

1 **Genome assembly and annotation of the tambaqui (*Colossoma macropomum*): an emblematic
2 fish of the Amazon River basin**

3
4 Alexandre Wagner Silva Hilsdorf^{1*#}, Marcela Uliano-Silva^{2*#}, Luiz Lehmann Coutinho³, Horácio
5 Montenegro³, Vera Maria Fonseca Almeida-Val⁴ & Danillo Pinhal^{5#}
6

7 ¹Integrated Center of Biotechnology, University of Mogi das Cruzes P.O. Box 411, Mogi das Cruzes,
8 SP, Brazil, 08780-911.

9 ²Wellcome Sanger Institute, Saffron Walden, Hinxton, CB101SA, United Kingdom

10 ³Animal Science Department, University of São Paulo (USP) / Luiz de Queiroz College of
11 Agriculture (ESALQ), Piracicaba, SP, Brazil, 13418-900.

12 ⁴Brazilian National Institute for Research of the Amazon, Laboratory of Ecophysiology and
13 Molecular Evolution, Manaus, AM, Brazil, 69067-375

14 ⁵Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo
15 State University (UNESP), Botucatu, SP, Brazil, 18618-689.

16 * Equally contributed to this work

17

18

19

20

21

22

23

24

25

26

27

28 **These authors contributed equally to the work

29 #Corresponding authors

30 Alexandre Wagner Silva Hilsdorf, wagner@umc.br

31 Danillo Pinhal, danillo.pinhal@unesp.br

32

33

34 **ABSTRACT**

35 *Colossoma macropomum* known as “tambaqui” is the largest Characiformes fish in the Amazon
36 River Basin and a leading species in Brazilian aquaculture and fisheries. Good quality meat and great
37 adaptability to culture systems are some of its remarkable farming features. To support studies into
38 the genetics and genomics of the tambaqui, we have produced the first high-quality genome for the
39 species. We combined Illumina and PacBio sequencing technologies to generate a reference genome,
40 assembled with 39X coverage of long reads and polished to a QV=36 with 130X coverage of short
41 reads. The genome was assembled into 1,269 scaffolds to a total of 1,221,847,006 bases, with a
42 scaffold N50 size of 40 Mb where 93% of all assembled bases were placed in the largest 54 scaffolds
43 that corresponds to the diploid karyotype of the tambaqui. Furthermore, the NCBI Annotation
44 Pipeline annotated genes, pseudogenes, and non-coding transcripts using the RefSeq database as
45 evidence, guaranteeing a high-quality annotation. A Genome Data Viewer for the tambaqui was
46 produced which benefits any groups interested in exploring unique genomic features of the species.
47 The availability of a highly accurate genome assembly for tambaqui provides the foundation for
48 novel insights about ecological and evolutionary facets and is a helpful resource for aquaculture
49 purposes.

50

51

52

53 **Key words:** cachama; genome; sequencing; characiformes; proteins; transcripts

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68 **INTRODUCTION**

69 The Amazon basin harbors a massive freshwater ichthyo diversity throughout its rivers and tributaries,
70 with 2,406 validated freshwater native fish species from 232,936 georeferenced records
71 [1]. *Colossoma macropomum* is regarded as the largest Characiformes representative found across the
72 Amazon River and its tributaries, with individuals reaching one meter in total length and 30 kg in
73 weight [2] (Figure 1). This species is known by different common names, such as tambaqui in Brazil
74 and cachama negra in Colombia. Tambaquis are omnivore/frugivore benthopelagic fish, and they have
75 an essential ecological role as seed dispersers [3]. They are potamodromous fish, with upstream
76 migration and reproduction taking place in the white waters along the woody shores between
77 November and February [4]. The tambaqui is an important food and income source for Amazonian
78 fishing communities, it is the most farmed native fish species in Brazil, with a production amount to
79 101,079 metric tons in 2019 [5-6].

80 Both the key ecological and economic roles played by the tambaqui have meant that it is a
81 comparatively well studied species, with research to date focusing on its biological adaptations to the
82 Amazon River waters, and on the genetics of production traits to assist selective breeding programs.
83 Transcriptomic characterization of tambaqui exposed to (i) distinct climate change scenarios and (ii)
84 during gonadal differentiation have provided a helpful resource for the understanding of the molecular
85 mechanisms underlying both the adaptation to a future new climate and the process of sex
86 determination [7,8,9]. Other molecular mechanisms related to enzymatic capacity for long-chain
87 polyunsaturated fatty acid biosynthesis have also been confirmed by a functional characterization of
88 core genes in these processes [10,11]. Moreover, the first steps for deciphering the structure and
89 functional dynamics of the tambaqui genome have already been taken, with large-scale SNP discovery
90 allowing the building of a high-density genetic linkage map of the species [12], along with preliminary
91 microRNA identification and characterization [13]. Equally pertinent are the new findings in
92 morphology: specimens lacking intramuscular bones were identified in a fish farm in Brazil; however,
93 the genetic and molecular mechanisms underlying the expression of such desirable phenotypes for the
94 fish market are still unknown [14,15].

95 Considering the great need for increased genetic resources for the tambaqui to assist fisheries
96 management and aquaculture [16], we present herein the first high-quality reference genome for *C.*
97 *macropomum*. This complete set of DNA now represents a valuable resource for evolutionary and
98 functional genomics studies within bony fishes, providing a window of opportunity to reveal tambaqui
99 genome singularities and help develop molecular techniques to improve selective breeding programs.

100

101

102 **METHODS**

103 **DNA isolation, taxonomy identification, and ethics statement.**

104 Genomic DNA was isolated from caudal fin-clip samples from a *C. macropomum* specimen obtained
105 from the germplasm bank maintained by the National Center for research and conservation of
106 freshwater aquatic biodiversity (CEPTA/IBAMA) of the Brazilian Ministry of the Environment. The
107 specimen was a female with 3,5 Kg (Figure 1). To confirm the taxonomic status of the specimen used
108 in this work, we have both (i) carried out an external morphological evaluation [17] and (ii) a
109 preliminary genetic analysis of an initial Illumina run for *C. macropomum* using the kmer-matching
110 tool Seal from BBTools package (v 37.90) [18]. We downloaded the sequences of one mitochondrial
111 and four nuclear genes of *C. macropomum* and its two close relatives, *Piaractus brachypomus* and *P.*
112 *mesopotamicus* (Supplementary Material Table S1). Then we used Seal to ascertain the number of
113 reads with exclusive kmers matching each species' sequences. Out of 264,813,582 reads, 1,278
114 matched *C. macropomum*, 62 matched *P. brachypomus* and none matched *P. mesopotamicus*,
115 confirming the samples identification. We followed the applicable international and national ethical
116 guidelines for the care and use of animals in research. The approval of the Ethics Committee for the
117 Use of Animal registration is placed at the University of Mogi das Cruzes and is numbered #019/2017.
118

119 **Sequencing and assembly.**

120 Different data types were produced for the genome assembly of *C. macropomum*. High molecular
121 weight DNA was extracted from muscle and fin clip using MagMAX CORE nucleic acid purification
122 kit (Thermo Fisher Scientific, Carlsbad, CA, USA) to produce PacBio continuous longs reads (CLR)
123 and Illumina paired and jumping reads (Table 2). The produced libraries were sequenced with both
124 PacBio's Single Molecule, Real-Time (SMRT) Sequencing technology using the Sequel system and
125 four SMRT cells at RTL Genomics (Texas, USA) and with Illumina Hiseq2500 V4 equipment at the
126 Functional Genomics Core Facility, Esalq-USP (São Paulo, Brazil). Illumina reads quality were
127 checked with FastQC [19] and trimmed for adaptors and low-quality bases with BBDuk (BBBTools
128 37.90) (SW15-20). The genome size and heterozygosity were estimated by kmer (k=21) analysis
129 (Figure 2A) performed with the sequenced Illumina data using meryl kmer counter, implemented in
130 Canu assembler [20] and genome scope [21].

131 The 21-mers distribution of the Illumina data obeyed the theoretical Poisson distribution
132 (Figure 2A). The genome size was estimated in 1,16 Gb with heterozygosity of 0.62%. Based on these
133 estimations, we sequenced a 39X coverage of the tambaqui genome in long PacBio reads, and 130X
134 in short Illumina reads (Table 1). For the genome assembly, PacBio reads were input to the assembler
135 Flye (v2.5) [22] with parameters 'genome-size 1.5g - pacbio-raw'. Then, the assembly was polished

136 using the Illumina reads with the software Pilon [23] and parameters ‘frags’ for paired reads and
137 ‘jumps’ for mate-pair reads. Finally, the assembly of the tambaqui had one round of purging with
138 PurgeDups [24]. Purging was performed to remove any sequences representing duplicated portions of
139 a chromosome that are erroneously kept in assemblies when the divergence level of those regions in
140 both haplotypes is high. This has removed 1,167 contigs and 26 Mb of haplotypic retention. The final
141 tambaqui genome was assembled into 1,269 scaffolds with a scaff N50=40Mb and a total assembly
142 length of 1,221,847,006 bp (Table 2). A fraction of 93% of the genome is assembled on 54 scaffolds
143 that represent the main tambaqui karyotype [25]. We have also identified the mitochondrial genome
144 (Figure 3) within our assembled genome: it is represented by scaffold NW_023495502.1 that is 16,715
145 bp in length and has a conserved gene content and synteny with *C. macropomum* mitogenome
146 available on NCBI (KP188830.1).

147

148 **Repeat sequences and gene annotation.**

149 We identified repeat sequences in *C. macropomum* using homology-based, and *de novo* approaches.
150 A *de novo* library of repeats was created for the tambaqui using RepeatModeler2 package [26]. This
151 library was then combined with RepBase [27] (release 26.04), forming the final ‘teleost’ library with
152 which *C. macropomum* genome repeats were searched. Table 3 presents the repeat summary of *C.*
153 *macropomum*: 52.49% of the genome is composed of repeats, of which 49.78% are interspersed
154 repeats. *C. macropomum* genome was submitted to NCBI for annotation. The robust NCBI Eukaryotic
155 Annotation Pipeline uses homology-based and *ab initio* gene predictions to annotate genes (including
156 protein-coding and non-coding as lncRNAs, snRNAs), pseudo-genes, transcripts, and proteins. Details
157 of the pipeline are described in the NCBI Annotation HandBook
158 (https://www.ncbi.nlm.nih.gov/genbank/eukaryotic_genome_submission_annotation/). Briefly: first,
159 repeats are masked with RepeatMasker [28] and Window Masker [29]. Subsequently, transcripts,
160 proteins, and RNA-Seq from the NCBI database are aligned to the genome with Splign [30] and
161 ProSplign (<https://www.ncbi.nlm.nih.gov/sutils/static/prosplign/prosplign.html>). Those alignments
162 are submitted to Gnomon [31] for gene prediction. Gnomon (i) merges non-conflicting alignments into
163 putative models, then (ii) extends predictions missing a start and a stop codon or internal exon(s) using
164 an HMM-model algorithm. Finally, Gnomon (ii) builds pure *ab initio* predictions where it finds open
165 reading frames of sufficient length but with no supporting alignment detected. Models built on RefSeq
166 transcript alignments are given preference over overlapping Gnomon models with the same splice
167 pattern. Table 4 presents a summary of the annotation of *C. macropomum*. A detailed description of
168 the tambaqui genome annotation can be found on the NCBI Eukaryotic Annotation Page
169 (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Colossoma_macropomum/100/).

170 **RESULTS AND DISCUSSION**

171 All sequencing data is available on NCBI under the BioProject PRJNA702552, via SRA accession
172 numbers SRX10122091 to SRX10122101. The assembled genome and sequence annotations are
173 available on NCBI with the accession number GCF_904425465.1. The genome sequence and the
174 annotation files - including CDS and proteins - can be downloaded from the NCBI FTP server
175 (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/904/425/465/GCF_904425465.1_Colossoma_macropomum/). Finally, a genome DataViewer was built for the tambaqui and can be accessed
176 at https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_904425465.1. This browser
177 is ideal for further exploration of the tambaqui genome especially from groups that are not specialist
178 bioinformaticians, such as geneticists working on selective breeding programs.
180

181 **Evaluating the completeness of the genome assembly and annotation.**

182 The final assembly of the tambaqui is 1.2 Gb with a scaffold N50 size of 40.163 Mb (Table 2). Figure
183 2A shows the DNA kmer prediction of genome size done with the Illumina reads produced to polish
184 this assembly. Further, Figure 2B presents a merqury [32] kmer plot of the final assembly: merqury
185 produces a mapping-free evaluation of kmer completeness in genomes by comparing the assembly
186 kmers with raw reads for the specimen. In this case, we used the high-quality Illumina reads (Table 1)
187 to plot the merqury evaluation against the genome kmers. Figure 2B shows that (i) the kmers in the
188 genome are in accordance with its Illumina read kmers, (ii) the assembly kmers have the same
189 distribution of the raw reads kmer (2A), and that (iii) most of the assembly kmers (pink color) are
190 unique in the genome, showing that the final assembly of the tambaqui has low levels of haplotypic
191 retention (blue color). The final phred-like merqury QV score is 36.73 (QV=36.73), meaning that the
192 tambaqui assembled bases are more than 99.9% accurate. The merqury completeness score shows that
193 89.31% of kmers in the Illumina reads are present in the assembly, which is a good recovery of kmers
194 for a species with 0.6% heterozygosity.

195 For the tambaqui genome, 93% of the assembled bases are present in the largest 54 scaffolds.
196 We have performed a first nucleotide synteny analysis of BUSCO genes found in the first 54 scaffolds
197 of *C. macropomum* against the BUSCO genes on genome of *Ictalurus punctatus* [33] using busco2fasta
198 (<https://github.com/lstevens17/busco2fasta>) and Circos [34]. The synteny is presented in Figure 4. *C. macropomum* and *I. punctatus* shared a common ancestor ~150 million years ago [35]. The image
199 shows a good degree of synteny in terms of BUSCO genes, for a number of times entire chromosomes
200 are syntetic. Supplementary Figures S1 and S2 show similar analysis with *C. auratus* [36] and
202 *Astyanax mexicanus* [37] of different levels of relatedness to *C. macropomum* demonstrating the
203 potential of this highly contiguous genome for studies of chromosome evolution.

204 Finally, we have performed a general gene presence analysis of *C. macropomum* genome using the
205 BUSCO software [38] (v5.0.0) and the OrthoDB [39] library actinopterygii_odb10. BUSCOv5 has
206 recovered 96.5% of complete BUSCO genes out of 3,640 genes searched, where 95.5% were complete
207 and single copy, 1.0% were duplicated, 1.0% were fragmented, and 2.5% were missing - once more
208 demonstrating the quality of the tambaqui assembly

209

210 **Gene family identification and phylogenetic analysis of *C. macropomum*.**

211 To identify gene families among *C. macropomum* and other species, we downloaded the whole
212 genome predicted protein sequences from the NCBI Eukaryotic Annotation Page of *Oreochromis*
213 *niloticus* (GCF_001858045.2), *Carassius auratus* (GCF_003368295.1), *Danio rerio*
214 (GCF_000002035.6), *Lates calcarifer* (GCF_001640805.1), *Cyprinus carpio*
215 (GCF_000951615.1), *Rhincodon typus* (GCF_001642345.1), *Poecilia formosa*
216 (GCF_000485575.1), *Ictalurus punctatus* (GCF_001660625.1), *Astyanax mexicanus*
217 (GCF_000372685.2), *Oncorhynchus mykiss* (GCF_013265735.2) and *Pygocentrus nattereri*
218 (GCF_001682695.1). We then input this data to Orthofinder [40] (v2.5.2). From all of the proteins
219 imputed from the 12 species, Orthofinder has assigned 97.3% of the proteins to 31,794 orthogroups.
220 There were 10,939 orthogroups with all the species present, and 33 of them consisted of single-copy
221 genes. Those 33 single-copy orthologs were used to generate a phylogeny (Figure 5). First, the single-
222 copy were aligned with MAFFT [41] (v7.455), and alignments were trimmed with trimAL [42] (v1.4.
223 rev15). Then, a supermatrix was created using geneStitcher.py [43], which was imputed to PhyML
224 [44] for a phylogeny with the amino acid substitution model LG and 100 bootstrap replicates. The
225 phylogeny presented herein (Figure 5) is consistent with other studies [45-46].

226

227 **RE-USE POTENTIAL**

228 Seasonal and long-term modifications in environmental conditions are well-acknowledged with
229 periodic events of low water dissolved oxygen leading to hypoxia and even anoxia. Tambaqui is one
230 of the amazon fish species that developed adaptions to deal with this, such as enlarging the lower lip
231 to grasp oxygen better to survive in hypoxia. These, along with other fish adaptations to the Amazon
232 aquatic ecosystem, are intriguing scientific questions that could be scientifically addressed using the
233 present well-assembled and annotated tambaqui genome. Moreover, the availability of this annotated
234 genome will pave the way to spur the development of tools for the genomic breeding programs of
235 tambaqui, the most important native species for aquaculture in South America.

236

237

238 **AVAILABILITY OF SUPPORTING DATA**

239 The datasets generated and analyzed during the current study are available on NCBI under the SRA
240 numbers SRX10122091 to SRX10122101. The assembled genome and sequence annotations are on
241 NCBI under the accession number GCF_904425465.1. The genome sequence and the annotation
242 files - including CDS and proteins - can be downloaded from the NCBI FTP
243 server (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/904/425/465/GCF_904425465.1_Colossoma_macropomum/). A DataViewer can be accessed
244 at https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_904425465.1.
245

246

247 **COMPETING INTERESTS**

248 The authors declare no competing interests.
249

250 **AUTHOR CONTRIBUTIONS**

251 AWSH, LLC, and DP designed and conceived this work; AWSH collected the samples; AWSH, MUS, DP,
252 LLC, VMDAV wrote the manuscript; MUS and HM coordinated and carries out the bioinformatics analyses;
253 AWSH, LLC and DP revised the manuscript. All authors read and approved the final manuscript.
254

255 **ACKNOWLEDGEMENTS**

256 The authors acknowledge FAPESP (São Paulo Research Foundation # 2015/23883-0), National
257 Council for Scientific and Technological Development (CNPq), and Coordination of Superior Level
258 Staff Improvement (CAPES) through Tambaqui Project (Edital Pró-Amazonia – 047/2012) for
259 financial support. CEPTA-ICMBio (Centro Nacional de Pesquisa e Conservação da Biodiversidade
260 Aquática Continental) for tambaqui individual contribution to this work. Also, Dr. Andrew Veale for
261 the critical review and English editing. AWSH, LLC, VWD, and DP are recipients of CNPq
262 productivity scholarships (304662/2017-8, 304353/2019-1, 306718/2019-7, and 312273/2017-7,
263 respectively).
264

265 **ADDITIONAL INFORMATION**

266 Correspondence and requests for materials should be addressed to AWSH, DP or MUS.
267

268

269

270

271

272 **References**

273 1. Jézéquel C, Tedesco PA, Bigome R, et al. A database of freshwater fish species of the Amazon
274 Basin. *Sci Data* 2020; 7:96.

275 2. Goulding M, Carvalho ML Life history and management of the tambaqui (*Colossoma*
276 *macropomum*, Characidae): an important Amazonian food fish. *Rev Bras Zool* 1982; 1(2):107–133.

277 3. Anderson JT, Nuttle T, Saldaña-Rojas JS, et al. Extremely long-distance seed dispersal by an
278 overfished Amazonian frugivore. *P Roy Soc B-Biol Sci* 2011; 278(1723):3329–3335.

279 4. Araújo-Lima, CARM, Ruffino ML. Peixes migradores da Amazônia brasileira. In: Carolsfield, J,
280 Harvey B, Ross C, Baer A, editors. Peixes migradores da América do Sul. Biologia, Pesca e
281 Estado de Conservação. World Fisheries Trust, International Development Research Centre and
282 Banco Mundial; 2003. p. 233-302.

283 5. Sousa RGC, Freitas, CEC. Seasonal catch distribution of tambaqui (*Colossoma macropomum*),
284 Characidae in a central Amazon floodplain lake: implications for sustainable fisheries
285 management. *J Appl Ichthyol* 2011; 27(1):118–121.

286 6. IBGE. Aquicultura. In: Produção Pecuária Municipal. Instituto Brasileiro de Geografia e
287 Estatística. 2020. <https://sidra.ibge.gov.br/tabela/3940> of subordinate document. Accessed 09
288 November 2020.

289 7. Prado-Lima M, Val, AL Transcriptomic characterization of tambaqui (*Colossoma macropomum*,
290 Cuvier, 1818) exposed to three climate change scenarios. *PLoS One* 2016; 11:e0152366.

291 8. Fé-Gonçalves, LM, Araújo, JDA, Santos, CHA et al. Transcriptomic evidences of local thermal
292 adaptation for the native fish *Colossoma macropomum* (Cuvier, 1818). *Genet Mol Biol* 2020;
293 43(3):e20190377.

294 9. Lobo IKC, Nascimento, AR, Yamagishi, MEB, et al. Transcriptome of tambaqui *Colossoma*
295 *macropomum* during gonad differentiation: Different molecular signals leading to sex identity.
296 *Genomics* 2020; 112(3):2478–2488.

297 10. Ferraz RB, Kabeya N, Lopes-Marques M, et al. (2019) A complete enzymatic capacity for long-
298 chain polyunsaturated fatty acid biosynthesis is present in the Amazonian teleost tambaqui,
299 *Colossoma macropomum*. *Comp Biochem Physiol B, Biochem Mol Biol* 2019; 227:90-97.

300 11. Ferraz RB, Machado AM, Navarro J.C, et al (2020) The fatty acid elongation genes *elovl4a* and
301 *elovl4b* are present and functional in the genome of tambaqui (*Colossoma macropomum*). *Comp*
302 *Biochem Physiol B, Biochem Mol Biol* 2020; 245:110447.

303 12. Nunes, JRS, Liu, S, Pértilli, F, et al. Large-scale SNP discovery and construction of a high-
304 density genetic map of *Colossoma macropomum* through genotyping-by-sequencing. *Sci Rep*
305 2017; 7: 46112.

306 13. Gomes F, Watanabe L, Nozawa, S, et al. Identification and characterization of the expression
307 profile of the microRNAs in the Amazon species *Colossoma macropomum* by next generation
308 sequencing. *Genomics*. 2017; 109(2):67–74.

309 14. Perazza CA, Bezerra JT, Ferraz JBS, et al. Lack of intermuscular bones in specimens of
310 *Colossoma macropomum*: An unusual phenotype to be incorporated into genetic improvement
311 programs. *Aquaculture* 2017; 472 Suppl 1:57–60.

312 15. Nunes JRS, Pértle, F, Andrade SCS, et al. Genome-wide association study reveals genes
313 associated with the absence of intermuscular bones in tambaqui (*Colossoma macropomum*).
314 *Anim Genet* 2020; 51(6):899–909.

315 16. Hilsdorf AWS, Hallerman E, Genetic Resources of Neotropical Fishes. 1st ed. Springer
316 International Publishing; 2017.

317 17. Géry J, Characoids of the world. Neptune City, NJ: T.F.H. Publications; 1977.

318 18. Bushnell B. BBTools: a suite of fast, multithreaded bioinformatics tools designed for analysis of
319 DNA and RNA sequence data. 2018. <https://jgi.doe.gov/data-and-tools/bbtools/>.

320 19. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010.
321 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>.

322 20. Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via
323 adaptive k-mer weighting and repeat separation. *Genome Res* 2017; 27(5):722–736.

324 21. Vulture GW, Sedlazeck FJ, Nttesdat, M, et al. GenomeScope: fast reference-free genome
325 profiling from short reads. *Bioinformatics* 2017; 33(14):2202–2204.

326 22. Kolmogorov M, Yuan J, Lin Y, et al. Assembly of long, error-prone reads using repeat graphs.
327 *Nat Biotechnol* 2019; 37(5):540–546.

328 23. Walker BJ, Abeel T, Shea, T et al. Pilon: an integrated tool for comprehensive microbial variant
329 detection and genome assembly improvement. *PLoS One* 2014; 9(11):e112963.

330 24. Guan D, McCarthy S.A, Wood J, et al. Identifying and removing haplotypic duplication in
331 primary genome assemblies. *Bioinformatics* 2020 36(9):2896–2898.

332 25. Nakayama CM, Feldberg E, Bertollo LAC. Karyotype differentiation and cytotaxonomic
333 considerations in species of Serrasalmidae (Characiformes) from the Amazon basin. *Neotrop.*
334 *Ichthyol* 2012; 10(1):53–58.

335 26. Flynn JM, Hubley, R, Goubert C, et al. RepeatModeler2 for automated genomic discovery of
336 transposable element families. *Proc Natl Acad Sci USA* 2020; 117(17):9451–9457.

337 27. Bao W, Kojima KK, Kohany O, Repbase Update, a database of repetitive elements in eukaryotic
338 genomes. *Mob DNA* 2015; 6:11.

339 28. Smit A, Hubley R, Green P. RepeatMasker Open-4.0. 2013–2015. 2015. <http://www.repeatmasker.org>

340 29. Morgulis A, Gertz EM, Schäffe AA, et al. WindowMasker: window-based masker for sequenced

341 genomes. *Bioinformatics* 2006; 22(2):134–141.

342 30. Kapustin Y, Souvorov A, Tatusova T, et al. Splign: algorithms for computing spliced alignments

343 with identification of paralogs. *Biol Direct* 2008; 3:20.

344 31. Souvorov A, Kapustin Y, Kiryutin V, et al. Gnomon–NCBI eukaryotic gene prediction tool.

345 2010. <https://www.ncbi.nlm.nih.gov/core/assets/genome/files/Gnomon-description.pdf>.

346 32. Rhie A, Walenz BP, Koren S, et al. Merqury: reference-free quality, completeness, and phasing

347 assessment for genome assemblies. *Genome Biol* 2020; 21(1):245.

348 33. Liu Z, Liu S, Yao J, et al. The channel catfish genome sequence provides insights into the

349 evolution of scale formation in teleosts. *Nat Commun* 2016; 7:11757.

350 34. Krzywinski MI, Schein J, Birol I, et al. Circos: An information aesthetic for comparative

351 genomics. *Genome Res* 2009; 19(9):1639-1645.

352 35. Betancur-R R, Wiley EO, Arratia G, et al. Phylogenetic classification of bony fishes. *BMC Evol*

353 *Biol* 2017; 17:162.

354 36. Chen Z, Omori Y, Koren S, et al. De novo assembly of the goldfish (*Carassius auratus*) genome

355 and the evolution of genes after whole-genome duplication. *Sci Adv* 2019; 5(6):p.eaav0547.

356 37. Warren WC, Boggs T., Borowsky R, et al. A chromosome-level genome of *Astyanax mexicanus*

357 surface fish for comparing population-specific genetic differences contributing to trait

358 evolution. *Nat Commun* 2021; 12:1447.

359 38. Waterhous RM, Seppey M, Simão FA, et al. BUSCO Applications from Quality Assessments to

360 Gene Prediction and Phylogenomics. *Mol Biol Evol* 2018; 35(3):543–548.

361 39. Zdobnov EM, Tegenfeldt F, Kusnetsov D, et al. OrthoDB v9.1: cataloging evolutionary and

362 functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. *Nucleic*

363 *Acids Res* 2017; 45(Database issue):D744–D749.

364 40. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics.

365 *Genome Biol* 2019; 20(1):238.

366 41. Katoh K, Standley D M MAFFT Multiple Sequence Alignment Software Version Improvements

367 in Performance and Usability. *Mol Biol Evol* 2013; 30(4):772-780.

368 42. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T trimAl: a tool for automated alignment

369 trimming in large-scale phylogenetic analyses. *Bioinformatics* 2009; 25(15):1972–1973.

370 43. Ballesteros JA, Hormiga GA et al. New Orthology Assessment Method for Phylogenomic Data:

371 Unrooted Phylogenetic Orthology. *Mol Biol Evol* 2016; 33(8):2117–2134.

372

373 44. Guindon S, Dufayard, J-F, Lefort, V, et al. New Algorithms and Methods to Estimate Maximum-
374 Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. *Syst Biol* 2010; 59(3):307–
375 321.

376 45. Steinke D, Salzburger W, Meyer A Novel relationships among ten fish model species revealed
377 based on a phylogenomic analysis using ESTs. *J Mol Evol* 2006; 62(6):772–784.

378 46. Hughes LC, Ortí G, Huang Y, et al. Comprehensive phylogeny of ray-finned fishes
379 (Actinopterygii) based on transcriptomic and genomic data. *Proc Natl Acad Sci U S A* 2018;
380 115(24):6249–6254.

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407 **Table 1:** Summary of genome sequencing data generated with multiple sequencing technologies.
408 Sequencing coverage was based on the estimated genome size (1,16Gb) generated for *C.*
409 *macropomum* by kmer analysis (k=21) of the Illumina sequencing data.

410

Library Type	Insert Size (bp)	Raw Data (Gb)	Clean Data (Gb)	Average Read Length (bp)	N50 Read Length (bp)	Clean data sequencing coverage (X)
Illumina (R1 and R2)	400	59.08	52.93	100	--	44.89
Illumina (R1 and R2)	4000	78.81	57.69	81	--	49.7
Illumina (R1 and R2)	8000	55.59	41.31	83	--	35.6
Pacbio CLR	--	45.58	---	9749	17667	39.2
Total						169.39

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431 **Table 2:** Final statistics for the genome assembly of *C. macropomum*.

	Contig length (bp)	Scaffold length (bp)	Number of Contigs	Number of Scaffolds
Total	1,221,809,066	1,221,847,006	1687	1269
Max	26,165,397	63,817,184	---	---
N50	5,645,235	40,163,545	54	14
N90	655,952	2,856,822	300	33

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457 **Table 3.** Repeat annotation: Annotation of repeats done for *C. macropomum* with a *de novo* library
 458 built with RepeatModeler added to a Repbase teleost library. The final library was used as input to
 459 RepeatMasker.

Bases masked: 641,307,197 bp (52.49%)	Number of elements*	Length occupied	% of sequence
Retroelements	131365	35210915	2.88
SINEs:	3369	162823	0.01
Penelope	2614	206056	0.02
LINEs:	88299	25531727	2.09
CRE/SLACS	5	195	0
L2/CR1/Rex	54941	16069764	1.32
R1/LOA/Jockey	1613	158940	0.01
R2/R4/NeSL	688	137427	0.01
RTE/Bov-B	9260	3512602	0.29
L1/CIN4	9819	2801917	0.23
LTR elements:	39697	9516365	0.78
BEL/Pao	1824	655410	0.05
Ty1/Copia	3452	196980	0.02
Gypsy/DIRS1	17593	6224074	0.51
Retroviral	13302	1948492	0.16
DNA transposons	428117	94637950	7.75
hobo-Activator	50751	5464720	0.45
Tc1-IS630-Pogo	270090	78887086	6.46
PiggyBac	3206	517597	0.04
	4980	440554	0.04
Tourist/Harbinger			
Other (Mirage, P-element, Transib)	1414	117503	0.01
Rolling-circles	9904	2012553	0.16
Unclassified:	2468233	478402494	39.15
Total interspersed repeats		608251359	49.78
Small RNA:	2641	167105	0.01
Satellites:	15326	2676106	0.22
Simple repeats:	435230	23721925	1.94
Low complexity	51965	4532860	0.37

460 ** most repeats fragmented by insertions or deletions have been counted as one element

461

462

463

464

465

466

467

468 **Table 4.** Summary of the annotated features of *C. macromapum* genome

469

Feature	<i>Collossoma macropomum</i>
Genes and pseudogenes	31,149
protein-coding	26,670
non-coding	3,279
CDSs	
fully-supported	43,938
With >5% ab initio	1,648
partial	267
Protein assigned RefSeq(XP_)	43,618
Mean CDS length (bp)	2,011
Mean intron length (bp)	2,631
Mean exon length (bp)	280
Mean exon per gene	12.02

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

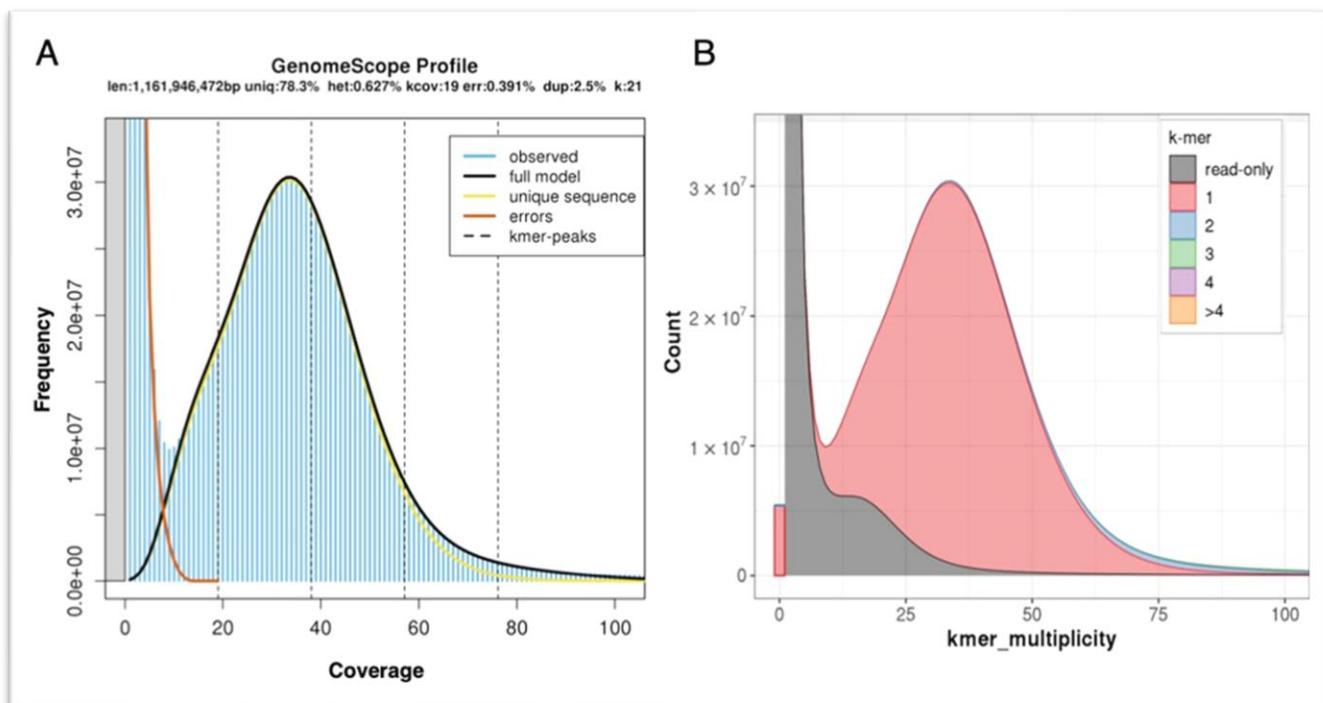
491

492

493

494

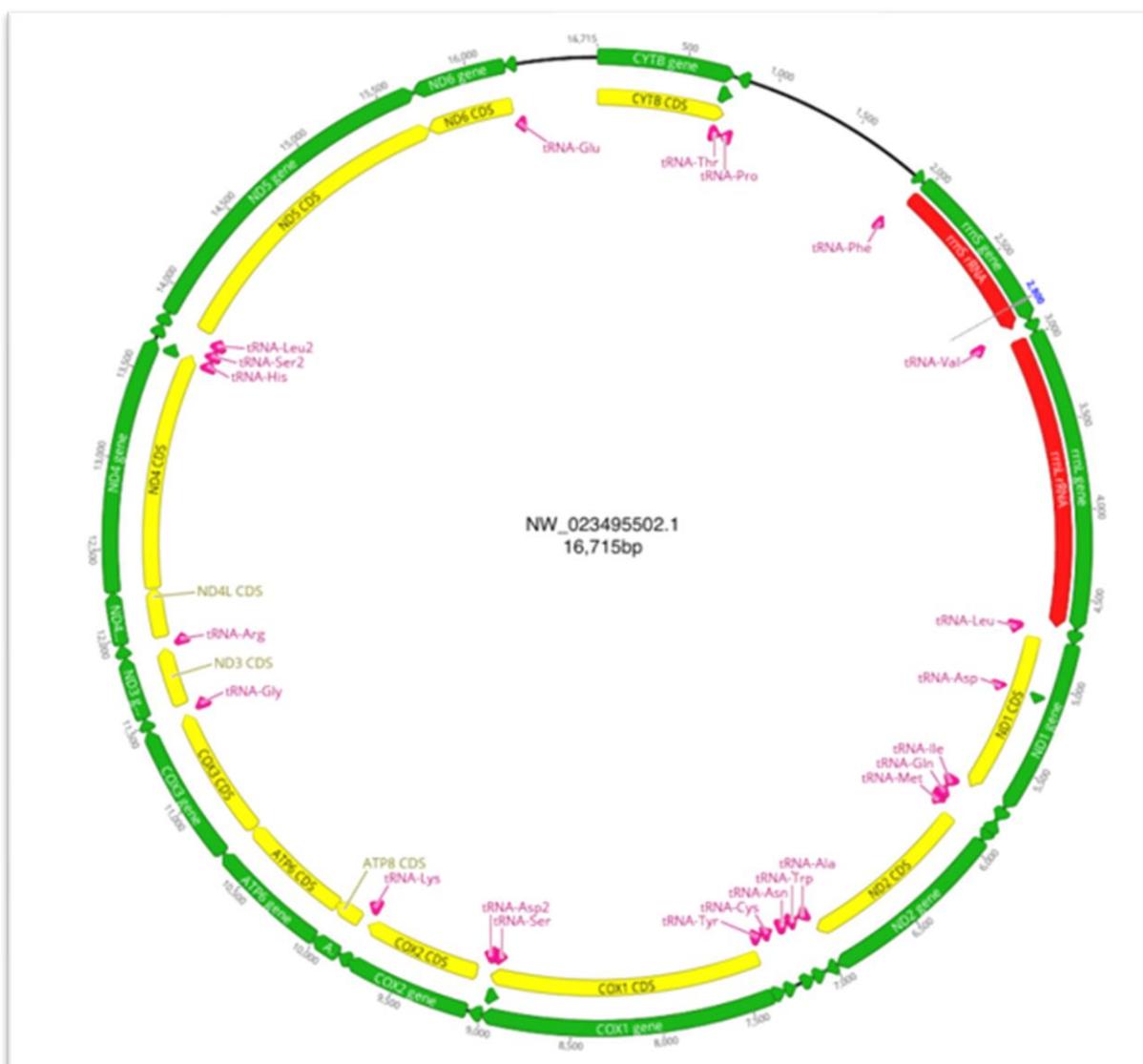
Detailed annotation report can be found at:


https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Collossoma_macropomum/100/#BuildInfo

495
496
497
498
499

500
501 **Figure 1.** *Colossoma macropomum* individual used for the whole sequencing.
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

517
518
519


520
521 **Figure 2. (A)** Kmer composition of sequenced short Illumina reads (Table 1) of the tambaqui *C.*
522 *macropomum*. **(B)** A merqury kmer analysis of the final tambaqui genome bases against its
523 sequenced Illumina reads.

524
525
526
527
528
529
530
531
532
533
534
535
536
537

538

539

540

541

542 **Figure 3.** Mitogenome of *C. macropomum*

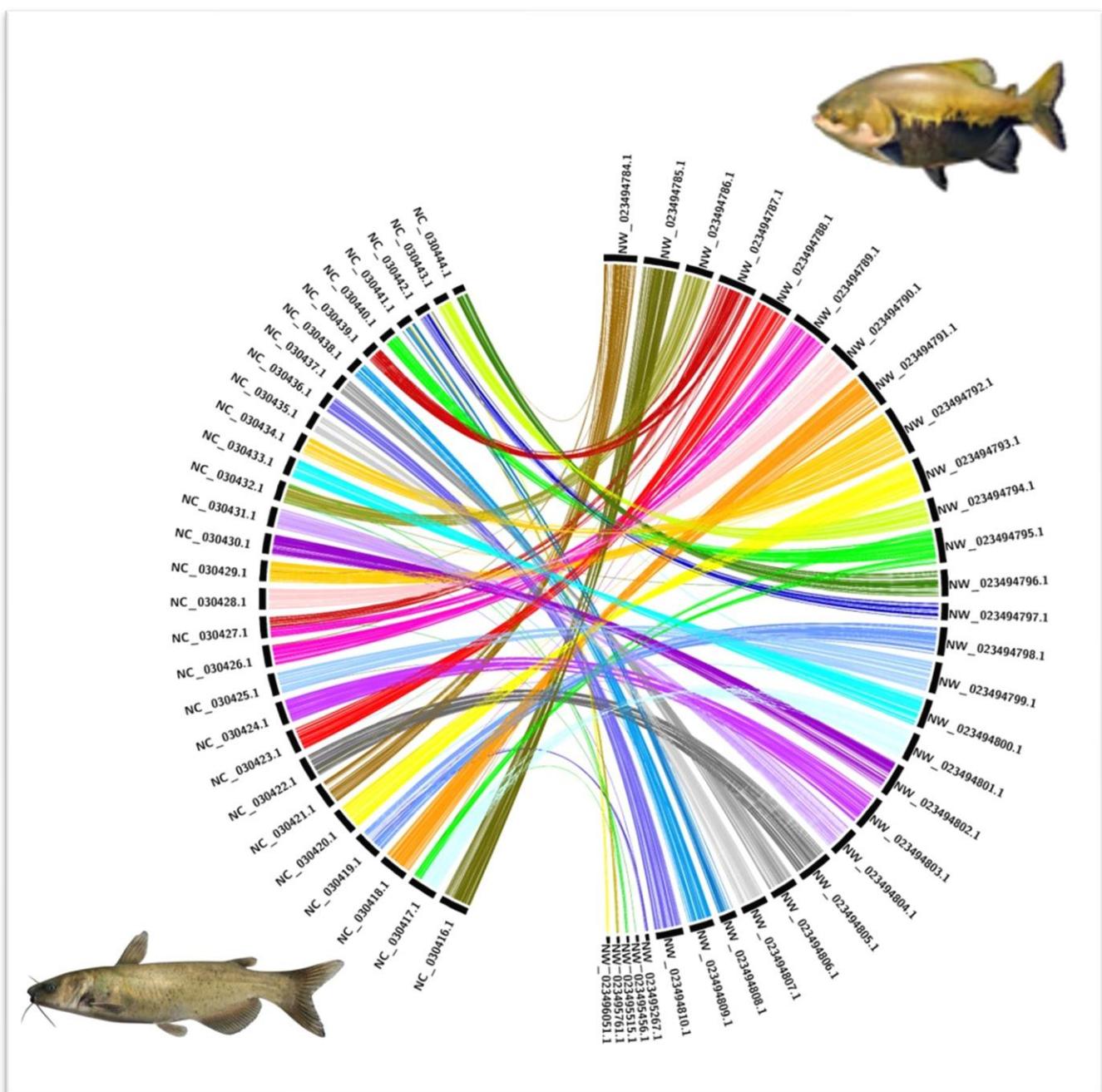
543

544

545

546

547


548

549

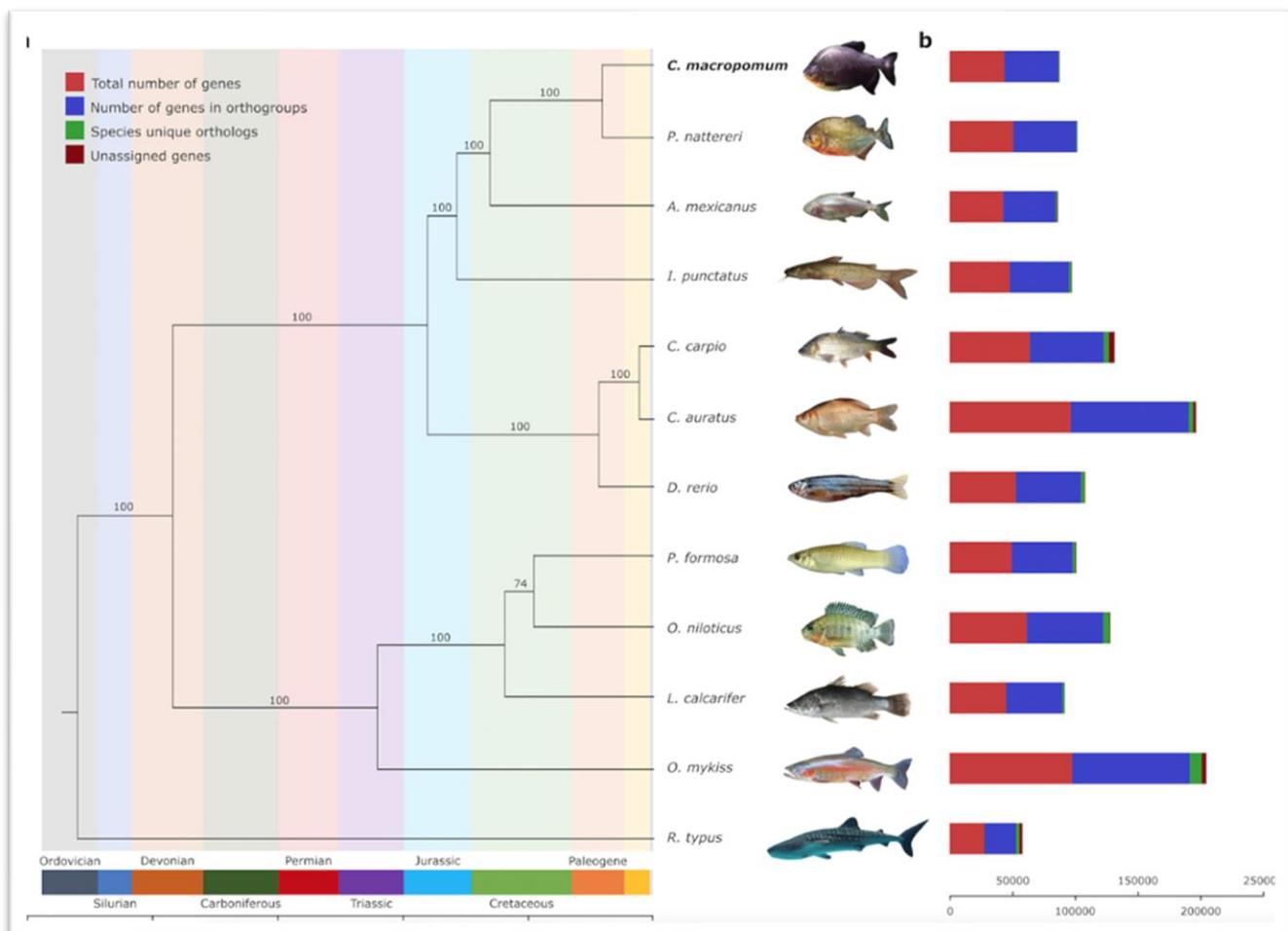
550

551

552

553

554 **Figure 4.** BUSCO genes synteny of *C. macropomum* (tambaqui; on the right side) and *Ictalurus*
555 *punctatus* (channel catfish; on the left side). Synteny analysis of single copy genes reveal low
556 conservation of homologous gene order between the species. The majority of *C. macropomum* genes
557 are pulverized into several linkage groups of *I. punctatus* genome, which may reflect different genome
558 evolutionary events experienced by them.


559

560

561

562

563

564

565

566

567

Figure 5. Whole-genome-predicted single copy orthologs phylogeny of 12 fish species including the newly sequenced genome of *C. macropomum*. To the right of the phylogeny bars show the proportion of different types of orthologs assigned by Orthofinder in each species.