nuclear genes of C. macropomum and its two close relatives, Piaractus brachypomus and P.
mesopotamicus (Supplementary Material Table S1). Then we used Seal to ascertain the number of
reads with exclusive kmers matching each species' sequences. Out of 264,813,582 reads, 1,278
matched C. macropomum, 62 matched P. brachypomus and none matched P. mesopotamicus,
confirming the samples identification. We followed the applicable international and national ethical
guidelines for the care and use of animals in research. The approval of the Ethics Committee for the

Use of Animal registration is placed at the University of Mogi das Cruzes and is numbered #019/2017.

Sequencing and assembly.

Different data types were produced for the genome assembly of C. macropomum. High molecular
weight DNA was extracted from muscle and fin clip using MagMAX CORE nucleic acid purification
kit (Thermo Fisher Scientific, Carlsbad, CA, USA) to produce PacBio continuous longs reads (CLR)
and Illumina paired and jumping reads (Table 2). The produced libraries were sequenced with both
PacBio’s Single Molecule, Real-Time (SMRT) Sequencing technology using the Sequel system and
four SMRT cells at RTL Genomics (Texas, USA) and with Illumina Hiseq2500 V4 equipment at the
Functional Genomics Core Facility, Esalg-USP (Sdo Paulo, Brazil). Illumina reads quality were
checked with FastQC [19] and trimmed for adaptors and low-quality bases with BBDuk (BBBTools
37.90) (SW15-20). The genome size and heterozygosity were estimated by kmer (k=21) analysis
(Figure 2A) performed with the sequenced Illumina data using meryl kmer counter, implemented in
Canu assembler [20] and genome scope [21].

The 21-mers distribution of the Illumina data obeyed the theoretical Poisson distribution
(Figure 2A). The genome size was estimated in 1,16 Gb with heterozygosity of 0.62%. Based on these
estimations, we sequenced a 39X coverage of the tambaqui genome in long PacBio reads, and 130X
in short Illumina reads (Table 1). For the genome assembly, PacBio reads were input to the assembler

Flye (v2.5) [22] with parameters ‘genome-size 1.5g - pacbio-raw’. Then, the assembly was polished
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using the Illumina reads with the software Pilon [23] and parameters ‘frags’ for paired reads and
‘jumps’ for mate-pair reads. Finally, the assembly of the tambaqui had one round of purging with
PurgeDups [24]. Purging was performed to remove any sequences representing duplicated portions of
a chromosome that are erroneously kept in assemblies when the divergence level of those regions in
both haplotypes is high. This has removed 1,167 contigs and 26 Mb of haplotypic retention. The final
tambaqui genome was assembled into 1,269 scaffolds with a scaff N50=40Mb and a total assembly
length of 1,221,847,006 bp (Table 2). A fraction of 93% of the genome is assembled on 54 scaffolds
that represent the main tambaqui karyotype [25]. We have also identified the mitochondrial genome
(Figure 3) within our assembled genome: it is represented by scaffold NW_023495502.1 that is 16,715
bp in length and has a conserved gene content and synteny with C. macropomum mitogenome
available on NCBI (KP188830.1).

Repeat sequences and gene annotation.

We identified repeat sequences in C. macropomum using homology-based, and de novo approaches.
A de novo library of repeats was created for the tambaqui using RepeatModeler2 package [26]. This
library was then combined with RepBase [27] (release 26.04), forming the final ‘teleost’ library with
which C. macropomum genome repeats were searched. Table 3 presents the repeat summary of C.
macropomum: 52.49% of the genome is composed of repeats, of which 49.78% are interspersed
repeats. C. macropomum genome was submitted to NCBI for annotation. The robust NCBI Eukaryotic
Annotation Pipeline uses homology-based and ab initio gene predictions to annotate genes (including
protein-coding and non-coding as INCRNAs, sSnRNAS), pseudo-genes, transcripts, and proteins. Details
of the pipeline are described in the NCBI Annotation HandBook
(https://www.ncbi.nlm.nih.gov/genbank/eukaryotic_genome_submission_annotation/). Briefly: first,
repeats are masked with RepeatMasker [28] and Window Masker [29]. Subsequently, transcripts,
proteins, and RNA-Seq from the NCBI database are aligned to the genome with Splign [30] and
ProSplign (https://www.ncbi.nlm.nih.gov/sutils/static/prosplign/prosplign.html). Those alignments
are submitted to Gnomon [31] for gene prediction. Gnomon (i) merges non-conflicting alignments into
putative models, then (ii) extends predictions missing a start and a stop codon or internal exon(s) using
an HMM-model algorithm. Finally, Gnomon (ii) builds pure ab initio predictions where it finds open
reading frames of sufficient length but with no supporting alignment detected. Models built on RefSeq
transcript alignments are given preference over overlapping Gnomon models with the same splice
pattern. Table 4 presents a summary of the annotation of C. macropomum. A detailed description of
the tambaqui genome annotation can be found on the NCBI Eukaryotic Annotation Page
(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Colossoma_macropomum/100/).
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RESULTS AND DISCUSSION

All sequencing data is available on NCBI under the BioProject PRINA702552, via SRA accession
numbers SRX10122091 to SRX10122101. The assembled genome and sequence annotations are
available on NCBI with the accession number GCF_904425465.1. The genome sequence and the
annotation files - including CDS and proteins - can be downloaded from the NCBI FTP server
(https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/904/425/465/GCF_904425465.1_Colossoma_macrop
omum/). Finally, a genome DataViewer was built for the tambaqui and can be accessed
at https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_904425465.1. This browser
is ideal for further exploration of the tambaqui genome especially from groups that are not specialist

bioinformaticians, such as geneticists working on selective breeding programs.

Evaluating the completeness of the genome assembly and annotation.
The final assembly of the tambaqui is 1.2 Gb with a scaffold N50 size of 40.163 Mb (Table 2). Figure
2A shows the DNA kmer prediction of genome size done with the Illumina reads produced to polish
this assembly. Further, Figure 2B presents a merqury [32] kmer plot of the final assembly: merqury
produces a mapping-free evaluation of kmer completeness in genomes by comparing the assembly
kmers with raw reads for the specimen. In this case, we used the high-quality Illumina reads (Table 1)
to plot the merqury evaluation against the genome kmers. Figure 2B shows that (i) the kmers in the
genome are in accordance with its Illumina read kmers, (ii) the assembly kmers have the same
distribution of the raw reads kmer (2A), and that (iii) most of the assembly kmers (pink color) are
unique in the genome, showing that the final assembly of the tambaqui has low levels of haplotypic
retention (blue color). The final phred-like merqury QV score is 36.73 (QV=36.73), meaning that the
tambaqui assembled bases are more than 99.9% accurate. The merqury completeness score shows that
89.31% of kmers in the Illumina reads are present in the assembly, which is a good recovery of kmers
for a species with 0.6% heterozygosity.

For the tambaqui genome, 93% of the assembled bases are present in the largest 54 scaffolds.
We have performed a first nucleotide synteny analysis of BUSCO genes found in the first 54 scaffolds
of C. macropomum against the BUSCO genes on genome of Ictalurus punctatus [33] using busco2fasta
(https://github.com/Istevens17/busco2fasta) and Circos [34]. The synteny is presented in Figure 4. C.
macropomum and |. punctatus shared a common ancestor ~150 million years ago [35]. The image
shows a good degree of synteny in terms of BUSCO genes, for a number of times entire chromosomes
are syntenic. Supplementary Figures S1 and S2 show similar analysis with C auratus [36] and
Astyanax mexicanus [37] of different levels of relatedness to C. macropomum demonstrating the
potential of this highly contiguous genome for studies of chromosome evolution.
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Finally, we have performed a general gene presence analysis of C. macropomum genome using the
BUSCO software [38] (v5.0.0) and the OrthoDB [39] library actinopterygii_odb10. BUSCOV5 has
recovered 96.5% of complete BUSCO genes out of 3,640 genes searched, where 95.5% were complete
and single copy, 1.0% were duplicated, 1.0% were fragmented, and 2.5% were missing - once more

demonstrating the quality of the tambaqui assembly

Gene family identification and phylogenetic analysis of C. macropomum.

To identify gene families among C. macropomum and other species, we downloaded the whole
genome predicted protein sequences from the NCBI Eukaryotic Annotation Page of Oreochromis
niloticus (GCF_001858045.2), Carassius auratus (GCF_003368295.1), Danio rerio
(GCF_000002035.6), Lates calcarifer (GCF_001640805.1), Cyprinus carpio

(GCF_000951615.1), Rhincodon typus (GCF_001642345.1), Poecilia formosa

(GCF_000485575.1), Ictalurus punctatus (GCF_001660625.1), Astyanax mexicanus
(GCF_000372685.2), Oncorhynchus mykiss (GCF_013265735.2) and Pygocentrus nattereri
(GCF_001682695.1). We then input this data to Orthofinder [40] (v2.5.2). From all of the proteins
imputed from the 12 species, Orthofinder has assigned 97.3% of the proteins to 31,794 orthogroups.
There were 10,939 orthogroups with all the species present, and 33 of them consisted of single-copy
genes. Those 33 single-copy orthologs were used to generate a phylogeny (Figure 5). First, the single-
copy were aligned with MAFFT [41] (v7.455), and alignments were trimmed with trimAL [42] (v1.4.
rev15). Then, a supermatrix was created using geneStitcher.py [43], which was imputed to PhyML
[44] for a phylogeny with the amino acid substitution model LG and 100 bootstrap replicates. The
phylogeny presented herein (Figure 5) is consistent with other studies [45-46].

RE-USE POTENTIAL

Seasonal and long-term modifications in environmental conditions are well-acknowledged with
periodic events of low water dissolved oxygen leading to hypoxia and even anoxia. Tambaqui is one
of the amazon fish species that developed adaptions to deal with this, such as enlarging the lower lip
to grasp oxygen better to survive in hypoxia. These, along with other fish adaptations to the Amazon
aquatic ecosystem, are intriguing scientific questions that could be scientifically addressed using the
present well-assembled and annotated tambaqui genome. Moreover, the availability of this annotated
genome will pave the way to spur the development of tools for the genomic breeding programs of

tambaqui, the most important native species for aquaculture in South America.
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AVAILABILITY OF SUPPORTING DATA

The datasets generated and analyzed during the current study are available on NCBI under the SRA
numbers SRX10122091 to SRX10122101. The assembled genome and sequence annotations are on
NCBI under the accession number GCF_904425465.1. The genome sequence and the annotation
files - including CDS and proteins - can be downloaded from the NCBI FTP

server (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/904/425/465/GCF_904425465.1 Colossoma_
macropomum/). A DataViewer can be accessed

at https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_904425465.1.
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Table 1: Summary of genome sequencing data generated with multiple sequencing technologies.
Sequencing coverage was based on the estimated genome size (1,16Gb) generated for C.
macropomum by kmer analysis (k=21) of the Illumina sequencing data.

Library Type Insert Raw Clean Average N50 Clean data

Size Data Data (Gb) Read Length  Read Length (bp) sequencing
(bp) (Gb) (bp) coverage (X)

IHlumina 400 59.08 52.93 100 -- 44.89

(R1 and R2)

Illumina 4000 78.81 57.69 81 -- 49.7

(R1and R2)

[llumina 8000 55.59 41.31 83 -- 35.6

(R1 and R2)

Pacbio CLR -- 45.58 --- 9749 17667 39.2

Total 169.39
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Table 2: Final statistics for the genome assembly of C. macropomum.

Contig length (bp)  Scaffold length (bp) Number of Contigs Number of Scaffolds

Total 1,221,809,066 1,221,847,006 1687 1269

Max 26,165,397 63,817,184 -—= —
N50 5,645,235 40,163,545 54 14
N90 655,952 2,856,822 300 33
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457  Table 3. Repeat annotation: Annotation of repeats done for C. macropomum with a de novo library
458  built with RepeatModeler added to a Repbase teleost library. The final library was used as input to
459  RepeatMasker.

Bases masked: 641,307,197 bp Number of Length % of
(52.49%) elements*  occupied sequence
Retroelements 131365 35210915 2.88
SINEs: 3369 162823 0.01
Penelope 2614 206056 0.02
LINEs: 88299 25531727 2.09
CRE/SLACS 5 195 0
L2/CR1/Rex 54941 16069764 1.32
R1/LOA/Jockey 1613 158940 0.01
R2/R4/NeSL 688 137427 0.01
RTE/Bov-B 9260 3512602 0.29
L1/CIN4 9819 2801917 0.23
LTR elements: 39697 9516365 0.78
BEL/Pao 1824 655410 0.05
Tyl/Copia 3452 196980 0.02
Gypsy/DIRS1 17593 6224074 0.51
Retroviral 13302 1948492 0.16
DNA transposons 428117 94637950 71.75
hobo-Activator 50751 5464720 0.45
Tcl-1S630-Pogo 270090 78887086 6.46
PiggyBac 3206 517597 0.04
4980 440554 0.04
Tourist/Harbinger
Other (Mirage, 1414 117503 0.01
P-element,
Transib)
Rolling-circles 9904 2012553 0.16
Unclassified: 2468233 478402494  39.15
Total interspersed repeats 608251359  49.78
Small RNA: 2641 167105 0.01
Satellites: 15326 2676106 0.22
Simple repeats: 435230 23721925 1.94
Low complexity 51965 4532860 0.37
460 ** most repeats fragmented by insertions or deletions have been counted as one element
461
462
463
464
465
466
467
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Table 4. Summary of the annotated features of C. macromapum genome

Feature Colossoma macropomum

Genes and pseudogenes 31,149
protein-coding 26,670
non-coding 3,279
CDSs

fully-supported 43,938
With >5% ab initio 1,648
partial 267
Protein assigned RefSeq(XP_) 43,618
Mean CDS length (bp) 2,011
Mean intron length (bp) 2,631
Mean exon length (bp) 280
Mean exon per gene 12.02

Detailed annotation report can be found at:
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Colossoma_macropomum/100/#BuildInfo
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Figure 1. Colossoma macropomum individual used for the whole sequencing.
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A GenomeScope Profile
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Figure 2. (A) Kmer composition of sequenced short Illumina reads (Table 1) of the tambaqui C.

macropomum. (B) A merqury kmer analysis of the final tambaqui genome bases against its

sequenced Illumina reads.
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Figure 4. BUSCO genes synteny of C. macropomum (tambaqui; on the right side) and Ictalurus
punctatus (channel catfish; on the left side). Synteny analysis of single copy genes reveal low
conservation of homologous gene order between the species. The majority of C. macropomum genes

are pulverized into several linkage groups of I. punctatus genome, which may reflect different genome

evolutionary events experienced by them.

20


https://doi.org/10.1101/2021.09.08.459456
http://creativecommons.org/licenses/by-nd/4.0/

561
562
563

564
565

566
567
568

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.08.459456; this version posted September 9, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

B Total number of genes

100

. Number of genes in orthogroups

. Species unique orthologs
. Unassigned genes

100

100

100

100

100

Ordovician Devonian

Permian Jurassic

Silunan Carboniferous Triassic Cretaceous

Palecgene

P
s 3

-
e

E s
<9

@

100000 200000

Figure 5. Whole-genome-predicted single copy orthologs phylogeny of 12 fish species including the

newly sequenced genome of C. macropomum. To the right of the phylogeny bars show the proportion

of different types of orthologs assigned by Orthofinder in each species.
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