

Inhibition of HIV-1 immune modulation by small molecules targeting viral Nef- host CD80 interface

Anusmriti U. Sharma^{1,3}, Shweta Sharma^{4,5}, Gandhimathi Arumugam², Archana Padmanabhan Nair³, Srinivas Ambala^{4,5}, Gurunadham Munagala^{4,5}, Kushalava Reddy Yempalla^{4,5}, Akankshi Munja², Shreenidhi Rajkumar¹, Neelagandan Kamariah¹, Ashok R. Venkitaraman^{1,6}, Ramanathan Sowdhamini², Taslimarif Saiyed³, Parvinder Pal Singh^{4,5}, Ram A. Vishwakarma^{3,5*}, Satyajit Mayor^{2*#} and Anandi S. Karumbati^{1,3*}*

¹Centre for Chemical biology and Therapeutics, Institute of Stem Cell Science and Regenerative Medicine, GKVK, Bellary Road, Bangalore, India

²National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, India

³Centre for Cellular and Molecular Platforms, GKVK Campus, Bellary Road, Bangalore, India.

⁴CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.

⁵Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India.

⁶The Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore 117599 & Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore 138648.

* Co-corresponding authors

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Satyajit Mayor (mayor@ncbs.res.in)

Abbreviations

Nef (Negative Regulatory Factor)

MHC (Major Histocompatibility Complex)

CD80/86 (Cluster of Differentiation 80 and 86)

APC (Antigen Presenting Cells)

AP (Aminopyrimidine)

PA (Phenoxyacetamide)

BC (Biaryl (heteroaryl) carbamate)

ART (antiretroviral therapy)

NNRTI (non-nucleoside inhibitors)

HAART (Highly Active Anti-Retroviral Therapy)

BnAb (Broadly neutralizing antibodies antibody)

LTNPs (Long-Term Non-Progressors)

MST (Micro-Scale Thermophoresis)

WST-1 (Water Soluble Tetrazolium-1)

SAXS (Small Angle X-ray scattering)

Keywords

immune modulation

HIV-1

Co stimulatory receptors- CD80/86

T-cell activation

Summary

HIV-1 causes diverse immunomodulatory responses in the host, including the down-regulation of co-stimulatory proteins CD80/86, mediated by HIV-1 protein Nef, blunting T-cell activation. Using a screening cascade of biochemical and cell-based assays, we identified potent small molecules representing three chemical scaffolds namely amino pyrimidine, phenoxy acetamide and bi-aryl heteroaryl carbamate which target the protein-protein interaction interface of CD80/86 and Nef with sub-micromolar potency. These molecules restore CD80/86 surface levels in HIV-1-Nef infected antigen presenting cells and T-cell activation. Nef-CD80 interface and small molecule binding sites were mapped by using computational docking and structural studies, followed by validation by mutational analysis. This analysis resulted in the identification of two key residues, K99 and R111, which were associated with down-modulation of CD80 surface levels by Nef and important for small molecule binding. Targeting these interacting residues disabled Nef-mediated down-modulation of CD80 surface levels, consequently restoring T-cell activation. Thus, we validate a new target, the Nef-CD80/86 protein-protein interaction interface, with a potential to develop new inhibitors to counteract the immunomodulatory consequences of HIV-1.

Introduction

1 Over the past decade, there has been tremendous effort in finding newer therapies
2 for HIV/AIDS. Increased use of anti-retroviral drugs has been accompanied by the
3 steady increase in HIV drug resistance and viremia that often result in
4 immunosuppression leading to morbidity³. Drug resistance is mainly transmitted at
5 the time of infection or acquired during previous treatment for instance in women
6 given anti-retroviral drugs to prevent mother-to-child transmission of HIV⁴. Other
7 treatment strategies like using anti-HIV-1 antibodies (bnAbs) are reported in
8 combination with ART which have the capacity to impact on HIV-1-specific T cell
9 immune responses in infected humans but whether it controls the virus remains to be
10 determined⁵. In addition, with the vaccine trials failing to elicit broad plasma
11 neutralization of primary virus isolates⁶, there is an urgent need to fast-track the
12 transition to newer antiviral drug regimens which needs to be administered in multi-
13 drug combinations in order to combat the ever-evolving virus. Increasing drug
14 resistance also emphasizes the requirement of new molecules that can target the
15 host-viral interface with high specificity^{7,8}.

16 To obtain targets for the next generation of HIV-1 therapy we explored the interaction
17 interface of the essential HIV-1 accessory protein, Nef⁹, with host proteins. Nef is a
18 27-35 kDa protein expressed during early phases of viral replication and helps
19 maintain a constant state of infection by disrupting T-cell activation, thereby allowing
20 evasion of the host immune system^{10,11,12}. Evidence supporting a direct role for Nef
21 in HIV disease comes from transgenic mouse models developed, in which a CD4-
22 derived promoter was used to express Nef in various tissues including thymus,
23 kidney and lungs which progressed into AIDS-like phenotype, featuring CD4+ T-cell
24 loss, thymic involution, splenic atrophy and subsequent kidney and lung pathology¹³.

25 This phenotype in many aspects' mimics human AIDS. Also in patient populations,
26 fortuitous deletions in the *nef* gene in HIV infected patients of the Sydney Blood
27 Bank Cohort remain essentially free of AIDS related symptoms^{14,15}. In another study,
28 the proportion of *nef* gene defects was found to be significantly higher in Long-Term
29 Non-Progressors (LTNPs) compared to progressors^{16,17,18}. These animal and
30 patient studies suggests that Nef plays a pivotal role in pathogenesis and AIDS-like
31 progression in HIV-infected individuals¹⁹.

32 Nef functions by re-engineering the levels of many surface proteins such as MHC-I,
33 CD4, CD28, CXCR4, and CD3 in infected cells, and redirecting them to
34 endosomes^{20,21}. Nef interacts either directly or indirectly with multiple host partners
35 and functions to increase the pathogenesis of the virus^{22,23}. Our previous work has
36 highlighted interactions of Nef with the host cell surface co-stimulatory proteins CD80
37 and CD86^{24,25}. Down-regulation of CD80/86 is sufficient to cause impaired naïve T-
38 cell stimulation *in vitro* and *in vivo*²⁶. We have shown that by administering just the
39 cytoplasmic tails of CD80 and CD86 in Nef-expressing cells, CD80/86 down
40 modulation is prevented, making this host-viral interface amenable for developing
41 new chemical biological tools and providing targets for therapeutic intervention.

42 The variety of functions carried out by Nef is based on its ability to interact with
43 multiple cellular proteins. This is possibly due to its structure; it has many flexible
44 regions, a feature unusual for cytoplasmic proteins. The unstructured regions of Nef
45 may ease the allosteric adjustments required for interaction of Nef with different
46 proteins. However, the flexible and unstructured features of Nef protein add
47 substantial challenges to structurally characterize the full-length Nef protein and
48 study their binding sites.

49 In the current study, we show that Nef directly binds to cytoplasmic tail peptides of
50 CD80 and CD86. We have identified small molecules, which can abrogate Nef
51 interactions with CD80 and/or CD86. The compounds mainly belong to 3 scaffolds
52 amino pyrimidine (**AP**), phenoxy acetamide (**PA**) and bi-aryl heteroaryl carbamate
53 (**BC**) having nanomolar to micromolar inhibition potencies *in vitro*. Representative
54 actives from these scaffolds were then validated in functional cell-based assays for
55 reverting the down regulation of cell surface Nef-mediated co-stimulatory protein
56 expression and re-establishing T-cell activation. These identified actives also
57 reversed similar Nef-mediated effects after viral infections.

58 To further improve the efficacy of these leads, we used an *in-silico* approach to
59 explore the binding mode of Nef with the co-stimulatory molecules. Full length Nef
60 protein was modeled and potential binding sites for CD80 were identified. Based on
61 these predictions a selected subset of CD80 interacting residues in Nef were
62 mutated and the corresponding mutants were examined in assay platforms to
63 confirm the model and its functional consequences. The understanding of the
64 druggable pocket opens the scope for future lead optimization work. Altogether, we
65 report a chemical strategy to inhibit Nef-mediated immunomodulatory functions,
66 which prevents immune evasion of HIV-infected cells. While these molecules may be
67 developed for future therapeutic intervention, at the current stage, they may be used
68 as chemical biology tools to understand the role of host-pathogen interface in the
69 form of Nef-CD80/86 interaction surface in HIV immune evasion.

70

71 **Results**

72 **Identification of potent Inhibitors that disrupt Nef-CD80/CD86 Interaction**

73 In our previous work, we have shown that cytoplasmic tail peptides from CD80 and
74 CD86 compete with the down modulation of surface CD80/86 by Nef protein in cell
75 based assays²⁵. For our assays we have used Nef F2 recombinant protein of
76 Subtype-C origin (the alignment of the Nef sequence from this subtype with the
77 commonly used subtype B is presented in **Sup. Fig. S1a**). To ascertain direct
78 binding of Nef to the cytoplasmic tail peptide of the co-stimulatory receptors CD80 or
79 CD86 in microscale thermophoresis (MST) assay²⁷, we added 20-mer peptide of
80 CD80 or CD86 (**Fig. 1a, Sup. Fig. S1b**) to fluorescently labelled Nef. A 16-point
81 titration of peptides against Nef was carried out (see details in Star Methods). Nef-
82 CD80 interaction showed a saturation curve with a kD of 27 μ M (**Fig.1b**). Nef-CD86
83 interaction showed a sigmoidal curve with 112 nM kD, indicating a higher affinity
84 interaction (**Fig.1c**). Having verified the direct binding of the CD80 and CD86
85 peptides with Nef in MST, we immobilized CD80/86 cytosolic peptides in a microtiter
86 plate and examined the binding of Nef in an ELISA assay (Scheme, **Sup. Fig. S1c**).
87 There was a 4-fold increase in the fluorescent signal due to binding of Nef to the 20-
88 mer CD80/86 cytosolic tail peptides compared to wells with an unrelated peptide
89 (from CD74), or with no peptide controls (**Fig. 1d**). We used this ELISA format to
90 screen and identify inhibitors of Nef-CD80 and Nef-CD86 interaction.
91 Small molecules were hand-picked for screening based on their drug-likeness and
92 prior knowledge of potential protein-protein disruptors⁷. A threshold value was set to
93 select actives with $CD80 \geq 30\%$ and $CD86 \geq 20\%$ cut-off for the Normalized Percent
94 Inhibition. Based on this criterion, 33 actives belonging to nine scaffolds were
95 identified from the screen (**Fig.1e, f**). **Fig.1g** depicts flow diagram of step-wise
96 filtering process. After eliminating singleton scaffolds; we identified hits that belonged
97 primarily to three scaffolds namely amino pyrimidine (**AP**), phenoxy acetamide (**PA**)

98 and bi-aryl heteroaryl carbamate (**BC**), which comprised of 20 compounds (**Supp**
99 **Table 1**), and these were selected for resynthesis (**Sup. Fig. S2**). Compounds from
100 all three scaffolds showed half maximal Inhibitory Concentration (IC_{50}) in nanomolar
101 ranges (**Fig. 1h; Supp Table 1**). Two independent experimental dose response data
102 correlated very well with an R^2 value of 0.9 (**Sup. Fig. S3**).

103 In summary, the biochemical screen identified more interaction inhibitors of Nef-
104 CD80 than Nef-CD86, which correlates well the MST binding isotherms indicating
105 that the Nef-CD86 interaction is of higher affinity than the Nef-CD80 interaction. One
106 representative compound from each scaffold with high potency against Nef-CD80
107 interaction was chosen for further cell-based assays.

108

109 **Small molecules block Nef-mediated internalization of cell surface CD80/CD86**
110 **receptors**

111 Before starting efficacy studies, we evaluated the cytotoxicity of the compounds
112 (**AP5, PA4 and BC5**), as measured by WST-1 (Water Soluble Tetrazolium-1) assay.
113 The cytotoxicity index at the highest concentration of 100 μ M for 24 h was around
114 17% for **AP5** and **PA4** whereas **BC5** was around 20% (**Sup. Fig. S4**). The maximum
115 concentration tested was 100 μ M, and the concentrations chosen for the efficacy
116 work were mostly non-toxic for the assay durations.

117 The cellular efficacy assay was developed based on observations from our previous
118 work: the delivery of cytoplasmic CD80/86 tail peptides into the cell cytoplasm was
119 able to compete with and abrogate Nef-mediated internalization of cell surface
120 CD80/86²⁵. We expected the small molecules identified by the biochemical screen
121 to behave in similar fashion to the cytosolic peptides. Surface levels of CD80/86
122 receptors in cells in culture with or without Nef protein were determined, and we

123 observed a significant loss of surface levels of CD80 and CD86 in the presence of
124 Nef in at least 3 types of Antigen Presenting Cells (APCs), including monocytes (**Fig.**
125 **2a**), consistent with our previous work²⁵. The loss of CD80/86 surface receptors was
126 not observed with delivery of other non-specific proteins such as ovalbumin and β -
127 lactoglobulin which confirms that the internalization of surface receptors CD80 and
128 CD86 was indeed due to Nef (**Sup. Fig. S5**). We used RAJI, a B-lymphocyte cell line
129 for our experiments since this cell line has high levels of CD80 and CD86, and chose
130 to focus on targeting on the Nef-CD80 interface.

131 To test the effect of the compounds on Nef-mediated CD80 down modulation, cells
132 were pre-treated with the **AP5**, **PA4** and **BC5** at two concentrations 10 and 100 μ M
133 for 1 hour. Purified Nef protein was delivered into the cells and surface CD80 levels
134 were analyzed by flow cytometry. **AP5** inhibited Nef-mediated down modulation of
135 CD80 at both 10 μ M (* $p \leq 0.05$) and 100 μ M (** $p \leq 0.01$) thereby restoring CD80
136 levels. Compounds **PA4** and **BC5** also showed a significant restoration (* $p \leq 0.05$) of
137 surface CD80 levels only at 100 μ M (**Fig. 2b**).

138 We further validated the ability of these three compounds to reverse the effects of
139 Nef in RAJI cells transduced with Nef-containing virus (YFP-tagged Nef) or Nef-
140 deficient control virus (expressing only YFP). RAJI cells were pre-treated with **AP5**,
141 **PA4** and **BC5** for 24 hours' prior-exposure to virus and further incubated with virus
142 for 96h and then surface levels of CD80 receptors were estimated by flow cytometry,
143 there was ~50% loss of CD80 surface receptors in cells transduced with Nef-
144 containing virus as compared to control Nef-deficient virus infected cells. In cells
145 pre-treated with compounds, all 3 compounds significantly reversed Nef-mediated
146 internalization of CD80 receptors at 100 μ M (**Fig. 2c**).

147

148 **Compound AP5 is a selective inhibitor for Nef-induced CD80 down modulation**

149 Since Nef also downregulates other cell surface molecules such as MHC-I and
150 MHC-II in APCs and CD4 in T-cells, apart from CD80/86 during viral infection, we
151 determined the effect of these compounds on the levels of MHC-I²⁸ in Nef-
152 transduced APCs. After compound treatment, we observed that **PA4** and **BC5**
153 reversed Nef-mediated effect of MHC-I down modulation while **AP5** did not alter Nef-
154 mediated down regulation of MHC-I even at 100 µM concentration (**Fig. 2d**).
155 Together, these data suggested that while all compounds disrupted Nef interactions
156 with CD80 and prevented the down modulation of CD86, the Nef-activated cascade
157 that triggers MHC-I down modulation was reversed only by **PA4** and **BC5**. This
158 indicates a very specific role for **AP5**, and a more broad-spectrum role for **PA4** and
159 **BC5**.

160

161 **Restoration of T-cell activation in virus infected APCs by inhibitors**

162 The co-stimulatory receptors CD80/86 along with MHC-I are needed for T-cell
163 activation. Previously it was shown that HIV-1 Nef-CD80/86 interaction impairs naïve
164 T-cell activation in *in-vivo* and *in-vitro* mouse systems²⁴. We therefore ascertained if
165 the small molecule inhibitors were able to reverse Nef-mediated T-cell inactivation. A
166 co-culture assay system was adapted from a previously reported cell-based assay
167 for testing CD80 inhibitors²⁹ (**Fig. 3a**). Briefly, a non-replicative retroviral vector with
168 Nef transgene (**Sup Fig. 6 shows a** comparison of the non-replicative retroviral
169 vector with infectious HIV-1) was transduced in APCs to reduce CD80/86 levels at
170 the surface . These APCs were then co-cultured with T-cells in the presence of anti-
171 CD3 antibody and functional T-Cell activation was assessed by measuring IL-2

172 levels; relevant controls included T-cells alone, T-cells and B-cells in the absence of
173 anti- CD3 antibody (**Fig. 3b**).

174 We tested two different modes of addition of compounds: in the first mode, we pre-

175 treated APCs with 1, 10 and 100 μ M of compounds (**AP5**, **PA4** and **BC5**) for 24h

176 then exposed the cells to Nef-carrying viral particles and assayed for IL-2 release.

177 We observed a dose dependent response with all 3 compounds **AP5**, **PA4** and **BC5**

178 showing a 4-fold increase ($^{**}p \leq 0.01$) in IL-2 release at 100 μ M as compared to Nef

179 virus control. At lower concentrations, compounds **AP5** and **PA4** showed 2-fold

180 increase ($^{*}p \leq 0.05$) at 10 μ M. **PA4** did not show significant IL-2 release at 10 μ M

181 (**Fig. 3c**), thus, indicating restoration of T-cell activation in a dose dependent

182 manner.

183 In the second mode, we added compounds at 1, 10 and 100 μ M concentrations post

184 viral exposure for 96h. **AP5** showed significant increase in IL-2 levels (3-fold) at all

185 concentrations when compared to Nef virus control ($^{**}p \leq 0.01$), while **PA4** showed

186 2-fold increase ($^{*}p \leq 0.05$) in IL-2 levels at 10 μ M concentration and no changes in IL-

187 2 levels were observed in **BC5**. Interestingly, there was a reduction in IL-2 release at

188 100 μ M dose in comparison to 1 μ M and 10 μ M, perhaps due to the toxicity

189 associated with this dose alongside viral effects (**Fig. 3d**). Thus far, these data

190 shows that **AP5** is a potent molecule both *in vitro* biochemical assays and in

191 restoring T-cell activation in an assay designed to assess the role of co-stimulation

192 dependent T-cell activation mediated by CD80/86.

193

194 **Structural insights into Nef-CD80 interaction**

195 To further understand the nature of inhibition of Nef-CD80 interaction by small

196 molecules such as AP5, we chose to analyze the structure of Nef-CD80-interaction

197 pocket. This requires the characterization of the interaction surface between Nef-
198 CD80 and an analysis of the ligand binding pocket for CD80. Despite repeated
199 attempts we were unable to obtain crystals of full-length Nef that diffracted better
200 than 4 Å, wherein the structure could be fully resolved. In the absence of a high-
201 resolution X-ray structure of the full-length Nef, we created a computational model of
202 Nef using a multi-template modeling approach. The major structural information was
203 acquired from the NMR structure PDB ID: 2NEF, as this structure has information for
204 the highly flexible loop region of the core domain (55-66) which contains important
205 interacting residues³⁰, as well as from the crystal structure PDB ID: 3RBB which
206 contains structural information of C-terminal folded core (residues 79-206). After
207 modeling, the lowest energy state structure was obtained by energy minimization via
208 SYBYL (Version 7.1) (Tripos Associates Inc.) and validated using PROCHECK.
209 PROCHECK results for the model shows more than 95% of the residues are in
210 allowed regions (79.9% in the strictly allowed region and 17.2% in partially allowed
211 region of the Ramachandran plot) which is better than the template structure (62.3%
212 in the strictly allowed region and 34.2% in partially allowed region of the
213 Ramachandran plot).
214 The structure of full-length Nef can be divided into two parts: a flexible and
215 structurally diverse N-terminal region of about 70 residues followed by a well-
216 conserved and folded core domain of about 120 amino acids. The core domain is the
217 only part of the Nef protein which has a stable tertiary structure. It forms an α - β
218 domain in which a central anti-parallel β -sheet of four strands (β 1- β 4) is flanked by
219 two long anti-parallel α helices (α 4 and α 5) and two short α helices (α 1 and α 5).
220 Residues 60-71 and 149-180 form flexible solvent exposed loops¹⁹ (**Fig 4a**).

221 An independent verification of some aspects of the model was obtained from the
222 predicted Small Angle X-ray Scattering (SAXS) envelope of soluble Nef protein.
223 SAXS-patterns of full-length Nef were obtained at three different concentrations 1, 3
224 and 5 mg/ml (**Sup. Fig. S7a**). The Guinier plots at low angles appeared linear and
225 confirmed good data quality with no indication of protein aggregation (**inset Sup.**
226 **Fig. S7a**). The derived R_g values and the calculated maximum particle dimension
227 (D_{max}) values were reported. The R_g values extracted from the $P(r)$ function are in
228 agreement with the R_g values extracted from the Guinier region (**Sup. Table 2**). The
229 estimated R_g , D_{max} and molecular mass of the full-length Nef suggest a
230 concentration dependent increase in the R_g , D_{max} and molecular mass values
231 observed with Nef addition. Visual inspection of the normalized Kratky plot reveals
232 significant deviation from a bell-shaped profile which depict an inherent structural
233 flexibility of Nef (**Sup. Fig. S7b**). The averaged solution shape calculated using the 1
234 mg/ml scattering data clearly indicated that Nef is monomeric in solution. This
235 solution model also revealed a two-domain architecture, a large domain that is well
236 overlaid with the available 3D structure of folded C-terminal core (PDB ID: 3RBB)
237 (**Sup. Fig. S7c**)^{31, 32}. The small domain corresponds to the N-terminal region
238 (residues 1-78) that contain a long flexible loop (residues 24-68). While structural
239 details of N-terminal region are available from NMR studies of a peptide regions from
240 residues 2-26³³ and 2-57³⁰, information about the relative orientation with C-terminal
241 core domain is missing. The SAXS data envelope along with the computational
242 model (**Fig. 4b**) provides structural information about spatial arrangement of the C-
243 terminal folded core and the flexible N-terminal region of full-length Nef in solution,
244 consistent with the computational predictions.

245

246 **Identification of crucial residues involved in Nef-CD80 interaction surface**

247 We next utilized the computational prediction of full-length Nef structure and
248 molecular docking studies with the cytoplasmic tail of CD80, to identify key residues
249 at the interaction surface. The putative binding sites of cytoplasmic CD80 to full
250 length Nef were mapped onto the template model utilizing SiteMap program for
251 binding site prediction. In characterizing binding sites, SiteMap provided quantitative
252 and graphical information in terms of site score and druggability score with properties
253 such as hydrogen bond donor, acceptor, hydrophobic and hydrophilic regions in the
254 predicted site. Docking studies of cytoplasmic tail region of CD80 with full length Nef
255 revealed that CD80 may interact with the interface between the flexible N-terminal
256 and C-terminal core domain. Potential binding sites were predicted with a good site
257 and druggability score (>0.5; **Sup. Table 3**).

258 The sites of interacting regions of Nef with other cellular proteins have been
259 previously characterized. A polyproline motif (68-78aa) present on the core domain
260 of Nef binds to the SH3 domain of Src kinases with high (nM to μ M) affinity³⁴. Other
261 than the polyproline motif within the core domain, a number of residues on the core
262 domain are involved in multiple interactions, such as FPD₁₂₆₋₁₂₈ with human
263 thioesterase and W₆₁ and L₁₁₅ with CD4¹⁹. An acidic cluster (EEE₆₅) close to the
264 core domain is required for interaction with PACS1 and controls MHC-I down-
265 regulation^{35,36}. The unstructured regions of Nef also provide an extensive accessible
266 surface that could be used to connect to other molecules. Since there is no prior
267 information about the binding pattern of Nef with CD80 it was necessary to score
268 each pose based on energy calculations. From the top ranked docked poses, the
269 best complex with the lowest energy (-246.30 kcal/mol) was chosen as the model
270 complex for Nef and CD80 interaction. In this predicted pose, CD80 cytoplasmic

271 region (indicated in cyan) interacts with the Site-1 and 2 residues in the core domain
272 of Nef (indicated in blue) (**Fig. 4c**). Based on this pose, the interacting residues
273 were mapped (**left inset Fig. 4c**). The side chains of site-1 residues W₆₁, E₆₈, K₉₉
274 and R₁₁₁ are in favourable position to interact with the N-terminus of the CD80
275 cytoplasmic tail. It should be noted that the residues K₉₉ and R₁₁₁ potentially make
276 polar contact with CD80 backbone carbonyl oxygen of F₄ and side chain hydroxyl
277 group of Y₂, respectively. In addition, the C-terminus of the CD80 cytoplasmic tail
278 potentially interact with E₁₆₀ and D₁₈₀ residues. The side of E₁₆₀ potentially makes salt
279 bridge interaction with R₁₆ and R₂₃ of CD80 (**right inset Fig. 4c**). Based on our *in-*
280 *silico* predictions we chose four residues that include, 3 from Site-1 (W₆₁, K₉₉ and
281 R₁₁₁) and one from Site-2 (E₁₆₀) for further analysis.

282

283 **Functional validation of predicted residues mediating Nef-CD80 interaction**

284 Single site mutant of Nef such as Nef^{W61A}, Nef^{K99A}, Nef^{R111A} and Nef^{E160A} were
285 designed and purified (**Sup. Fig. 8a & b**). These mutants were tested for their affinity
286 for CD80 peptide in the ELISA assay (**Fig. 5a**). Two mutants Nef^{K99A} and Nef^{R111A}
287 showed a loss of affinity to the CD80 peptide, whereas, the Nef^{W61A} and Nef^{E160A}
288 exhibited an affinity comparable to full length Nef^{WT}. These mutants were also
289 assessed for their ability to affect CD80 surface levels after delivery into APCs.
290 Indeed, the two mutants Nef^{K99A} and Nef^{R111A} did not show any reduction in CD80
291 levels, while Nef^{W61A} showed slightly lesser reduction in CD80 receptors and Nef^{E160A}
292 behaved similar to Nef^{WT} (**Fig. 5b**). Consistent with a key role for the K₉₉ and R₁₁₁ in
293 Nef-CD80 interactions, when transduced into APCs, Nef^{K99A} and Nef^{R111A} mutants
294 did not affect IL-2 release (**Fig. 5c**) thereby showing that T-cell activation is not
295 compromised by these mutant Nef variants. Surprisingly, while Nef^{W61A} down

296 modulated CD80 significantly, it did not result in a loss of T-cell activation. Since T-
297 cell activation assay requires a minimum of 4-5 h we reasoned that the Nef^{W61A}
298 protein delivered into the APCs may be less stable than the other isoforms for the 5
299 h required for this assay. Indeed, western blot analysis of the protein at 2 h versus 5
300 h in cell lysates shows that the level of Nef^{W61A} protein was drastically decreased
301 after 5 h, while the levels of the other Nef protein variants remained substantial (**Sup**
302 **Fig. 8c**). The other Nef^{E160A} mutant exhibited similar reduction of IL-2 release as
303 Nef^{WT} consistent with its ability to bind CD80 peptides as well as down modulate
304 CD80 at the APC surface (**Fig. 5b-d**).
305 The two mutants Nef^{W61A} and Nef^{R111A} also did not down regulate MHC-I receptors
306 as much as Nef^{WT}; whereas Nef^{K99A} and Nef^{E160A} exhibited a similar reduction in
307 MHC-I levels as Nef^{WT}, as assessed by surface MHC-I antibody staining (**Fig. 5d**).
308 W₆₁ residue (W₅₇ in Subtype B) has been previously reported to be important in CD4
309 down regulation and R₁₁₁ residue (R₁₀₆ in subtype B) is located in the oligomerization
310 domain of Nef. Many residues of Nef have been identified that promote interaction
311 with MHC-I, including W₅₇ and R₁₀₆ in subtype-B, NL4-3 strain, but their mutation did
312 not hinder MHC-I down regulation³⁷. However, W₆₁ and R₁₁₁ residues in subtype C,
313 appear potentially important for Nef interaction with MHC-I, indicating subtle
314 differences in the modulation of host proteins by different Nef variants. Nevertheless,
315 these functional studies provide strong support to the predicted binding mode of
316 CD80 peptide with Nef via residues K₉₉ and R₁₁₁ in Site 1 (**Fig. 4c**). Mutation in these
317 residues leads to loss of binding capacity, resulting in the inability to down-modulate
318 CD80 thereby restoring T-cell activation function of the transduced APCs.
319
320 **AP5 ligand binding sites in Nef full length**

321 Considering the predictive potential of the computational model of Nef-CD80
322 interaction surface, the most potent binding inhibitor molecule, **AP5** was docked with
323 Nef protein to capture its binding pattern and important residues involved in
324 interaction. **AP5** fits nicely into the hydrophobic cavity formed by the residues W₆₁,
325 V₇₁, L₁₁₅ and W₁₁₈, which are part of the N-terminal loop region and the α 4 helix of
326 core domain (**Fig. 6a and inset**). The aromatic residues W₆₁ and W₁₁₈ mainly have π
327 - π stacking interaction with aromatic ring B in **AP5**. In addition to hydrophobic
328 interactions, the side chain of S₅₀ and backbone of E₆₈ form hydrogen bond
329 interaction with amine group of the ligand. The side chain of K₉₉ from α 3 helix of core
330 domain, interacts with the CF₃ (triflouro methyl) group. Moreover, AP5 binding site
331 overlaps with Site-1 of Nef-CD80 binding pocket, and the docking results showed
332 that the Nef-CD80 and Nef-AP5 binding sites are overlapping with two important
333 common residues such as W₆₁ and K₉₉.

334 Consistent with these predictions, at 10 μ M **AP5** was neither able to inhibit the
335 interaction between CD80 peptide and Nef^{W61A} mutant nor further reduce the residual
336 interaction of Nef^{K99A} and Nef^{R111A} mutants *in vitro* (**Fig. 6b**). However, AP5 was able
337 to displace both Nef^{WT} and Nef^{E160A} from CD80 peptides adsorbed on the ELISA
338 plate. Thus, W₆₁ is an important residue for **AP5** binding to Nef. Furthermore, in
339 agreement with the predictions, **AP5** treatment did not result in any change in
340 surface levels of CD80 in APCs transduced with Nef^{W61A}, Nef^{K99A} and Nef^{R111A}
341 mutant proteins (**Fig. 6c**). The levels of IL-2 release in all three mutants Nef^{W61A},
342 Nef^{K99A} and Nef^{R111A} also remained unchanged, with the Nef^{W61A} mutant mimicking
343 the inhibition observed with wild type Nef. **AP5** restored IL-2 release in Nef^{E160A}
344 treated cells, comparable to Nef^{WT} (**Fig. 6d**), consistent with the inability of Nef^{E160A}
345 to affect neither CD80 nor **AP5** binding, thereby serving as a negative control. These

346 results predict and functionally validate the residues in the Nef protein that are
347 important for AP5 binding.

348

349 **Hit refinement of AP series**

350 We chose **AP5** as our starting point, given its nanomolar and micromolar potencies
351 in biochemical and cell-based assays respectively as well as specificity to CD80. An
352 initial hit refinement of **AP5** was conducted to understand the preliminary structure-
353 activity relationships (SAR). New analogs were synthesized in two series by
354 modifying the rings B and C with un/substituted aryl (heteroaryl) moieties, and
355 without -CF₃ group at the 6th position (**Fig. 7a**). In series-1, four analogs AP(S1-S4)
356 were prepared (**Sup. Fig. S2; Scheme-3**), where phenyl group (ring B) was placed
357 at the 4th position of ring A and varying the substitution pattern at 5th position (ring B).
358 In series-2, six analogs AP(S5-S10) were prepared by modifying both 4th and 5th
359 positions (**Sup. Fig. S2; Scheme-4**). Apart from these, another analog **AP-S11**
360 (**Sup. Fig. S2; Scheme-2**) was also synthesized where -CF₃ was maintained at the
361 6th position and substituted aryl rings at 4th and 5th positions.

362 All the synthesized molecules were evaluated for their effect on Nef-CD80/CD86
363 inhibition by ELISA. The analogs **AP(S1-S10)** without -CF₃ group at 6th position of
364 ring A didn't show any activity (**Fig. 7b**), however, the analog **AP-S11** with CF₃ at 6th
365 position of ring A showed the activity. These results disclosed that presence of CF₃
366 group at 6th position of ring A important for the activity (**Fig. 7c**). Moreover, docking
367 studies revealed that CF₃-group showed hydrophobic interactions with non-polar
368 residues such as W₆₁, L₉₁, I₁₁₄ and L₁₁₅ while *in vitro* and *in vivo* experiments
369 described above, suggested that these interactions are important for at least for the
370 inhibition of the down modulation capacity of Nef. These studies underline the

371 importance of the -CF₃ group at 6th position of ring A (**Fig.7a-c**). In conclusion, lead
372 compounds with potency in nanomolar range across the cell-based assay along with
373 acceptable solubility, permeability and pharmacokinetics parameters necessary for
374 further drug development and chemical perturbation of the Nef-CD80 interface, have
375 been developed.

376

377 **Discussion**

378 HIV-Nef plays an important role in the pathogenesis of HIV infections and
379 understanding its many functions in modifying the host cell surface has served as a
380 focal point of HIV research^{38,39}. In earlier work we had determined that the presence
381 of wild type Nef in virus infected cells, promotes the loss of the co-stimulatory
382 proteins CD80/86 from the infected APC surface resulting in a loss of naïve T-cell
383 activation^{23, 24, 25, 40}. Here we have identified potent small molecules that disrupt the
384 interaction of Nef with CD80 co-stimulatory receptors, and restore T-Cell activation
385 potential of virus-infected APCs. The three lead structures identified: **AP5**, **BC5** and
386 **PA4** belonged to three diverse scaffolds. While **PA4** and **BC5** are able to inhibit
387 both Nef mediated CD80 as well as MHC1 down-regulation, possibly indicating
388 different interaction points in Nef or counteracting Nef at more than one protein-
389 protein interface. **PA4** and **BC5** molecules are leads to explore for molecular
390 interaction promiscuity and investigating some of the multiple interactions of Nef.
391 Since **AP5** selectively inhibits Nef-mediated CD80 down-regulation, we chose to
392 pursue its detailed characterization in this study,

393

394 To gain an insight into the interactions of Nef with CD80, computational approaches
395 followed by experimental validation were used to identify possible binding sites on

396 Nef for both CD80 peptide and the small molecule inhibitor **AP5**. Due to the lack of
397 crystals with suitable diffraction properties to provide high-resolution structures, and
398 limited experimental information on full length Nef structure, possibly due to its
399 inherent flexibility we adopted a computational strategy. Full length Nef was modeled
400 by a multi-template computational approach, and their spatial conformation was
401 validated using the constraints obtained from SAXS experiments. The interaction site
402 for CD80 was obtained by docking of CD80 cytoplasmic tail with full length Nef
403 model, and a number of possible binding sites for its already known protein-protein
404 interaction sites were identified. These predictions provide key insights that could be
405 correlated with the experimental results, identifying key residues that are involved in
406 Nef-CD80 interaction. A caveat to be noted is that there is a limitation in finding the
407 best biologically relevant orientation of CD80 since the docking was restricted to only
408 the cytoplasmic tail peptide of CD80 which does not impose spatial conformation of
409 the full length CD80 embedded in the membrane. The free cytoplasmic CD80 region
410 fits in the energetically favorable orientation, given its steric constraints, providing
411 verifiable insights from mutation studies. In parallel the **AP5** docking results confirms
412 that W₆₁ and K₉₉ residues of Nef contributes to the interaction interface with this lead
413 molecule. Based on the Nef-CD80 and Nef-**AP5** docking results, hotspot residues
414 such as W₆₁, K₉₉ and R₁₁₁ were mutated. This revealed that the K₉₉ and R₁₁₁
415 residues are crucial for CD80 binding and additionally, W₆₁ plays an important role in
416 **AP5** binding. Since the binding sites for CD80 and **AP5** are overlapping, our study
417 provides a plausible view of the inhibitory mechanism, where AP5 interactions with
418 Nef would prevent its ability to associate with CD80, since they compete for the
419 same site. Ongoing efforts are aimed at improving the inhibitors with -CF₃ group in
420 **AP5** series and further validating these hits in *in vivo* studies.

421

422 Our results also indicate that Nef interaction with the co-stimulatory receptors
423 CD80/86 cytoplasmic tails are distinct from reported Nef –MHC-I interactions. Nef
424 interacts with MHC-I cytoplasmic via E₆₂₋₆₅ and P₇₈ residues⁴¹, although subtype C
425 as shown here may utilize W₆₁ and R₁₁₁. While Nef-MHC-1 interactions are
426 important, Chaudhry *et al*⁴² showed that the kinetics of Nef down-modulation of MHC
427 molecules is slow as compared to the loss of co-stimulatory CD80/86 function. We
428 have shown that the interaction of Nef with the co-stimulatory CD80/86 is likely to be
429 critical for inhibiting the priming of the immune system towards naïve infections, and
430 hence may be critical for immune evasion strategy of the virus^{42,43}. The chemical
431 tools developed here will allow such an interrogation in suitable animal models.

432

433 Once developed into drug-like chemicals, the leads we have identified from this
434 study would have significant impact in at least two scenarios where macrophages
435 play an important role for HIV-1 pathogenesis. One important application is in
436 maternal–fetal transmission and other in cases of early infection or persistent
437 infection resulting from viral mutations. 90% of HIV infection in children is through
438 Macrophage-tropic Maternal-fetal Transmission⁴⁴. Nef plays a major role in vertical
439 transmission of Macrophage-tropic HIV-1 in mother to child, where the motifs for
440 receptor modulation were conserved in mother-to-infant *NEF* sequences. The
441 second scenario is in early stages of infection when viral load is low, the role of Nef-
442 mediated CD80 and CD86 down modulation from the antigen-presenting cell surface
443 could delay the onset of T-cell responses to provide the virus with a time window
444 sufficient for expansion. There is evidence that T-cells need co-stimulatory
445 molecules for optimal killing of target cells, thus even in cases of established

446 infection the removal of CD80 and CD86 from infected cell surfaces could reduce the
447 efficiency of T-cell responses⁴⁵. If this is the case, blockade of this function by small-
448 molecule inhibitors of Nef-CD80/CD86-cytosolic tail interactions, could enhance
449 effectors antiviral immunity and delay the onset of disease in both pathophysiological
450 contexts.

451

452 Altogether, targeting this protein-protein interaction interface represents a promising
453 new therapeutic approach to bring forth a first in class set of inhibitors to foreshorten
454 the infection burden in HIV-1. The information gained from this integrated approach
455 of both computational and experimental study have set the foundation for further
456 ongoing efforts in synthesizing the next series of more drug-like inhibitors. We have
457 demonstrated a promising chemical starting point for building chemical tools and
458 drugs that can interfere with immunomodulatory consequences of HIV-1.

459

460 **Significance**

461 Our study aims to develop small molecule inhibitors that disrupt the interaction
462 interface between HIV-1 viral protein Nef and host CD80 / CD86 in Antigen
463 Presenting Cells (APC). The disruption of this interaction will makes infected APCs
464 more visible to the immune system, increasing cytotoxic lymphocyte activity on these
465 HIV-infected cells, potentially leading to viral clearance from macrophage reservoirs.
466 Here we identify and structurally characterize small molecule inhibitors that indeed
467 disrupt the protein-protein interaction interface of Nef-CD80 and restore the T-cell
468 activation capacity of infected APCs. These chemical tools serve as excellent
469 starting points that may be used to interrogate the role of Nef in HIV immune evasion
470 and contribute to first-in-class drugs for mitigating this resurgent disease

471 **Acknowledgments**

472 This work was funded by the BIRAC-CRS grant (BT/CRS0045/CRS -02/12), J.C.
473 Bose Fellowship from the Department of Science and Technology to SM,
474 Government of India, IIIM funds CSIR Research grants GAP-2116 and HCP-0001.
475 Center for Chemical Biology & Therapeutics fund (sanction order no.
476 BT/PR7222/MED/31/1901/2012, dated 11.01.2013), and support from the
477 Department of Atomic Energy (Government of India) under Project No. RTI 4006 to
478 NCBS. We thank Drs. Satyajit Rath, Ramaswamy Subramanian and Shahid Jameel
479 for helpful discussions. We also thank M. Hurakadli, J. Subbarao, P.Kumar for their
480 technical assistance. The facilities provided by the Bangalore Life Science (BLiSc):
481 Biosafety-I & II, CIFF, Instrumentation, X-ray facilities have greatly supported this
482 work.

483 **Author contributions**

484 SM, ASK, TS, PPS and RAV contributed to project initiation and funding.
485 SM and ASK contributed to the study design of biochemical screen and cell-based
486 assays. PPS and RAV contributed to the medicinal chemistry study design. ARV
487 contributed to the structural biology study design and supported this work at the
488 CCBT. AUS, APN and AM contributed to compound screening and cell-based
489 experimental work. SS, SA, GM, KRY and PPS contributed to chemical synthesis
490 and structure activity relationship analyses. GA and RS contributed to the molecular
491 modeling and docking studies. SR contributed to mutant study. NK performed the
492 SAXS studies. SM, AUS and ASK wrote the manuscript, which was reviewed by
493 RAV and ARV. Figures were prepared by AUS, SS, PPS, GA and NK.

494 **Declaration of Interests**

495 The authors declare No competing interest.

496
497

498 **Figure Legends**

499
500 **Fig. 1 Nef directly interacts with the cytoplasmic tail peptides of CD80/86.**

501 **a)** Illustration shows the CD80 and CD86 receptors with their extracellular,
502 transmembrane and cytosolic tail region marked. The 20-mer peptide region of CD80
503 (PRCRERRRNERLRRRESVRPV, 269 to 288 a.a) and CD86
504 (LWKWKKKRPRNSYKCGTNT, 267-286 a.a) is highlighted within the cytoplasmic
505 tail domain **(b)** Graph shows direct binding of Nef to CD80 as measured by
506 Microscale scale thermophoresis (MST). CD80 peptide was titrated from 950 μ M in
507 2-fold dilutions upto 16 points against a fixed Nef concentration (35 nM) in the final
508 reaction volume. A curve with upper saturation with $kD=27 \mu$ M was obtained; x axis=
509 peptide concentration (nM) and y axis= percentage normalized fluorescence
510 (ΔF_{norm}); Plots represent the mean \pm SD (error bars) from three independent
511 experiments **(c)** Similarly, CD86 peptide was titrated from 10 μ M with a 2-fold serial
512 dilution upto 16 points against a fixed Nef concentration (35 nM). A sigmoidal curve
513 with $kD=112$ nM, showing higher affinity as compared to CD80. **(d)** Graph shows
514 ELISA assay where change in OD is observed when the immobilized CD80 and
515 CD86 cytosolic peptides binds to Nef. The OD measurement was done at 450nm.
516 CD74, a negative peptide control shows minimal OD value **(e)** Graph shows
517 Normalized Percentage Index (NPI) on a normal distribution curve for statistical
518 significance of active compounds across qualified plates showing CD80 actives. X
519 axis= the number of compounds screened in ELISA assay; y axis= normalized
520 percentage Inhibition of compounds; of Z-factor>0.5 analysis was used to qualify the
521 plates. Compounds with NPI>30% for CD80 was considered as hits **(f)** Similarly,

522 NPI normal distribution curve for CD86 with Cutoff percentage for CD86 NPI>20%
523 was considered as hits **(g)** Scheme shows the hits belonging to 9 scaffolds that
524 were identified in the primary screen **(h)** Dose response curve of a hit compound
525 from “AP” scaffold; x axis= log concentration of compounds; y axis= Normalized
526 percentage Inhibition, (inset) Structure of AP5 compound and its molecular
527 properties

528 **Fig. 2: Cell based assay screening of active compounds from ELISA.**

529 **(a)** Nef mediated down-regulation of surface CD80 or CD86 in 3 different cell lines as
530 indicated. FACS data showing the normalized surface levels of CD80; I_x/I (y axis)
531 where I_x is the average fluorescence intensity in the indicated condition (from a
532 triplicate) and I is the Median of normalized negative control (No Nef control) **(b)**
533 FACS data shows restoration of CD80 receptors in RAJI cell line after pre-treatment
534 with 3 representative compounds **AP5, PA4 and BC5** at 10 and 100 μM for 24 h and
535 analysis after 2 h post Nef protein delivery **(c)** RAJI cell line was infected with viral
536 particles (Nef-YFP and YFP alone control cells) in viral infection assay and surface
537 CD80 receptors with compounds were measured by flow cytometry **(d)** Effects of
538 inhibitors on Nef-MHC-I interactions. RAJI cells were treated with compounds at 100
539 μM and then stained with anti-MHC-I antibody. MHC-I was detected by flow
540 cytometry and shown as I_x/I plots. Compound **AP5** shows no restoration of MHC-I
541 indicating its specificity for the Nef-CD80 interface.

542 **Fig. 3: Restoration of functional T-cell activation in a viral infection assay**

543 **(a)** Schematic of a functional assay for screening of compounds that disrupt Nef-
544 CD80/86 interactions in a virally-infected cell. Functional T-Cell activation is based
545 on APC-T cell co-cultures. The APC has CD80/86 and concurrent presence of anti-
546 CD3 antibody promotes T-cell activation (as measured via IL-2) in co-cultured T-cells

547 **(b)** Graph shows cytokine release in functional T-cell activation assay where antigen
548 presenting cell RAJI (B-cells) and Jurkat-cells (T cells) were co-cultured as indicated
549 (with/without anti-CD3 antibody); T-cells alone, B-cells alone controls do not show
550 measurable IL-2 release. **(c)** Graph shows quantification of cytokine (IL-2) released
551 after T-cells and B-cells co-culture for 3 h; here B-cells were pretreated with the
552 indicated concentrations (1, 10, 100 μ M) of compounds for 24 h followed by viral
553 infection for 96 h **(d)** Graph shows quantification of cytokine (IL-2) released after T-
554 cells and B-cells co-culture for 3 h; here B-cells were first infected with virus for 96h
555 and then treated with compounds at 1, 10, 100 μ M for 24 h. IL-2 release (pg/ml) was
556 determined by ELISA by plotting against an IL-2 standard curve. Note: viral infection
557 reduces IL-2 release, and all 3 compounds showed a dose dependent restoration of
558 IL-2 release. **AP5** showed IL-2 release at 1 μ M.

559 **Fig. 4: Modelling of Nef with multi-template computational approach**

560 **(a)** Cartoon representation of the predicted structure of Nef shows flexible N-terminal
561 region and well-conserved core domain, colored in accordance with their position (N-
562 terminal in blue to C-terminal in red) with respective α -helices and β -sheets as
563 indicated. **(b)** The *ab initio* shape of the solution structure of the Nef (blue color) from
564 the SAXS data (grey surface) fits well with the computational model (cartoon
565 representation) **(c)** Surface representation of HIV-1 Nef is depicted with the best
566 CD80 binding pose. CD80 peptide in a docked pose (cyan color) in Nef obtained
567 using SiteMap program. The inset shows the important residues of Nef involved in
568 interaction with CD80 at Sites 1 and 2.

569 **Fig. 5: Evaluation of interaction between CD80 and Nef mutants in biochemical
570 and cell-based assays**

571 **(a)** Graph shows colorimetric signal of immobilized CD80 cytosolic peptide upon

572 binding to Nef^{WT} or Nef mutants as measured by ELISA at OD450nm. Two mutants
573 Nef^{K99A} and Nef^{R111A} showed reduced affinity to CD80 peptide **(b)** Graph shows
574 FACS data of surface levels of CD80 receptors in RAJI cell line after delivery of
575 Nef^{WT} or Nef mutant protein delivery. No significant down regulation seen with
576 mutants Nef^{K99A} and Nef^{R111A} **(c)** Graph shows the levels cytokine (IL-2) released in
577 supernatants of cells in the co-culture functional T-cell activation assay after delivery
578 of the Nef mutants as compared to the wild type Nef protein. **(d)** Graph shows FACS
579 data of MHC-1 levels after delivery with Nef^{WT} and mutants. Nef^{WT} or mutants were
580 delivered into RAJI cells using ChariotTM delivery reagent. MHC-I was detected by
581 flow cytometry and shown as Ix/I plots.

582 **Fig. 6: Structural and functional evaluation of the interaction between Nef and**
583 **AP5**

584 **(a)** Structural and functional evaluation of the interaction between Nef and AP5The
585 Surface representation of HIV-1 Nef depicting **AP5** ligand (green color) binding. The
586 binding site of **AP5** molecule overlaps with the CD80 binding site (Site-1). The inset
587 shows the important residues for the interaction between AP5 and Nef. The non-
588 polar residues such as W₆₁, L₉₁, I₁₀₉ and L₁₁₅ contribute to hydrophobic interactions
589 with CF₃. **AP5** ligand docking studies shows that the binding interactions occurs
590 between the α 4 and α 5 helices along with few residues such as W₆₁, E₆₅ and R₁₁₁
591 which are crucial for **AP5**-Nef interaction **(b)** Graph shows colorimetric signal of
592 immobilized CD80 cytosolic peptide upon binding to Nef^{WT} or Nef mutants in the
593 presence /absence of 10 μ M AP5 as measured by ELISA at OD450 nm. **(g)** Graph
594 shows surface levels of CD80 receptors in RAJI cell line after the delivery of Nef^{WT} or
595 Nef mutant protein delivery as measured by FACS in the presence /absence of 10
596 μ M AP5. Nef^{W61A}, Nef^{K99A} and Nef^{R111} did not show any further change in CD80

597 levels with **AP5** addition. **(c)** Graph shows cytokine (IL-2) release in supernatants
598 after the co-culture T-cell activation assay. RAJI cells were pre-treated with 10 μ M
599 AP5 for 1 h and then the cells were delivered with Nef mutants or wild type Nef
600 protein for 2 h before co-culture with Jurkat T-cells for 3 h. The IL-2 levels remain
601 unchanged with and without addition of **AP5** compound in all three mutants Nef^{W61A},
602 Nef^{K99A} and Nef^{R111}. Reduction in IL-2 seen with mutant Nef^{E160A} comparable to
603 Nef^{WT}.

604 **Fig. 7: SAR and Hit refinement with AP5 as a template** **(a)** Scheme shows
605 Medicinal chemistry approach for hit refinement of **AP5** showing two series of
606 compounds **(b)** Summary of SAR strategy to design compounds similar to **AP5**
607 **structure** with modifications made on rings A, B and C as indicated. The
608 synthesized molecules were evaluated for their effect on Nef-CD80/CD86 inhibition
609 **(c)** Heat map table showing SAR with synthesized compounds. The various
610 substitutions in rings A, B and C are indicated as well as their activity in the ELISA
611 and cell-based assays

612

613 **STAR methods**

614

615 **Materials and Reagents:**

616 96-well maxisorp ELISA plates (NUNC, cat#449824,), small molecule inhibitors
617 (synthesized by IIIM, Jammu), DMSO (Sigma, cat#D2650), Anti-Nef Antibody (from
618 ICGEB), DAR-HRP (Jackson Immunoresearch, cat#711-035-152), Tecan ELISA
619 reader. The following commercially synthesized peptides (Peptron Inc., South Korea)
620 were used: CD80 cytosolic tail peptide: PRCRERRRNERLRRRESVRPV (20-mer),
621 CD86 cytosolic tail peptide: LWKWKKKKRPRNSYKCGTNT (20-mer), CD74, a non-
622 specific peptide: MHRRRSRSCREDQKPVMDDQRDLISNNEQL (30-mer). Nef
623 construct was cloned at ICGEB, rF2-Nef protein (HIV-1 Subtype C) cloned into
624 pET28 vector (Novagen, cat#69865) at Ncol and Xhol sites with 6XHis tag at C-
625 terminal end. Nef and all Nef variant proteins were expressed in E. coli Rosetta
626 strain containing pRARE that codes for t-RNAs corresponding to rare Arginine
627 codons in the bacterium. The growth and/or expression medium used were Luria
628 Broth. The antibiotics used were kanamycin (50 μ g/ml) for Nef plasmid selection and
629 chloramphenicol (25 μ g/ml) for pRARE selection, IPTG induction, Akta FPLC –Affinity
630 and Size exclusion chromatography for protein purification.

631 **Cell lines-** RAJI B lymphocytic, Burkitt's lymphoma cell line (NIH AIDS reagent
632 cat#ARP-9944), Jurkat T cells (ATCC, cat#TIB-152), for cell-based assays,
633 HEK293T (ATCC CRL-3216) was used for transfection of viral clones and production
634 of viral particles.

635 **Cell culture reagents-** RPMI 1640, FBS, glutamine, Penstrep (from Gibco),
636 ChariotTM delivery reagent (active motif, cat#30100) was used for protein delivery
637 into cells. Viafect (Promega, cat#E4982) reagent was used for DNA transfection,
638 lentiX concentrator (clontech, cat#631231), lentiblast reagent (OZ

639 biosciences, cat#LB00500), DMEM (Gibco), WST-1 reagent (Roche), anti-CD80 and
640 anti-CD86-biotinylated antibody (Ebioscience, cat# 13-0809-82 and 13-0869-82),
641 SAV-APC (Ebioscience, cat#17-4317-82), anti-CD3 antibody (Biolegend, 317302),
642 western blot materials (Biorad), Chemiluminescent reagent (Pierce, cat#32109), GE
643 Image Quant, human IL-2 ELISA kit (Biolegend, cat#431808), Plasmid prep kit
644 (Qiagen), biotinylated anti-human MHC-I (HLA-A, B, C) antibody (biolegend,
645 cat#311402).

646 **Chemical Compound Synthesis**

647 The 25 active hits belong to three scaffolds namely amino pyrimidine (**AP**), biaryl
648 (heteroaryl) carbamate (**BC**) and phenoxy acetamide (**PA**) has been selected and
649 details regarding the strategies applied for the synthesis of hits and hit optimized
650 compounds has been provided in Scheme 1-8 (Supplementary data).
651 The synthesis started with amino pyrimidine (AP) scaffolds, where five hits were
652 synthesized and their synthetic strategy has been given in Scheme 1 and 2. The
653 synthesis started with commercially available 2-chloro-5-bromopyrimidine **1** as the
654 starting material which was treated with ethanethiol **2** afforded intermediate **3**
655 (Scheme 1). The intermediate **3** was then subjected to Suzuki coupling with aryl
656 boronic acid **4** provided 5-aryl pyrimidine **5**. The compound **5** was then oxidized with
657 *m*-CPBA to corresponding sulfoxide **6** followed by nucleophilic substitution afforded
658 key intermediate **7**, which on reaction with acetylacetone provided **AP1**. In the next
659 attempt, the intermediate **7** on reaction with substituted aldehydes provided **AP2** and
660 **AP3**. In another attempt, the 2-chloro-5-bromopyrimidine **1** was converted into **AP4**
661 in two steps i) nucleophilic substitution with dimethyl amine; ii) Suzuki coupling with
662 phenyl boronic acid. The synthesis of **AP5** required the quite different strategy and is
663 shown in Scheme 2. The synthesis started with commercially available resorcinol **11**

664 which was undergoes acetylation followed by reduction gave intermediate **13**. The
665 intermediate **13** was treated with 4-methoxyphenyl acetonitrile **14** to get acylated
666 intermediate **15** which on treatment with trifluoroacetic anhydride underwent
667 cyclization to generate the chromone based key intermediate **16** followed by the
668 methylation of hydroxyl group to get **17**, which on reaction with guanidine
669 hydrochloride to afford the hit **AP5**.

670 For the initial hit refinement, we started synthesis with commercially available
671 2-aminopyrimidine **28** which on reaction with phenyl boronic acid **4b** with
672 methodology was developed in the presence of light and $K_2S_2O_8$ gave intermediate
673 **29**. Intermediate **29** was brominated in the presence of *N*-bromosuccinamide (NBS)
674 provided the intermediate **30**. The final targeted compounds **AP(S1-S4)** were
675 synthesized in good to moderate yields from the reaction of compound **30** with
676 substituted phenyl and heterocyclic boronic acids **4** under Suzuki conditions to
677 provide final compounds **AP (S1-S4, scheme-3)**. For series-2, sequence of synthesis
678 began with 2-amino-4-chloropyrimidine **31** which underwent Suzuki coupling reaction
679 with un/substituted aryl and heteroaryl boronic acids **4** to get intermediate **32** which
680 on reaction with NBS provided intermediate **33**. The brominated intermediate **33** was
681 subjected to Suzuki couplings with a range of aryl and heteroaryl boronic acids **4** to
682 provide final compounds **AP (S5-S10, Scheme-4)**.

683 In the case of biaryl (heteroaryl) carbamate (BC), seven hits were synthesized
684 (Schemes 5-6). The synthesis started with commercially available
685 phenylchloroformate **18** which on treatment with benzo[d]oxazole-2(3H)-thione **19** in
686 the presence of base to give the hit **BC1** (Scheme 5). All other hit molecules from
687 **BC3** to **BC7** and **BC10** were synthesized in the similar fashion, different substituted

688 chloroformates **18** reacted with substituted anilines **20** to afford the targeted hits
689 (Scheme 6).
690 In case of phenoxyacetamide (PA), syntheses of eight hits were accomplished as
691 outlined in Scheme 7 and 8. Hit molecules like **PA2, 3, 5, 6 and 7 (Scheme 7)** were
692 synthesized in two steps. i) by treating substituted anilines **20** with different
693 chloroacetyl chloride in the presence of base at room temperature followed by; ii)
694 coupling with substituted phenols **23**. For the synthesis of hits **PA1, 8 and 10**, the
695 synthesized involves four steps. The substituted phenols **23** coupled with substituted
696 2-chloroethylacetate **24** to form intermediate **25**, which on hydrolysis gave
697 intermediate **26**. The intermediate **26** was converted into corresponding aryl chloride
698 **27** and then coupled with substituted anilines **20** to get the desired hits **PA1, 8 and**
699 **10 (Scheme 8)**.

700 The identified hits such as **BC2, 6 and 8**, and **PA4 and PA9** were not synthesized
701 and were procured in somewhat large quantities from the original commercial
702 vendors because of the unavailability of the starting materials. These hits were
703 characterized by using NMR and Mass spectroscopy and then were taken up for
704 validation study.

705 **Compound stock and storage-** All compounds were dissolved 100% DMSO to
706 make a 10mM stock. Multiple aliquots were prepared from mother stock to avoid
707 multiple freeze-thaw cycles and were stored at -80°C

708 **Expression and Purification of recombinant Nef**

709 HIV-1 Nef gene sequence was cloned into pET28b expression vector with antibiotic
710 resistance to chloramphenicol (25 μ g/ml) and kanamycin (50 μ g/ml) and recombinant
711 Nef-His tag protein was expressed in *E. coli* Rosetta strain [OD600~0.5-0.6]. IPTG
712 induction (0.2mM) was done for 4h at 28°C. The cells were spun down at 10000rpm

713 for 15min and pellet stored at -80°C. The protein was purified in 20mM Tris HCl,
714 150mM, NaCl, 3 mM DTT, 5% glycerol, 0.2% Tween-20 in a Ni-NTA column and gel
715 filtration chromatography on Sepharose-75pg (GE) in Akta FPLC purifier. Nef protein
716 with single mutants W61A, K99A, R111 and E160A were designed by site-directed
717 mutagenesis. The buffer conditions were same as full length WT-Nef.

Mutant	Primers used
W57A	F: GAT TGT GCT GCG CCG GAA GCG C R: GCG CTT CCG GCG CAG CAC AAT C
K94A	F: AAA GAA GCG GGG GGA CTG GAA GGG R: CCC TTC CAG TCC CCC CGC TTC TTT
R106A	F: CTAAGAAAGCGCAAGAGATCCTTGATTTG R: CAAATCAAGGATCTCTGCGCTTCTTAG
E155A	F: GCA GTA GAA GCG GCC AAC GAA GGA G R: CTC CTT CGT TGG CCG CTT CTA CTG C

718

719 **Microscale Thermophoresis (MST)**

720 Full length Nef was labeled with lysine NT-647-NHS fluorescent dye using the
721 Monolith NT.115 Protein Labeling Kit (NanoTemper Technologies). A Capillary
722 Scanning was performed to check the optimal fluorescence intensity of the labelled
723 protein for titration with the ligand. For the direct binding assay, a final concentration
724 of labelled 35nM Nef protein was titrated against a 16-point 2-fold serial dilution
725 series starting from 950 µM for CD80 peptide and for CD86 a final concentration of
726 labelled 25nM Nef protein was titrated against a 16-point 2-fold serial dilution series
727 starting from 10 µM. The compound was titrated against the protein-peptide at 16-
728 point dilution. All samples were prepared by centrifuging at 10000 rpm for 5 min at
729 4°C and 10 µl of the supernatant was loaded into premium glass capillaries
730 (NanoTemper Technologies). MST runs were performed at MST power of 60% and
731 excitation power of 50%, using a Monolith NT.115 NanoTemper Technologies. The
732 data was analyzed using NanoTemper analysis software MO. Affinity Analysis v2.2.4.
733 Kd values were determined using T-jump and thermophoresis settings. The change

734 in thermophoresis between each sample dilution was represented as normalized
735 fluorescence (ΔF_{norm}), which is defined as $F_{\text{hot}}/F_{\text{cold}}$, where F_{cold} is the control and
736 F_{hot} is the experimental condition. The binding kinetics to non-fluorescent ligand
737 causes a change in thermophoresis which is determined by area in the curve under
738 steady-state conditions to yield a binding curve.

739 **Primary screening by Indirect Enzyme-linked immunosorbent assay (ELISA)**

740 An indirect ELISA was performed to measure the interaction of Nef-CD80/CD86 and
741 their disruption with addition of compounds. CD80, CD86 and a non-specific control
742 peptide derived from the cytoplasmic tail of CD74 peptides were separately
743 immobilized at 10 μM concentration onto 96-well micro-titer plate and incubated
744 overnight at 4°C. 5% blotto was used as blocking buffer to reduce the background
745 interference. Blotto was completely removed with PBS-Tween (0.1%) washes. 10
746 μM of Nef protein and 10 μM of compounds were pre-incubated at RT for 1hour and
747 added onto peptide coated wells for 1hour incubation. Compounds were diluted in
748 2.5% blotto and were screened at a concentration of 10 μM . After each addition step
749 PBS-T washes were done. DMSO in 2.5% blotto as vehicle control and plate
750 background (no coating) were used as negative control. In subsequent steps the
751 plates were incubated with primary anti-Nef antibody and secondary antibody with
752 HRP. The TMB substrate was added which reacts with HRP to produce a coloured
753 product within 15minutes. The reaction was stopped with 1N sulphuric acid and the
754 absorbance at 450nm was recorded with Tecan infinite 200 PRO plate reader.
755 MATLAB 7.5 program was used to pick the active compounds. The program
756 assessed the robustness of the screened plate using Z-factor (for qualifying plate)
757 and Z score for active compounds, and Normalized percent inhibition to determine
758 the compound activity.

759 **Robustness of screen**

760 The plate controls showing a Z factor >0.5 was considered to qualify for further
761 analysis. The activity of compounds was determined with the Normalized Percent
762 Inhibition (NPI) and Z scores were used to assess the efficacy of the compounds in
763 the screen: Z-score: $(Ix - \mu D) / \sigma D$

764 Normalized inhibition (NPI): $((Ix - \mu D) / \mu D) * 100$

765 Where, IX: Intensity of triplicate x (first, second or third) represented as either A/B/C
766 μD : Mean of negative control

767 σD : Standard deviation of triplicates of negative control

768 The compounds identified as 'hits' in primary screen were defined as those
769 displaying more than 30% and 20% inhibition for CD80 and CD86 respectively and
770 two of three repeats of a particular compound should have Z score between - 2 and -
771 8.

772 **Determination of IC_{50} for active compounds**- The active compounds from primary
773 screen were tested for dose response with 10-fold dilution for an 11-point curve from
774 10 μ M to nanomolar concentration. Compounds showing an IC_{50} in nanomolar
775 concentrations were further tested in cell-based assay.

776 **WST assay for quantification of cell viability and toxicity**

777 50000 cells per well were seeded in a 96 well plate. 1%Triton X (control) and
778 compounds were treated at 100 μ M in triplicates in 100 μ l media and incubated for
779 the 24 hours' timepoint. 10 μ l of WST-1 reagent per well was added and incubated
780 for 3hrs. Absorbance read at 450nm with reference 620nm. The media alone control
781 was used to normalize all the wells. The cells alone control was the high control and
782 triton treated cells were the low control or negative control.

783 The formula used to calculate the percentage toxicity:

784 (Average (x) – Average (high control) / Average (low control) – Average (high control)) *100
785 Where, Average(x)= average OD of individual test; Average (high control) = average OD
786 of cells alone control; Average (low control) = average OD of cells with 1% triton X
787 **Measurement of surface levels of CD80/CD86 receptor by flow cytometry**
788 Nef protein was delivered into RAJI B cells using ChariotTM protein delivery reagent
789 according to manufacturer's protocol (Active Motif). In brief, 1.5X10⁵ cells were
790 layered with protein-delivery reagent complex, incubated and complete media
791 (RPMI+10% FBS) was added. The cells were then harvested and stained with CD80
792 or CD86 biotinylated antibody or isotype control followed by Streptavidin-APC at 4°C
793 and flow profile acquisition was done on Gallios Flow Cytometer (Beckman Coulter).
794 Data was analyzed by FlowJo LLC software. Surface levels of CD80 and CD86 was
795 calculated by normalizing raw fluorescent measurements relative to controls
796 (Normalized Inhibition of Down-regulation). To test compounds, two concentrations
797 10 and 100μM were pre-treated on cells for 1 hour and then 50 μg of Nef was
798 delivered with method described and quantified by flow cytometry.
799 The potential actives from the plates were selected based on the following metrics.

800 a) Z score:
$$\frac{I_x - \mu_D}{\sigma_D}$$

801 Where I_x is the measurement of each triplicate, μ_D : mean of population and σ_D :
802 Standard deviation of population (excluding the positive and negative control). Z
803 score was used to select hits reversal of CD80/86 downregulation by Nef.
804 Compound repeats were qualified by Z score selection, with a Z score between 1.5
805 to -1.2. Each graph was calculated with student t-test using Graphpad prism 7.0 (*p

806 ≤ 0.05 ; ** $p \leq 0.01$; *** $p \leq 0.001$) was used to determine the significant difference
807 between the means of control group and treatment groups.

808 **Calculation of surface CD80 and CD86 down regulation-** was calculated by
809 normalizing raw fluorescent measurements relative to controls (Normalized Inhibition
810 of Down-regulation)

811
$$NID = I_x/I$$

812 Where I_x , is the raw measurement each triplicate and I is the mean of the
813 measurements on the positive control.

814 **Virus particle generation**

815 *HEK293T transfection:* The 4 retroviral components present in the following
816 plasmids, pVSV-G (envelope), p-gag-pol (packaging), pMSCV-Nef-YFP (HIV-1 F2
817 isolate-based retroviral clones harboring nef sequence), pMSCV-YFP (control) were
818 transfected into individual recombinant bacteria and cultured in LB for plasmid
819 isolation (miniprep Qiagen). The plasmid concentration was checked by
820 NanoDropTM.

821 *Virus particle generation:* To generate recombinant retroviral particles, HEK293T
822 were seeded into 100mm dish with 5×10^6 cells on day 1. At 80% confluence, Vifect
823 TM transfection reagent with 15 μ g of DNA vectors consisting of p-gag pol, pVSV-G
824 and YFP or Nef-YFP in 3:1:4 ratios was layered over cells with DMEM (5% FBS).
825 The cells are incubated for 72h. The cells were observed under fluorescence
826 microscope for YFP expression to estimate the percentage transfection. The cell
827 supernatant was collected and concentrated with Lenti-XTM reagent (as per
828 manufacturer's protocol). The visible pellet was reconstituted with minimal volume of
829 PBS (1X) to make a concentrated viral stock. The stock was titrated in 3-fold serial
830 dilution onto HEK293T (1×10^5) cells/ well in a 24 well plate. Polybrene (8 μ g/ml) was

831 added to cells along with DMEM (5%FBS) media. After 72h, the cells were harvested
832 and analyzed on Gallios flow cytometer. The fluorescent population was gated and
833 analyzed against the cells alone. The infection percentage above 30% and below
834 0.5% is omitted. The higher titer tends to be underestimated; lower titer falls too
835 close to the background. The average of the titer was used to calculate the viral units
836 present in the stock using the low formula:

837

$$\text{TU/ml} = \frac{\left\{ \text{Number of target cells (count at day1)} \times \frac{\% \text{ of YFP-positive cells}}{100} \right\}}{\text{Volume of supernatant in ml}}$$

838

839 **Functional T-cell activation Assay** - RAJI cells were infected with MOI-0.02 of viral
840 stock of control YFP virus or Nef-YFP containing virus and incubated in a 24-well cell
841 bind plate. Additionally, LentiBlast™ reagent A and B was added in 1:1 ratio to the
842 cells and incubated for 48 to 96h. The cells showed YFP signal post infection. The
843 cells were harvested and stained for CD80 and CD86 and analyzed by flow
844 cytometry and the percentage down-modulation of the receptors was calculated with
845 median values.

846 Virus infected RAJI- cells was co-cultured with Jurkat T cells (1:1 ratio, 2.5×10^5 cells)
847 in the presence of 0.06 $\mu\text{g/mL}$ of anti-CD3 antibody (OKT3 clone, BioLegend®) in
848 final volume of 200 μl and incubated for 3h for 37°C in a 96 well plate and the
849 supernatant was harvested by centrifuging twice at 4000 rpm. IL-2 Cytokine release
850 in the supernatant was quantified by BioLegend® kit-based ELISA method and ODs
851 were measured in Tecan infinite 200 PRO plate reader.

852 **Testing of compounds in viral assay for functional T-cell activation assay- Pre-**
853 treatment with compounds **AP5, PA4 and BC5** at 1, 10 and 100 μ M concentrations
854 was performed for 24h before Nef viral transduction in RAJI cells. Vehicle control
855 cells were pre-treated with 0.5% DMSO. Post-treatment of compounds for 24h was
856 done after 96h of viral infection.

857 **Staining of surface MHC-I antibody**

858 RAJI cells were pre-treated with compounds **AP5, PA4 and BC5** at 100 μ M and 50
859 μ g Nef was delivered with ChariotTM reagent. The cells were stained for receptors
860 with anti-human MHC-I biotinylated (HLA-A, B, C, clone W6/32) BioLegend[®]
861 antibody and secondary streptavidin APC and was run on Gallios flow cytometer and
862 the surface levels MHC-I was quantified. The percentage down regulation recovery
863 of MHC-I receptors was analyzed.

864 **Modelling of full-length Nef**

865 To build a full-length Nef protein, multi-template modelling approach was performed,
866 where more than one experimentally determined structure was utilized for building
867 the model. For the N-terminal part, NMR structure of Nef anchor domain(1QA5) and
868 for core domain, the NMR structure of HIV-1 Nef (2NEF: A) and X-ray structure HIV-
869 1 NEF protein, in complex with engineered HCK SH3 domain (3RBB: A) are used as
870 templates. Among the three templates, major structural information is acquired from
871 2NEF structure which covers maximum region of core domain. The tool
872 MODELLER7 (version 9v8) was used to obtain the full-length Nef model. After
873 modeling, the lowest energy state structure was further energy minimized through
874 SYBYL (Version 7.1) (Tripos Associates Inc.) and validated using PROCHECK⁴⁶

875 **Deciphering the residues necessary for Nef - CD80 interaction by docking**
876 **studies**

877 The modeled full-length Nef protein is utilized for examining the potential-ligand
878 association site using the SiteMap^c tool in Schrödinger software. SiteMap identifies
879 potential peptide/ligand binding sites considering van der Waals forces and hydrogen
880 donor/acceptor characteristics. SiteScore is the most important property generated
881 by SiteMap, proven to be effective at identifying possible binding sites in 3D
882 structure. The prediction of the binding site is based on set of properties such as size
883 of the site, degrees of enclosure by the protein and exposure to solvent, tightness
884 with which the site points interact with the receptor, hydrophobic and hydrophilic
885 character of the site. The sitemap predictions are useful in identifying the possible
886 binding sites of CD80/CD86 cytoplasmic tails.

887 Further, docking studies were performed to identify the interactions of Nef protein
888 with co-stimulatory molecules CD80/CD86. This was achieved by modelling of
889 cytoplasmic regions of CD80/CD86 using I-TASSER server and protein-peptide
890 docking using BioLuminate module in Schrödinger software. Though numerous
891 information about the Nef interaction sites with other cell surface receptors are
892 available, the peptide is docked by blind docking approach where no guidance about
893 residues, that could potentially participate in interaction with CD80 was provided to
894 the program. The best docked pose is selected by energy minimization followed by
895 implicit solvent based energy calculations.

896 The protein-peptide docking resulted in 30 best poses of Receptor-ligand complexes.
897 The predicted poses are ranked based on the maximum number of occurrences of
898 that particular pose. Since there is no prior information about the binding pattern of
899 Nef with CD80/CD86, it is necessary to score each pose based on energy
900 calculations. The association of the protein-peptide complex is estimated by an
901 automated mechanism of Multi-Ligand Bimolecular Association with Energetics

902 (eMBrAcE) (MacroModel, version 9.6, Schrödinger, LLC, New York, NY, 2008). The
903 best identified Nef-CD80 binding pose analysed further for important amino acids
904 involved in the non-bonded interactions which is contributing for binding. In order to
905 validate the predicted binding mode, best binding small molecule **AP5** was docked
906 with the full-length Nef model. This was basically achieved by selection of a centroid
907 point from the predicted Nef-CD80 binding site using Glide docking protocol from
908 Schrodinger software. The top poses of the docked complexes were further
909 examined for the non-bonded interactions and best docked score.

910 **SAXS data collection and analysis**

911 SAXS-data of the apo HIV1-Nef was measured with the BIOSAXS-1000 small-angle
912 X-ray scattering with Kratky camera system, installed on a Rigaku microfocus X-ray
913 generator (1.5418 Å wavelength). The purified HIV1-Nef at 1, 3 and 5 mg/ml
914 concentrations were used with buffer containing 50 mM Tris/HCl, pH 7.5, 200 mM
915 NaCl in a sample volume of 60 µl inside a vacuum tight quartz capillary subjected X-
916 rays at 25 °C. The data was collected for 30 min and for each measurement a total of
917 six frames at 5 min intervals were recorded. Corresponding to each protein sample,
918 data were collected for a buffer under identical experimental conditions, providing a
919 background scattering curve. The data was then tested for possible radiation damage
920 by comparing the six data frames and no changes were observed. The scattering of
921 the buffer was subtracted from the scattering of the sample. All the data processing
922 steps were performed using the program package PRIMUS⁴⁷. The experimental data
923 obtained for all protein samples were analyzed for aggregation using the Guinier
924 region. The forward scattering I(0) and the radius of the gyration, Rg were computed
925 using the Guinier approximation assuming that at very small angles ($q < 1.3/Rg$) the
926 intensity is represented as $I(q) = I(0) \exp(-(qRg)^2/3)$. These parameters were also

927 computed from the extended scattering patterns using the indirect transform package
928 GNOM, which provides the distance distribution function $P(r)$ of the maximum particle
929 dimension, D_{max} as well as the radius of gyration, R_g , qualitative particle motion was
930 inferred by plotting the scattering patterns in the normalized Kratky plot
931 $((qR_g)^2(I(q)/I(0))$ vs qR_g). Ab initio low-resolution models of the proteins were built by
932 the program DAMMIF⁴⁸ considering low angle data ($q < 2\text{nm}^{-1}$). Ten independent ab
933 initio reconstructions were performed for each protein and then averaged using
934 DAMAVER⁴⁹. Superimposition between ab initio reconstruction and atomic model was
935 performed using the software SUPCOMB⁵⁰.

936 **Statistical Analysis:** Z factor was used for qualifying the plate and t-test was used
937 for determining the significant data. The plots were prepared using Graph Pad Prism
938 Ver6.0.

939

940

941 **Supplementary Information**

942 **Supplementary figure legends**

943 **Fig. S1:** **a)** Sequence of Subtype B and C with overlapping residues and important
944 residues highlighted (in red) **(b)**. Sequence of full length CD80 and CD86, where the
945 20-mer cytoplasmic peptide used for screening assays are highlighted (in cyan) **(c)**
946 Schematic of ELISA procedure in microwell plate where the CD80 and CD86
947 peptides were immobilized. The Nef protein was incubated with the peptide and their
948 interaction was detected by anti-Nef antibody and secondary antibody with HRP. The
949 colorimetric signal was quantified with TMB reducing the HRP substrate

950 **Fig. S2:** Detailed chemical synthesis of the hits belongs to the AP, PA and BC
951 scaffolds. **Note: Details of Characterization of Synthesized compounds and**
952 **intermediates will be included in the full submission.**

953 **Fig. S3:** Regression graph showing correlation with replicate data R^2 values for hit
954 compounds in biochemical screen, where pIC_{50} is the negative log of IC_{50}
955 expressed in molar units.

956 **Fig. S4:** Graph shows cytotoxicity profile with treatment of compounds. RAJI cell line
957 was treated at the highest concentration of 100 μM for 24 h and the supernatant
958 collected was estimated for WST assay.

959 **Fig. S5:** FACS histogram shows surface staining of CD80 and CD86 with APC-
960 tagged specific CD80 or CD86 antibody. Colour representation: Unstained Cells (in
961 red), Isotype controls -IgG1k for CD80; IgG2b for CD86 (in blue dotted line), cells
962 with Vehicle control Chariot reagent showing CD80 or CD86 surface expression (in
963 orange), Protein delivered (in green). The reduction in CD80/CD86 levels are seen
964 with Nef protein after its delivery into RAJI cells in 2h incubation period. The surface

965 levels of CD80 did not change with the delivery of 100 µg of Ovalbumin and β -
966 lactoglobulin proteins with ChariotTM reagent.

967 **Fig. S6: Schematic of the rterovirus used for infection assays.** Distribution of
968 regulatory elements in the HIV-1. (A) Schematic depiction of the HIV-1 genome
969 containing accessory *vpr*, *vpu*, and *nef* genes. (B) Schematic depiction of rteroviral
970 vector with Nef transgene. where Env protein used in this rterovirus is VsVg from
971 pMLV, and Vpr , Vif and Vpu are not present in this vector.

972 **Fig. S7: a)** SAXS-patterns of full length HIV1-Nef at three different concentrations 1,
973 3 and 5 mg/ml are shown. The Guinier plots at low angles appeared linear and
974 showed no aggregation (shown in inset) **(b)** The Rg, Dmax and molecular mass of
975 the full length HIV1-Nef suggest the progressive increase in the Rg, Dmax and
976 molecular mass values with increasing concentration of Nef. The deviation from a
977 typical bell-shaped profile depicts an inherent structural flexibility of Nef Protein **(c)**
978 The averaged ab initio model (surface representation) overlay with the crystal
979 structure of folded C-terminal core (cartoon representation).

980 **Fig. S8: a)** SDS-PAGE run with purified Nef proteins. Nef wildtype and mutants show
981 bands at ~29kDa **(b)** FPLC purification profile of Nef proteins purified (c) Western
982 blot showing Nef WT or mutant Nef protein delivered in RAJI cells post 5 h. Band
983 intensity of Nef^{W61A} protein reduced after 5 h when compared to 2 h incubation,
984 indicating degradation of protein.

985 **Supplementary tables:**

986 **Suppl. Table 1:** a) Table shows 20 compounds selected from screen showing IC₅₀s
987 in sub-micromolar ranges. Of these top 10 were chosen based on ease of
988 synthesis , efficacy and their cytotoxicity.

989 **Suppl. Table 2:** Table showing the SAXS derived parameters such as Guinier Rg,

990 Realspace Rg and Dmax for the full-length Nef in solution

991 **Suppl. Table. 3:** Table showing the residue information about the CD80 peptide

992 docked predicted sites on Nef from SiteMap program. The important residues

993 involved in protein-protein interactions are highlighted.

994

References

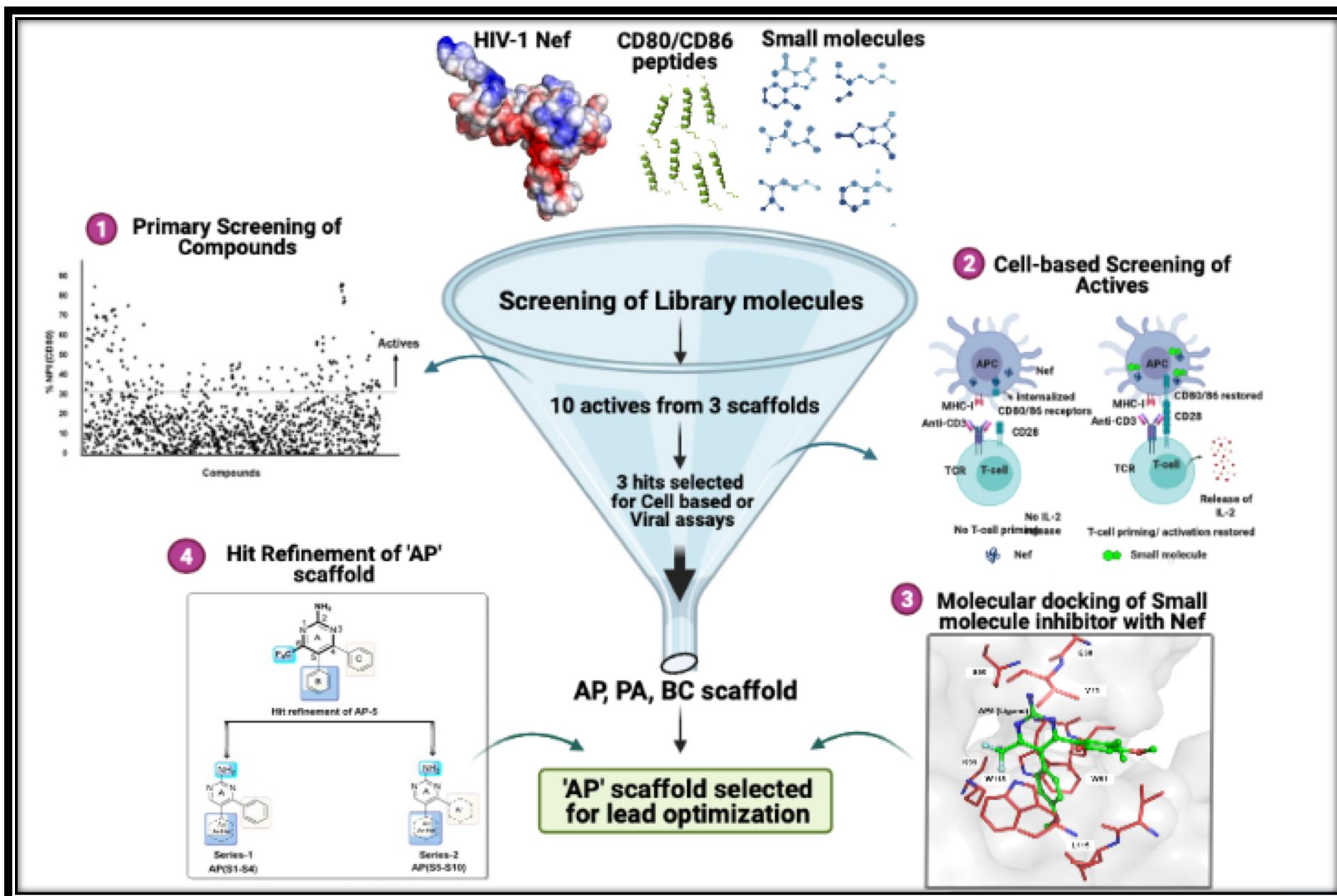
1. Tsibris, A. M. N. & Hirsch, M. S. MINIREVIEW Antiretroviral Therapy in the Clinic *Clin. Infect. Dis.* **84**, 5458–5464 (2010).
2. Gulick, R. M. & Flexner, C. Long-Acting HIV Drugs for Treatment and Prevention. (2019).
3. Kumar, A. & Herbein, G. The macrophage: a therapeutic target in HIV-1 infection. *Mol. Cell. Ther.* **2**, 10 (2014).
4. Baxter, J. *et al.* Global HIV-1 transmitted drug resistance in the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial. *HIV Med.* **16**, 77–87 (2015).
5. Niessl, J. *et al.* Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity. *Nat. Med.* **26**, 222–227 (2020).
6. Pollara, J., Easterhoff, D. & Fouda, G. G. Lessons learned from human HIV vaccine trials. *Curr. Opin. HIV AIDS* **12**, 216–221 (2017).
7. Restouin, A. *et al.* Protein – protein interaction inhibition (2P2I) combining high throughput and virtual screening : Application to the HIV-1 Nef protein. *104*, (2007).
8. Flexner, C. Modern Human Immunodeficiency Virus Therapy : Progress and Prospects. *105*, 61–70 (2019).
9. Jäger, S. *et al.* Global landscape of HIV – human protein complexes. *481*, 365–370 (2013).
10. Arhel, N. J. & Kirchhoff, F. Implications of Nef: Host Cell Interactions in Viral Persistence and Progression to AIDS. in *HIV Interactions with Host Cell Proteins* (eds. Spearman, P. & Freed, E. O.) 147–175 (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-02175-6_8

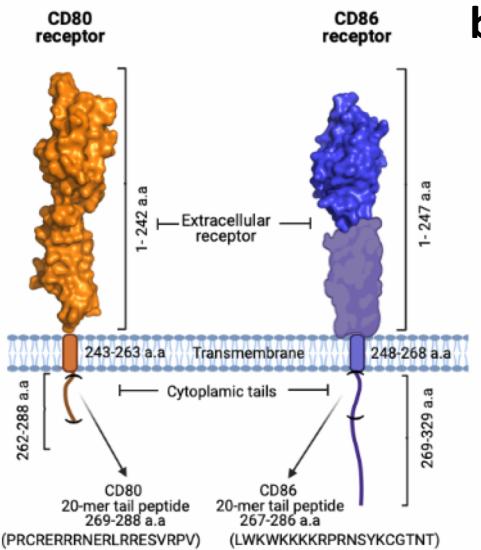
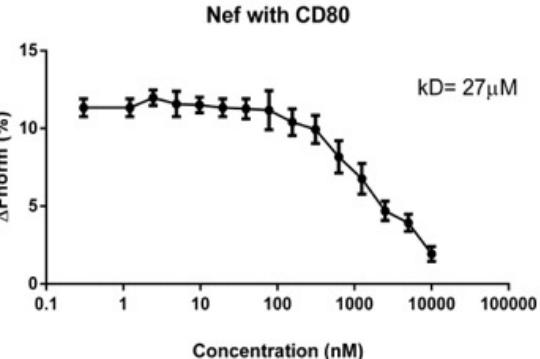
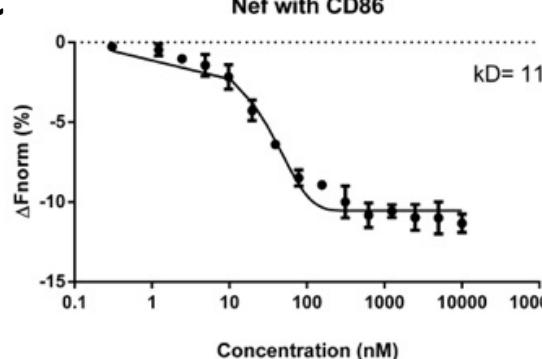
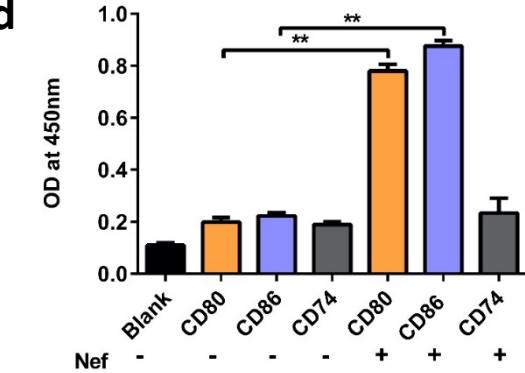
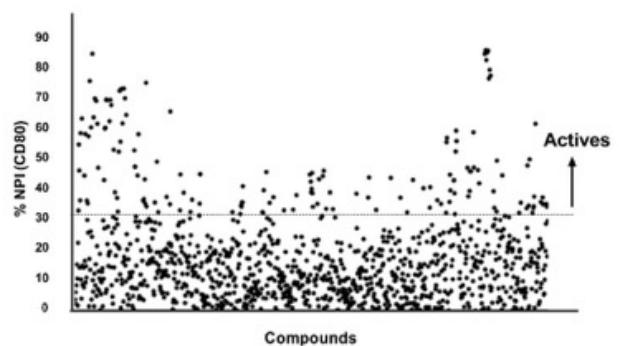
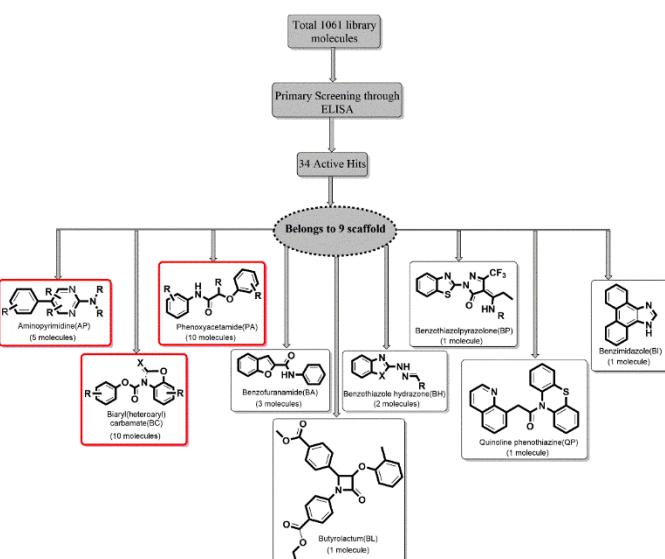
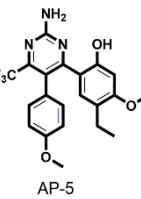
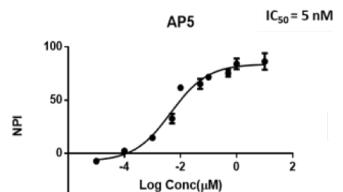
11. Peter, F. HIV nef: The mother of all evil? *Immunity* **9**, 433–437 (1998).
12. Basmaciogullari, S. & Pizzato, M. The activity of Nef on HIV-1 infectivity. *Front. Microbiol.* **5**, 1–12 (2014).
13. Rahim, M. M. A., Hanna, Z., Hu, C., Jolicoeur, P. & Chrobak, P. Adult AIDS-Like Disease in a Novel Inducible Human Immunodeficiency Virus Type 1 Nef Transgenic Mouse Model: CD4+ T-Cell Activation Is Nef Dependent and Can Occur in the Absence of Lymphopenia. *J. Virol.* **83**, 11830–11846 (2009).
14. Greenway, A. L., Mills, J., Rhodes, D., Deacon, N. J. & McPhee, D. A. Serological detection of attenuated HIV-1 variants with nef gene deletions. *Aids* **12**, 555–561 (1998).
15. Dyer, W. B. *et al.* Strong human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte activity in Sydney Blood Bank Cohort patients infected with nef-defective HIV type 1. *J Virol* **73**, 436–443 (1999).
16. Birch, M. R. *et al.* An examination of signs of disease progression in survivors of the Sydney Blood Bank Cohort (SBBC). *J. Clin. Virol.* **22**, 263–270 (2001).
17. Brambilla, A. *et al.* Defective nef alleles in a cohort of hemophiliacs with progressing and nonprogressing HIV-1 infection. *Virology* **259**, 349–368 (1999).
18. Trible, R. P. *et al.* Allosteric Loss-of-function Mutations in HIV-1 Nef from a Long-term Non-progressor. *J. Mol. Biol.* **374**, 121–129 (2007).
19. Das, S. R. & Jameel, S. Biology of the HIV Nef protein. *Indian J. Med. Res.* **121**, 315–332 (2005).
20. Swingler, S., Brichacek, B., Jacque, J. & Ulich, C. HIV-1 Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. **424**, 213–219 (2003).

21. Pereira, E. A. & daSilva, L. L. P. HIV-1 Nef: Taking Control of Protein Trafficking. *Traffic* **17**, 976–996 (2016).
22. Roeth, J. F. & Collins, K. L. Human Immunodeficiency Virus Type 1 Nef: Adapting to Intracellular Trafficking Pathways. *70*, 548–563 (2006).
23. Landi, A., Iannucci, V., Van Nuffel, A., Meuwissen, P. & Verhasselt, B. One Protein to Rule them All: Modulation of Cell Surface Receptors and Molecules by HIV Nef. *Curr. HIV Res.* **9**, 496–504 (2011).
24. Chaudhry, A. *et al.* The Nef Protein of HIV-1 Induces Loss of Cell Surface Costimulatory Molecules CD80 and CD86 in APCs. *J. Immunol.* **175**, 4566–4574 (2005).
25. Chaudhry, A. *et al.* A Two-Pronged Mechanism for HIV-1 Nef-Mediated Endocytosis of Immune Costimulatory Molecules CD80 and CD86. *Cell Host Microbe* **1**, 37–49 (2007).
26. Chaudhry, A. *et al.* HIV-1 Nef promotes endocytosis of cell surface MHC class II molecules via a constitutive pathway. *J. Immunol.* **183**, 7611–7611 (2009).
27. Seidel, S. A. I. *et al.* Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. *Methods* **59**, 301–315 (2013).
28. Venzke, S., Michel, N., Allespach, I., Fackler, O. T. & Keppler, O. T. Expression of Nef Downregulates CXCR4, the Major Coreceptor of Human Immunodeficiency Virus, from the Surfaces of Target Cells and Thereby Enhances Resistance to Superinfection. *J. Virol.* **80**, 11141–11152 (2006).
29. Snanoudj, R. *et al.* The blockade of T-cell co-stimulation as a therapeutic stratagem for immunosuppression: Focus on belatacept. *Biol. Targets Ther.* **1**, 203–213 (2007).

30. Geyer, M., Munte, C. E., Schorr, J., Kellner, R. & Kalbitzer, H. R. Structure of the Anchor-Domain of Myristoylated and Non-myristoylated HIV-1 Nef Protein. **4**, (1999).
31. Barnham, K. J., Monks, S. A., Hinds, M. G., Azad, A. A. & Norton, R. S. Solution Structure of a Polypeptide from the N Terminus of the HIV Protein Nef. **2960**, 5970–5980 (1997).
32. Horenkamp, F. A. *et al.* Conformation of the Dileucine-Based Sorting Motif in HIV-1 Nef Revealed by Intermolecular Domain Assembly. 867–877 (2011). doi:10.1111/j.1600-0854.2011.01205.x
33. Geyer, M. & Peterlin, B. M. Domain assembly, surface accessibility and sequence conservation in full length HIV-1 Nef. *FEBS Lett.* **496**, 91–95 (2001).
34. Chi-Hon, L., Saksela, K., Mirza, U. A., Chait, B. T. & Kuriyan, J. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. *Cell* **85**, 931–942 (1996).
35. Dikeakos, J. D. *et al.* An interdomain binding site on HIV-1 Nef interacts with PACS-1 and PACS-2 on endosomes to down-regulate MHC-I. (2011). doi:10.1091/mbc.E11-11-0928
36. Viruses, I., Lindwasser, O. W., Chaudhuri, R. & Bonifacino, J. S. Mechanisms of CD4 Downregulation by the Nef and Vpu Proteins of Primate Mechanisms of CD4 Downregulation by the Nef and Vpu Proteins of Primate Immunodeficiency Viruses. (2007). doi:10.2174/156652407780059177
37. Swigut, T., Shohdy, N. & Skowronski, J. Mechanism for down-regulation of CD28 by Nef. *EMBO J.* **20**, 1593–1604 (2001).
38. Pawlak, E. N. & Dikeakos, J. D. Biochimica et Biophysica Acta HIV-1 Nef: a master manipulator of the membrane trafficking machinery mediating immune

evasion MHC-I Downregulation By Nef MHC-I Secretory Pathway Transport
PACS-2 MHC-I. *BBA - Gen. Subj.* **1850**, 733–741 (2015).


39. Buffalo, C. Z., Iwamoto, Y., Hurley, J. H. & Ren, X. crossm. 1–18 (2019).
40. Khan, N., Gowthaman, U., Pahari, S. & Agrewala, J. N. Manipulation of costimulatory molecules by intracellular pathogens: Veni, Vidi, Vici!! *PLoS Pathog.* **8**, (2012).
41. Singh, R. K., Lau, D., Noviello, C. M., Ghosh, P. & Guatelli, J. C. An MHC-I cytoplasmic domain/HIV-1 nef fusion protein binds directly to the μ subunit of the AP-1 endosomal coat complex. *PLoS One* **4**, 1–7 (2009).
42. Subauste, C. S., de Waal Malefyt, R. & Fuh, F. Role of CD80 (B7.1) and CD86 (B7.2) in the immune response to an intracellular pathogen. *J. Immunol.* **160**, 1831–40 (1998).
43. Köchli, C. et al. CD80 and CD86 costimulatory molecules on circulating T cells of HIV infected individuals. *Immunol. Lett.* **65**, 197–201 (1999).
44. Ahmad, N. NIH Public Access. *Life Sci* **88**, 980–986 (2011).
45. Vanhove, B. Co-stimulatory blockade of the CD28 / CD80-86 / CTLA-4 balance in transplantation : impact on memory T cells ? **6**, 1–11 (2015).
46. Wishart, D. NMR Spectroscopy and Protein Structure Determination: Applications to Drug Discovery and Development. *Curr. Pharm. Biotechnol.* **6**, 105–120 (2005).
47. Konarev, P. V et al. PRIMUS : a Windows PC-based system for small-angle scattering data analysis PRIMUS : a Windows PC-based system for small-angle scattering data analysis. 1277–1282 (2003).
48. Franke, D. & Svergun, D. I. DAMMIF , a program for rapid ab-initio shape determination in small-angle scattering. 342–346 (2009).









doi:10.1107/S0021889809000338

49. Volkov, V. V & Svergun, D. I. small-angle scattering. 860–864 (2003).
50. Kozin, M. B. & Svergun, D. I. Automated matching of high- and low-resolution structural models research papers Automated matching of high- and low-resolution structural models. 33–41 (2001).

Main Figures

Graphical Abstract

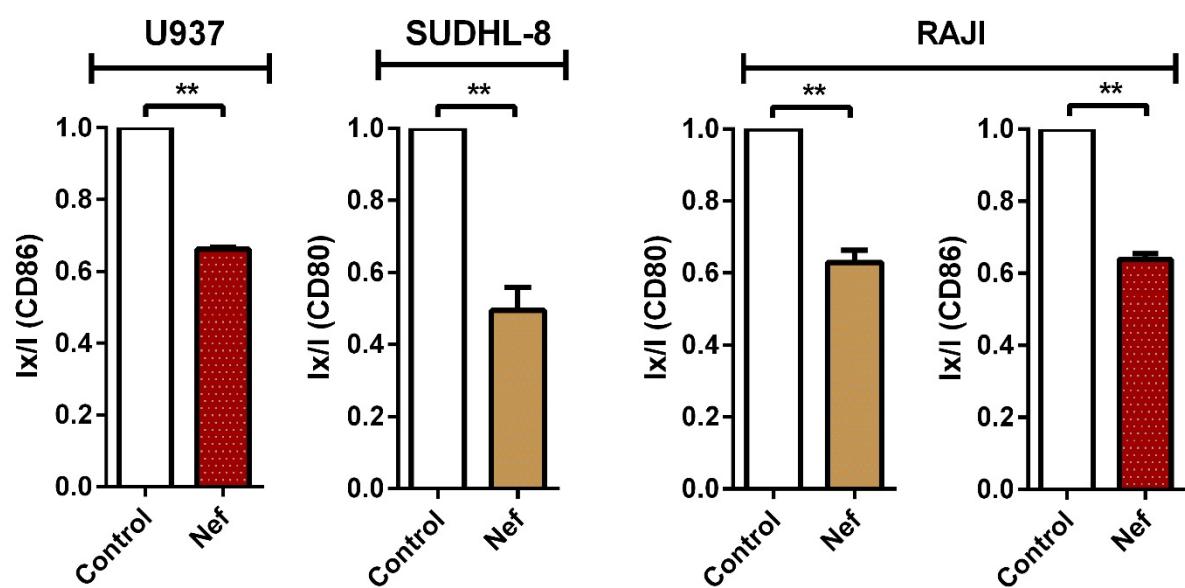
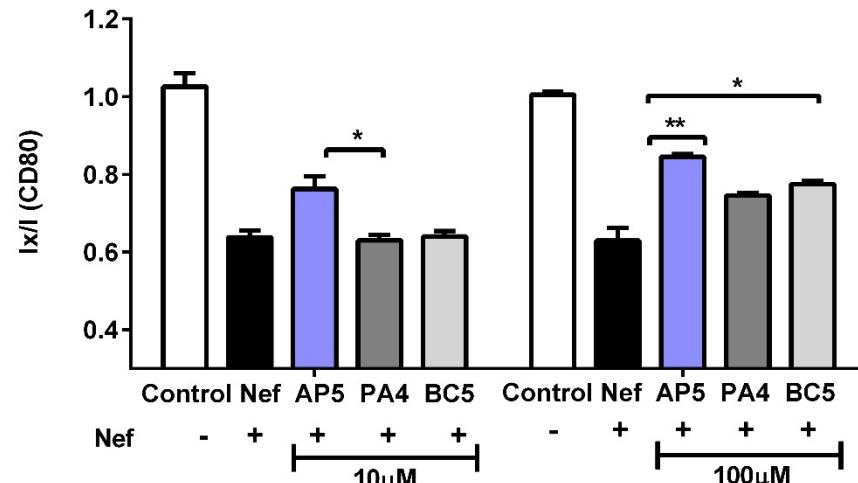
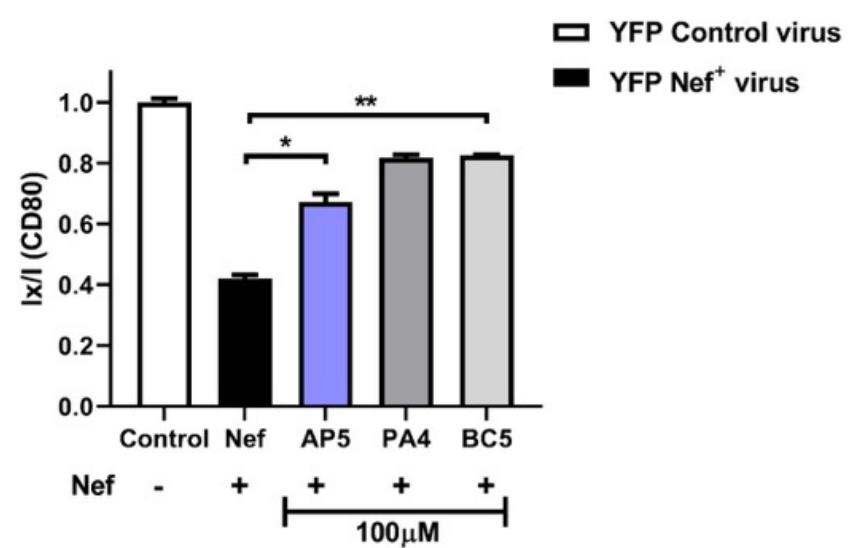
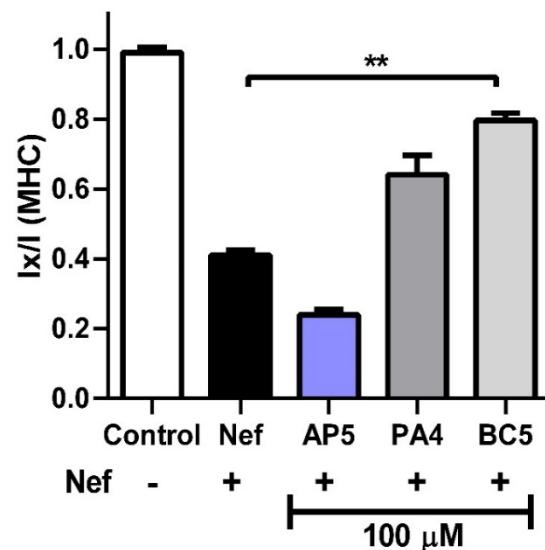





Fig. 1**a****b****c****d****e****g****h**

Amino Pyrimidine-5 (AP-5)
MW: 419
CLogP: 4.3
TPSA: 90.4
NRB: 6
IC50= 5nM

Fig. 1 Nef directly interacts with the cytoplasmic tail peptides of CD80/86.

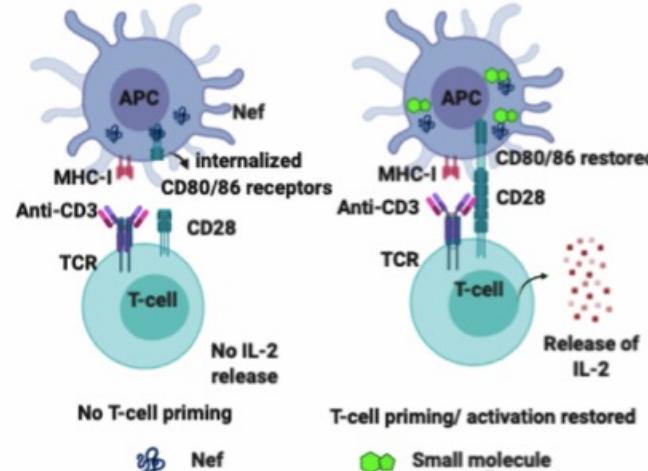

a) Illustration shows the CD80 and CD86 receptors with their extracellular, transmembrane and cytosolic tail region marked. The 20-mer peptide region of CD80 (PRCRERRRNERLRLRESVRPV, 269 to 288 a.a) and CD86 (LWKWKKKKRPRNSYKCGTNT, 267-286 a.a) is highlighted within the cytoplasmic tail domain (b) Graph shows direct binding of Nef to CD80 as measured by Microscale scale thermophoresis (MST). CD80 peptide was titrated from 950 μ M in 2-fold dilutions upto 16 points against a fixed Nef concentration (35 nM) in the final reaction volume. A curve with upper saturation with $kD=27 \mu$ M was obtained; x axis= peptide concentration (nM) and y axis= percentage normalized fluorescence (ΔF_{norm}); Plots represent the mean \pm SD (error bars) from three independent experiments.(c) Similarly, CD86 peptide was titrated from 10 μ M with a 2-fold serial dilution upto 16 points against a fixed Nef concentration (35 nM). A sigmoidal curve with $kD=112$ nM, showing higher affinity as compared to CD80. (d) Graph shows ELISA assay where change in OD is observed when the immobilized CD80 and CD86 cytosolic peptides binds to Nef. The OD measurement was done at 450nm. CD74, a negative peptide control shows minimal OD value (e) Graph shows Normalized Percentage Index (NPI) on a normal distribution curve for statistical significance of active compounds across qualified plates showing CD80 actives. X axis= the number of compounds screened in ELISA assay; y axis= normalized percentage Inhibition of compounds; of Z-factor>0.5 analysis was used to qualify the plates. Compounds with NPI>30% for CD80 was considered as hits (f) Similarly, NPI normal distribution curve for CD86 with Cutoff percentage for CD86 NPI>20% was considered as hits (g) Scheme shows the hits belonging to 9 scaffolds that were identified in the primary screen (h) Dose response curve of a hit compound from "AP" scaffold; x axis= log concentration of compounds; y axis= Normalized percentage Inhibition, (inset) Structure of AP5 compound and its molecular properties

Fig. 2 a**b****c****d**

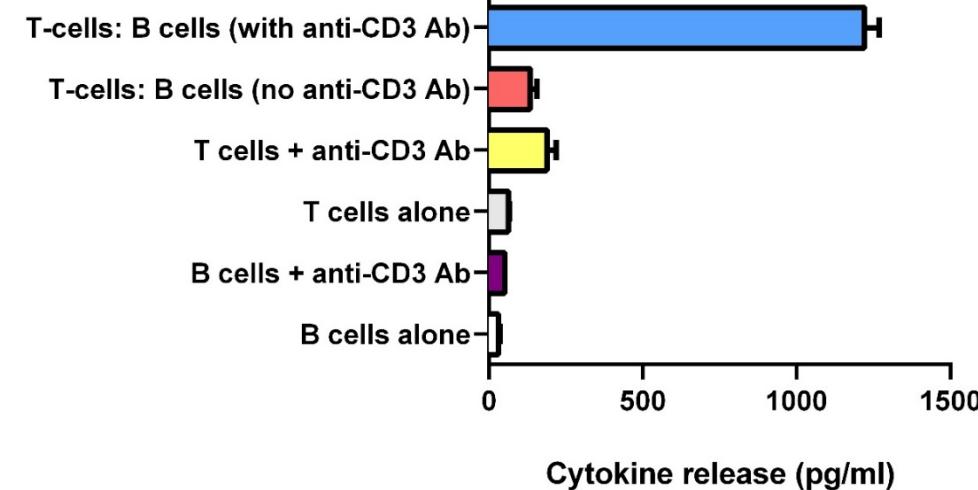
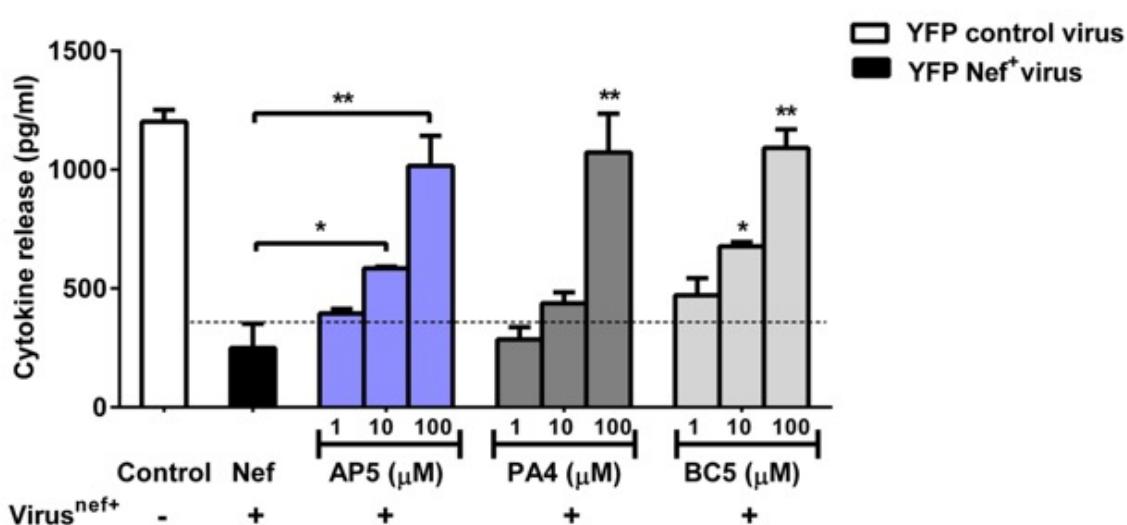
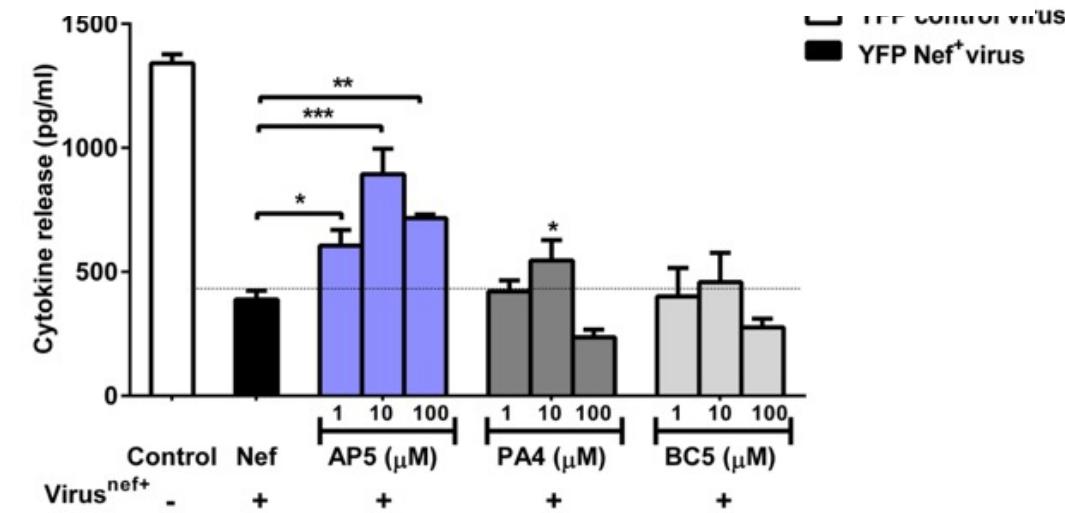
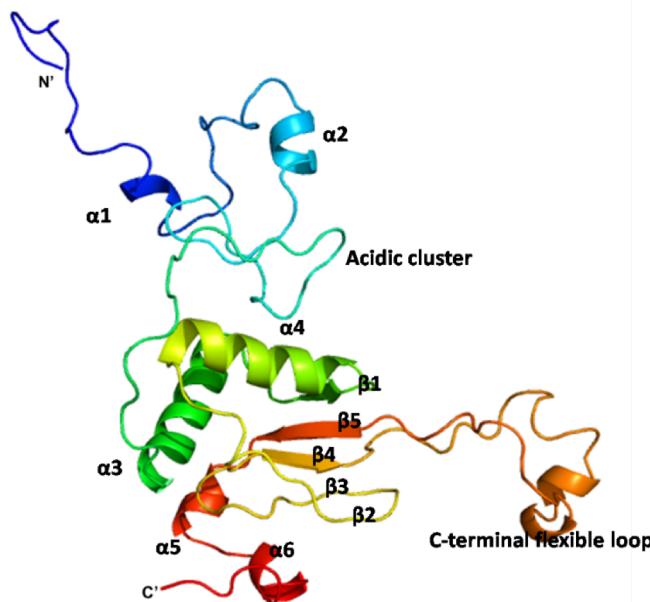
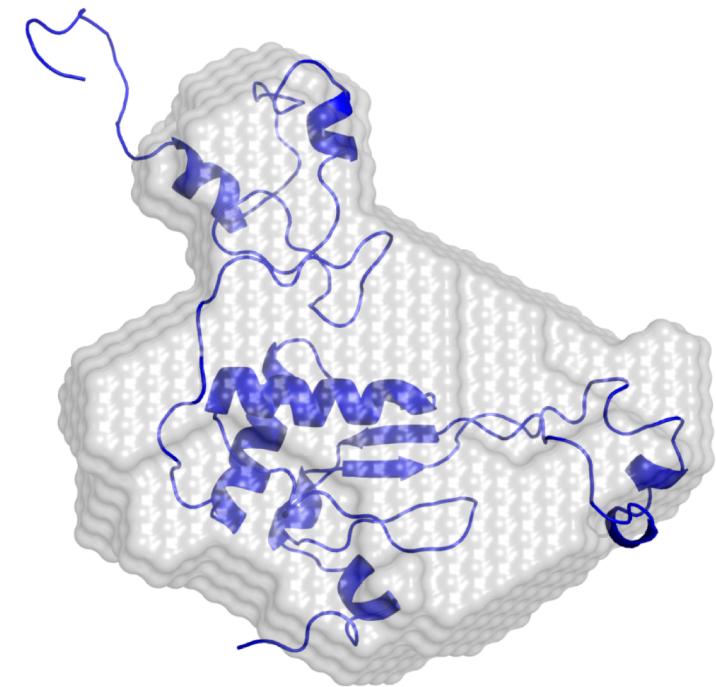
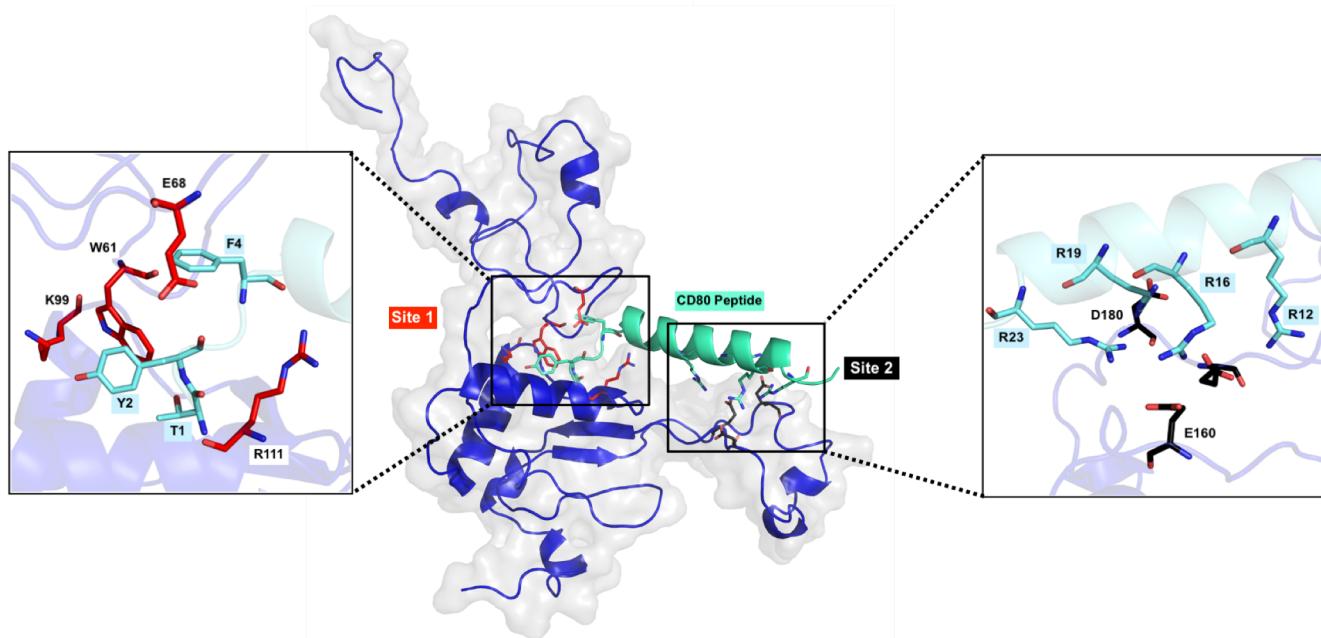

Fig. 2: Cell based assay screening of active compounds from ELISA. (a) Nef mediated down-regulation of surface CD80 or CD86 in 3 different cell lines as indicated. FACS data showing the normalized surface levels of CD80; I_x/I (y axis) where I_x is the average fluorescence intensity in the indicated condition (from a triplicate) and I is the Median of normalized negative control (No Nef control) (b) FACS data shows restoration of CD80 receptors in RAJI cell line after pre-treatment with 3 representative compounds **AP5**, **PA4** and **BC5** at 10 and 100 μ M for 24 h and analysis after 2 h post Nef protein delivery (c) RAJI cell line was infected with viral particles (Nef-YFP and YFP alone control cells) in viral infection assay and surface CD80 receptors with compounds were measured by flow cytometry (d) Effects of inhibitors on Nef-MHC-I interactions. RAJI cells were treated with compounds at 100 μ M and then stained with anti-MHC-I antibody. MHC-I was detected by flow cytometry and shown as I_x/I plots. Compound **AP5** shows no restoration of MHC-I indicating its specificity for the Nef-CD80 interface.

Fig. 3


a


b




c

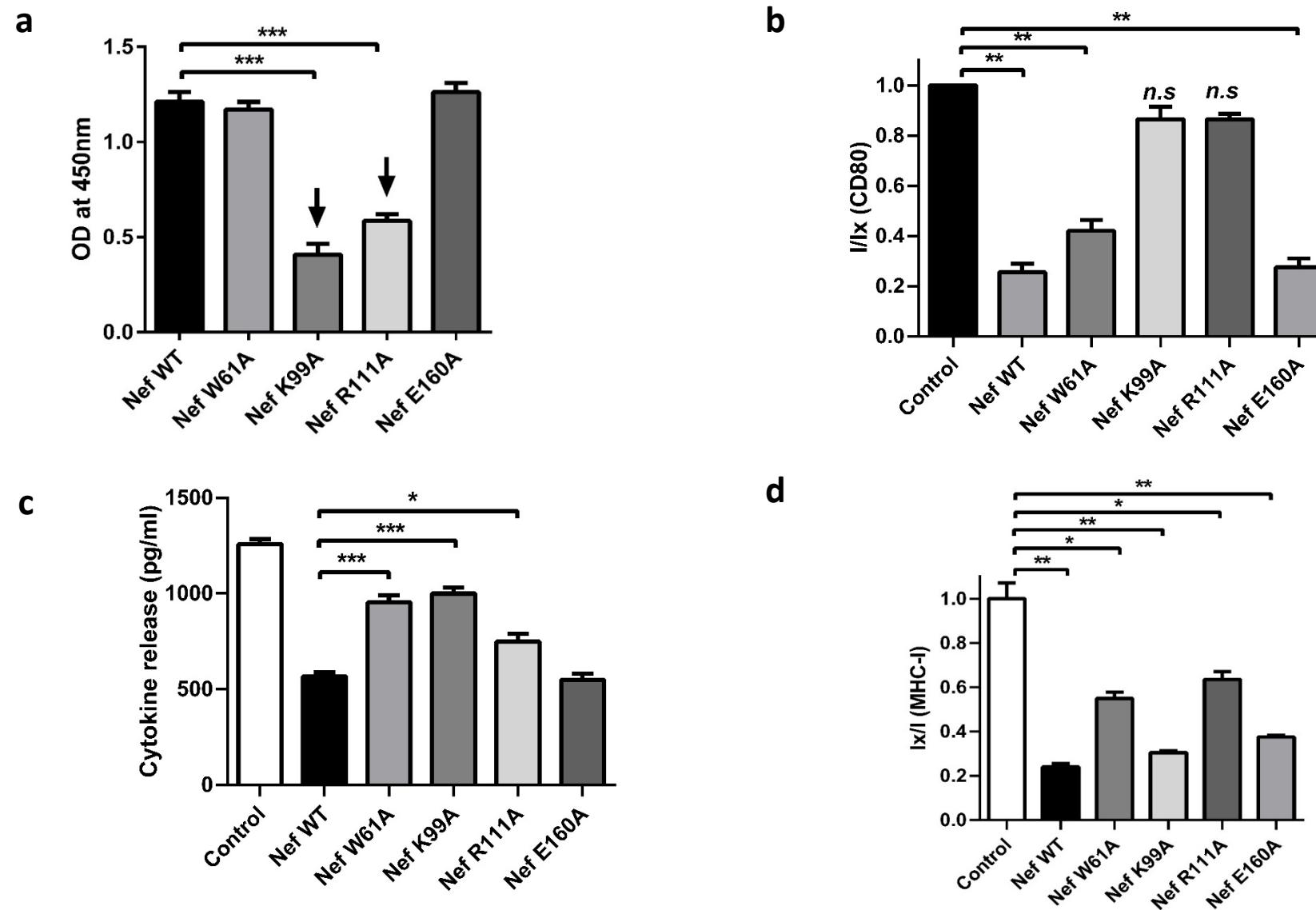

d

Fig. 3: Restoration of functional T-cell activation in a viral infection assay (a) Schematic of a functional assay for screening of compounds that disrupt Nef-CD80/86 interactions in a virally-infected cell. Functional T-Cell activation is based on APC-T cell co-cultures. The APC has CD80/86 and concurrent presence of anti-CD3 antibody promotes T-cell activation (as measured via IL-2) in co-cultured T-cells (b) Graph shows cytokine release in functional T-cell activation assay where antigen presenting cell RAJI (B-cells) and Jurkat-cells (T cells) were co-cultured as indicated (with/without anti-CD3 antibody); T-cells alone, B-cells alone controls do not show measurable IL-2 release. (c) Graph shows quantification of cytokine (IL-2) released after T-cells and B-cells co-culture for 3 h; here B-cells were pretreated with the indicated concentrations (1, 10, 100 μM) of compounds for 24 h followed by viral infection for 96 h (d) Graph shows quantification of cytokine (IL-2) released after T-cells and B-cells co-culture for 3 h; here B-cells were first infected with virus for 96h and then treated with compounds at 1, 10, 100 μM for 24 h. IL-2 release (pg/ml) was determined by ELISA by plotting against an IL-2 standard curve. Note: viral infection reduces IL-2 release, and all 3 compounds showed a dose dependent restoration of IL-2 release. AP5 showed IL-2 release at 1 μM.

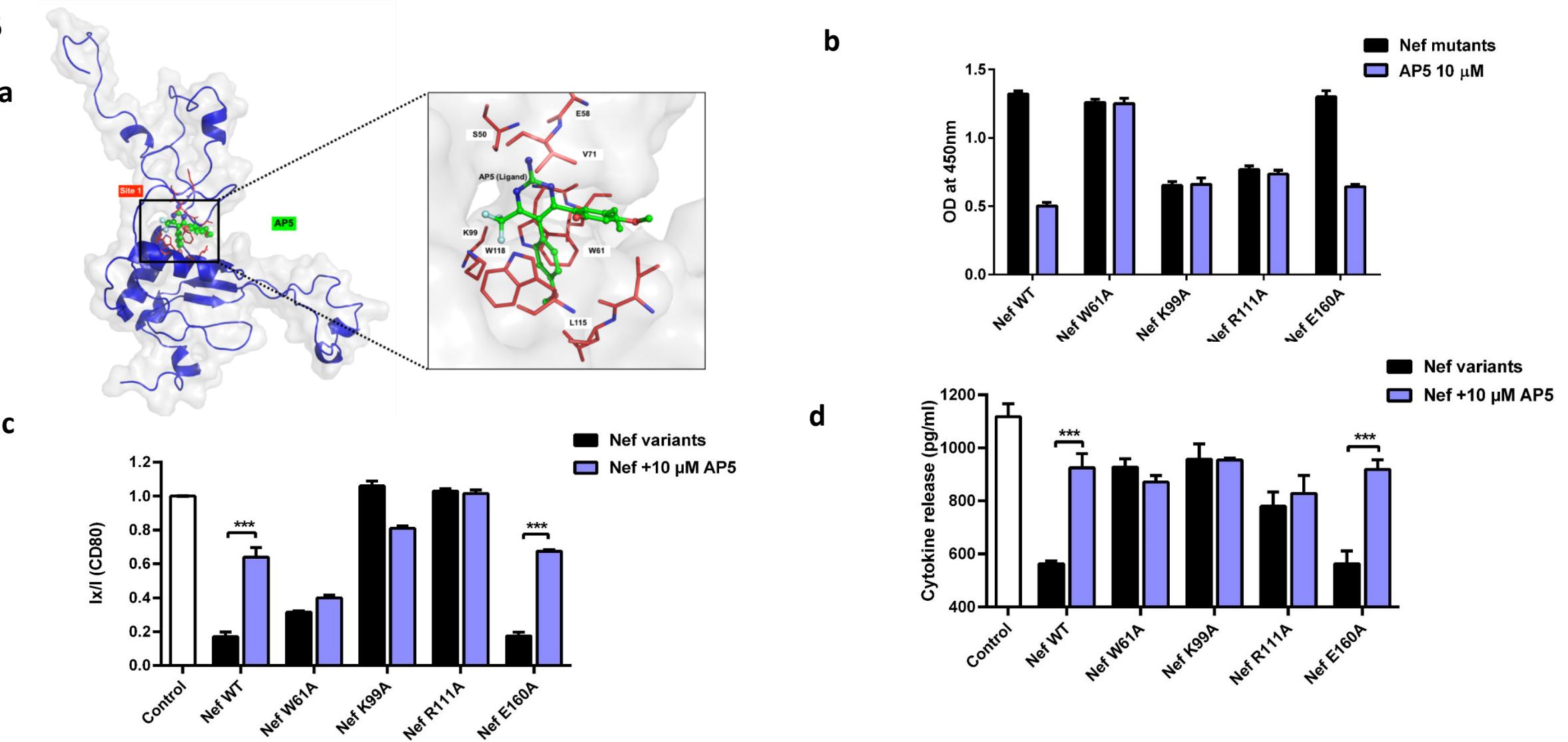
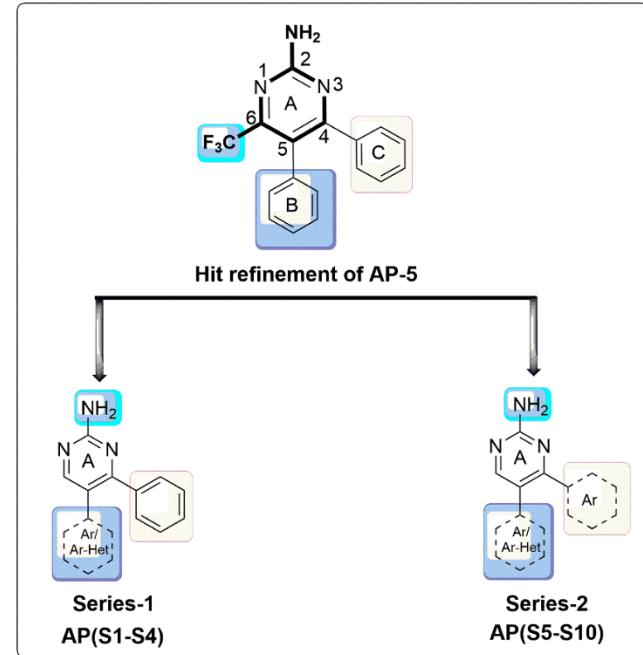

Fig. 4 a**b****c**

Fig. 4: Modelling of Nef with multi-template computational approach (a) Cartoon representation of the predicted structure of Nef shows flexible N-terminal region and well-conserved core domain, colored in accordance with their position (N-terminal in blue to C-terminal in red) with respective α -helices and β -sheets as indicated. (b) The *ab initio* shape of the solution structure of the Nef (blue color) from the SAXS data (grey surface) fits well with the computational model (cartoon representation) (c) Surface representation of HIV-1 Nef is depicted with the best CD80 binding pose. CD80 peptide in a docked pose (cyan color) in Nef obtained using SiteMap program. The inset shows the important residues of Nef involved in interaction with CD80 at Sites 1 and 2.

Fig. 5

Fig. 5: Evaluation of interaction between CD80 and Nef mutants in biochemical and cell-based assays (a) Graph shows colorimetric signal of immobilized CD80 cytosolic peptide upon binding to Nef^{WT} or Nef mutants as measured by ELISA at OD450nm. Two mutants Nef^{K99A} and Nef^{R111A} showed reduced affinity to CD80 peptide (b) Graph shows FACS data of surface levels of CD80 receptors in RAJI cell line after delivery of Nef^{WT} or Nef mutant protein delivery . No significant down regulation seen with mutants Nef^{K99A} and Nef^{R111A} (c) Graph shows the levels cytokine (IL-2) released in supernatants of cells in the co-culture functional T-cell activation assay after delivery of the Nef mutants as compared to the wild type Nef protein. (d) Graph shows FACS data of MHC-1 levels after delivery with Nef^{WT} and mutants. Nef^{WT} or mutants were delivered into RAJI cells using Chariot™ delivery reagent. MHC-I was detected by flow cytometry and shown as I_x/I plots.


Fig. 6

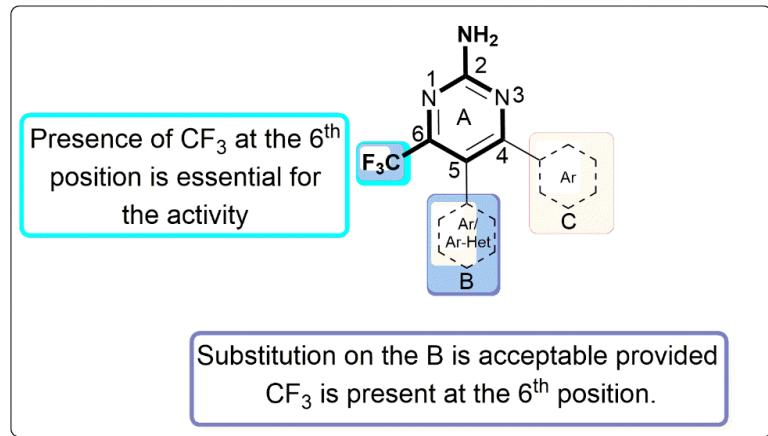

Fig. 6: Structural and functional evaluation of the interaction between Nef and AP5 (a) Surface representation of HIV-1 Nef depicting AP5 ligand (green color) binding. The binding site of AP5 molecule overlaps with the CD80 binding site (Site-1). The inset shows the important residues for the interaction between AP5 and Nef. The non-polar residues such as W₆₁, L₉₁, I₁₀₉ and L₁₁₅ contribute to hydrophobic interactions with CF₃. AP5 ligand docking studies shows that the binding interactions occurs between the α 4 and α 5 helices along with few residues such as W₆₁, E₆₅ and R₁₁₁ which are crucial for AP5-Nef interaction (b) Graph shows colorimetric signal of immobilized CD80 cytosolic peptide upon binding to Nef^{WT} or Nef mutants in the presence/absence of 10 μ M AP5 as measured by ELISA at OD450 nm. (c) Graph shows surface levels of CD80 receptors in RAJI cell line after the delivery of Nef^{WT} or Nef mutant protein delivery as measured by FACS in the presence/absence of 10 μ M AP5. Nef^{W61A}, Nef^{K99A} and Nef^{R111} did not show any further change in CD80 levels with AP5 addition. (d) Graph shows cytokine (IL-2) release in supernatants after the co-culture T-cell activation assay. RAJI cells were pre-treated with 10 μ M AP5 for 1 h and then the cells were delivered with Nef mutants or wild type Nef protein for 2 h before co-culture with Jurkat T-cells for 3 h. The IL-2 levels remain unchanged with and without addition of AP5 compound in all three mutants Nef^{W61A}, Nef^{K99A} and Nef^{R111}. Reduction in IL-2 seen with mutant Nef^{E160A} comparable to Nef^{WT}.

Fig. 7

a

c

b

Sample Codes	F_3C	B	C	CD80 NPI	CD86 NPI	Cell based assay
AP-S1	-	B	C			
AP-S2	-	B	C			
AP-S3	-	B	C			
AP-S4	-	B	C			
AP-S5	-	B	C			
AP-S6	-	B	C			
AP-S7	-	B	C			
AP-S8	-	B	C			
AP-S9	-	B	C			
AP-S10	-	B	C			
AP-S11	F_3C	B	C			

Fig. 7: SAR and Hit refinement with AP5 as a template (a) Scheme shows Medicinal chemistry approach for hit refinement of **AP5** showing two series of compounds (b) Summary of SAR strategy to design compounds similar to **AP5 structure** with modifications made on rings A, B and C as indicated. The synthesized molecules were evaluated for their effect on Nef-CD80/CD86 inhibition (c) Heat map table showing SAR with synthesized compounds. The various substitutions in rings A, B and C are indicated as well as their activity in the ELISA and cell-based assays