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ABSTRACT 

Background: Calcium imaging is a powerful technique for recording cellular activity across 

large populations of neurons. However, analysis methods capable of single-cell resolution in 

cultured neurons, especially for cultures derived from human induced pluripotent stem cells 

(hiPSCs), are lacking. Existing methods lack scalability to accommodate high-throughput 

comparisons between multiple lines, across developmental timepoints, or across 

pharmacological manipulations.  

Results: We developed a scalable, automated Ca2+ imaging analysis pipeline called CaPTure 

(https://github.com/LieberInstitute/CaPTure). This method detects neurons, classifies and 

quantifies spontaneous activity, quantifies synchrony metrics, and generates cell- and network-

specific metrics that facilitate phenotypic discovery. The method is compatible with parallel 

processing on computing clusters without requiring significant user input or parameter 

modification.   

Conclusion: CaPTure allows for rapid assessment of neuronal activity in cultured cells at 

cellular resolution, rendering it amenable to high-throughput screening and phenotypic 

discovery. The platform can be applied to both human- and rodent-derived neurons and is 

compatible with many imaging systems.  
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BACKGROUND  

Transient increases in intracellular calcium levels are a requisite for neuronal activity, thus 

providing a useful strategy for measuring cellular activity at both network-wide and single-cell 

resolution. Calcium imaging is frequently used to measure activity dynamics in the brains of 

awake, behaving animals using fiber photometry or miniaturized microscopes coupled with 

endoscopic imaging [1–3]. This field is advancing rapidly with the advent of new technologies 

[4], and a number of computational methods have been developed to analyze calcium imaging 

data in vivo at both the single-cell level as well as to assess bulk calcium dynamics within the 

entire field of view [5–8].  

However, due to differences in signal-to-noise ratios and background fluorescence in intact 

tissue versus cell culture systems, collecting and analyzing calcium imaging data from in vitro 

cell culture models requires different computational approaches [9]. For example, in vitro cell 

model systems are comparatively less active and more synchronous than intact brain samples. 
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Many of the existing methods for calcium imaging analysis detect changes in activity, and then 

combine those synchronous signals into the signal attributed to a single cell [10]. However, due 

to the high degree of synchronicity in in vitro systems, these methods erroneously combine 

activity measurements for multiple cells that are firing as an ensemble. With advancements in 

human induced pluripotent stem cell (hiPSC) technologies and in vitro genetic modelling of 

disease, the need to accurately measure neuronal activity in cultured neurons has become 

increasingly important. As current models often involve either co-culture systems with multiple 

species as source material (e.g. rodent glial cells co-cultured with human neurons) or mixed 

cell-type assemblages (e.g. primary cortical tissue, or hiPSC-derived organoids), genetically 

encoded calcium indicators (GECIs) enable important cell-type specific targeting. Thus, 

strategies for measuring neuronal activity that use AM-dye based Ca2+ indicators or multi-

electrode arrays, where a priori targeting or characterization of a specific cell population is not 

feasible, result in limited cell-type specific information.  

Acquisition of this information enables comparisons between hiPSC lines derived from different 

individual donors, or from transgenic rodent models. In review of existing literature, we found 

most analysis methods require a high degree of user input to define parameters [11, 12], or 

extensive knowledge of the data being acquired to provide information for specific functions, like 

‘findpeaks’ in MATLAB. On the other hand, FluoroSNNAP - Fluorescence Single Neuron and 

Network Analysis Package - accurately detects events, but is GUI based. Hence this package is 

not compatible with high performance computing clusters, and, in our hands, the pre-processing 

failed to accurately remove noise from the data [13]. Utilizing a field-based thresholding 

approach requires a high degree of similarity between all acquired time-lapse movies, or the 

selection of amplitude and intensity thresholds to be performed for each field independently.  

Here we introduce CaPTure, which is an automated analysis pipeline that facilitates 1) the 

accurate detection of neurons, 2) the identification of calcium events in individual cells, and 3) 

the calculation of image-based network connectivity metrics. Utilizing a GECI that co-expresses 

a fluorescent marker protein in the cell type of interest, we extended the FluoroSNNAP software 

package by introducing additional data pre-processing steps to detect regions of interest (ROIs) 

to focus subsequent analysis, and normalize fluorescence intensity over time [13]. We added 

data-driven motifs representing events observed in our data, and calculated synchrony metrics 

including clusters of synchronous cells to assess ensemble activity.  Compared to existing 

analysis methods, our method accurately quantifies dynamic measurements in selected cells, 

while incorporating both per-field and individual per-ROI neuronal activity metrics. Thus, this 

method has the advantage of facilitating comparisons of neuronal and network activity between 

genetic models of disease and pharmacological manipulations. The method is highly amenable 

to parallel computing and high-throughput screening.   

 

 

IMPLEMENTATION 

Sample preparation:   

hiPSC-derived neurons 
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Fibroblast donors were male and of European ancestry - these research subjects were enrolled 

in the Sibling Study of Schizophrenia at the National Institute of Mental Health in the Clinical 

Brain Disorders Branch (NIMH, protocol 95M0150, NCT00001486, Annual Report number: ZIA 

MH002942053, DRW PI) as previously described [14]. Early passage fibroblasts (<5 passages) 

were reprogrammed into hiPSCs as previously described [15], and subsequently differentiated 

through neural progenitor stages into cortical neurons. Neurons were co-cultured in 24-well ibidi 

plates with astrocytes prepared from the cortices of neonatal rats to promote neuronal maturity 

as previously described [14, 16]; and were maintained with partial media changes twice a week 

for up to 10 weeks (Day in Vitro (DIV70)).  

 

Animals 

Wild-type mice were bred for the generation of postnatal day 0 mice primary neuronal cultures. 

Mice were purchased from Jackson laboratories (Bar Harbor, ME, C57BL6/J; stock #000664). 

Timed-pregnant Wistar rats for astrocyte cultures were obtained from Charles River 

Laboratories (Wilmington, MA, USA; stock Crl:WI003). Rodents were housed in a temperature-

controlled environment with a 12:12 light/dark cycle and ad libitum access to standard 

laboratory chow and water. All experimental animal procedures were approved by the SoBran 

Biosciences Institutional Animal Care and Use Committee.  

 

Mouse primary cortical cultures 

Mouse cortical neurons were cultured on a 24-well ibidi plate (Cat. No. 82406, ibidi GmbH, 

Munich, Germany) as previously described with modifications [17]. Briefly, on the day of birth, 

mice were anesthetized by being placed on ice, then rapidly decapitated and their cortices 

removed. Cortical tissue was dissociated using papain, and plated at a density of 2.5X10^5 per 

well  on a 24-well ibidi plate coated with poly-D-lysine and laminin. Neurons were maintained in 

culture with partial media changes every two days and imaged between DIV14 and DIV15. 

 

Viral Transduction 

hiPSC-derived neurons were transduced at DIV23 with adeno-associated virus expressing 

mRuby2 and GCaMP6s under the control of a synapsin promoter (MOI ~6x10^4, Addgene viral 

prep # 50942-AAV1 [18]. Following a full media exchange on DIV25, neurons were cultured for 

at least 21 days and imaged on DIV 42 or 63. Mouse primary cultures were transduced with 

1:10 viral concentration used in human experiments of the same virus (human synapsin 1 

promoter was ubiquitously expressed in mouse neurons). Mouse primary cultures were infected 

at DIV5-DIV8 prior to DIV14-DIV15 recordings. 

 

 

Imaging Acquisition 

 

LSM780 confocal microscope 

Primary mouse cortical cultures and hiPSC-derived neurons were imaged in culture media on a 

Zeiss LSM780 equipped with a 10X/0.45NA objective, a temperature- and atmospheric-

controlled enclosure to maintain neurons at 37° and 5% CO2. A reference image was acquired 

for each field of mRuby fluorescence followed by a time-series was acquired at 4Hz for 8 
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minutes. In some cases, tetrodotoxin (TTX, 1uM) was then added to block synaptic transmission 

and incubated for at least 5 minutes prior to imaging to equilibrate.   

 

Spinning Disk confocal microscope 

Neurons were removed from culture media and were continuously perfused with artificial 

cerebro-spinal fluid (ACSF) containing (in mM): 128 NaCl, 30 glucose, 25 HEPES, 5  KCl, 2 

CaCl2, and 1 MgCl2 (pH 7.3) [16]. Imaging was performed at DIV56 or DIV70 on a custom-built 

Zeiss Spinning Disk confocal with a 20X/1.0NA water immersion objective. A reference image 

was acquired using mRuby fluorescence, then a time-series was acquired at 10Hz for 5 

minutes. For experiments in which pharmacological blockers were added, TTX (1uM) was 

included in the perfusate for at least 5 minutes prior to imaging.   

 

Acquisition parameters 

From all scopes, two image types are collected: a time-series of GCaMP6s fluorescence and a 

reference image of mRuby to demarcate infected neurons. The reference image of the LSM780 

scope is downsampled using the MATLAB function imresize to match the time-series image in X 

and Y dimensions.  

 

Scope Reference image  
X Y Z 

Pixel to 
micron 

Time-series image 
X Y Z 

Pixel to micron 

LSM 780 1024x1024 pixel 
850.19x850.19 μm 

0.83x0.83 μm 
per pixel 

256x256 pixel 
850.19x850.19 μm 

3.32x3.32 μm 
per pixel 

Spinning disk 1024x640 pixel 
660.48x412.8 μm 

0.645x0.645 
μm per pixel 

1024x640 pixel 
660.48x412.8 um 

0.645x0.645 μm 
per pixel 

 

 

Toolbox installation and software requirements  

All data processing for CaPTure is conducted in MATLAB (Version 2017a or later). The 

processing pipeline is divided into several steps as described below, the execution of which are 

explained in the following repository https://github.com/LieberInstitute/CaImg_cellcultures. The 

repository consists of a `toolbox` directory whose path needs to be added to the MATLAB 

working directory to run any of the processing steps. The directions to download and install the 

toolbox are described in the ‘installation’ step of the repository.  

 

Statistics 

To calculate the effect of pharmacological manipulations, the lmerTest R package was used for 

performing linear mixed effects modeling as a function of treatment main effect (Baseline versus 

TTX) and used cell line and the cell culture experimenter as the random intercepts.  

 

Using CaPTure 

In this section we describe the analysis workflow: first we identify ROIs by segmenting neurons 

in the cell-fill channel, and then extract fluorescence intensity. Then we identify "peaks,” which 
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are used to calculate per-image and per-cell summary and aggregate metrics to assess network 

and cellular activity.  

Step1: Convert .czi time series files to .mat files.  

A time-series of images was collected for each imaging field, and saved using the Zeiss 

proprietary .czi file format to maintain image metadata. Since all of the image data processing is 

performed in MATLAB, we recommend that users convert the raw data to MATLAB format for 

fast and easy access. We use the Bio-Formats package called `bfmatlab` (Linkert et al. 2010) to 

load the .czi data into MATLAB and use traditional save functions in MATLAB to save to .mat 

format. The `bfmatlab`  package supports the conversion of multiple proprietary file formats 

obtained from different microscope systems, thus enabling the use of CaPTure on calcium 

imaging data obtained from various systems.   

Step2: Identify ROIs.   

CaPTure allows the user to automate detection of ROIs, and then to select ROIs based on their 

shape or size. The strategy allows us to detect cells that express the cell-type specific GECI, but 

are inactive. From each reference image, we identify infected neurons from which to measure 

calcium dynamics (Figure 1A). Neurons have a complex morphology, and we aimed to identify 

signal from the soma, and not from surrounding neuropil. Thus, we used the MATLAB function 

‘imhmin’ to suppress the background signal coming from the neurites (Figure 1B). We then 

used the region growing technique (Kroon 2008) for segmenting ROIs from the red image, 

where the pixel with the minimum fluorescence intensity of the image is chosen as the initial 

seed location, and the region is iteratively grown by comparing all unallocated neighboring 

pixels to the seed region. The difference between the intensity value of each pixel and the mean 

of the region is used as a measure of similarity. The pixel with the smallest difference measured 

this way is allocated to the respective region. This process stops when the intensity difference 

between the region mean and that of the new pixel becomes larger than a user specified 

threshold, in this case, the standard deviation of the image (Figure 1C). The fully grown region 

is termed the background, thus leaving out the regions with high intensity which become the 

final segmented ROIs (Figure 1D). To select for neurons and to remove noise, debris and 

neuropil from further inclusion in the data, we used eccentricity (a measure of the roundness of 

the ROI calculated by the MATLAB function ‘regionprops3’) and a minimum size threshold to 

filter out ROIs from neuropil and noise (Figure 1E, F). The output of Step 2 provides the 

identification of all ROIs.  

Step3: Extract traces from each ROI.   

Calcium imaging allows for measurement of calcium levels in each individual cell by measuring 

dynamic fluorescence intensity. From each identified neuron, i.e., ROI, we extract calcium 

signals by measuring the fluorescence intensity over time. Traces (signal) are extracted from 

the green video using the ROI segmentations from Step 2. Each point on the trace is the 

average intensity of all the pixels of the segmented ROI at that Z frame in the green video. The 

output of Step 3 (Figure 2) is raw traces for each ROI. For ease of illustration, in subsequent 
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figures we focus on three ROIs: ROI 16-low activity (light teal), ROI 19-moderate activity 

(medium blue) and ROI 23-high activity (royal blue).   

Step4: Extract delta fluorescence/fluorescence (dff) from step3.  

Dynamic fluorescent intensity is normalized to baseline. Due to fluctuations in viral transfection 

efficiency, baseline activity, expression of the virus and the position of the cell within the sample, 

there can be differences in the baseline fluorescence intensity between ROIs. Thus, we 

normalize each trace using a rolling average as described in Developing And Assessing 

Methods For Calcium Imaging Data (2.2.4 Smoothing: DFF) (Jia et al. 2011). The output of Step 

4 provides normalized traces with smoothing (Figure 3).   

Step5: Construction of correlation maps  

To identify calcium events, a correlation map is constructed to compare the pattern of 

fluorescence intensity changes with known motifs representing calcium events. Prior to the 

calculation of the correlation map, the dff traces needed to be interpolated because the motif 

library, created by FluoroSNNAP (Patel et al. 2015), utilized a frame rate of 10 frames/second 

(Figure 4A). We utilized the FluoroSNNAP motifs and constructed seven motifs based on 

observations from our data (Figure S1). A matrix (‘Ca’, rows = motifs, columns = x axis of the 

trace) of correlation coefficients of all motifs across the trace is computed (Figure 4B). The 

correlation coefficients are set to a value of zero at locations across the trace where the 

intensity/height of the trace are below a certain threshold that represents the background, to 

avoid noise (Figure 4C). The output of Step 5 aligns normalized traces to motifs (Figure 4).   

Step6:  Extract event location and duration.  

We next extract the event location and duration for each event in each ROI (Figure 5). A final 

row matrix is computed by picking the maximum correlation coefficient from each column of 

‘Ca’. The points that exceed the user given correlation threshold (0-1) on the row matrix 

represent the events of that trace. A high correlation threshold might result in missing some 

events, while a low correlation threshold will potentially pick noise as events, so an optimal 

threshold of ~0.7 was used for our datasets (Figure 5B). The total number of all the consecutive 

points/frames that cross the threshold is taken as the event duration in frames. The output of 

Step 6 counts and classifies motifs (Figure 5). We illustrate the occurrence of each motif in our 

example data set (Figure 6A), and the occurrence of each motif within each ROI (Figure 6B).   

Step 6A (optional): Synchronicity 

Because neurons in in vitro networks are highly interconnected, we aimed to estimate the 

degree to which calcium events were synchronous across a given field. To do this we quantified 

how synchronous the calcium activity is between the ROIs of a given field using the functions 

(‘SCA’) provided by the FluoroSNNAP package (Figure 7). The package provides different 

methods to quantify synchrony including phase correlation, entropy, and Fourier Transforms of 

the calcium traces and events. We used the correlation method applied on calcium activity and 

corresponding surrogate traces of pairwise neurons in a field to quantify the network 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2021. ; https://doi.org/10.1101/2021.09.08.458611doi: bioRxiv preprint 

https://github.com/LieberInstitute/CaImg_cellcultures/blob/master/Steps/Step4.md
https://sciwheel.com/work/#/items/28490/detail?collection=451597
https://github.com/LieberInstitute/CaImg_cellcultures/blob/master/Steps/Step5.md
https://sciwheel.com/work/#/items/955401/detail?collection=451597
https://github.com/LieberInstitute/CaImg_cellcultures/blob/master/Steps/Step6.md
https://github.com/LieberInstitute/CaImg_cellcultures/blob/master/Steps/Synchronicity.md
https://doi.org/10.1101/2021.09.08.458611
http://creativecommons.org/licenses/by-nc/4.0/


synchronicity [13]. The output of Step 6 shows the degree to which events in each ROI are 

correlated with events in other ROIs.  

Step7: Extract Final Data 

A custom MATLAB script was written to extract two types of metrics: individual ROI metrics in 

the file long_dat and image metrics in the file man.  This allows us to make comparisons across 

individual cells and across fields. The final man.csv file represents the image level summary 

statistics (in columns) for each image (in rows) in the dataset.  

name Image name 

Metadata Biological and metadata associated with the image 

num_ROI Number of cells identified in the red image 

num_active_ROI Number of cells that fire at least one calcium event 

prop_active_ROI Proportion of active cells in the image 

corrSYN Synchronicity index describes how synchronous are the cells in the 
image in firing events  

motif(1-23) Frequency of occurrence of each motif in the time series of the all 
the ROIs in the image 

 

The final long_data.csv file represents the ROI level summary statistics (in columns) for each 

ROI (in row) in the dataset. 

name Image name which the ROI belongs to 

Metadata Biological and metadata associated with the image 

events_ROI Number of calcium events that a cell produced 

avg_width Average duration (frames) of events for that ROI 

Volume Number of pixels in red image that corresponds to the ROI 

Eccentricity Describes if the ROI is more elongated or more circular in shape. An 
ROI whose eccentricity is 0 is actually a circle, while an ROI whose 
eccentricity is 1 is a line segment. 

motif(1-23) Frequency of occurrence of each motif in the time series of the ROI 

 

RESULTS 
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To demonstrate the utility of the workflow, we apply CaPTure to several in vitro preparations of 

neurons (e.g mouse primary cortical neurons and hiPSC-derived neurons), and demonstrate 

versatility by applying the workflow to data acquired on an additional microscope system. 

Finally, we demonstrate the robustness of the method by blocking neuronal activity in iPSC-

derived neurons with pharmacological agents and assessing algorithm performance.   

We first applied this toolbox to mouse cortical neurons in culture. These cultures are both more 

dense and more mature than hiPSC-derived neuronal cultures. We confirmed that our ROI 

detection method accurately identified ROIs and extracted calcium events in an active, dense 

mouse culture system (Table 1, Figure 8A, 8B). We identified unique patterns of synchronicity, 

which suggests that some sets of neurons preferentially fire together (Figure 8C). We then 

extract image- and ROI-based metrics for final data analysis (Figure 8D).  

Sample Cells ROIs  Active ROIs Avg field activity/ 60 
secs 

Synchronicity  Clusters 

Figure 1 Human 22 16 0.9 events/ROI 0.03 4 

Figure 8 Mouse 41 41 3.48 events/ROI 0.08 3 

 

Additionally, we applied CaPTure to images acquired on a higher-resolution microscope with a 

smaller field of view. An additional challenge with this data set was the presence of physical drift 

of the sample due to the continuous perfusion of ACSF over the coverslip containing neurons. 

Thus, time-lapse images needed to be registered such that movement in the X and Y directions 

would be computationally removed. We therefore registered the images by aligning each frame 

iteratively to the preceding frame, and then aligning the green GCaMP6s time-lapse to the red 

cell-fill image (Figure 9A, Catallini 2020). To demonstrate the utility of this approach, we show 

the correlation of the fluorescence of each frame with the mean of the entire timeseries (Figure 

9B). Prior to registration, the mean of the timeseries is not highly correlated, and the correlation 

is variable by frame. After registration, correlation of each frame is highly correlated.  Following 

registration, we applied CaPTure to this set of data, identifying ROIs and individual peaks 

(Figure 10). 

Finally, we tested the accuracy of our peak detection methodology by applying tetrodotoxin 

(TTX), a pharmacological agent that blocks sodium channels, thus preventing neuronal activity. 

We measured calcium transients in neurons before and after the application of TTX (Figure 

11A, B). In this case, the background intensity or the height threshold used in building Motif 

correlation maps are estimated based on the baseline, not based on the total data including the 

manipulation (Figure 11C). We see a decrease in the number of calcium events per ROI 

following TTX treatment (Figure 11D; mean ± SEM from 7 lines, Baseline 13.83 ± 0.349; TTX 

2.84 ± 0.0683, linear mixed effects model p-value <2e-16). This demonstrates that CaPTure is 

accurately detecting synaptic events.  
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When all data from a given dataset was processed, we compiled all metrics (Step 7). We used 

the extracted metrics to make comparisons across different experimental manipulations, and 

made a custom R script for further analysis, to compare the frequency and type of events 

between neurons derived from individuals diagnosed with schizophrenia and neurotypical 

controls as previously described [14].  

 

CONCLUSIONS 

Here we have demonstrated the utility of CaPTure to segment neurons and to detect and 

classify calcium events. CaPTure’s advantages include its ability to effectively segment neurons 

from surrounding neuropil, which can cause noise in the activity traces and reduce the 

amplitude and prominence of true events. Additionally, CaPTure uses intensity normalization 

(df/f) to remove background noise, resulting in reduced incidence of false positives in the final 

data. The workflow allows for parallel processing of data from large studies, without requiring 

significant user input or parameterizations. The motif-based method for picking events gives 

users more insight about the data, including the shape and duration of events. Additionally, the 

acquisition of high resolution images of cultured neurons could allow users to perform machine 

learning-based classification on neurons or traces. Calcium events are considered a proxy for 

neuronal activity, and thus CaPTure provides a powerful tool for researchers to make 

assessments about the relative cellular and ensemble activity of neurons in culture.  

 

AVAILABILITY AND REQUIREMENTS 

Project name: CaPTure 

Project home page: https://github.com/LieberInstitute/CaPTure 

Operating system(s): MAC, Windows, LINUX 

Programming language: MATLAB 

Other requirements:  

1) MATLAB image processing toolbox,  

2) MATLAB version 2018a or later,  

3) Minimum 8GB RAM. 

License: General Public License 

Any restrictions to use by non-academics 

 

ABBREVIATIONS 

hiPSC: human induced Pluripotent Stem Cell 

GECI: Genetically Encoded Calcium Indicator 

ROI: Region of Interest 

TTX: tetrodotoxin 

DFF, df/f: delta fluorescence/fluorescence 
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Figure 1. Nuclei Segmentation: A) Raw ‘.czi’ image of nuclei cultures. B) Background filtered 

image of the raw ‘.czi’ image. We used the MATLAB function ‘imhmin’ to suppress the 

background noise coming from the neurites. C) Segmented (using ‘Region Growing’ ) binary 

image of nuclei. D) Final watershed segmentation of ROIs from the binary image (inserts of ROI 

13 and 14). Watershed was performed for better extraction of individual ROIs that are spatially 

in close proximity. E) ROIs (e.g., 4,7,11) that are smaller in size (total pixels in the segmented 

region) are excluded from the final segmentation. F) ROIs with an eccentricity >0.99 and ROIs 

(i.e., 31) on the image border are excluded.   
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Figure 2. Extracted Calcium Traces: The graph shows the calcium activity for each ROI 

segmented in Step2, and highlights traces 16, 19, and 23 as examples of low-, medium- and 

high-activity ROIs, respectively. The x-axis is the frame number of the time series and the y-axis 

is the ID for the segmented ROI. These traces have a minimum of 29 and the maximum of 7387 

units of mean fluorescence intensity.  
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Figure 3. Delta fluorescence/fluorescence: The graph shows the normalized calcium traces 

extracted from the calcium activity shown in Figure 2. The x-axis is the frame number of the time 

series and the y-axis shows only segmented ROIs 16, 19, 23 (low, medium and high activity) for 

easy visualization. 
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Figure 4. Motif Correlation Maps: A) The normalized traces (4 frames/second) from step4 are 

interpolated to 10 frames/second to match the frame rate of the motifs being correlated. B) Motif 

correlation map showing frames in yellow when the event predominantly matches a motif, and 

frames in blue when the event is least matched with the same motif. The frames in turquoise 

represent the background. C) Showing only frames where the maximum correlation (of 23 

motifs) is above a threshold of 0.7.  
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Figure 5. Extract calcium events: A) The thresholded correlation map from Figure 4 is 

converted to a binary map. B) Extracted event location and duration based on the binary map in 

(A). 
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Figure 6. Frequency of a motif occurrence: A) The barplot shows the frequency of 

occurrence of a motif in the specific field. The x-axis shows individual motif and the y-axis 

shows the total number of times the motif appeared in the field. B) The barplot shows the 

percentage of events in a ROI that correlates with a specific motif. The x-axis shows the ROIs 

16, 19, 23 and the y-axis shows the percentage of events of the ROI. 
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Figure 7. Network Synchronicity: A) Heatmap showing pairwise correlation of the calcium 

activity in the field. Synchronicity Index (0-1) represents a measure for network synchrony of the 

field. B) Correlation map regrouped by the identified synchrony clusters. C) Showing calcium 

activity of the field to visually analyze network synchronicity. 
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Figure 8. Primary mouse cortical neuronal culture data processed through CaPTure: A) 

The raw red ‘.czi’ image of mRuby-expressing neurons, its corresponding color coded neuronal 

segmentation and the GCaMP6s time-series. B) Extracted raw calcium traces, the motif 

correlation map of the interpolated dff traces and event detection on the interpolated dff traces 

using the motif correlation maps. C) Correlation map of inter-neuron calcium activity grouped by 

the cluster. D) Final extracted metrics at image(field) level and ROI(neuron) level. 
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Figure 9. Image Registration to correct physical drift: A) Red image overlaid on the 

maximum intensity projection of the green time series of the raw data (left) and the registered 

data (right). B) Graphs showing correlation (y-axis) of each frame (x-axis) with the mean 

intensity image of the time series for raw data (left) and registered data (right). 
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Figure 11. CaPTure applied to secondary data set: A) Raw ‘.czi’ image of nuclei and B) the 

corresponding raw  ‘.czi’ time series. C) Segmentation of nuclei image. D) Calcium activity 

extracted from times series for each segmented nuclei. E) Different processing steps used in 

CaPTure. F) Final metrics extracted into tables for image level and ROI level data.  
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Figure 12. Pharmacological blockade of synaptic transmission illustrates the specificity 

of CaPTure: A) Graph showing normalized calcium activity from a sample baseline field and the 

estimated background (0.5). B) Graph showing normalized calcium activity of the same field 

treated with TTX, with thresholds from baseline activity to eliminate background. C) Graph 

showing normalized calcium activity of the same pharmacology sample from (B) with the 

respective intensity scale (y-axis) and background estimated from the same. D) Boxplots 

showing the calcium activity of neurons from baseline and TTX treated fields.  
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Figure S1. Motif shapes: These plots show the shapes of 23 motifs used in the CaPTure 

workflow. Motifs 1-16 are adapted from the FluoroSNNAP software and motifs 17-23 were 

generated based on our data.  
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