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ABSTRACT 34 

Colossoma macropomum known as “tambaqui” is the largest Characiformes fish in the Amazon 35 

River Basin and a leading species in Brazilian aquaculture and fisheries. Good quality meat and great 36 

adaptability to culture systems are some of its remarkable farming features. To support studies into 37 

the genetics and genomics of the tambaqui, we have produced the first high-quality genome for the 38 

species. We combined Illumina and PacBio sequencing technologies to generate a reference genome, 39 

assembled with 39X coverage of long reads and polished to a QV=36 with 130X coverage of short 40 

reads. The genome was assembled into 1,269 scaffolds to a total of 1,221,847,006 bases, with a 41 

scaffold N50 size of 40 Mb where 93% of all assembled bases were placed in the largest 54 scaffolds 42 

that corresponds to the diploid karyotype of the tambaqui. Furthermore, the NCBI Annotation 43 

Pipeline annotated genes, pseudogenes, and non-coding transcripts using the RefSeq database as 44 

evidence, guaranteeing a high-quality annotation. A Genome Data Viewer for the tambaqui was 45 

produced which benefits any groups interested in exploring unique genomic features of the species. 46 

The availability of a highly accurate genome assembly for tambaqui provides the foundation for 47 

novel insights about ecological and evolutionary facets and is a helpful resource for aquaculture 48 

purposes. 49 
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INTRODUCTION 68 

The Amazon basin harbors a massive freshwater ichthyo diversity throughout its rivers and tributaries, 69 

with 2,406 validated freshwater native fish species from 232,936 georeferenced records 70 

[1]. Colossoma macropomum is regarded as the largest Characiformes representative found across the 71 

Amazon River and its tributaries, with individuals reaching one meter in total length and 30 kg in 72 

weight [2] (Figure 1). This species is known by different common names, such as tambaqui in Brazil 73 

and cachama negra in Colombia. Tambaquis are omnivore/frugivore benthopelagic fish, and they have 74 

an essential ecological role as seed dispersers [3]. They are potamodromous fish, with upstream 75 

migration and reproduction taking place in the white waters along the woody shores between 76 

November and February [4]. The tambaqui is an important food and income source for Amazonian 77 

fishing communities, it is the most farmed native fish species in Brazil, with a production amount to 78 

101,079 metric tons in 2019 [5-6].  79 

Both the key ecological and economic roles played by the tambaqui have meant that it is a 80 

comparatively well studied species, with research to date focusing on its biological adaptations to the 81 

Amazon River waters, and on the genetics of production traits to assist selective breeding programs. 82 

Transcriptomic characterization of tambaqui exposed to (i) distinct climate change scenarios and (ii) 83 

during gonadal differentiation have provided a helpful resource for the understanding of the molecular 84 

mechanisms underlying both the adaptation to a future new climate and the process of sex 85 

determination [7,8,9]. Other molecular mechanisms related to enzymatic capacity for long-chain 86 

polyunsaturated fatty acid biosynthesis have also been confirmed by a functional characterization of 87 

core genes in these processes [10,11]. Moreover, the first steps for deciphering the structure and 88 

functional dynamics of the tambaqui genome have already been taken, with large-scale SNP discovery 89 

allowing the building of a high-density genetic linkage map of the species [12], along with preliminary 90 

microRNA identification and characterization [13]. Equally pertinent are the new findings in 91 

morphology: specimens lacking intramuscular bones were identified in a fish farm in Brazil; however, 92 

the genetic and molecular mechanisms underlying the expression of such desirable phenotypes for the 93 

fish market are still unknown [14,15]. 94 

 Considering the great need for increased genetic resources for the tambaqui to assist fisheries 95 

management and aquaculture [16], we present herein the first high-quality reference genome for C. 96 

macropomum. This complete set of DNA now represents a valuable resource for evolutionary and 97 

functional genomics studies within bony fishes, providing a window of opportunity to reveal tambaqui 98 

genome singularities and help develop molecular techniques to improve selective breeding programs. 99 

 100 
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METHODS 102 

DNA isolation, taxonomy identification, and ethics statement.  103 

Genomic DNA was isolated from caudal fin-clip samples from a C. macropomum specimen obtained 104 

from the germplasm bank maintained by the National Center for research and conservation of 105 

freshwater aquatic biodiversity (CEPTA/IBAMA) of the Brazilian Ministry of the Environment. The 106 

specimen was a female with 3,5 Kg (Figure 1). To confirm the taxonomic status of the specimen used 107 

in this work, we have both (i) carried out an external morphological evaluation [17] and (ii) a 108 

preliminary genetic analysis of an initial Illumina run for C. macropomum using the kmer-matching 109 

tool Seal from BBTools package (v 37.90) [18]. We downloaded the sequences of one mitochondrial 110 

and four nuclear genes of C. macropomum and its two close relatives, Piaractus brachypomus and P. 111 

mesopotamicus (Supplementary Material Table S1). Then we used Seal to ascertain the number of 112 

reads with exclusive kmers matching each species' sequences. Out of 264,813,582 reads, 1,278 113 

matched C. macropomum, 62 matched P. brachypomus and none matched P. mesopotamicus, 114 

confirming the samples identification. We followed the applicable international and national ethical 115 

guidelines for the care and use of animals in research. The approval of the Ethics Committee for the 116 

Use of Animal registration is placed at the University of Mogi das Cruzes and is numbered #019/2017. 117 

 118 

Sequencing and assembly.  119 

Different data types were produced for the genome assembly of C. macropomum. High molecular 120 

weight DNA was extracted from muscle and fin clip using MagMAX CORE nucleic acid purification 121 

kit (Thermo Fisher Scientific, Carlsbad, CA, USA) to produce PacBio continuous longs reads (CLR) 122 

and Illumina paired and jumping reads (Table 2). The produced libraries were sequenced with both 123 

PacBio’s Single Molecule, Real-Time (SMRT) Sequencing technology using the Sequel system and 124 

four SMRT cells at RTL Genomics (Texas, USA) and with Illumina Hiseq2500 V4 equipment at the 125 

Functional Genomics Core Facility, Esalq-USP (São Paulo, Brazil). Illumina reads quality were 126 

checked with FastQC [19] and trimmed for adaptors and low-quality bases with BBDuk (BBBTools 127 

37.90) (SW15-20). The genome size and heterozygosity were estimated by kmer (k=21) analysis 128 

(Figure 2A) performed with the sequenced Illumina data using meryl kmer counter, implemented in 129 

Canu assembler [20] and genome scope [21]. 130 

The 21-mers distribution of the Illumina data obeyed the theoretical Poisson distribution 131 

(Figure 2A). The genome size was estimated in 1,16 Gb with heterozygosity of 0.62%. Based on these 132 

estimations, we sequenced a 39X coverage of the tambaqui genome in long PacBio reads, and 130X 133 

in short Illumina reads (Table 1). For the genome assembly, PacBio reads were input to the assembler 134 

Flye (v2.5) [22] with parameters ‘genome-size 1.5g - pacbio-raw’. Then, the assembly was polished 135 
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using the Illumina reads with the software Pilon [23] and parameters ‘frags’ for paired reads and 136 

‘jumps’ for mate-pair reads. Finally, the assembly of the tambaqui had one round of purging with 137 

PurgeDups [24]. Purging was performed to remove any sequences representing duplicated portions of 138 

a chromosome that are erroneously kept in assemblies when the divergence level of those regions in 139 

both haplotypes is high. This has removed 1,167 contigs and 26 Mb of haplotypic retention. The final 140 

tambaqui genome was assembled into 1,269 scaffolds with a scaff N50=40Mb and a total assembly 141 

length of 1,221,847,006 bp (Table 2). A fraction of 93% of the genome is assembled on 54 scaffolds 142 

that represent the main tambaqui karyotype [25]. We have also identified the mitochondrial genome 143 

(Figure 3) within our assembled genome: it is represented by scaffold NW_023495502.1 that is 16,715 144 

bp in length and has a conserved gene content and synteny with C. macropomum mitogenome 145 

available on NCBI (KP188830.1). 146 

 147 

Repeat sequences and gene annotation.  148 

We identified repeat sequences in C. macropomum using homology-based, and de novo approaches. 149 

A de novo library of repeats was created for the tambaqui using RepeatModeler2 package [26]. This 150 

library was then combined with RepBase [27] (release 26.04), forming the final ‘teleost’ library with 151 

which C. macropomum genome repeats were searched. Table 3 presents the repeat summary of C. 152 

macropomum: 52.49% of the genome is composed of repeats, of which 49.78% are interspersed 153 

repeats. C. macropomum genome was submitted to NCBI for annotation. The robust NCBI Eukaryotic 154 

Annotation Pipeline uses homology-based and ab initio gene predictions to annotate genes (including 155 

protein-coding and non-coding as lncRNAs, snRNAs), pseudo-genes, transcripts, and proteins. Details 156 

of the pipeline are described in the NCBI Annotation HandBook 157 

(https://www.ncbi.nlm.nih.gov/genbank/eukaryotic_genome_submission_annotation/). Briefly: first, 158 

repeats are masked with RepeatMasker [28] and Window Masker [29]. Subsequently, transcripts, 159 

proteins, and RNA-Seq from the NCBI database are aligned to the genome with Splign [30] and 160 

ProSplign (https://www.ncbi.nlm.nih.gov/sutils/static/prosplign/prosplign.html). Those alignments 161 

are submitted to Gnomon [31] for gene prediction. Gnomon (i) merges non-conflicting alignments into 162 

putative models, then (ii) extends predictions missing a start and a stop codon or internal exon(s) using 163 

an HMM-model algorithm. Finally, Gnomon (ii) builds pure ab initio predictions where it finds open 164 

reading frames of sufficient length but with no supporting alignment detected. Models built on RefSeq 165 

transcript alignments are given preference over overlapping Gnomon models with the same splice 166 

pattern. Table 4 presents a summary of the annotation of C. macropomum. A detailed description of 167 

the tambaqui genome annotation can be found on the NCBI Eukaryotic Annotation Page 168 

(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Colossoma_macropomum/100/). 169 
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RESULTS AND DISCUSSION 170 

All sequencing data is available on NCBI under the BioProject PRJNA702552, via SRA accession 171 

numbers SRX10122091 to SRX10122101. The assembled genome and sequence annotations are 172 

available on NCBI with the accession number GCF_904425465.1. The genome sequence and the 173 

annotation files - including CDS and proteins - can be downloaded from the NCBI FTP server 174 

(https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/904/425/465/GCF_904425465.1_Colossoma_macrop175 

omum/). Finally, a genome DataViewer was built for the tambaqui and can be accessed 176 

at https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_904425465.1. This browser 177 

is ideal for further exploration of the tambaqui genome especially from groups that are not specialist 178 

bioinformaticians, such as geneticists working on selective breeding programs. 179 

 180 

Evaluating the completeness of the genome assembly and annotation.  181 

The final assembly of the tambaqui is 1.2 Gb with a scaffold N50 size of 40.163 Mb (Table 2). Figure 182 

2A shows the DNA kmer prediction of genome size done with the Illumina reads produced to polish 183 

this assembly. Further, Figure 2B presents a merqury [32] kmer plot of the final assembly: merqury 184 

produces a mapping-free evaluation of kmer completeness in genomes by comparing the assembly 185 

kmers with raw reads for the specimen. In this case, we used the high-quality Illumina reads (Table 1) 186 

to plot the merqury evaluation against the genome kmers. Figure 2B shows that (i) the kmers in the 187 

genome are in accordance with its Illumina read kmers, (ii) the assembly kmers have the same 188 

distribution of the raw reads kmer (2A), and that (iii) most of the assembly kmers (pink color) are 189 

unique in the genome, showing that the final assembly of the tambaqui has low levels of haplotypic 190 

retention (blue color). The final phred-like merqury QV score is 36.73 (QV=36.73), meaning that the 191 

tambaqui assembled bases are more than 99.9% accurate. The merqury completeness score shows that 192 

89.31% of kmers in the Illumina reads are present in the assembly, which is a good recovery of kmers 193 

for a species with 0.6% heterozygosity. 194 

 For the tambaqui genome, 93% of the assembled bases are present in the largest 54 scaffolds. 195 

We have performed a first nucleotide synteny analysis of BUSCO genes found in the first 54 scaffolds 196 

of C. macropomum against the BUSCO genes on genome of Ictalurus punctatus [33] using busco2fasta 197 

(https://github.com/lstevens17/busco2fasta) and Circos [34]. The synteny is presented in Figure 4. C. 198 

macropomum and I. punctatus shared a common ancestor ~150 million years ago [35]. The image 199 

shows a good degree of synteny in terms of BUSCO genes, for a number of times entire chromosomes 200 

are syntenic. Supplementary Figures S1 and S2 show similar analysis with C auratus [36] and 201 

Astyanax mexicanus [37] of different levels of relatedness to C. macropomum demonstrating the 202 

potential of this highly contiguous genome for studies of chromosome evolution.  203 
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Finally, we have performed a general gene presence analysis of C. macropomum genome using the 204 

BUSCO software [38] (v5.0.0) and the OrthoDB [39] library actinopterygii_odb10. BUSCOv5 has 205 

recovered 96.5% of complete BUSCO genes out of 3,640 genes searched, where 95.5% were complete 206 

and single copy, 1.0% were duplicated, 1.0% were fragmented, and 2.5% were missing - once more 207 

demonstrating the quality of the tambaqui assembly 208 

 209 

Gene family identification and phylogenetic analysis of C. macropomum.  210 

To identify gene families among C. macropomum and other species, we downloaded the whole 211 

genome predicted protein sequences from the NCBI Eukaryotic Annotation Page of Oreochromis 212 

niloticus (GCF_001858045.2), Carassius auratus (GCF_003368295.1), Danio rerio  213 

(GCF_000002035.6), Lates calcarifer (GCF_001640805.1), Cyprinus carpio  214 

(GCF_000951615.1), Rhincodon typus (GCF_001642345.1), Poecilia formosa  215 

(GCF_000485575.1), Ictalurus punctatus (GCF_001660625.1), Astyanax mexicanus 216 

 (GCF_000372685.2), Oncorhynchus mykiss (GCF_013265735.2) and Pygocentrus nattereri  217 

(GCF_001682695.1). We then input this data to Orthofinder [40] (v2.5.2). From all of the proteins 218 

imputed from the 12 species, Orthofinder has assigned 97.3% of the proteins to 31,794 orthogroups. 219 

There were 10,939 orthogroups with all the species present, and 33 of them consisted of single-copy 220 

genes. Those 33 single-copy orthologs were used to generate a phylogeny (Figure 5). First, the single-221 

copy were aligned with MAFFT [41] (v7.455), and alignments were trimmed with trimAL [42] (v1.4. 222 

rev15). Then, a supermatrix was created using geneStitcher.py [43], which was imputed to PhyML 223 

[44] for a phylogeny with the amino acid substitution model LG and 100 bootstrap replicates. The 224 

phylogeny presented herein (Figure 5) is consistent with other studies [45-46].  225 

 226 

RE-USE POTENTIAL 227 

Seasonal and long-term modifications in environmental conditions are well-acknowledged with 228 

periodic events of low water dissolved oxygen leading to hypoxia and even anoxia. Tambaqui is one 229 

of the amazon fish species that developed adaptions to deal with this, such as enlarging the lower lip 230 

to grasp oxygen better to survive in hypoxia. These, along with other fish adaptations to the Amazon 231 

aquatic ecosystem, are intriguing scientific questions that could be scientifically addressed using the 232 

present well-assembled and annotated tambaqui genome. Moreover, the availability of this annotated 233 

genome will pave the way to spur the development of tools for the genomic breeding programs of 234 

tambaqui, the most important native species for aquaculture in South America.  235 

 236 

 237 
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AVAILABILITY OF SUPPORTING DATA 238 

The datasets generated and analyzed during the current study are available on NCBI under the SRA 239 

numbers SRX10122091 to SRX10122101. The assembled genome and sequence annotations are on 240 

NCBI under the accession number GCF_904425465.1. The genome sequence and the annotation 241 

files - including CDS and proteins - can be downloaded from the NCBI FTP 242 

server (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/904/425/465/GCF_904425465.1_Colossoma_243 

macropomum/). A DataViewer can be accessed 244 

at https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_904425465.1. 245 
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Table 1: Summary of genome sequencing data generated with multiple sequencing technologies. 407 

Sequencing coverage was based on the estimated genome size (1,16Gb) generated for C. 408 

macropomum by kmer analysis (k=21) of the Illumina sequencing data. 409 

 410 

Library Type Insert 

Size 

(bp) 

Raw 

Data 

(Gb) 

Clean 

Data (Gb) 

Average 

Read Length 

(bp) 

N50 

Read Length (bp) 

Clean data 

sequencing 

coverage (X) 

Illumina  

(R1 and R2) 

400 59.08 52.93 100 -- 44.89 

Illumina  

(R1 and R2) 

4000 78.81 57.69 81 -- 49.7 

Illumina  

(R1 and R2) 

8000 55.59 41.31 83 -- 35.6 

Pacbio CLR -- 45.58 --- 9749 17667 39.2 

Total 
     

169.39 
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Table 2: Final statistics for the genome assembly of C. macropomum. 431 
 

Contig length (bp) Scaffold length (bp) Number of Contigs Number of Scaffolds 

Total 1,221,809,066 1,221,847,006 1687 1269 

Max  26,165,397 63,817,184 --- --- 

N50 5,645,235 40,163,545 54 14 

N90 655,952 2,856,822 300 33 
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Table 3. Repeat annotation: Annotation of repeats done for C. macropomum with a de novo library 457 

built with RepeatModeler added to a Repbase teleost library. The final library was used as input to 458 

RepeatMasker. 459 

Bases masked: 641,307,197 bp 

(52.49%) 

 
Number of 

elements* 

Length 

occupied 

% of 

sequence 

                                 Retroelements 
 

131365 35210915 2.88  
 SINEs: 3369 162823 0.01  
 Penelope 2614 206056 0.02  
 LINEs: 88299 25531727 2.09  
 CRE/SLACS 5 195 0  
 L2/CR1/Rex 54941 16069764 1.32  
 R1/LOA/Jockey 1613 158940 0.01  
 R2/R4/NeSL 688 137427 0.01  
 RTE/Bov-B 9260 3512602 0.29  
 L1/CIN4 9819 2801917 0.23  
 LTR elements: 39697 9516365 0.78  
 BEL/Pao 1824 655410 0.05  
 Ty1/Copia 3452 196980 0.02  
 Gypsy/DIRS1 17593 6224074 0.51  
 Retroviral 13302 1948492 0.16 

DNA transposons 
 

428117 94637950 7.75  
 hobo-Activator 50751 5464720 0.45  
 Tc1-IS630-Pogo 270090 78887086 6.46  
 PiggyBac 3206 517597 0.04  
 

Tourist/Harbinger 

4980 440554 0.04 

 
 Other (Mirage, 

P-element, 

Transib) 

1414 117503 0.01 

Rolling-circles 
 

9904 2012553 0.16 

Unclassified: 
 

2468233 478402494 39.15 

Total interspersed repeats 
  

608251359 49.78 

Small RNA: 
 

2641 167105 0.01 

Satellites: 
 

15326 2676106 0.22 

Simple repeats: 
 

435230 23721925 1.94 

Low complexity 
 

51965 4532860 0.37 
** most repeats fragmented by insertions or deletions have been counted as one element 460 
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Table 4. Summary of the annotated features of C. macromapum genome 468 

 469 

Feature Colossoma macropomum 

Genes and pseudogenes 31,149 

protein-coding 26,670 

non-coding 3,279 

CDSs 
 

fully-supported 43,938 

With >5% ab initio 1,648 

partial 267 

Protein assigned RefSeq(XP_) 43,618 

Mean CDS length (bp) 2,011 

Mean intron length (bp) 2,631 

Mean exon length (bp) 280 

Mean exon per gene 12.02 
Detailed annotation report can be found at: 470 
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Colossoma_macropomum/100/#BuildInfo 471 
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 499 

 500 

Figure 1. Colossoma macropomum individual used for the whole sequencing. 501 
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 518 

 519 

 520 

Figure 2. (A) Kmer composition of sequenced short Illumina reads (Table 1) of the tambaqui C. 521 

macropomum. (B) A merqury kmer analysis of the final tambaqui genome bases against its 522 

sequenced Illumina reads. 523 
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 541 

Figure 3. Mitogenome of C. macropomum  542 
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 551 

 552 

 553 

Figure 4. BUSCO genes synteny of C. macropomum (tambaqui; on the right side) and Ictalurus 554 

punctatus (channel catfish; on the left side). Synteny analysis of single copy genes reveal low 555 

conservation of homologous gene order between the species. The majority of C. macropomum genes 556 

are pulverized into several linkage groups of I. punctatus genome, which may reflect different genome 557 

evolutionary events experienced by them. 558 
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 561 

 562 

 563 

 564 

Figure 5. Whole-genome-predicted single copy orthologs phylogeny of 12 fish species including the 565 

newly sequenced genome of C. macropomum. To the right of the phylogeny bars show the proportion 566 

of different types of orthologs assigned by Orthofinder in each species.  567 
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