

1 Off-target expression of Cre-dependent adeno-associated viruses in 2 wild type C57BL/6J mice

3 Justin J. Botterill¹, Abdessattar Khlaifia¹, Brandon J. Walters², Mark A. Brimble³, Helen E.
4 Scharfman^{4,5}, Maithe Arruda-Carvalho^{1,6*}

- 5 1. Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4,
6 Canada
- 7 2. Department of Cell & Systems Biology, University of Toronto Mississauga, Mississauga,
8 ON, L5L1C6, Canada.
- 9 3. Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105,
10 USA.
- 11 4. Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research,
12 Orangeburg, NY, 10962, USA
- 13 5. Department of Child & Adolescent Psychiatry, Neuroscience & Physiology and
14 Psychiatry and the New York University Neuroscience Institute, New York University
15 Langone Health, New York, NY, 10016, USA
- 16 6. Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5,
17 Canada.

18 *Abbreviated Title:* Off-target Cre-dependent AAV expression in C57BL/6J mice

19 *Author Contributions:* *Designed Research:* JJB, MAC. *Performed Research:* JJB, AK.
20 *Analyzed/Interpreted Data:* JJB, AK, BJW, MAB, MAC. *Wrote the paper:* JJB, BJW, MAB, HES,
21 MAC. All authors reviewed and approved the manuscript.

22 *Corresponding Author:*

23 Dr. Maithe Arruda-Carvalho
24 Department of Psychology
25 University of Toronto Scarborough
26 Toronto, Ontario, M1C1A4, Canada
27 Email: m.arrudacarvalho@utoronto.ca

28 *Figures:* 8 primary, 5 extended.

29 *Tables:* 0

30 *Multimedia files:* 0

31 *Abstract (<250 words):* 221

32 *Significance Statement (<120 words):* 119

33 *Introduction (<750 words):* 685

34 *Discussion (<3000 words):* 1997

35 *Acknowledgements:* We thank Drs. David Alcantara-Gonzalez and Vinod Yaragudri for their
36 contributions at the early stages of this project. We thank Dr. Jonathan Britt for sending us the
37 TH-Cre mice.

38 *Conflict of Interest Statement:* The Authors declare no competing financial interests.

39 *Funding Sources:* This work was supported by grants from the Human Frontier Science
40 Program Organization (CDA00009/2018), Natural Science and Engineering Council of Canada
41 (RGPIN-2017-06344), Brain and Behavior Research Foundation (NARSAD Young Investigator
42 26016), Canadian Institutes of Health Research (CIHR, PJT 399790), SickKids Foundation and
43 CIHR – Institute of Human Development, Child and Youth Health (NI19-1132R) to MAC.

44 **Abstract**

45 Adeno-associated viruses (AAVs) are a commonly used tool in neuroscience to efficiently label,
46 trace, and/or manipulate neuronal populations. Highly specific targeting can be achieved
47 through recombinase-dependent AAVs in combination with transgenic rodent lines that express
48 Cre-recombinase in specific cell types. Visualization of viral expression is typically achieved
49 through fluorescent reporter proteins (e.g., GFP or mCherry) packaged within the AAV genome.
50 Although non-amplified fluorescence is usually sufficient to observe viral expression,
51 immunohistochemical amplification of the fluorescent reporter is routinely used to improve viral
52 visualization. In the present study, Cre-dependent AAVs were injected into the hippocampus
53 and cortex of wild-type *C57BL/6J* mice. While we observed weak but consistent non-amplified
54 off-target DIO expression in *C57BL/6J* mice, antibody amplification of the GFP or mCherry
55 reporter revealed extensive Cre-independent viral expression. Off-target expression of DIO
56 constructs in wild-type *C57BL/6J* mice occurred independent of vendor, AAV serotype or
57 promoter. We also evaluated whether Cre-independent expression had functional effects via
58 Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). The DREADD
59 agonist C21 had no effect on contextual fear conditioning or cFos expression in DIO-hM3Dq-
60 mCherry+ cells of *C57BL/6J* mice. Taken together, our results indicate that DIO constructs have
61 considerable off-target expression in wild type subjects. Our findings are particularly important
62 for the design of experiments featuring sensitive systems and/or quantitative measurements that
63 could be negatively impacted by off-target expression.

64 **Significance Statement**

65 Adeno-associated viruses (AAV) are widely used in neuroscience because of their safety and
66 ease of use. Combined with specific promoters, Cre/loxP, and stereotaxic injections, highly
67 specific targeting of cells and circuits within the brain can be achieved. In the present study we
68 injected Cre-dependent AAVs into wild-type *C57BL/6J* mice and found considerable Cre-
69 independent viral expression of AAVs encoding mCherry, GFP, or hM3Dq following
70 immunohistochemical amplification of the fluorescent reporter protein. Importantly, we observed
71 no functional effects of the Cre-independent expression in the hippocampus, as C21 had no
72 detectable effect on DIO-hM3Dq-mCherry infected neurons in *C57BL/6J* mice. Given the
73 widespread use of DIO rAAVs by the neuroscience community, our data supports careful
74 consideration when using DIO constructs in control animals.

75 **Keywords**

76 Immunofluorescence, antibody amplification, double inverted open reading frame, fear
77 conditioning, cFos, Cre/loxP, DREADDs

78 Introduction

79 A main goal of neuroscience is to understand the roles of specific cell types and circuits
80 underlying neurodevelopment, behavior, and disease. Adeno-associated virus (AAV) represents
81 a powerful tool for neuroscientists to address these questions via labelling and manipulating cell
82 types and circuits. AAV is a *dependoparvovirus* comprising a small 4.7kb single-stranded DNA
83 genome with an unenveloped icosahedral capsid (Grieger and Samulski, 2005; Betley and
84 Sternson, 2011; Haery et al., 2019; Haggerty et al., 2020). Recombinant AAVs (rAAVs) used in
85 research and clinical applications are modified from wild-type (WT) AAVs and use an
86 expression cassette to drive transgene expression. The rAAV expression cassette typically
87 consists of a promoter, transgene, and polyadenylation signal flanked by inverted terminal
88 repeats (ITRs) (Saunders and Sabatini, 2015). A major advantage of rAAVs is their durable
89 transgene expression (months-years) and limited pathogenic profile (Naso et al., 2017; Haery et
90 al., 2019; Haggerty et al., 2020).

91 The Cre/loxP system is a powerful site-specific recombinase used to insert, delete, or invert
92 DNA sequences between loxP sites (Sauer and Henderson, 1988; Sengupta et al., 2017;
93 Fischer et al., 2019). Using the Cre/loxP system, discrete cell populations can be targeted
94 through a combination of transgenic mice and viral injections. Using this method, rodents are
95 genetically modified to express Cre in specific cell types, and therefore the injection of Cre-
96 dependent constructs should only recombine in Cre-expressing cells within the injected area.
97 Double inverted open reading frame (DIO) constructs are a common method to achieve Cre-
98 dependent activation of genes. DIO constructs rely on two pairs of recombination-incompatible
99 lox sites (loxP and lox2722) that surround the transgene which is in the inverse orientation.
100 However, in the presence of Cre, the DIO cassette is reverted, allowing expression of the
101 transgene (Fenno et al., 2011). DIO cassettes are widely used because DIO is considered to
102 have low off-target expression (Fischer et al., 2019) due to the transgene being in the incorrect
103 orientation. Additionally, DIO is much smaller than other constructs with a similar goal,
104 facilitating its use in AAVs.

105 Visualization of rAAV expression is typically achieved with fluorescent reporter proteins; either
106 fused to a transgene of interest or inserted into its own reading frame (Smith et al., 2016).
107 Fluorescent reporters exhibit relatively strong and permanent expression in transduced neurons
108 and depending on the method employed can reveal expression in dendrites or axons (Betley
109 and Sternson, 2011; Saleeba et al., 2019). The fluorescent reporter can also be inserted
110 between loxP sites to allow for Cre-dependent expression of fluorescence signal (Betley and
111 Sternson, 2011; Saunders and Sabatini, 2015; Saleeba et al., 2019). However, a limitation of
112 fluorescent reporters is that expression can be weak in certain applications. For example,
113 fluorescence can decline substantially following exposure to fixatives or high temperatures
114 during tissue processing (Alkaabi et al., 2005). To circumvent weak rAAV fluorescence *ex vivo*,
115 many studies amplify expression with antibodies against reporter proteins (e.g., GFP, mCherry)
116 to improve visualization of fluorescence expression (Deverman et al., 2016; McGlinchey and
117 Aston-Jones, 2018; Murata and Colonnese, 2020; Iwasaki and Ikegaya, 2021). Subjects that
118 lack Cre are often used as controls for the behavioral or cellular effects of Cre-dependent
119 viruses (Alexander et al., 2018; Bonaventura et al., 2019; Mahler et al., 2019), under the
120 premise that these constructs limit expression to Cre-positive cells.

121 In the present study, we found consistent Cre-independent expression of DIO constructs in
122 C57BL/6J mice injected across different brain regions. While Cre-dependent rAAVs showed
123 minimal non-amplified fluorescence in brain sections of WT C57BL/6J mice, fluorescence signal
124 amplification revealed numerous positive cells within the region of viral infection. To address
125 whether the amplified fluorescence signal had functional effects, we utilized the Cre-dependent
126 Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) construct hM3Dq-

127 mCherry, which is a modified human muscarinic M3 receptor that promotes neuronal excitation
128 when activated (Roth, 2016). We found no detectable effect of the hM3Dq agonist C21 on fear
129 behavior or immediate early gene activity in the hippocampus of WT C57BL/6J mice. Our
130 results have important implications for the use of DIO constructs in control subjects, particularly
131 in sensitive circuits or studies focusing on quantitative analyses such as cell counting or
132 evaluating fluorescence signal.

133 **Materials and Methods**

134 **Animals**

135 Adult male and female mice aged 2-6 months were used for all experiments. For experiments
136 testing Cre-dependent viral expression in mice lacking Cre-recombinase, we used WT
137 C57BL/6J mice (Jackson Laboratory). Tyrosine hydroxylase-Cre (*TH-Cre, a kind gift from Dr.*
138 *Jonathan Britt, McGill University*) (Lindeberg et al., 2004) and parvalbumin-Cre (*PV-Cre,*
139 Jackson Laboratory) mice were used in a subset of experiments and genotyping for these lines
140 was done in house using standard PCR protocols. Mice were bred in house and maintained on
141 a 12hr light-dark cycle (lights on at 07:00h) with access to food and water *ad libitum*. Mice were
142 housed in standard laboratory cages that contained corn cob bedding and a polycarbonate igloo
143 shelter (Bio-Serv). Offspring were weaned with same-sex siblings on postnatal day 21 (2-5 mice
144 per cage). All experiments were done during the light phase of the light-dark cycle. All animal
145 procedures were approved by the Animal Care Committee at the [Author University].
146 Experimenters were blinded for all quantitative analyses.

147 **Stereotaxic surgery and viral injections**

148 Mice underwent stereotaxic surgery between 2-5 months of age. Briefly, mice were injected
149 intraperitoneally (i.p.) with a combination of ketamine (100 mg/kg) and xylazine (5 mg/kg) to
150 induce anesthesia. Once anesthetized, the head was shaved and swabbed with iodine followed
151 by 70% ethanol. Tear gel (Alcon) was applied to the eyes to prevent dehydration. Mice were
152 then secured in a rodent stereotaxic apparatus (Stoelting) using ear bars. Body temperature
153 was maintained throughout surgery with a heating blanket. An incision was made down the
154 midline of the scalp using a scalpel, the connective tissue was excised, and then the skull was
155 cleaned with sterile phosphate buffered saline (PBS, pH=7.4). An autoclaved cotton-tip
156 applicator was briefly submerged in 30% hydrogen peroxide and gently applied to the skull
157 surface to identify bregma. Using bregma as a reference point, craniotomies were made over
158 the left medial prefrontal cortex (mPFC; +1.9mm anterior-posterior, 0.3mm medial-lateral), left
159 anterior hippocampus (-2.1 mm anterior-posterior and -1.25 mm medial-lateral), left posterior
160 hippocampus (-3.05mm anterior-posterior, -2.35mm medial-lateral), or ventral tegmental area
161 (VTA; -3.15mm anterior-posterior, +/- 0.45mm medial-lateral). Experiments targeting the mPFC
162 employed a single viral injection, whereas dual viral injections were administered for the
163 hippocampus (anterior and posterior) and VTA (bilateral) experiments.

164 Virus was delivered using a 500nL Neuros Syringe (#65457-02, Hamilton Company) attached to
165 the stereotaxic apparatus with a probe holder (#751873, Harvard Apparatus). The syringe was
166 positioned above each craniotomy and the needle was lowered into the mPFC (-2.3mm below
167 skull surface), hippocampus (-1.95mm anterior, -2.5mm posterior below skull surface) or ventral
168 tegmental area (-4.5mm below skull surface). For each injection, 0.2 μ L of virus was injected at a
169 rate of 0.06 μ L/minute. The following viral constructs were used: AAV5-EF1a-DIO-eYFP ($\geq 4 \times 10^{12}$ vg/mL, UNC Core), AAV5-EF1a-DIO-mCherry ($\geq 7 \times 10^{12}$ vg/mL, UNC Core), AAV8-hSyn-DIO-hM3D(Gq)-mCherry ($\geq 5 \times 10^{12}$ vg/mL, UNC Core), or AAV5-hSyn-DIO-hM4D(Gi)-mCherry ($\geq 8 \times 10^{12}$ vg/mL, Addgene #44362). The needle remained in place for an additional 5 minutes
173 after each injection to allow for diffusion of the virus and then the needle was slowly removed
174 from the brain. Ketoprofen (1 mg/kg, s.c.) was injected approximately 30 minutes prior to the

175 end of surgery to reduce discomfort. The skull was cleaned with sterile PBS and the scalp was
176 sutured with Vetbond tissue adhesive (3M). Mice were injected with 0.7mL of warmed
177 physiological saline at the end of surgery to support hydration. Mice were then transferred into a
178 clean cage located on a heating blanket. Mice were returned to their colony room once fully
179 ambulatory. Ketoprofen (1 mg/kg, s.c.) was administered 24 and 48 hours after surgery to
180 reduce post-surgical discomfort.

181 **Contextual fear conditioning**

182 Mice received a post-surgical recovery of 2 weeks prior to behavioral testing. Mice were
183 transferred to a dedicated procedures room and injected with Compound 21 (C21; 1.5mg/kg,
184 0.2mg/mL dissolved in 0.9% NaCl; HelloBio) one hour before fear training. Mice underwent
185 contextual fear conditioning as previously described (Arruda-Carvalho et al., 2011; Guskjolen et
186 al., 2018). Briefly, mice were individually placed in stainless steel fear conditioning apparatus
187 (32cm wide, 25.5cm high, 25.5cm deep) that contained shock grid floors (36 rods, 2mm
188 diameter). The fear conditioning apparatus was located inside a sound-attenuated chamber
189 (63.5cm wide, 36.8cm high, 74.9cm deep, #NIR-022MD, Med Associates). A 2-minute
190 acclimation period was used to assess baseline behavior. Foot-shocks (0.5mA, 2s duration)
191 were delivered 120s, 180s, 240s, 300s, and 360s after mice were placed in the chamber. Mice
192 remained in the chamber for 60s after the final foot-shock and were then returned to their home
193 cage. Mice were returned to the colony housing room and left undisturbed until the context test
194 on the following day. Contextual fear memory was assessed 24 hours after the training session.
195 Mice were returned to the same fear conditioning chamber as the previous day in absence of
196 foot-shocks and freezing behavior was evaluated over 8 minutes. Notably, C21 was not
197 administered prior to testing.

198 Conditioned freezing was identified by the absence of movement except those necessary for
199 respiration (Blanchard and Blanchard, 1972; Fanselow, 1980). Freezing behavior was scored
200 automatically using the Med Associates VideoFreeze software.

201 **Perfusions and sectioning**

202 Mice were euthanized 2-3 weeks after surgery to evaluate viral expression. Subjects were
203 injected with Avertin (250mg/kg, i.p.) and once under deep anesthesia, transcardially perfused
204 with 15 mL of room temperature saline, followed by 15 mL of cold 4 % paraformaldehyde (PFA).
205 The brains were extracted and stored overnight at 4 °C in 4 % PFA. The brains were sectioned
206 at 50 µm in the coronal plane (VT 1000, Leica) and stored at -20 °C in a cryoprotectant solution
207 comprised of 60% glycerol and 0.01% sodium azide in 0.1M phosphate buffered saline (PBS).

208 **Immunofluorescence**

209 Immunofluorescence staining was performed on free floating sections. Sections were washed in
210 0.1M PBS (3 x 5 min each) and then incubated in blocking solution comprised of 5% normal
211 goat serum and 0.25% Triton X-100 in 0.1M PBS for 30 min. Amplification of the viral signal was
212 achieved by incubating sections with polyclonal rabbit anti-mCherry (1:2000, #ab167453,
213 Abcam, RRID: AB_2571870) or polyclonal chicken anti-GFP (1:2000, #ab13970; Abcam, RRID:
214 AB_300798) primary antibodies diluted in blocking solution. Sections were incubated with the
215 primary antibodies overnight at 4 °C on a rotary shaker under gentle agitation. On the following
216 morning, sections were incubated in goat anti-rabbit Alexa 568 (1:500, #A11011, ThermoFisher,
217 RRID: AB_143157) or goat anti-chicken Alexa 488 (1:500, #A11039, ThermoFisher, RRID:
218 AB_2534096) secondary antibodies for 2 hours. Sections were then counterstained with
219 Hoechst 33342 (1:2000 diluted in 0.1M PBS; ThermoFisher). Sections were then rinsed in 0.1M
220 PBS, mounted onto gelatin-coated slides, air dried for 30 min, and coverslipped with Citifluor
221 anti-fade mounting medium (#17970, Electron Microscopy Sciences).

222 A subset of tissue was processed for mCherry and cFos using tyramide signal amplification
223 (TSA). Briefly, sections were rinsed in 0.1M PBS, followed by 1% H₂O₂ in 0.1M PBS to quench
224 endogenous peroxidase activity. Sections were then incubated overnight at 4 °C with polyclonal
225 rabbit anti-cFos (#226 003, Synaptic Systems, RRID: AB_2231974) and monoclonal rat anti-
226 mCherry (#M11217, ThermoFisher, RRID: AB_2536611) primary antibodies in 0.1M Tris-
227 buffered saline containing 0.5% Roche Blocking Reagent (#11096176001; Sigma). On the
228 following day, sections were incubated in goat anti-rat Alexa 568 secondary antibody (1:500,
229 #A11077, ThermoFisher, RRID: AB_2534121) and donkey anti-rabbit horseradish peroxidase
230 conjugated secondary antibody (1:500, #711-036-152; Jackson ImmunoResearch Laboratories,
231 RRID: AB_2340590) for 1 hour each. Next, TSA was performed using fluorescein tyramide
232 (1:100) diluted in 0.1M borate buffer containing 0.01% H₂O₂ solution. Sections were
233 counterstained with Hoechst 33342 (1:2000), mounted onto slides, air dried, and coverslipped
234 with anti-fade mounting medium as described above.

235 **Diaminobenzidine tetrahydrochloride (DAB) staining**

236 Immunohistochemistry for brightfield microscopy was performed using standard protocols
237 (Koshimizu et al., 2021). Sections were rinsed in 0.1M PBS, endogenous peroxidase activity
238 was quenched with 0.3% H₂O₂, and blocked in 5% normal goat serum. Sections were incubated
239 with polyclonal rabbit anti-mCherry primary antibody (1:8000) diluted in blocking solution
240 overnight at 4 °C. On the following day sections were incubated in biotinylated goat anti-rabbit
241 secondary antibody (1:500, #BA-1000, Vector laboratories, RRID: AB_2313606) and avidin-
242 biotin complex (1:500, PK-6100, Vector laboratories, RRID: AB_2336819). Immunoreactivity
243 was visualized by incubating sections in 0.5mg/mL 3,3'-diaminobenzidine tetrahydrochloride
244 (Sigma), 40µg/mL ammonium chloride (Sigma), 25mg/mL (D+)-glucose (Sigma), and 3µg/mL
245 glucose oxidase (Sigma) for approximately 5 minutes. Sections were mounted onto gelatin-
246 coated slides and allowed to dry overnight. Sections were then dehydrated using a graded
247 alcohol series (70, 95, 100%), cleared with xylenes, and coverslipped with Permount mounting
248 medium (Electron Microscopy Sciences).

249 **Image acquisition**

250 Images were acquired with a Nikon Eclipse Ni-U epifluorescence microscope running NIS-
251 elements software (v. 5.11.03, Nikon). Immunofluorescence was visualized with an LED
252 illumination system (X-Cite 120 LED Boost, Excelitas Technologies) and captured with a Nikon
253 DS-Qi2 digital camera. Immunofluorescence images were acquired using Plan Fluor 4x, Plan-
254 Apochromat 10x DIC N1 or Plan Fluor 20x DIC N2 objectives. Brightfield images were acquired
255 with a 10x objective on an Olympus BX61 microscope. Figures were made using Adobe
256 Photoshop 22.5. When brightness and/or contrast adjustments were made in a figure, these
257 changes were made equally to all photomicrographs.

258 **Quantification**

259 Cell counts were done manually using ImageJ software (v. 1.53e) by experimenters blinded to
260 treatment conditions. For cell counts in the hippocampus, counts were performed on a minimum
261 of 5 sections per subject that spanned the rostral-caudal extent of the hippocampus. For cell
262 counts in the mPFC, approximately 3-4 sections were counted per subject due to the smaller
263 number of available sections for this region. Cell counts were performed for both the injected
264 and non-injected hemispheres for each subject. The average number of cells per section was
265 calculated by summing the total number of cells counted in the injected or non-injected
266 hemisphere and dividing by the number of sections that were analyzed.

267 **Statistical analysis**

268 All results are presented as the mean ± standard error of the mean (SEM). Statistical
269 comparisons were made using Prism 9.0 (GraphPad) with statistical significance (*p*< 0.05)

270 denoted on all graphs with an asterisk. Comparisons of independent groups were made using
271 two-tailed unpaired t-tests. Two-way repeated-measures ANOVAs were used to analyze
272 parametric data with multiple comparisons followed by Tukey's post hoc test with corrections for
273 multiple comparisons when appropriate. Normality of parametric data sets were confirmed by
274 the D'Agostino & Pearson normality test (Prism 9.0). Non-parametric data sets were analyzed
275 with a Mann-Whitney U test. Potential sex differences were examined for each data set and
276 indicated no significant differences between male and female mice (all p values >0.154). Male
277 and female mice were therefore pooled for each dataset, but for transparency, all graphs show
278 individual data points for male (dotted) and female (clear) mice.

279 **Results**

280 **Fluorescence signal amplification of DIO constructs in Cre-positive and WT C57BL/6J 281 mice**

282 First, we evaluated non-amplified and amplified fluorescence of a DIO-mCherry construct in the
283 *TH-Cre* mouse line, which labels dopaminergic neurons in midbrain structures such as the VTA
284 (Lammel et al., 2015; Popescu et al., 2016). AAV5-EF1a-DIO-mCherry was injected bilaterally
285 into the VTA of *TH-Cre* mice (**Figure 1A**). Near the injection site, non-amplified and amplified
286 fluorescence showed a pattern of fluorescence consistent with previous reports (Lammel et al.,
287 2015), but mCherry amplification produced a substantial increase in fluorescence signal. We
288 also evaluated long-range projections from the VTA to nucleus accumbens (NAc), dorsal
289 striatum (DS), and mPFC. The NAc and DS showed a moderate amount of non-amplified
290 fluorescence, whereas mCherry+ terminals in the mPFC were only slightly greater than
291 background fluorescence. In contrast, amplifying the fluorescent signal revealed bright
292 fluorescence in the NAc-DS and numerous mCherry+ terminals in the mPFC (**Figure 1B-1C**), in
293 a pattern consistent with previous reports (Stuber et al., 2010; Lammel et al., 2015; Popescu et
294 al., 2016; Ellwood et al., 2017).

295 We further compared non-amplified and amplified fluorescence in the hippocampus, a brain
296 region widely studied and often targeted with DIO constructs. Using *PV-Cre* mice, which
297 express Cre in parvalbumin interneurons, we targeted the dentate gyrus (DG) subfield of the
298 hippocampus due to its well documented PV expression (Freund and Buzsaki, 1996; Pelkey et
299 al., 2017). *PV-Cre* mice were injected with AAV5-EF1a-DIO-eYFP or AAV5-EF1a-mCherry
300 (**Figure 1D-E**). In both cases, the non-amplified signal in the DG was characterized by bright
301 fluorescence in somata and weaker fluorescence in fine processes, consistent with the overall
302 patterns of parvalbumin immunoreactivity reported previously (Zou et al., 2016; Foggetti et al.,
303 2019). Antibody amplification of GFP or mCherry resulted in brighter immunofluorescence
304 signal, especially in fine processes, such as dendrites extending into the molecular layer (ML;
305 **Figure 1D-E**). The results of the *TH-Cre*-positive and *PV-Cre*-positive experiments suggest that
306 fluorescence signal amplification produces immunofluorescence expression that is faithful to
307 non-amplified viral expression, but advantageous for visualizing cells or terminals with weak
308 fluorescence.

309 Control experiments were also performed where AAV5-EF1a-DIO-mCherry was injected into the
310 DG of WT C57BL/6J mice. Compared to the substantial fluorescence signal observed in the DG
311 of Cre-positive mice, we observed minimal non-amplified fluorescence in control mice (**Figure
312 1F**). This observation is consistent with the requirement of Cre-recombinase for transgene
313 expression and low "leak" with DIO constructs (Schnutgen et al., 2003; Atasoy et al., 2008;
314 Saunders and Sabatini, 2015). However, amplification of DIO-mCherry revealed substantial
315 immunofluorescence within the DG of control C57BL/6J mice (**Figure 1F**). The majority of
316 amplified mCherry+ cells appeared to be granule cells (GCs), which reside in the principal cell
317 layer of the DG known as the granule cell layer (GCL) and extend dendrites into the ML. We

318 also observed sparse labeling of mCherry+ boutons in the hilus, consistent with expression of
319 mCherry in dentate GC mossy fibers. Sparse labeling of large hilar cells was also observed.
320 These data show that fluorescence signal amplification revealed substantial off-target
321 expression in mice lacking Cre-recombinase.

322 **Non-amplified expression of DIO constructs in WT C57BL/6J mice**

323 Next, we evaluated non-amplified fluorescence of DIO constructs in *C57BL/6J* mice to gain a
324 better understanding of the off-target expression observed following fluorescence amplification.
325 Non-amplified sections of *C57BL/6J* mice injected with AAV5-EF1a-DIO-eYFP or AAV5-EF1a-
326 DIO-mCherry showed very few bright GFP+ or mCherry+ cells, respectively (**Figure 2**). This
327 finding is consistent with the notion that Cre is required to drive transgene expression, but Cre-
328 independent expression is possible (Fischer et al., 2019). Specifically, commercial vendors warn
329 that recombination of loxP sites may occur during DNA amplification and viral production and
330 result in Cre-independent transgene expression. However, this is thought to occur in a small
331 number of viral particles (e.g., <1%) and therefore represent a minor source of off-target
332 expression. Indeed, the few cells with bright fluorescence cannot explain the numerous cells we
333 observed following fluorescence amplification. We found that increasing the exposure time and
334 using higher power objectives (e.g., 20x) revealed numerous cells with weak fluorescence
335 primarily restricted to the soma (**Figure 2, see insets**). Importantly, cells with weak
336 fluorescence were only observed in the injected hemisphere. We hypothesize that these
337 numerous but weakly labeled cells express low levels of the viral transgene (e.g., GFP or
338 mCherry) and become strongly labeled following fluorescence signal amplification.

339 **Fluorescence signal amplification of AAV5-EF1a-DIO-mCherry in WT C57BL/6J mice**

340 To further investigate the off-target expression of AAV5-EF1a-DIO-mCherry in *C57BL/6J* mice,
341 we quantified the number of mCherry+ cells in the anterior and posterior DG following
342 fluorescence signal amplification ($n=8$; **Figure 3A-B**). Remarkably, amplified mCherry+ cells
343 were found throughout the DG of *C57BL/6J* mice injected with DIO-mCherry (**Figure 3C**),
344 almost exclusively restricted to the injected hemisphere (11.43 ± 1.40 cells/section, compared to
345 the non-injected hemisphere 0.05 ± 0.02 cells/section; *Mann-Whitney U=0, p<0.001*; **Figure**
346 **3D**). Importantly, off-target expression was observed in all mice ($n=8$; range: 7.25 to 17.38
347 cells/section). We also processed a subset of sections with DAB and found that mCherry
348 immunoreactivity was similar to the pattern of amplified DIO-mCherry immunofluorescence
349 (**Figure 3-1**), indicating that our results were not attributable to non-specific fluorescence signal.
350 These findings indicate that the off-target expression of DIO constructs in *C57BL/6J* mice
351 revealed by amplification was highly reproducible.

352 **Fluorescence signal amplification of AAV5-EF1a-DIO-eYFP in WT C57BL/6J mice**

353 The high expression of amplified DIO-mCherry in *C57BL/6J* mice prompted us to investigate
354 amplified expression using other DIO constructs. *C57BL/6J* mice ($n=6$) received injections of
355 AAV5-EF1a-DIO-eYFP in the left anterior and posterior DG using identical parameters as the
356 DIO-mCherry experiments (**Figure 4A**). Mice were euthanized 2-3 weeks after surgery and
357 brains were sectioned and amplified with anti-GFP antibodies (**Figure 4B**). Amplification of GFP
358 produced immunofluorescence in the DG that was more extensive than the DIO-mCherry
359 experiments but shared a similar pattern (**Figure 4C**). Specifically, relatively sparse labeling of
360 GFP+ cells was observed in the GCL similar to mCherry amplification. However, amplified
361 GFP+ immunofluorescence resulted in robust labeling of dendrites in ML, compared to the
362 relatively sparse labeling of the ML following mCherry amplification (**Figure 4C**). Furthermore,
363 GFP+ immunofluorescence was more pronounced in the hilus, with expression observed in hilar
364 cells and mossy fibers (**Figure 4C**). As with mCherry, GFP cell counts throughout the DG found
365 that GFP+ cells were exclusive to the injected hemisphere (19.54 ± 3.46 cells, non-injected
366 hemisphere: 0.00 ± 0.00 cells; *Mann-Whitney U=0, p<0.001*; **Figure 4D**). Taken together, these

367 results demonstrate a highly specific pattern of amplified fluorescence signal of DIO constructs
368 in *C57BL/6J* mice, independent of the construct used (DIO-mCherry or DIO-eYFP, **Figure 4-1**).

369 The amplified expression of mCherry and eYFP in the DG of *C57BL/6J* mice injected with Cre-
370 dependent constructs led us to question whether off-target expression was unique to the DG or
371 a general consequence of viral injections regardless of the region that was targeted.

372 Serendipitously, we observed amplified immunofluorescence in hippocampal areas CA1 and/or
373 CA2 when viral injections did not target the DG correctly (**Figure 4-2**).

374 In addition, we specifically targeted the mPFC in *C57BL/6J* mice ($n=6$) using Cre-dependent
375 eYFP (AAV5-EF1a-DIO-eYFP; **Figure 5A**). The experimental timeline for mPFC experiments
376 was identical to the that of eYFP hippocampal injections (**Figure 5B**). Amplified GFP
377 immunofluorescence was also observed in the mPFC (**Figure 5C**), at a similar rate as seen in
378 DG (14.26 ± 3.29 cells/section in the injected hemisphere compared to 1.84 ± 1.20 cells/section
379 in the non-injected hemisphere; *Mann-Whitney U*=1, $p=0.004$; **Figure 5D**). Overall, these
380 findings suggest that Cre-independent, DIO construct expression is specific to the viral injection
381 site, and not tied to a particular brain region.

382 **Fluorescence signal amplification of AAV8-hSyn-DIO-hM3Dq-mCherry in WT *C57BL/6J* 383 mice**

384 To test whether Cre-independent expression with DIO constructs was restricted to a particular
385 AAV serotype, we used AAV8 Cre-dependent hM3Dq (AAV8-hSyn-DIO-hM3Dq-mCherry).
386 Using the same coordinates as eYFP and mCherry experiments described previously, the DIO-
387 hM3Dq construct was injected into the anterior and posterior DG of *C57BL/6* mice ($n=8$; **Figure**
388 **6A**). Mice were euthanized 2-3 weeks after surgery and brain sections were processed for
389 mCherry signal amplification (**Figure 6B**). Amplification of AAV8-DIO-hM3Dq-mCherry revealed
390 substantial fluorescence expression in the DG, indicating that Cre-independent expression was
391 observed across multiple serotypes and promoters. Interestingly, amplification of AAV8-DIO-
392 hM3Dq-mCherry construct revealed a different pattern of fluorescence compared with AAV5-
393 DIO-mCherry (**Figure 6C**). Specifically, AAV8-hSyn-DIO-hM3Dq mCherry+
394 immunofluorescence was primarily observed in hilar neurons, with some sparse labeling in GCs
395 specific to the injected hemisphere (40.73 ± 1.09 cells compared to 0.01 ± 0.01 cells in the non-
396 injected hemisphere; *Mann-Whitney U*=0, $p<0.001$; **Figure 6D**). Notably, the AAV8-hSyn-DIO-
397 hM3Dq-mCherry construct differed from the previous constructs we tested in two ways:
398 serotype (AAV8) and promoter (hSyn, as opposed to EF1a in previous experiments). A subset
399 of sections processed with DAB revealed that mCherry immunoreactivity under the hSyn
400 promoter matched the pattern of amplified DIO-hM3Dq-mCherry immunofluorescence (**Figure**
401 **6-1**).

402 To determine whether the expression difference was due to serotype, we injected AAV5-hSyn-
403 DIO-hM4Di-mCherry into *C57BL/6J* mice. We found that mCherry amplification of AAV5-hSyn-
404 DIO-hM4Di-mCherry had a similar pattern of fluorescence as AAV8-hSyn-DIO-hM3Dq-mCherry,
405 indicating that serotype is not driving the difference in the pattern of Cre-independent
406 expression (**Figure 6-2**). These results suggest that DIO constructs with the EF1a and hSyn
407 promoters may show preferential expression in GCs vs hilar cells, respectively, in *C57BL/6J*
408 mice. Moreover, these results also demonstrate that off-target expression of DIO constructs was
409 observed using constructs from different vendors (UNC Core, Addgene).

410 **Contextual fear learning and memory**

411 Next, we sought to determine whether the off-target expression of Cre-dependent viral
412 constructs in *C57BL/6J* mice could influence behavior. Given the considerable number of DIO-
413 hM3Dq-mCherry cells observed in the hilus after fluorescence signal amplification (see **Figure**
414 **6**), and a recent study that reported chemogenetic excitation of hilar cells impaired contextual

415 fear learning and memory (Botterill et al., 2021), we were curious whether similar impairments
416 would be observed in control mice injected with the DIO construct. Adult *C57BL/6J* mice were
417 injected in the anterior and posterior DG with AAV5-EF1a-DIO-mCherry or AAV8-hSyn-DIO-
418 hM3Dq-mCherry ($n=8$ per group; **Figure 7A**). After a 2-week postsurgical recovery period, mice
419 were injected with the hM3Dq agonist C21 (1.5mg/kg, i.p.) one hour prior to contextual fear
420 training (**Figure 7B-C**).

421 C21 treatment prior to contextual fear training had no effect on freezing behavior during training
422 in mice injected with DIO-hM3Dq-mCherry vs DIO-mCherry (Two-way repeated-measures
423 ANOVA, $F(1,14)=0.045$, $p=0.834$; **Figure 7D**). The two-way repeated-measures ANOVA also
424 revealed a significant main effect of time ($F(6,84)=72.69$, $p<0.001$), attributable to increased
425 freezing behavior as the task progressed from baseline freezing to post-shock periods.
426 However, there was no significant interaction between treatment and time ($F(6,84)=0.474$,
427 $p=0.825$). When post-shock freezing was averaged across all 5 post-shock periods, there was
428 no difference in freezing behavior between mice injected with DIO-mCherry ($43.32 \pm 6.70\%$) or
429 DIO-hM3Dq-mCherry ($42.30 \pm 3.63\%$; unpaired t-test, $t(14)=0.133$, $p=0.895$; **Figure 7E**). Taken
430 together, these results showed no detectable behavioral effect of the hM3Dq agonist C21 in
431 *C57BL/6J* mice injected with DIO-hM3Dq-mCherry.

432 To evaluate contextual fear memory retrieval, mice were returned to the same fear conditioning
433 chamber 24 hours after training and freezing behavior was evaluated over 8 minutes (**Figure**
434 **7F**). Importantly, C21 was not given prior to the memory test. There was no difference in
435 memory retrieval between the DIO-mCherry and DIO-hM3Dq-mCherry groups (Two-way
436 repeated measures ANOVA, $F(1,14)=0.542$, $p=0.474$; **Figure 7G**). However, the two-way
437 repeated-measures ANOVA found a significant main effect of time ($F(7,98)=4.483$, $p<0.001$),
438 which was attributable to a gradual decline in freezing behavior over the duration of the test.
439 There was no interaction between treatment and time ($F(7,98)=0.512$, $p=0.824$). Average
440 freezing behavior over the entire session also did not differ between DIO-mCherry ($48.02 \pm$
441 8.24%) and DIO-hM3Dq-mCherry groups ($55.60 \pm 6.15\%$; unpaired t-test, $t(14)=0.737$, $p=0.474$;
442 **Figure 7H**). Collectively, these results suggest that the hM3Dq agonist C21 did not influence
443 fear learning or memory retrieval in *C57BL/6J* mice injected with DIO-hM3Dq-mCherry.

444 **mCherry and cFos immunofluorescence following C21 challenge**

445 Despite observing no behavioral effect of C21 in the DIO-hM3Dq-mCherry group, we wanted to
446 determine whether C21 could activate DIO-hM3Dq-mCherry+ neurons in *C57BL/6J* mice by
447 evaluating the immediate early gene cFos. Mice were given a 3-day washout period after fear
448 memory retrieval and then injected with C21 (1.5mg/kg, i.p.) in their homecage and euthanized
449 90 minutes later (**Figure 8A-B**).

450 *C57BL/6J* mice injected with AAV5-EF1a-DIO-mCherry and treated with C21 showed minimal
451 colocalization between amplified mCherry+ cells and cFos+ cells, as expected (**Figure 8C**).
452 Interestingly, when treated with C21, *C57BL/6J* mice injected with AAV8-hSyn-DIO-hM3Dq-
453 mCherry also showed minimal colocalization between mCherry+ and cFos+ cells (**Figure 8D**).
454 This finding suggests that despite DIO-hM3Dq-mCherry expression, the hM3Dq agonist C21
455 was not able to sufficiently drive their activity as measured by cFos expression. To confirm that
456 DIO-hM3Dq-mCherry is reliably activated by C21 in mice expressing Cre-recombinase, AAV8-
457 hSyn-DIO-hM3Dq-mCherry was injected into a cohort of *PV-Cre*-positive mice ($n=3$) and C21
458 was administered in the homecage. In contrast to *C57BL/6J* mice, C21 strongly activated DIO-
459 hM3Dq-mCherry+ neurons in the DG of *PV-Cre*-positive mice (**Figure 8E**). Taken together,
460 these results confirm that the hM3Dq agonist C21 potently activates DIO-hM3Dq-mCherry+
461 neurons in Cre-positive mice, an effect that is absent in WT *C57BL/6J* mice.

462 Discussion

463 The present study investigated anatomical and behavioral effects of Cre-dependent rAAVs in
464 mice lacking Cre-recombinase. WT *C57BL/6J* mice injected with Cre-dependent viral constructs
465 showed minimal non-amplified fluorescence, consistent with the notion that “leak” expression is
466 a rare phenomenon in DIO constructs (Fenno et al., 2011). However, antibody amplification of
467 the fluorescent reporter proteins eYFP or mCherry revealed considerable fluorescence in
468 different brain regions where virus was injected. Subsequent experiments failed to show any
469 behavioral or immediate early gene effect of DIO-hM3Dq-mCherry in *C57BL/6J* mice injected
470 with the hM3Dq agonist C21. These results suggest that Cre-dependent rAAVs injected in mice
471 lacking Cre can result in off-target transgene expression, as revealed by fluorescence signal
472 after antibody amplification, but without yielding notable behavioral or functional effects in our
473 experimental system.

474 **Fluorescence signal amplification of viral expression**

475 In this work we evaluated fluorescence signal amplification in Cre-positive and *C57BL/6J* mice
476 injected with various Cre-dependent rAAVs. First, we evaluated *TH*-Cre-positive mice injected
477 with DIO-mCherry and found that the expression of fluorescently labeled cell bodies in the VTA
478 were consistent with previous studies (Stuber et al., 2010; Mahler et al., 2019). However, non-
479 amplified fluorescence of VTA projections into the NAc-DS or mPFC were notably weak and
480 fluorescence signal amplification improved the visualization of mCherry, especially in mPFC
481 axon terminals (see **Figure 1C**). We also evaluated *PV*-Cre-positive mice injected with DIO-
482 mCherry or DIO-eYFP in the DG and found that while non-amplified fluorescence was suitable
483 for visualizing PV+ cells, fluorescence signal amplification improved expression in fine
484 processes such as dendrites. Collectively, these findings support the notion that fluorescence
485 signal amplification can significantly improve visualization of viral transgene expression (Falcy et
486 al., 2020).

487 We also tested the specificity of Cre-dependent rAAVs in *C57BL/6J* mice. We observed minimal
488 non-amplified fluorescence, consistent with the dependence of Cre-recombinase to drive
489 transgene expression (Fenno et al., 2011; Fischer et al., 2019). However, we found that
490 fluorescence signal amplification reliably labeled mCherry+ or GFP+ cells wherever the Cre-
491 dependent rAAV was injected (e.g., DG, CA1 or mPFC). Importantly, there were few or no
492 amplified cells in the non-injected hemisphere, suggesting that antibody specificity was not an
493 issue. Furthermore, fluorescence amplification revealed substantial AAV-DIO expression in
494 *C57BL/6J* mice regardless of the commercial vendor (Addgene, UNC Core), serotype (AAV5,
495 AAV8) or promoter (EF1a, hSyn) used. These observations indicate that our results could apply
496 to a broad range of rAAV DIO constructs. Overall, these findings warrant caution in interpreting
497 the results of DIO constructs in Cre-negative subjects, especially if quantitative measures are
498 used following fluorescence signal amplification.

499 **Functional considerations**

500 Upon discovering the effect of fluorescence signal amplification in *C57BL/6J* mice injected with
501 Cre-dependent rAAVs, we considered the implications for off-target effects in subjects typically
502 assigned as controls. We used the hM3Dq agonist C21 to determine whether the expression of
503 DIO-hM3Dq in *C57BL/6J* mice had any functional effects. We found that C21 had no impact on
504 contextual fear learning or memory retrieval and was insufficient to trigger cFos expression in
505 DIO-hM3Dq-mCherry+ cells in *C57BL/6J* mice. In contrast, C21 induced cFos expression in
506 DIO-hM3Dq-mCherry+ cells of *PV*-Cre-positive mice. Our results are consistent with previous
507 studies that found no effect of DIO-hM3Dq in Cre-negative subjects injected with DREADD
508 agonists compared to Cre-positive counterparts (Alexander et al., 2018; Bonaventura et al.,
509 2019; Mahler et al., 2019), suggesting that DIO-construct expression levels in *C57BL/6J* mice
510 may be insufficient to modulate neuronal activity and affect behavior. Nevertheless, expression

511 level thresholds for phenotypic change will differ between experimental contexts, and as such it
512 cannot be ruled out that functional consequences can arise from off-target gene expression
513 from Cre-dependent rAAV.

514 **Technical Considerations**

515 **Viral titer and injection volume**

516 Specificity of viral expression is a common concern in experiments that use rAAVs. Viral titer
517 and injection volume represent two main factors that can impact viral expression, and thereby
518 might modulate DIO-construct expression in Cre-negative animals. High titer rAAVs are required
519 to introduce numerous viral particles within a single cell to achieve adequate viral expression.
520 For neuroscience applications, commercial vendors typically provide rAAVs at titers ranging
521 between $\geq 1 \times 10^{11}$ vg/mL to $\sim 10^{13}$ vg/mL. However, the relationship between vector dose and
522 protein expression is non-linear. For example, a study reported a 6-fold increase in the number
523 of virally labeled cells when viral titer was adjusted from 5×10^{12} vg/mL to 5×10^{13} vg/mL (Zingg et
524 al., 2017). A second factor to consider is viral injection volume, which is often influenced by
525 factors such as experimental design or the size of the brain region that is targeted. For large
526 brain regions like the hippocampus, injection volumes of $\sim 0.25 \mu\text{L}$ are relatively common, but
527 numerous studies have injected volumes $\geq 0.5 \mu\text{L}$ and report good specificity (Gundersen et al.,
528 2013; Bui et al., 2018; Piatkevich et al., 2019; Johnston et al., 2021).

529 In the present study, stock rAAV titers from commercial vendors ($\geq 4 \times 10^{12}$ vg/mL) were used at
530 relatively low injection volumes ($0.2 \mu\text{L}$) because these parameters achieved highly specific
531 expression in *TH-Cre*-positive and *PV-Cre*-positive mice. In *C57BL/6J* mice, this injection
532 volume yielded minimal non-amplified fluorescence, but considerable immunofluorescence
533 following antibody amplification. Dilution of viral titer has been proposed as a mitigation strategy
534 to minimize off-target rAAV expression; however, dose reduction could potentially have a
535 negative impact on experimental outcomes by missing phenotypes that are only observable with
536 robust transgene expression.

537 **Causes of off-target expression in mice lacking Cre**

538 The cause of off-target Cre-independent rAAV transgene expression was not investigated within
539 the scope of this study. Spontaneous reversion of DIO constructs is known to occur at a low rate
540 and is likely to be the origin of some of this expression. In support of this, a previous study
541 evaluated recombinant plasmids and found that between 1 in 1,000 and 1 in 10,000 copies
542 contained a reverted transgene (Fischer et al., 2019).

543 However, given our detection of substantial numbers of low intensity transgene expressing cells,
544 we suspect that there are factors additional to transgene reversion that could result in Cre-
545 independent expression of DIO constructs. The ITRs of AAV are known to exhibit transcriptional
546 activity in a number of cell types, with the AAV2 ITRs, used in the majority of applications,
547 exhibiting stronger promoter activity than ITRs from several other serotypes (Earley et al.,
548 2020). Indeed, early rAAV gene therapy constructs for cystic fibrosis relied on this activity to
549 drive expression of the CFTR gene (Flotte et al., 1992). It is possible that in *C57BL/6J* mice,
550 weak expression of the transgene could be achieved through transcriptional activity of the ITR,
551 although transcriptional activity of ITRs is yet to be directly tested in neuronal cell populations.

552 Furthermore, within the nucleus, rAAV largely exists in a concatemeric, episomal state (Yang et
553 al., 1999). Where the head is the 5' end of the rAAV genome and the tail is the 3', the
554 configurations of multiple rAAV genomes can either be head-to-head, head-to-tail or tail-to-tail. If
555 multiple copies of non-reverted DIO constructs were present within a single cell, it is possible
556 that in the tail-to-tail configuration, promoter activity from one DIO genome could readthrough
557 the rAAV sequence to translate the encoded protein in a second genome of the concatemer.

558 Indeed, this reliance on transcription across multiple genomes is used to yield expression from
559 large gene constructs, using splice donor and acceptor sites in the two respective rAAV
560 genomes (Trapani et al., 2015).

561 Finally, whilst AAV is largely considered to be a non-integrating vector, it is known that
562 integration events do occur at low levels. It is possible that if the DIO construct integrated at a
563 transcriptionally active locus, translation of the non-reverted transgene could be initiated.
564 Indeed, this is the basis which promoterless rAAV constructs for rAAV-mediated gene therapy
565 operate, albeit in a more actively targeted and efficient manner (Barzel et al., 2015).

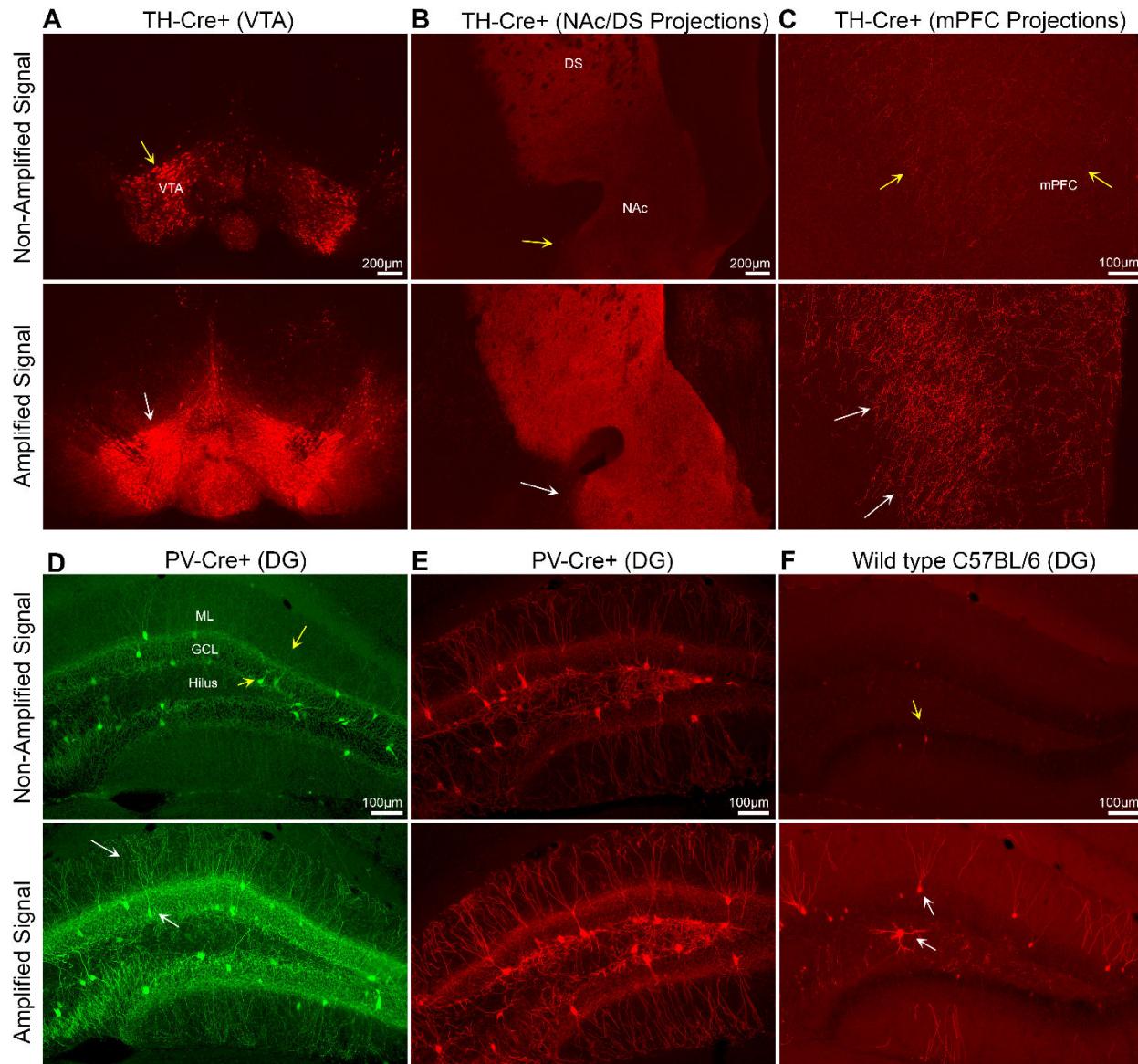
566 **Minimizing off-target expression in DIO constructs**

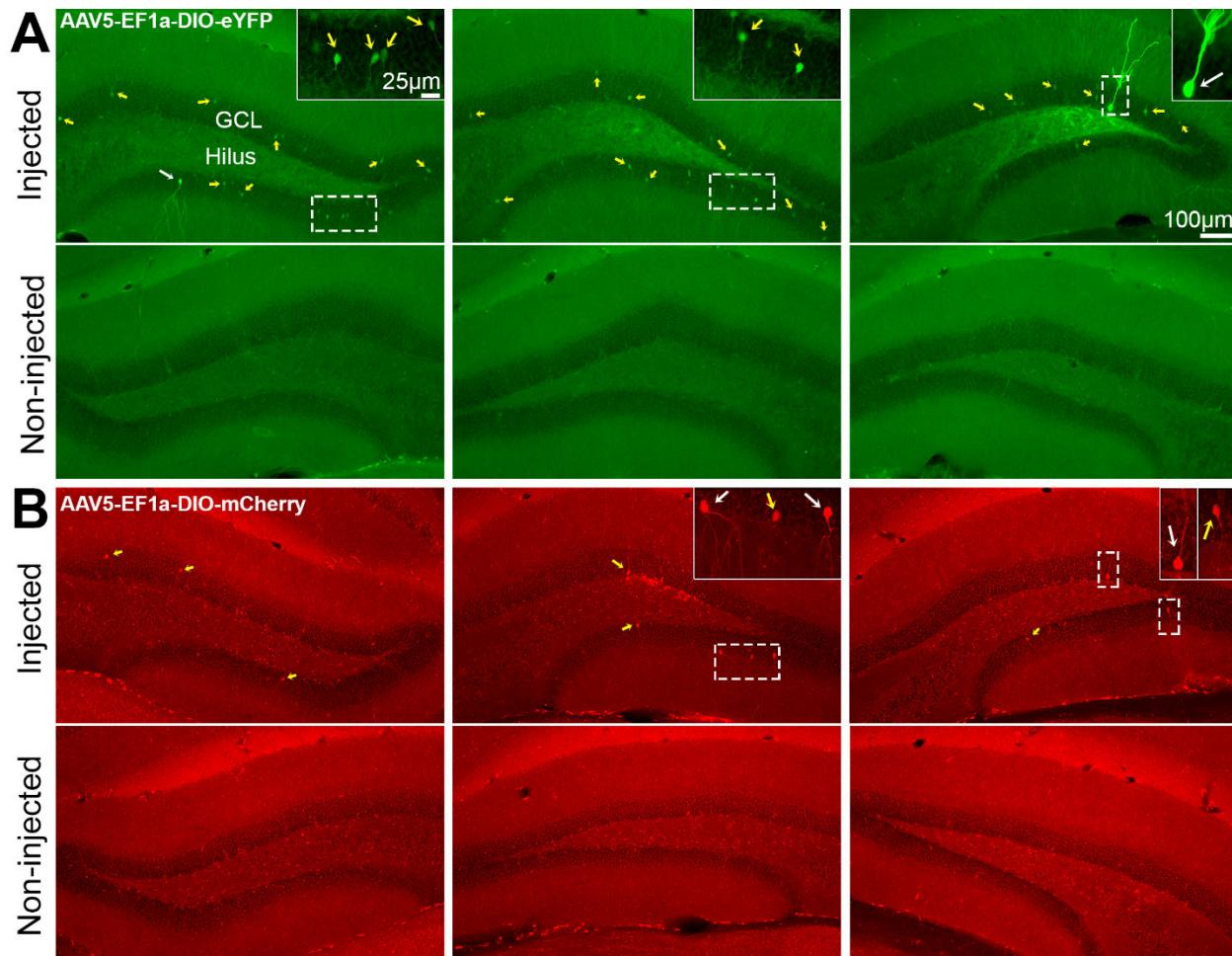
567 A previous study revealed that both loxP site mutation and decoupling the start codon from the
568 gene to a position outside of the loxP inversion sites were required to achieve dramatic
569 reduction in off-target expression from DIO/FLEX rAAV constructs, a system referred to as
570 'ATG-out' (Fischer et al., 2019). This suggests that transgene reversion is not the only cause of
571 off-target expression in neurons following DIO construct delivery, because if this was the case,
572 loxP mutation alone would have been sufficient to minimize this effect. At present, this strategy
573 has not been widely implemented in the neuroscience field, but should be considered by those
574 using sensitive systems and/or cell counting assays. Importantly, the ATG-out system, whilst
575 vastly reducing off-target activity, did not entirely abrogate expression in the system, and was
576 not assessed within the context of signal amplification. Further work should be performed to
577 ensure the fidelity of ATG-out vectors in signal amplified samples, and to explore other
578 approaches for improving the specificity of inducible transgene systems for use in neuroscience
579 applications.

580 **Specificity of Cre-recombinase**

581 Cre-dependent rAAVs are generally considered to have a high degree of specificity due to the
582 dependance of Cre-recombinase to drive transgene expression (Huang et al., 2014; Saunders
583 and Sabatini, 2015; McLellan et al., 2017; Haggerty et al., 2020). However, specificity of Cre-
584 recombinase can be influenced by factors such as breeding, genotyping, and/or germline
585 recombination (Song and Palmiter, 2018). Specificity problems are particularly well-documented
586 in tamoxifen-inducible transgenic lines (Stifter and Greter, 2020; Van Hove et al., 2020).
587 Therefore, it is important to consider the specificity of transgenic lines in addition to rAAV titer
588 and injection volume.

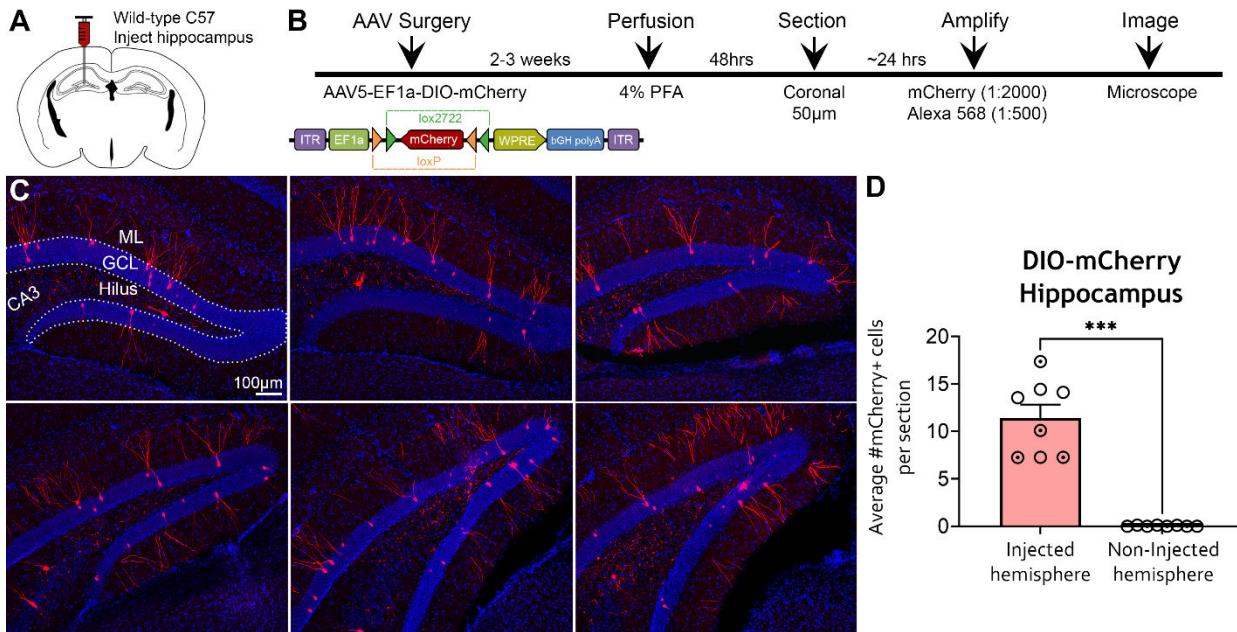
589 **Implications for control experiments**


590 Selecting appropriate controls is a critical step in designing rAAV experiments, especially for
591 studies that involve cell and/or circuit manipulations. There are several strategies for rAAV
592 controls, and each approach has strengths and weaknesses. For example, a popular strategy
593 involves injecting Cre-positive mice with identical rAAV constructs and randomly assigning
594 subjects to a treatment (e.g., CNO or C21) or control group (e.g., saline). Although this strategy
595 controls for genotype and viral construct, it often overlooks the effect of treatment. Indeed,
596 compounds such as CNO can have off-target effects (MacLaren et al., 2016; Gomez et al.,
597 2017; Manvich et al., 2018) and therefore these experiments often require additional controls
598 that receive treatment but not the same rAAV construct. A second strategy involves comparing
599 Cre-positive vs Cre-negative littermates injected with identical rAAV constructs (Smith et al.,
600 2016). This strategy offers the benefit of treating all subjects identically but does not account for
601 potential genotype effects in Cre-positive mice. Moreover, this strategy requires additional steps
602 such as confirmation of genotypes and/or evaluation of viral expression in Cre-positive vs Cre-
603 negative mice. Lastly, another popular strategy involves injecting Cre-positive mice with gain- or
604 loss-of-function rAAV constructs and control mice with an rAAV construct that only encodes a
605 fluorescent protein such as mCherry or eYFP. This strategy also allows for all mice to receive


606 the same treatment (e.g., CNO or light pulses). This approach is widely used because of the low
607 risk of off-target effects in control mice, but the disadvantage is the use of different viral
608 constructs.

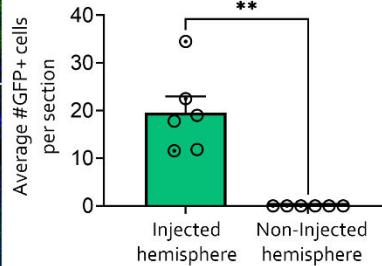
609 Although we did not observe any functional off-target effects of Cre-dependent rAAVs in the DG
610 of *C57BL/6J* mice, we did not evaluate factors such as different behavioral tasks, greater rAAV
611 injection volumes (e.g., 0.5 μ L), rAAV injections in different brain regions, or higher doses of
612 C21. Based on the results of the current study, we suggest caution when choosing controls for
613 gain- or loss-of function Cre-dependent constructs. Our data points to the use of fluorophore-
614 only controls as the preferential option to minimize potential off-target effects of Cre-dependent
615 rAAV constructs in control mice.

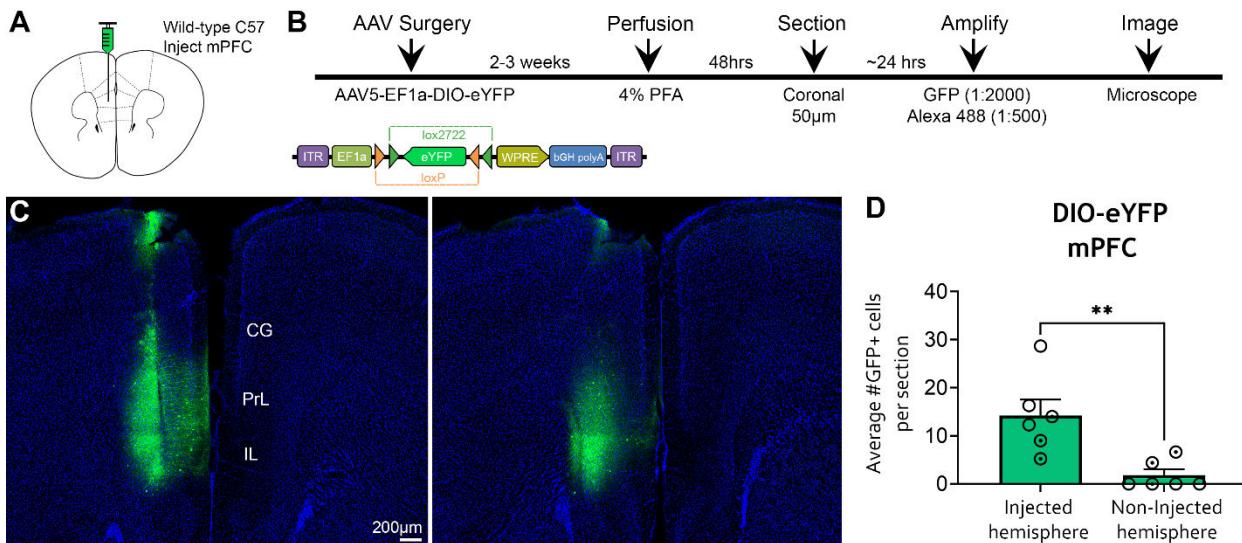
616 **Conclusions**


617 Cre-recombinase dependent rAAVs represent a powerful tool that many neuroscientists utilize
618 for labeling, tracing, or manipulating specific neuronal populations. Although the fluorescent
619 reporter of most viral constructs yields suitable transgene expression levels within infected cell
620 populations, many laboratories utilize antibody-based fluorescence signal amplification to
621 visualize weak or intermediate fluorescence signals. Here, we report the observation that Cre-
622 dependent AAVs injected into different brain regions of mice lacking Cre-recombinase reliably
623 showed expression following antibody amplification of the fluorescent reporter. Our results
624 therefore caution that researchers must carefully design and interpret data involving Cre-
625 dependent rAAV infection.


645 **Figure 2. Non-amplified fluorescence of DIO constructs in WT C57BL/6J mice**

646 Representative photomicrographs of non-amplified fluorescence signal in C57BL/6J mice
647 injected with **(A)** AAV5-EF1a-DIO-eYFP or **(B)** AAV5-EF1a-DIO-mCherry. Non-amplified
648 immunofluorescence was generally weak and primarily restricted to the soma (yellow arrows,
649 see insets) of the injected hemisphere only. We hypothesize that the weak non-amplified
650 immunofluorescence in these cells is significantly enhanced after antibody amplification. In
651 addition, a very small number of cells with bright immunofluorescence throughout the cell body
652 and its processes were observed (white arrows, see insets). Scale bars: 100 μ m (10x objective),
653 Insets 25 μ m (20x objective).




Figure 3. Amplified expression of DIO-mCherry in the hippocampus of WT C57BL/6J mice

(A-B) Experimental design and timeline. AAV5-EF1a-DIO-mCherry was injected into the anterior and posterior hippocampus of C57BL/6J mice ($n=8$) and perfused 2-3 weeks later. Brains were sectioned in the coronal plane and viral signal was amplified with rabbit anti-mCherry and goat anti-rabbit 568 antibodies. **(C)** Representative immunofluorescence of mCherry throughout the relatively dorsal (top panel) and caudal (bottom panel) DG. Expression of mCherry was primarily observed in the GCL and dendrites extending into the ML (putative dentate GCs). The amplified mCherry signal also resulted in labeling of mossy fibers and cells in the hilus. **(D)** Quantification of mCherry+ cells indicated that somatic expression was restricted to the injected hemisphere. Female (clear circles) and male (dotted circles) data points are identified, but no sex differences were found. GCL: granule cell layer, ML: molecular layer. *** $p < 0.001$. Scale bar: 100 μ m.

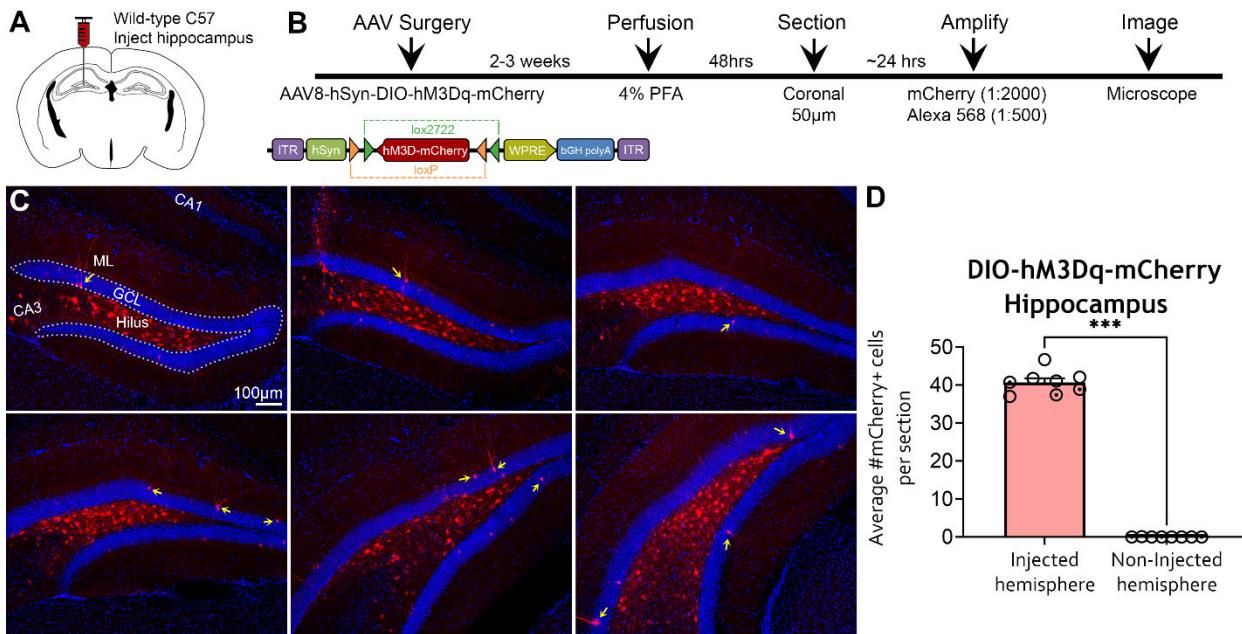
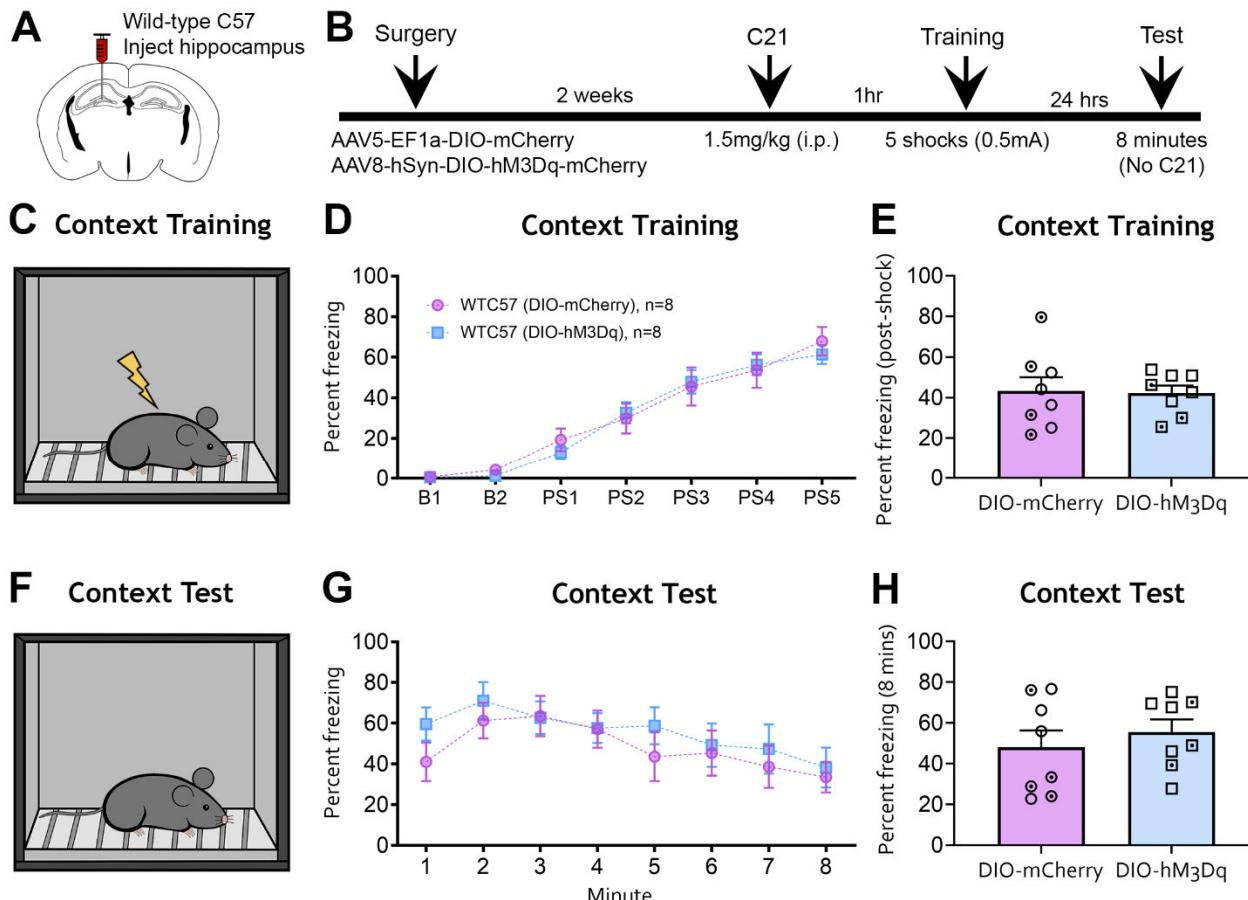
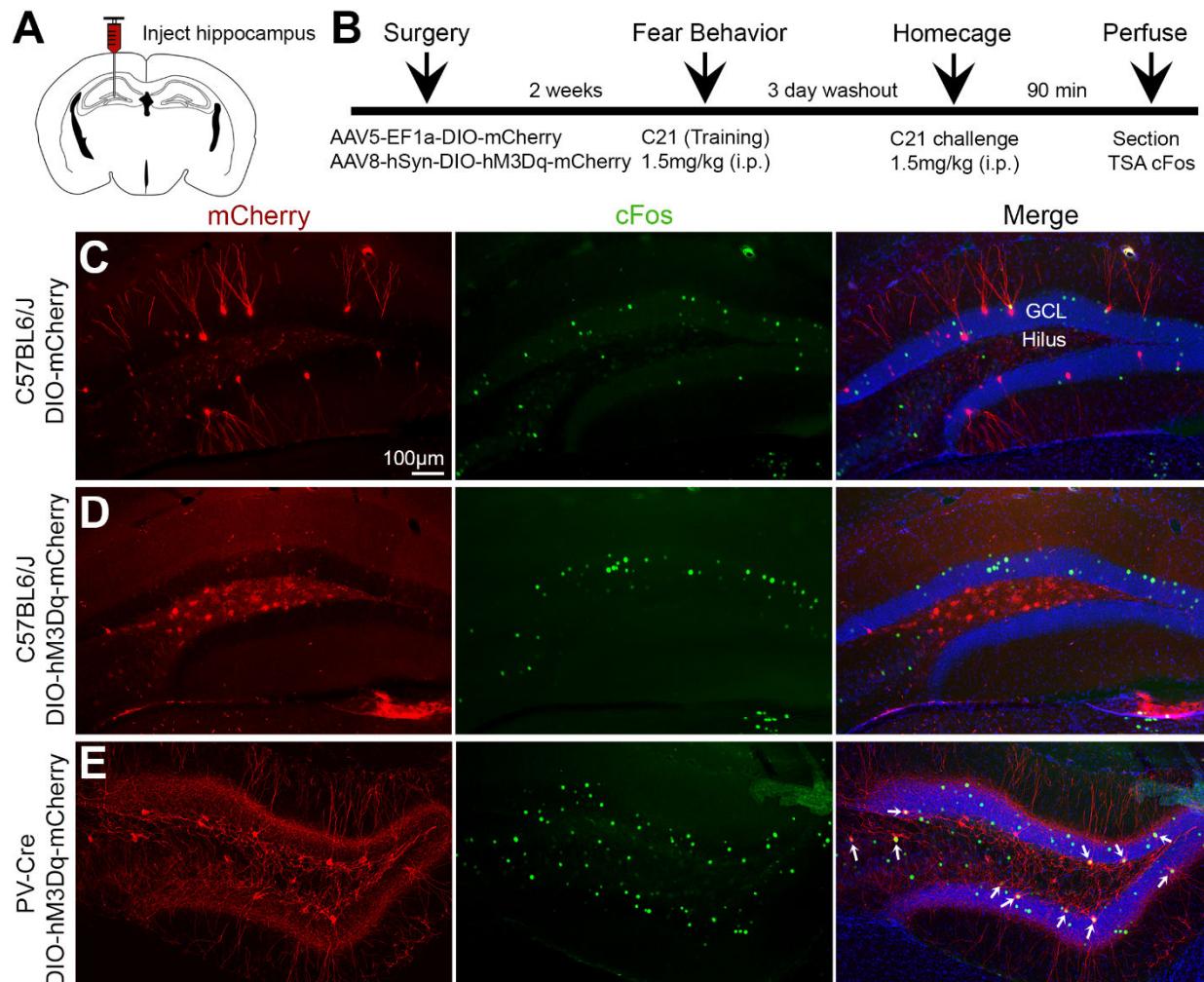

DIO-eYFP
Hippocampus

Figure 5. Amplified expression of DIO-eYFP in the mPFC of WT C57BL/6J mice


(A-B) Experimental design and timeline. AAV5-EF1a-DIO-eYFP was injected into left mPFC of C57BL/6J mice ($n=6$) and mice were perfused 2-3 weeks later. Viral signal was amplified with chicken anti-GFP and goat anti-chicken 488 antibodies. (C) Representative GFP immunofluorescence in the mPFC of two sections from the same mouse. (D) Quantification of GFP+ cells in the mPFC showed that expression was primarily restricted to the injected hemisphere, but two mice had sparse expression of GFP+ cells in the non-injected hemisphere, presumably resulting from viral spread due to the close proximity of the left and right mPFC. Female (clear circles) and male (dotted circles) data points are identified, but no sex differences were found. CG: cingulate gyrus, PrL: prelimbic cortex, IL: infralimbic cortex. ** $p<0.005$. Scale bar: 200µm.

691

692 **Figure 6. Amplified expression of DIO-hM3Dq-mCherry in the hippocampus of WT**
693 **C57BL/6J mice**


694 (A-B) Experimental design and timeline. AAV8-hSyn-DIO-hM3Dq-mCherry was injected into the
695 anterior and posterior hippocampus of C57BL/6J mice ($n=8$) and mice were perfused 2-3 weeks
696 later. The viral signal was amplified with rabbit anti-mCherry and goat anti-rabbit 568 antibodies
697 and visualized on an epifluorescence microscope. (C) Representative mCherry
698 immunofluorescence in relatively dorsal (top panel) and caudal (bottom panel) sections of the
699 DG. Amplified mCherry expression appeared primarily within hilar cells and a sparse number of
700 GCs (yellow arrows). (D) Quantification of mCherry+ cells revealed that expression was
701 restricted to the injected hippocampus. Female (clear circles) and male (dotted circles) data
702 points are identified, but no sex differences were found. GCL: granule cell layer, ML: molecular
703 layer. *** $p<0.001$. Scale bar: 100 μ m.

704

705 **Figure 7. The hM3Dq agonist C21 does not affect fear behavior in C57BL/6J mice injected**
706 **with DIO-mCherry or DIO-hM3Dq-mCherry in the DG**

707 **(A-B)** Experimental design and timeline. Adult C57BL/6J mice underwent surgery to receive
708 intrahippocampal injections of AAV-EF1a-DIO-mCherry or AAV-hSyn-DIO-hM3Dq-mCherry.
709 After a 2-week recovery period, mice were injected with the hM3Dq agonist C21 one hour prior
710 to contextual fear training. **(C)** Mice were then placed in a fear conditioning chamber. Baseline
711 activity was assessed over 2 minutes, followed by 5 foot-shocks (0.5mA) spaced 1 minute apart.
712 **(D)** Minute-by-minute analysis of the training session revealed that freezing behavior did not
713 differ between EF1a-DIO-mCherry or hSyn-DIO-hM3Dq-mCherry groups. **(E)** The average post-
714 shock freezing did not differ between the EF1a-DIO-mCherry and hSyn-DIO-hM3Dq-mCherry
715 groups. **(F)** Mice were returned to the same operant chamber 24 hours later to test contextual
716 fear memory. Notably, C21 was not administered a second time prior to the contextual memory
717 test. **(G)** Minute-by-minute analysis revealed that conditioned freezing did not differ between the
718 EF1a-DIO-mCherry or hSyn-DIO-hM3Dq-mCherry groups. **(H)** Average freezing during the
719 memory test did not differ between groups. Female (clear points) and male (dotted points) data
720 points are identified, but no sex differences were found.

722 **Figure 8. mCherry and cFos immunofluorescence following C21 homecage challenge**

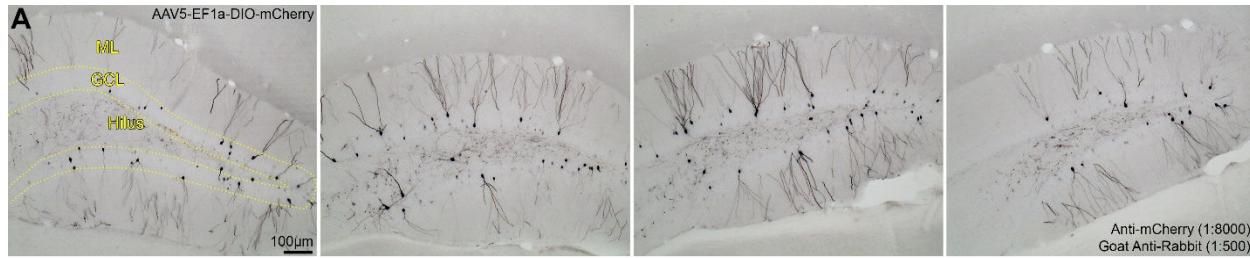
723 **(A-B)** Experimental design and timeline. Mice underwent surgery for AAV injection and allowed

724 2 weeks to recover. Mice underwent behavioral testing and were given a 3-day washout

725 period. Mice were then injected with C21 (1.5mg/kg) in their homecage and euthanized 90

726 minutes later to evaluate the immediate early gene cFos. **(C)** Representative images for

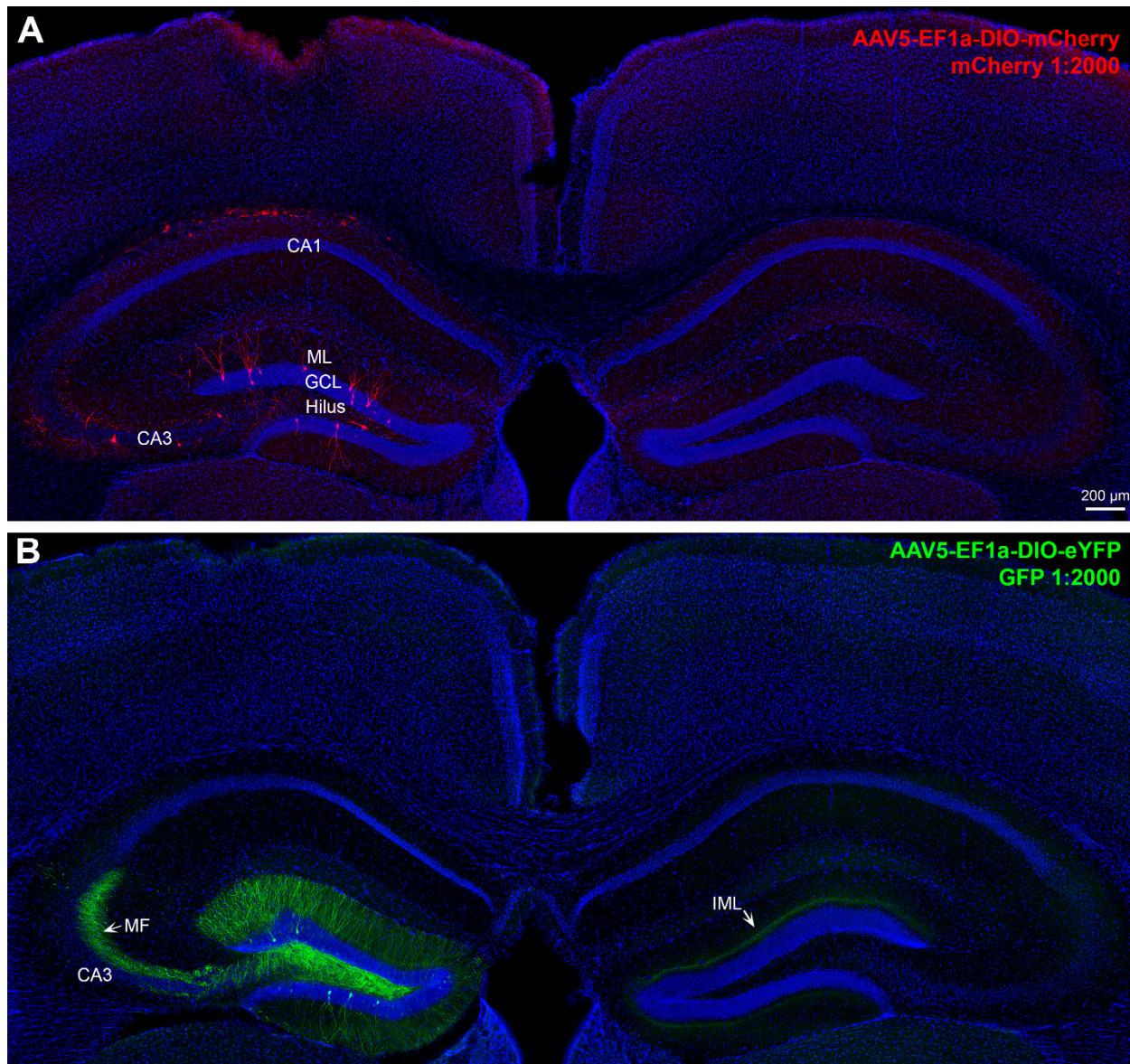
727 C57BL6/J mice injected with DIO-mCherry show no colocalization between amplified mCherry


728 and cFos. **(D)** Representative images for C57BL6/J mice injected with DIO-hM3Dq-mCherry

729 show minimal colocalization of cFos and amplified mCherry. **(E)** Representative images for PV-

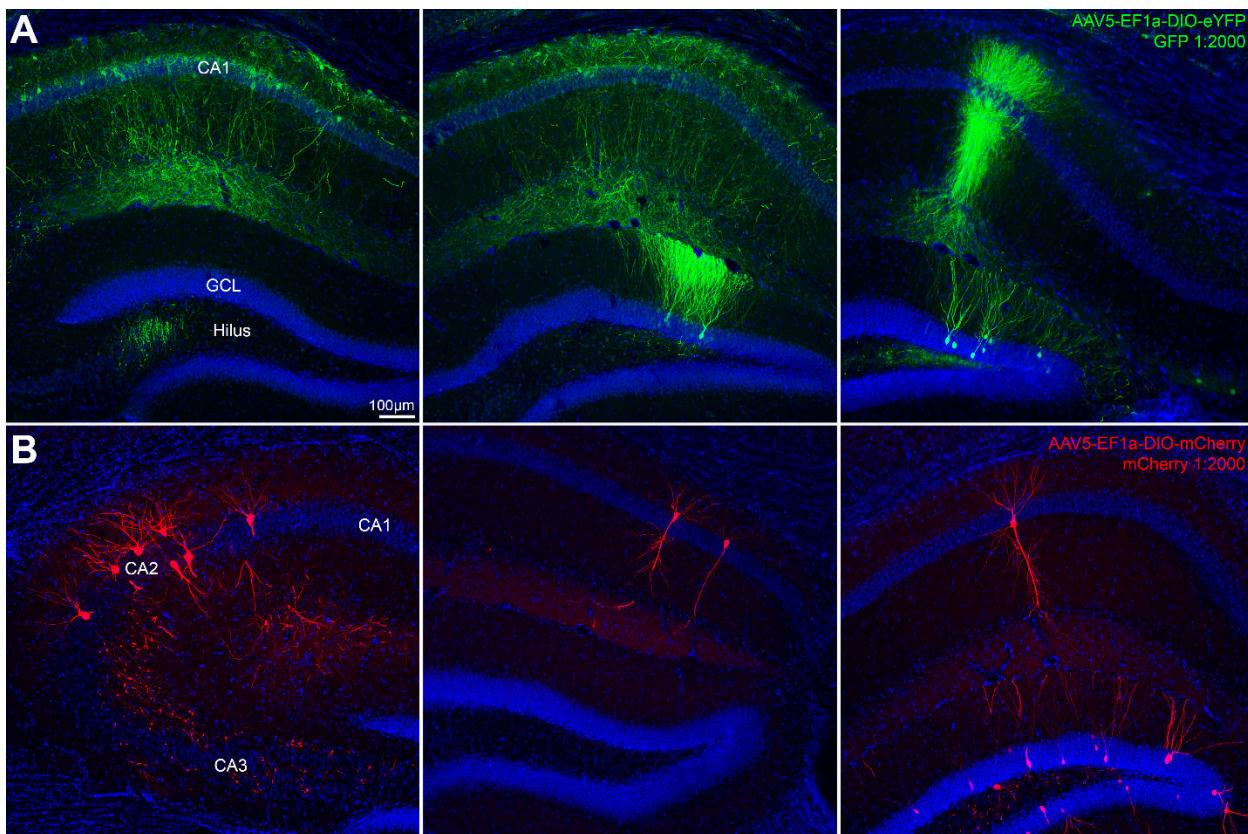
730 Cre-positive mice injected with DIO-hM3Dq-mCherry (red) and challenged with C21 shows a

731 high degree of colocalization with cFos (yellow; white arrows). Scale bar: 100μm.


732

733 **Figure 3-1. mCherry immunoreactivity in WT C57BL/6J mice injected with AAV5-EF1a-DIO-mCherry**

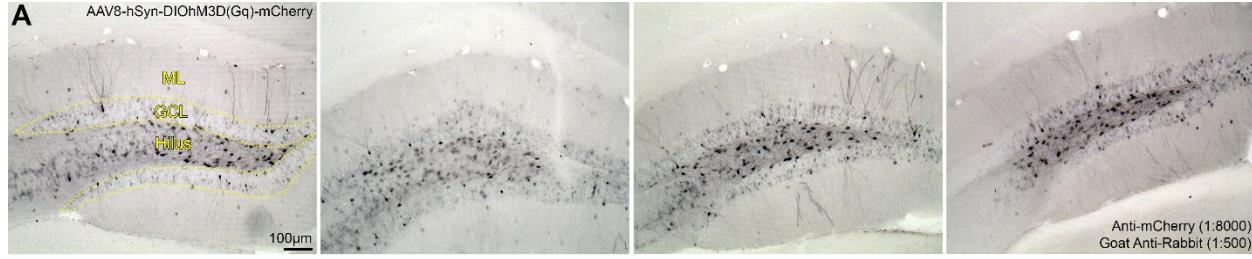
734


735 (A) Representative photomicrographs of mCherry immunoreactivity in C57BL/6J mice injected
736 with AAV5-EF1a-DIO-mCherry. Overall, mCherry immunoreactivity was comparable to the
737 pattern of expression observed with amplified DIO-mCherry immunofluorescence (see **Figure**
738 **3**). GCL: granule cell layer, ML: molecular layer. Scale bar: 100 μ m.

739

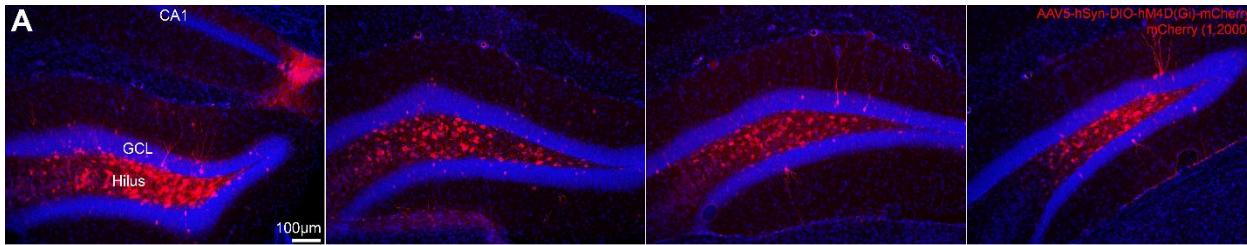
740 **Figure 4-1. Fluorescence signal amplification of DIO-mCherry and DIO-eYFP is highly**
741 **specific to the injection site in WT C57BL/6J mice**

742 (A) Tile-scan of a C57BL/6J mouse injected with AAV5-EF1a-DIO-mCherry. Viral expression
743 was amplified with mCherry antibody. The indent on the top of the left cortex represents drilling
744 artifact near the injection site. The mCherry expression is primarily restricted to the injected (left)
745 hippocampus, with mCherry+ cells observed in the GCL of the DG. There is also sparse
746 labeling of mCherry+ cells in the CA3. (B) Tile-scan of a C57BL/6J mouse injected with AAV5-
747 EF1a-DIO-eYFP. Viral expression was amplified with GFP and observed primarily within the
748 injected (left) DG. Furthermore, GFP+ mossy fiber (MF) axons from dentate GCs were observed
749 projecting to area CA3. Interestingly, commissural GFP+ axons, presumably from mossy cells,
750 were observed within the IML of the contralateral hemisphere. Notably, there were no mCherry+
751 or GFP+ cells in the non-injected hemisphere. This result indicates that amplified fluorescence
752 signal is highly specific to the target region and the projections of labeled cells. Scale bar:
753 200 μ m.



754

755 **Figure 4-2. Fluorescence signal amplification in other subfields of the hippocampus**


756 **(A-B)** Viral injections aimed at the DG occasionally resulted in mistargeting which led to
757 amplified fluorescence signal in other subfields of the hippocampus, such as CA1 or CA2. This
758 finding suggests that amplified viral expression was not unique to the DG, but rather specific to
759 the injection site. GCL: granule cell layer. Scale bar: 100μm.

760

761 **Figure 6-1. mCherry immunoreactivity in WT C57BL/6J mice injected with AAV8-hSyn-
762 DIO-hM3Dq-mCherry**

763 (A) Representative photomicrographs of mCherry immunoreactivity in C57BL/6J mice injected
764 with AAV8-hSyn-DIO-hM3Dq-mCherry. The pattern of mCherry immunoreactivity was
765 comparable to the amplified immunofluorescence of DIO-hM3Dq-mCherry (see **Figure 6**). GCL:
766 granule cell layer, ML: molecular layer. Scale bar: 100μm.

767

768 **Figure 6-2. Fluorescence signal amplification of AAV5-hSyn-DIO-hM4Di-mCherry in WT**
769 **C57BL/6J mice**

770 **(A)** C57BL/6J mice were injected in the DG with AAV5-hSyn-DIO-hM4D(Gi)-mCherry and
771 sections were amplified with mCherry. Interestingly, mCherry+ cells were primarily located in the
772 hilus, but a small number of GCs were also labeled. The pattern of amplified AAV5-hSyn-DIO-
773 hM4Di-mCherry expression is consistent with the AAV8-hSyn-DIO-hM3Dq-mCherry construct
774 shown in **Figure 6**. Scale bar: 100μm.

775 References

776 Alexander GM, Brown LY, Farris S, Lustberg D, Pantazis C, Gloss B, Plummer NW, Jensen P,
777 Dudek SM (2018) CA2 neuronal activity controls hippocampal low gamma and ripple
778 oscillations. *Elife* 7.

779 Alkaabi KM, Yafea A, Ashraf SS (2005) Effect of pH on thermal- and chemical-induced
780 denaturation of GFP. *Appl Biochem Biotechnol* 126:149-156.

781 Arruda-Carvalho M, Sakaguchi M, Akers KG, Josselyn SA, Frankland PW (2011) Posttraining
782 ablation of adult-generated neurons degrades previously acquired memories. *J Neurosci*
783 31:15113-15127.

784 Atasoy D, Aponte Y, Su HH, Sternson SM (2008) A FLEX switch targets Channelrhodopsin-2 to
785 multiple cell types for imaging and long-range circuit mapping. *J Neurosci* 28:7025-7030.

786 Barzel A, Pault NK, Shi Y, Huang Y, Chu K, Zhang F, Valdmanis PN, Spector LP, Porteus MH,
787 Gaensler KM, Kay MA (2015) Promoterless gene targeting without nucleases
788 ameliorates haemophilia B in mice. *Nature* 517:360-364.

789 Betley JN, Sternson SM (2011) Adeno-associated viral vectors for mapping, monitoring, and
790 manipulating neural circuits. *Hum Gene Ther* 22:669-677.

791 Blanchard DC, Blanchard RJ (1972) Innate and conditioned reactions to threat in rats with
792 amygdaloid lesions. *J Comp Physiol Psychol* 81:281-290.

793 Bonaventura J et al. (2019) High-potency ligands for DREADD imaging and activation in rodents
794 and monkeys. *Nat Commun* 10:4627.

795 Botterill JJ, Vinod KY, Gerencer KJ, Teixeira CM, LaFrancois JJ, Scharfman HE (2021)
796 Bidirectional regulation of cognitive and anxiety-like behaviors by dentate gyrus mossy
797 cells in male and female mice. *J Neurosci* 41:2475-2495.

798 Bui AD, Nguyen TM, Limouse C, Kim HK, Szabo GG, Felong S, Maroso M, Soltesz I (2018)
799 Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory.
800 *Science* 359:787-790.

801 Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, Wu WL, Yang B,
802 Huber N, Pasca SP, Gradinaru V (2016) Cre-dependent selection yields AAV variants
803 for widespread gene transfer to the adult brain. *Nat Biotechnol* 34:204-209.

804 Earley LF, Conatser LM, Lue VM, Dobbins AL, Li C, Hirsch ML, Samulski RJ (2020) Adeno-
805 associated virus serotype-specific inverted terminal repeat sequence role in vector
806 transgene expression. *Hum Gene Ther* 31:151-162.

807 Ellwood IT, Patel T, Wadia V, Lee AT, Liptak AT, Bender KJ, Sohal VS (2017) Tonic or phasic
808 stimulation of dopaminergic projections to prefrontal cortex causes mice to maintain or
809 deviate from previously learned behavioral strategies. *J Neurosci* 37:8315-8329.

810 Falcy BA, Mohr MA, Micevych PE (2020) Immunohistochemical amplification of mCherry fusion
811 protein is necessary for proper visualization. *MethodsX* 7:100946.

812 Fanselow MS (1980) Conditioned and unconditional components of post-shock freezing. *Pavlov*
813 *J Biol Sci* 15:177-182.

814 Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. *Annu*
815 *Rev Neurosci* 34:389-412.

816 Fischer KB, Collins HK, Callaway EM (2019) Sources of off-target expression from
817 recombinase-dependent AAV vectors and mitigation with cross-over insensitive ATG-out
818 vectors. *Proc Natl Acad Sci U S A*.

819 Flotte TR, Solow R, Owens RA, Afione S, Zeitlin PL, Carter BJ (1992) Gene expression from
820 adeno-associated virus vectors in airway epithelial cells. *Am J Respir Cell Mol Biol*
821 7:349-356.

822 Foggetti A, Baccini G, Arnold P, Schiffelholz T, Wulff P (2019) Spiny and non-spiny
823 parvalbumin-positive hippocampal interneurons show different plastic properties. *Cell*
824 *Rep* 27:3725-3732 e3725.

825 Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. *Hippocampus* 6:347-470.

826 Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, Ellis RJ,
827 Richie CT, Harvey BK, Dannals RF, Pomper MG, Bonci A, Michaelides M (2017)
828 Chemogenetics revealed: DREADD occupancy and activation via converted clozapine.
829 *Science* 357:503-507.

830 Grieger JC, Samulski RJ (2005) Packaging capacity of adeno-associated virus serotypes:
831 impact of larger genomes on infectivity and postentry steps. *J Virol* 79:9933-9944.

832 Gundersen BB, Briand LA, Onksen JL, Lelay J, Kaestner KH, Blendy JA (2013) Increased
833 hippocampal neurogenesis and accelerated response to antidepressants in mice with
834 specific deletion of CREB in the hippocampus: role of cAMP response-element
835 modulator tau. *J Neurosci* 33:13673-13685.

836 Guskjolen A, Kenney JW, de la Parra J, Yeung BA, Josselyn SA, Frankland PW (2018)
837 Recovery of "lost" infant memories in mice. *Curr Biol* 28:2283-2290 e2283.

838 Haery L, Deverman BE, Matho KS, Cetin A, Woodard K, Cepko C, Guerin KI, Rego MA, Ersing
839 I, Bachle SM, Kamens J, Fan M (2019) Adeno-associated virus technologies and
840 methods for targeted neuronal manipulation. *Front Neuroanat* 13:93.

841 Haggerty DL, Grecco GG, Reeves KC, Atwood B (2020) Adeno-associated viral vectors in
842 neuroscience research. *Mol Ther Methods Clin Dev* 17:69-82.

843 Huang ZJ, Taniguchi H, He M, Kuhlman S (2014) Cre-dependent adeno-associated virus
844 preparation and delivery for labeling neurons in the mouse brain. *Cold Spring Harb*
845 *Protoc* 2014:190-194.

846 Iwasaki S, Ikegaya Y (2021) Contextual fear memory retrieval is vulnerable to hippocampal
847 noise. *Cereb Cortex* 31:785-794.

848 Johnston S, Parylak S, Kim S, Mac N, Lim C, Gallina I, Bloyd C, Newberry A, Saavedra CD,
849 Novak O, Goncalves JT, Gage FH, Shtrahman M (2021) AAV ablates neurogenesis in
850 the adult murine hippocampus. *Elife* 10.

851 Koshimizu Y, Isa K, Kobayashi K, Isa T (2021) Double viral vector technology for selective
852 manipulation of neural pathways with higher level of efficiency and safety. *Gene Ther*
853 28:339-350.

854 Lammel S, Steinberg EE, Foldy C, Wall NR, Beier K, Luo L, Malenka RC (2015) Diversity of
855 transgenic mouse models for selective targeting of midbrain dopamine neurons. *Neuron*
856 85:429-438.

857 Lindeberg J, Usoskin D, Bengtsson H, Gustafsson A, Kylberg A, Soderstrom S, Ebendal T
858 (2004) Transgenic expression of Cre recombinase from the tyrosine hydroxylase locus.
859 *Genesis* 40:67-73.

860 MacLaren DA, Browne RW, Shaw JK, Krishnan Radhakrishnan S, Khare P, Espana RA, Clark
861 SD (2016) Clozapine N-oxide administration produces behavioral effects in Long-Evans
862 rats: implications for designing DREADD experiments. *eNeuro* 3.

863 Mahler SV, Brodnik ZD, Cox BM, Buchta WC, Bentzley BS, Quintanilla J, Cope ZA, Lin EC,
864 Riedy MD, Scofield MD, Messinger J, Ruiz CM, Riegel AC, Espana RA, Aston-Jones G
865 (2019) Chemogenetic manipulations of ventral tegmental area dopamine neurons reveal
866 multifaceted roles in cocaine abuse. *J Neurosci* 39:503-518.

867 Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, Weinshenker D (2018)
868 The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and
869 produces clozapine-like interoceptive stimulus effects in rats and mice. *Sci Rep* 8:3840.

870 McGlinchey EM, Aston-Jones G (2018) Dorsal hippocampus drives context-induced cocaine
871 seeking via inputs to lateral septum. *Neuropsychopharmacology* 43:987-1000.

872 McLellan MA, Rosenthal NA, Pinto AR (2017) Cre-loxP-mediated recombination: general
873 principles and experimental considerations. *Curr Protoc Mouse Biol* 7:1-12.

874 Murata Y, Colonnese MT (2020) GABAergic interneurons excite neonatal hippocampus in vivo.
875 *Sci Adv* 6:eaba1430.

876 Naso MF, Tomkowicz B, Perry WL, 3rd, Strohl WR (2017) Adeno-associated virus (AAV) as a
877 vector for gene therapy. *BioDrugs* 31:317-334.

878 Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ (2017) Hippocampal
879 GABAergic Inhibitory Interneurons. *Physiol Rev* 97:1619-1747.

880 Piatkevich KD, Bensussen S, Tseng HA, Shroff SN, Lopez-Huerta VG, Park D, Jung EE,
881 Shemesh OA, Straub C, Gritton HJ, Romano MF, Costa E, Sabatini BL, Fu Z, Boyden
882 ES, Han X (2019) Population imaging of neural activity in awake behaving mice. *Nature*
883 574:413-417.

884 Popescu AT, Zhou MR, Poo MM (2016) Phasic dopamine release in the medial prefrontal cortex
885 enhances stimulus discrimination. *Proc Natl Acad Sci U S A* 113:E3169-3176.

886 Roth BL (2016) DREADDs for neuroscientists. *Neuron* 89:683-694.

887 Saleeba C, Dempsey B, Le S, Goodchild A, McMullan S (2019) A Student's Guide to Neural
888 Circuit Tracing. *Front Neurosci* 13:897.

889 Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre
890 recombinase of bacteriophage P1. *Proc Natl Acad Sci U S A* 85:5166-5170.

891 Saunders A, Sabatini BL (2015) Cre activated and inactivated recombinant adeno-associated
892 viral vectors for neuronal anatomical tracing or activity manipulation. *Curr Protoc*
893 *Neurosci* 72:1 24 21-21 24 15.

894 Schnutgen F, Doerflinger N, Calleja C, Wendling O, Chambon P, Ghyselinck NB (2003) A
895 directional strategy for monitoring Cre-mediated recombination at the cellular level in the
896 mouse. *Nat Biotechnol* 21:562-565.

897 Sengupta R, Mendenhall A, Sarkar N, Mukherjee C, Afshari A, Huang J, Lu B (2017) Viral Cre-
898 LoxP tools aid genome engineering in mammalian cells. *J Biol Eng* 11:45.

899 Smith KS, Bucci DJ, Luikart BW, Mahler SV (2016) DREADDS: Use and application in
900 behavioral neuroscience. *Behav Neurosci* 130:137-155.

901 Song AJ, Palmiter RD (2018) Detecting and avoiding problems when using the Cre-lox system.
902 *Trends Genet* 34:333-340.

903 Stifter SA, Greter M (2020) STOP floxing around: Specificity and leakiness of inducible Cre/loxP
904 systems. *Eur J Immunol* 50:338-341.

905 Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the
906 nucleus accumbens but not the dorsal striatum corelease glutamate. *J Neurosci*
907 30:8229-8233.

908 Trapani I, Toriello E, de Simone S, Colella P, Iodice C, Polishchuk EV, Sommella A, Colecchi L,
909 Rossi S, Simonelli F, Giunti M, Bacci ML, Polishchuk RS, Auricchio A (2015) Improved
910 dual AAV vectors with reduced expression of truncated proteins are safe and effective in
911 the retina of a mouse model of Stargardt disease. *Hum Mol Genet* 24:6811-6825.

912 Van Hove H, Antunes ARP, De Vlaminck K, Scheyltjens I, Van Ginderachter JA, Movahedi K
913 (2020) Identifying the variables that drive tamoxifen-independent CreERT2
914 recombination: Implications for microglial fate mapping and gene deletions. *Eur J*
915 *Immunol* 50:459-463.

916 Yang J, Zhou W, Zhang Y, Zidon T, Ritchie T, Engelhardt JF (1999) Concatamerization of
917 adeno-associated virus circular genomes occurs through intermolecular recombination. *J*
918 *Virol* 73:9468-9477.

919 Zingg B, Chou XL, Zhang ZG, Mesik L, Liang F, Tao HW, Zhang LI (2017) AAV-mediated
920 anterograde transsynaptic tagging: mapping corticocollicular input-defined neural
921 pathways for defense behaviors. *Neuron* 93:33-47.

922 Zou D, Chen L, Deng D, Jiang D, Dong F, McSweeney C, Zhou Y, Liu L, Chen G, Wu Y, Mao Y
923 (2016) DREADD in parvalbumin interneurons of the dentate gyrus modulates anxiety,
924 social interaction and memory extinction. *Curr Mol Med* 16:91-102.