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Summary

Genome-wide association studies (GWAS) have identified >200 loci associated with
breast cancer (BC) risk. The majority of candidate causal variants (CCVs) are in non-
coding regions and are likely to modulate cancer risk by regulating gene expression.
We recently developed a scoring system, INQUISIT, to predict candidate risk genes
at BC-risk loci. Here, we used pooled CRISPR activation and suppression screens to
validate INQUISIT predictions, and to define the cancer phenotypes they mediate. We
measured proliferation in 2D, 3D, and in immune-deficient mice, as well as the effect
on the DNA damage response. We performed 60 CRISPR screens and identified 21
high-confidence INQUISIT predictions that mediate a cancer phenotype. We validated
the direct regulation of a subset of genes by BC-risk variants using HiCHIP and
CRISPRqtl. Furthermore, we show the utility of expression profiling for drug
repurposing against these targets. We provide a platform for identifying gene targets
of risk variants, and lay a blueprint of interventions for BC risk reduction and treatment.
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Introduction

Genetic evidence that implicates a gene in disease etiology is a strong indicator that
drugs targeting the encoded protein will be effective therapies (King et al., 2019;
Nelson et al., 2015). In fact, the majority of approved cancer targeted drugs inhibit a
protein with strong genetic evidence connecting it to the disease (Hahn et al., 2021).
This genetic evidence includes germline variants and somatic mutations, copy number
alterations and gene fusions. GWAS have identified >200 signals associated with BC
risk and represent a valuable source for identifying drug targets (Fachal et al., 2020;
Michailidou et al., 2017; Zhang et al., 2020). Translation of these findings to actionable
mechanisms requires first identifying the gene target of the association. However,
several challenges hinder the interpretation underlying most associations: 1) GWAS
signals, which are genetically independent but may physically overlap, usually
comprise numerous correlated CCVs (over 2,000 CCVs at one signal in our GWAS
(Fachal et al., 2020)) which can be spread across broad genomic windows; 2) few
CCVs clearly implicate a causal gene (e.g. being a protein-coding variant); 3) most
CCVs are non-coding and are presumed to act through incompletely understood cell
type-specific regulatory mechanisms; and 4) multiple potential targets may represent
biologically plausible causal genes (Fig. 1A).

We recently developed a heuristic scoring system called INQUISIT (Integrated
expression quantitative trait and in_silico prediction of GWAS targets) to rank the
predicted target genes at BC risk loci (Fachal et al., 2020; Michailidou et al., 2017).
We used in silico data from breast tissue and cell lines to determine whether CCVs
are likely to act via distal gene regulation, proximal gene regulation, or by impacting
the gene’s protein product. INQUISIT treats any CCV as potentially able to regulate
distal genes and awards points to each gene based on: 1) chromatin interaction data
from Capture-HiC and ChIA-PET experiments; 2) enhancer annotations based on
computational methods designed to infer target genes from genomic data; 3)
expression quantitative trait loci (eQTL) analysis of genes within 2 Mb of either side of
each CCV when the risk and eQTL signals co-localize; 4) integration of transcription
factor ChlP-seq data for specific proteins in breast cells shown to be positive predictors
of BC CCVs. The intersection of CCVs, enhancers and these transcription factor
binding sites resulted in up-weighting of the associated gene (see example of target
gene rankings by INQUISIT at a BC risk locus in Supplementary Fig. 1). Promoter
variants were assessed for overlap with chromatin signatures characteristic of
transcription start sites (TSS) in breast cell lines and primary tissue, as well as putative
functional transcription factor binding sites, gene expression data and eQTLs.
Intragenic variants were evaluated for consequences of coding and splicing changes.
We designated INQUISIT predictions with the strongest supporting evidence as Level
1, and Level 3 the lowest. At 205 fine-mapped risk signals (having omitted one locus
with >2,000 CCVs), INQUISIT identifies 1-10 Level 1 targets per signal at 114 signals
(184 unique genes). For 76 of the 205 signals, INQUISIT predicted 678 Level 2
(moderate confidence) unique targets and for 15 signals INQUISIT did not predict any
target gene (Supplementary Table 1).
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Computational predictions require experimental validation, which is a daunting task for
so many BC risk loci. High-throughput chromatin interaction capture methods such as
HiChIP have been instrumental in identifying genes that are potentially regulated by
distal elements (Javierre et al., 2016; Mumbach et al.,, 2017). However, these
experiments can be difficult to interpret due to complex 3D organization at gene-dense
regions, and because at many loci there are a large number of CCVs over a large
genomic interval. Furthermore, 3D chromatin structure may not be consistent between
the relevant primary tissues and cell lines which are typically used in these
experiments (Kribelbauer et al., 2020; Schmitt et al., 2016; Zhou et al., 2019). A
complementary approach is to use a phenotypic readout to identify putative GWAS
target genes which mediate a cancer phenotype. We hypothesize that genes
implicated by GWAS, with strong in silico supporting evidence, will influence a
quantifiable cancer phenotype which will enable us to nominate the most likely BC risk
target genes. Pooled CRISPR screens are extensively used to identify genes related
to a particular phenotype (Howard et al., 2016; Sanson et al., 2018) but have not been
used to characterize GWAS target genes. Here, we used large-scale pooled CRISPR
activation and suppression screens to identify genes which mediate proliferation in
vitro, tumor formation in vivo and DNA damage response, in order to define gene
targets at BC risk loci (Fig. 1C).

Results

Selection of candidate genes for functional CRISPR screens. \We selected genes
using the following approaches: 1) 184 high-confidence INQUISIT Level 1 (INQ_1)
target genes (Fachal et al., 2020), 2) 678 INQUISIT Level 2 (INQ_2) target genes,
predicted with less confidence, 3) 371 genes identified by Transcriptome Wide
Association Studies (TWAS) and expression quantitative trait loci (eQTL) studies of
BC risk (referred to as TWAS genes)(Barfield et al., 2018; Ferreira et al., 2019; Guo
et al.,, 2018; Wu et al.,, 2018), 4) 605 ‘background’ genes - including 259, low
confidence INQUISIT Level 3 targets, 105 genes within 2Mb of the 15 risk signals at
which INQUISIT did not predict any targets, at any level, and 247 genes predicted only
by an early, unpublished version of INQUISIT. Genes predicted by both INQUISIT and
TWAS/eQTL were categorized as INQ_1 for Level 1 predictions, and, as TWAS
predictions for Level 2 predictions (Fig. 1B and Supplementary Table 1).

For each of these genes we designed five single guide (sg)RNAs. In addition, we
included 1,000 negative control sgRNAs (targeting non-human genes or the AAVS1
locus) and 960 sgRNAs targeting 193 core essential genes, as well as 16 known
tumor-suppressor genes and oncogenes and (Supplementary Table 2).

BC associated risk genes that upon suppression or overexpression induce cell
proliferation phenotype in 2D and 3D cultures. Impaired proliferation is a hallmark
of cancer (Hanahan and Weinberg, 2011). We used systematic CRISPR screens to
suppress (CRISPRko or CRISPRI) or overexpress (CRISPRa) candidate BC risk
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genes and identify putative tumor suppressors and oncogenes (Fig. 1C). We included
both CRISPRko and CRISPRI approaches, to avoid biases that we and others have
identified with each of these approaches including, off-target effects of CRISPRko due
to induction of the DNA damage response (Aguirre et al., 2016; Munoz et al., 2016),
and of CRISPRIi due to bidirectional promoters (Rosenbluh et al., 2017). Since some
cancer-associated features are not recapitulated in 2D cultures (Han et al., 2020), we
also measured the effect of suppressing or overexpressing these genes in 3D cultures.
For these screens we used six immortalized mammary epithelial cell lines: HMLE
(Elenbaas et al., 2001), mesHMLE (Mani et al., 2008), B80-T5 and B80-T17 (Toouli et
al., 2002), K5+/K19+ and K5+/K19- (Zhao et al., 2010). Expression and ATAC-Seq
profiling indicated that these six cell lines represent breast cells with either a luminal
progenitor signature (K5+/K19+, K5+/K19-), a mesenchymal signature (B80-T17,
mesHMLE) or a more epithelial like signature (B80-T5, HMLE, B80-T17)
(Supplementary Fig. 2B).

Following sgRNA library infection and selection, cells were propagated for seven days
and then plated in 2D or 3D conditions (Fig. 1C). Cells were collected after 21 days in
culture and used for DNA extraction and quantification of sgRNA abundance
(Supplementary Table 3). Negative controls had no effect on proliferation but, as
expected, suppression of core essential genes had a negative impact in CRISPRko
and CRISPRI screens but no effect in CRISPRa screens (Supplementary Fig. 2C).
Known tumor-suppressor genes had a positive proliferation impact in CRISPRko and
CRISPRIi screens and known oncogenes increased proliferation in CRISPRa screens,
demonstrating the reliability of the screens (Supplementary Fig. 2C). We calculated
the magnitude of effect (Log2[Fold Change]) and the statistical significance for each
gene, using the MAGeCK algorithm (Li et al., 2014). Fig. 2A shows an example of
results from these screens in K5'/K19" cells (all other cell lines shown in
Supplementary Fig. 2D-H).

Our results demonstrate the utility of using multiple assays, cell lines and perturbation
methods. We found high consistency in proliferation changes induced by CRISPRi or
CRISPRko (Fig. 2B and Supplementary Fig. 21). We have previously reported that
bidirectional promoters can result in off-target effects in CRISPRi screens (Davies et
al., 2021; Rosenbluh et al., 2017), and in some cases we found inconsistencies that
are likely due to off-target effects. For example, ATXN7 scored as a strong tumor-
suppressor gene using CRISPRko in both 2D and 3D assays but did not score with
CRISPRI (Supplementary Fig. 2J). This is probably because ATXN7 and THOC7
share a bidirectional promoter (Supplementary Fig. 2K, L) and THOC7 scores in large-
scale CRISPR screens (Hahn et al.,, 2021) as a common cell essential gene
(Supplementary Fig. 2M). Thus, CRISPRi sgRNAs targeting the ATXN7 promoter
inhibit expression of both ATXN7 and THOCY7, resulting in cell death.

We found high correlation between 2D and 3D proliferation changes in CRISPRko,
CRISPRi and CRISPRa experiments (Fig. 2C-E and Supplementary Fig. 2N-P). In
agreement with previous results (Han et al., 2020), 3D cultures had a higher
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magnitude of effect. Interestingly, some genes showed the opposite effect in 2D and
3D cultures suggesting a function in mediating cell motility. For example, CFL1 scored
as a potent tumor-suppressor gene in 3D cultures but had no effect on proliferation in
2D cultures (Fig. 2F). This is consistent with the known function of CFL1 as a regulator
of actin filament polymerization and cell motility (Chen et al., 2020; Li et al., 2021).

We set the threshold for functional genes with both a magnitude of effect Log2[Fold
Change] > 1 and a significance Log10[FDR] > 1 in at least one cell line. Among the
functional genes, oncogenes were defined as genes that upon overexpression
increased proliferation in 2D or 3D cultures. Tumor-suppressor genes were defined by
following criteria a) genes increased proliferation upon suppression in 2D or 3D
cultures; b) genes inhibited proliferation in 2D cultures (Log2[Fold Change] < -1) upon
overexpression. Importantly, we only used overexpression data to further support a
gene as a tumor-suppressor gene and not as a stand-alone criterion (Fig. 2G). In total,
we identified 41 candidate BC risk genes, predicted by INQUISIT or TWAS, that
mediate a proliferation phenotype.

Validation of 2D and 3D proliferation hits. To validate these observations in a
singleton experiment, we infected all six cell lines with individual sgRNAs targeting
INQUISIT Level 1 hits that scored in the above screens (Fig. 2G). Using western blot
analysis, we confirmed that these sgRNAs reduced (for tumor-suppressor genes) or
increased (for oncogenes) expression of the target protein (Supplementary Fig. 3A,
B). Following infection, cells were plated on 2D (Fig. 3A, B) or 3D (Fig. 3C, D) plates
and proliferation was measured using a crystal violet staining assay. Consistent with
our screening results we were able to validate the 2D and 3D proliferation effects in at
least one cell line. For CREBBP and CFL 1 we found a cell line specific effect (Fig. 3A).
This is consistent with reports showing that CREBBP could act as a tumor-suppressor
or an oncogene in a cell type specific manner (Hogg et al., 2021; Jia et al., 2018)

In summary, our approach identified 41 candidate BC risk genes that mediate a
proliferation phenotype in 2D or 3D cultures. These include well annotated tumor-
suppressor genes and oncogenes (e.g. MYC and TGFBR2) as well as genes that have
never been previously linked to cancer in general, or to increased BC risk (e.g. ATXN7
and LPAR?Z2). Together, these results demonstrate the ability of systematic CRISPR
screens to define genes associated with BC risk that drive a proliferation phenotype.

Identification of genes that upon suppression or overexpression promote tumor
formation in immune deficient mice. Studies in 2D or 3D in vitro systems do not
recapitulate all tumor properties and may miss important in vivo tumor phenotypes. To
identify candidate BC risk genes that play a role in tumor formation in vivo, we used a
mouse xenograft model. We found that the immortalized mammary cell lines we used
required a constitutively active form of MEK1 (MEKDD) and an additional oncogenic
insult in order to support tumor formation in mice (Supplementary Fig. 4A). Following
transduction of B80-T5-MEKDD, HMLE-MEKDD or K5+/K19+-MEKDD with the above
described CRISPRko and CRISPRa sgRNA libraries, cells were injected to the flanks
of immune deficient mice (2e6 cells/site, 12 sites/replicate). Tumors were harvested
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6-8 weeks post injection, and genomic DNA extracted from these tumors was used for
quantification of sgRNA abundance (Fig. 4A-C and Supplementary Tables 3 and 4).
Five positive controls showed dramatically increased sgRNA abundance,
demonstrating the reliability of this approach (Fig. 4D). Five INQUISIT Level 1
predicted genes (3%) scored in this assay, suggesting these are potent drivers of BC
risk (Fig. 4D). We validated INQUISIT Level 1 CRISPRko in vivo hits in a singleton
experiment using individually cloned sgRNAs in B80-T5-MEKDD cells (Fig. 4E and
Supplementary Fig. 4B). These results demonstrate TGFBR2, ATF7IP, DUSP4 and
CREBBP, as tumor-suppressor genes, and MYC as an oncogene, are all BC risk
genes that can suppress or drive in vivo tumor formation.

Interestingly, DUSP4, which we have previously shown by chromatin conformation
capture and luciferase assays to be down-regulated by CCVs at 8p12 (Glubb et al.,
2020), scored only in vivo but not in in vitro assays. INQUISIT Level 2 predictions,
CTD-2278110.4 and VPS45, also scored in the in vivo screen, but not in vitro. We
further explored whether DUSP4 may be a context-dependent tumor-suppressor
gene. Following transduction of B80-T5 or B80-T5-MEKDD with CRISPRko DUSP4-
targeting sgRNAs we measured cell proliferation in 3D cultures. Consistent with the in
vivo screen, DUSP4 only showed increased proliferation in the presence of MEKDD
(Fig. 4F). Using Western blot analysis, we found that MEKDD expression resulted in
induction of DUSP4 suggesting that DUSP4 works in a negative feedback loop with
MEK?1 (Fig. 4G). However, consistent with previous results (Gupta et al., 2020), we
did not observe any change in the levels of pERK following suppression of DUSP4
(Supplementary Fig. 4C). We did observe a decrease in pJNK and pp38 following
suppression of DUSP4 in 2D cultures or mouse xenografts (Supplementary Fig.
4C,D), confirming previous observations (He et al., 2021; Hijiya et al., 2016) and
suggesting that downregulation of pJNK via DUSP4 mediates its tumor suppressive
activities. This is consistent with reports showing the dual role of JNK as a context
specific tumor-suppressor or oncogene (Tournier, 2013). To further validate these
observations, we used selumetinib and trametinib, two potent MEK inhibitors.
Consistent with our previous observations we found that MEK inhibitors reversed the
increased DUSP4 protein levels (Fig. 4H and Supplementary Fig. 4E) as well as
DUSP4 induced proliferation (Fig. 4l) suggesting MEK inhibitors as a potential
therapeutic strategy in BC with deregulated DUSP4 expression.

Together, our in vivo and in vitro proliferation screens identify 44 predicted BC risk
genes (INQUISIT Level 1, INQUISIT Level 2 or TWAS genes) that can drive a
proliferation phenotype in 2D, 3D cultures or in vivo (Fig. 2G and Fig. 4D). We found
a strong correlation in phenotypes between the different cell lines (Supplementary Fig.
4F), indicating that even if a particular gene did not pass our threshold it is likely to be
a near hit in other cell lines. We tested the enrichment of hits amongst all genes
predicted by various computational and statistical methods. We found that INQUISIT
Level 1 genes were significantly over-represented across most screen modalities,
(Fig. 4J), suggesting that high-confidence INQUISIT predictions represent probable
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candidate genes at disease-associated loci. Taken together, these experiments define
a set of 44 likely BC risk/causal genes that drive a proliferation phenotype.

Identification of BC risk-associated genes that regulate the DNA damage
response. DNA damage is a hallmark of cancer in general, and in particular is
deregulated in BC (Pilie et al., 2019). Furthermore, the success of PARP inhibitors for
cancer treatment in BRCA 1/2 mutation carriers underpins the utility in identifying other
targets within the DNA damage pathway. To identify which BC risk-associated genes
regulate the DNA damage response we used a PARP inhibitor synthetic lethality
screen (Olivieri et al., 2020). Specifically, following sgRNA infection, cells, are treated
with olaparib, a potent PARP1 inhibitor, and only cells harboring a sgRNA that
deregulates the homologous recombination DNA damage repair pathway are sensitive
to olaparib treatment (Fig. 5A). Using this approach, we screened for genes that upon
suppression (CRISPRko or CRISPRI) or overexpression (CRISPRa) resulted in cell
death (Fig. 5B and Supplementary Fig. 5A). Of the 40 hits identified in this screen, 23
are known DNA damage related genes, demonstrating the reliability of this approach
(Fig 5C). As expected, Gene Set Enrichment Analysis (GSEA) of hits (not including
positive controls and background genes) showed enrichment for genes involved in the
DNA repair pathway and cell cycle (Fig. 5D). This is consistent with the two types of
cellular stresses known to be synthetic lethal with mutations in the DNA repair pathway
(Olivieri et al., 2020). Indeed, three of the INQUISIT Level 1 scoring genes (MYC, NF1
and CREBBP) also scored in the above described proliferation screens (Fig. 2G).

To validate these results in a singleton experiment we used B80-T5 cells and showed
that CRISPR mediated suppression of known DNA damage related genes (ATM), as
well as newly identified synthetic lethal genes (SIVA1 and CMTRZ2), had a dramatic
effect on PARP inhibitor sensitivity (Fig. SE,F). Interestingly, our proliferation screen
found that suppression of NRIP1 results in increased proliferation (Fig. 2G and Fig.
3A,C) whereas, overexpression of NRIP1 had a dramatic synthetic lethal effect (Fig.
5C and E). NRIP1 interacts and modulates hormone receptors transcriptional activity
and, although all the cell lines we used are estrogen receptor (ER) negative, it is
possible that NRIP1 deletion activates a hormone response leading to increased
proliferation and that overexpression of NRIP1 inhibits hormone transcriptional activity
leading to increased sensitivity to DNA damage inhibitors (Di Sante et al., 2017).

HiChIP and CRISPRqtl validate distal regulation between BC risk loci and genes
that score in functional screens. Variants identified by GWAS commonly affect
tissue-specific distal enhancers. We have previously shown that many CCVs regulate
the expression of target genes through chromatin looping (Beesley et al., 2020a;
Fachal et al., 2020). To confirm this in the normal breast cells we used in the current
screens, we performed HiChIP on B80-T5 and K5+/K19+ cells. For 18 of the 21
INQUISIT Level 1 hits we found chromatin interactions with regions containing BC risk
variants (Fig. 6A and Supplementary Table 5). We did not identify chromatin
interactions for BRCAZ2 which has a coding CCV, demonstrating the specificity of
HiChIP in identifying distal chromatin interactions. The interactions were particularly
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strong for ATF7IP. The risk signal at this locus comprises 18 SNPs, seven of which lie
within a candidate enhancer region marked by open chromatin and H3K27ac histone
marks (Fig. 6B). We used luciferase reporter assays to test whether variants within
these enhancers altered ATF7IP promoter activity. Addition of the ATF7IP putative
regulatory element (PRE) containing the protective allele to the ATF7IP promoter had
a 9-fold increase (p<0.0001)in luciferase activity (Fig. 6C). This increase in luciferase
activity was reduced by 50% (p<0.001) following introduction of the PRE containing
the risk-associated allele. Furthermore, we found that introduction of a variant at
rs11055880 (PRE mutant 1) had the same effect as the entire risk associated allele
while introduction of rs16909788 and rs17221259 had no effect (PRE mutant 2) on
luciferase activity (Fig. 6C). Overall, this effect is consistent with BC risk-associated
variation at this locus reducing expression of the putative tumor-suppressor gene,
ATF7IP. Since luciferase assays require expression of an exogenous construct and
may not fully recapitulate the native chromosome structure, we validated these results
using a CRISPRi approach. Previous studies showed that sgRNAs targeting
enhancers are effective in suppressing the expression of the target gene (Fulco et al.,
2016). Using four ATF7IP enhancer-targeting sgRNAs we found a 50% reduction in
ATF7IP expression (Fig. 6D), further demonstrating this BC-associated enhancer as
a regulator of ATF7IP expression.

Based on these results, we performed a systematic CRISPRi enhancer screen using
the recently described CRISPRqtl approach (Gasperini et al., 2019). In CRISPRqtl, a
pooled sgRNA library targeting putative enhancers is cloned in a vector that is
compatible with single cell RNA-Seq (scRNA-Seq). Following transduction at high
multiplicity of Infection (MOI=5), scRNA-Seq is used to detect sgRNA identity and
global mRNA abundance. All cells expressing a particular sgRNA are aggregated and
the sgRNA effect on expression of genes in cis (2Mbp from the sgRNA) is calculated
(Fig. 6E). We generated a CRISPRqtl sgRNA library targeting 53 BC-associated
genomic regions. We designed an sgRNA library targeting candidate enhancers
identified in ATAC-seq. We segmented each of these regions to 1,000 base-pair
blocks and selected 10 sgRNA/block using the CRISPick algorithm (Doench et al.,
2016) (Supplementary Table 2). This included six loci that have an INQUISIT Level 1
prediction which scored in the above-described CRISPR proliferation screens, as
positive controls. In addition, within these six regions, chromatin interactions were
detected between these six genes and CCVs using H3K27ac-mediated HiChIP
(Supplementary Table 5). We included 50 sgRNAs targeting the TSS of 25 genes from
(Gasperini et al., 2019) as additional positive controls, and 50 non-targeting sgRNAs
as negative controls (Supplementary Table 3). Following transduction at MOI=5, two
lanes of 10x chromium were used to collect single cells, and cDNA generated from
these cells was sequenced. The CRISPR application in the Cell Ranger package
(Zheng et al., 2017) was used for deconvolution and alignment to the human genome.
We detected a total of 13,334 cells with a mean of 16,953 reads/cell and a median
unigue molecular identifier (UMI) of 4,006 UMIs/cell. To reduce non-specific noise due
to low level sgRNA detection we filtered out cells that did not have a minimum of 10
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sgRNA UMiIs/cell. We used the recently described SCEPTRE algorithm to identify the
effects of enhancers on gene expression (Barry et al.,, 2021). SCEPTRE uses
conditional resampling and avoids confounding issues associated with high-
throughput expression profiling experiments. For each sgRNA we calculated its effect
on gene expression (Z-Score) for every gene in a 2Mbp window from the sgRNA
(Supplementary Table 6).

As expected, and consistent with previous reports (Gasperini et al., 2019), TSS
targeting sgRNAs had a dramatic effect (p<0.0001) on expression of their target gene
(Fig. 6F), demonstrating the reliability of this approach. As hits we considered sgRNA-

gene pairs that showed a Z-score < -1 (one SD below the mean) with at least three

different sgRNAs within a targeted region. Using these criteria, we found 298 genes
regulated by 50 fine mapped BC-associated risk signals (Supplementary Table 6). For
all six positive control loci, CRISPRqtl, INQUISIT (at Level 1) and CRISPR functional
screens identified the same target genes (ATF7IP, ATXN7, MYC, RANBP9, NRIP1
and TNFSF10; Fig. 6G). As a CRISPRqtl example, we show sgRNA-gene pairs at the
BC-risk locus at chr12:13913931-14913931. Consistent with our functional screen,
HiChIP and luciferase assays, CRISPRqtl also found a strong interaction between this
locus and ATF7IP (Fig. 6H,1), demonstrating the value of using a multi-assay approach
to define GWAS targets.

In total, 22 of the 42 risk loci that had an INQUISIT Level 1 hit showed the same hit by
CRISPRaqtl (Supplementary Table 6) demonstrating the reliability of this approach.
Some of the inconsistencies between CRISPRqtl and INQUISIT are likely due to the
cell lines we used. For example, the INQUISIT predicted target genes at chr5:779790-
1797488 are CLPTM1L and TERT. Furthermore, using luciferase assays we have
shown that CCVs in this region regulate TERT expression (Bojesen et al., 2013).
However, since the cell line we used for CRISPRqtl has been engineered to
overexpress TERT (Zhao et al., 2010) it is difficult to detect subtle enhancer regulation
of the poorly expressed endogenous TERT. Similarly, INQUISIT identifies ESR1,
ARMT1 and CCDC170 as target genes at chr6:151418856-152937016 and we have
shown the effect of CCVs in this region using luciferase assays in ER+ cell lines
(Dunning et al., 2016). However, here we used an ER- cell line which exhibits very low
basal expression of these genes so altered changes in gene expression may be
undetectable.

For nine of the 12 fine mapped regions where INQUISIT did not find any Level 1
candidate genes, CRISPRqtl identified 26 potential targets (Supplementary Table 6).
However, for three regions (chr8:75730301-76917937, chr3:4242276-5242276 and
chr22:41538786-42538786) neither CRISPRqtl nor INQUISIT identified targets,
suggesting these risk regions may have a different mechanism of action. Overall,
these results show that regulation of gene expression through chromatin interactions
is the most likely mechanism of action for these risk loci, and demonstrate functional
CRISPR screens as a highly reliable strategy for defining targets of GWAS hits.
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Expression profiling identifies candidate drugs that target BC risk genes. Our
work defines 21 INQUISIT Level 1 genes, at 19 BC risk loci, that mediate proliferation
in 2D or 3D cultures, tumor growth in vivo and/or DNA damage phenotype. Translating
these findings requires identifying strategies to target their gene products. Since many
of the genes we identified are not known to be associated with cancer, and do not
have known inhibitors, we used expression profiling, following CRISPR-mediated
gene suppression (CROPSeq (Datlinger et al., 2017)) to identify known drugs that
could be repurposed. We transduced K5+/K19+ cells with a pooled CRISPRko sgRNA
library containing 200 sgRNAs that target known cancer genes and negative controls,
as well as all INQUISIT Level 1 hits (Supplementary Table 2). Although some of these
genes scored as oncogenes, in this experiment we used gene suppression in order to
find similar or opposing signatures in the cMAP database, as previously described
(Subramanian et al., 2017).

Following transduction at MOI=0.1 (ensuring one sgRNA/cell) chromium 10x was used
to isolate 15,181 cells (~75 cells/sgRNA). sgRNA enrichment was performed as
previously described (Hill et al., 2018) and sequencing reads were deconvoluted and
aligned to the human genome using Cell Ranger (Zheng et al., 2017). We found that
cells with a threshold of 10 sgRNA UMIs had mostly a single sgRNA (Supplementary
Fig. 6A).

For quality control, we assessed the levels of target gene suppression (Supplementary
Fig. 6B). Some target genes did not show good suppression, but this could be
attributed to low detection rate. Specifically, only transcripts that were detected with
expression levels >0.1 showed good target suppression (Supplementary Fig. 6C).
However, GSEA analysis confirmed that even low expressing genes showed the
expected expression signature. For example, sgRNAs targeting RPTOR, a known
component of the PI3K pathway, induced an MTORC expression signature
(Supplementary Fig. 6D), demonstrating the reliability of this dataset.

We normalized expression values in this dataset by comparing gene expression
following sgRNA suppression to gene expression in cells expressing a control (non-
targeting) sgRNA as previously described (Adamson et al.,, 2016). By averaging
expression levels of the three sgRNAs targeting a particular gene we calculated a
CROPSeq gene score for every gene (Supplementary Table 7). To evaluate the ability
of this dataset to find connections between components of known signaling pathways,
we used unsupervised clustering and found clusters containing components of known
signaling pathways (Fig. 7A). For example, APC and CSNK1A1, two known negative
regulators of the WNT signaling pathway formed a tight cluster and both showed high
up regulation of AXIN2, a well-known WNT target gene (Supplementary Fig. 6E).
Similarly, components of the SWI/SNF complex (ARID1A, SMARCB1, SMARCC1 and
SMARCC?2) formed a cluster that also contains YAP1 and TAZ (WWTRT), which have
recently been shown to regulate the SWI/SNF complex (Chang et al., 2018).
Interestingly, CREBBP at risk locus chr16:3606788-4606788, which scored in 2D, 3D
and in vivo screens as a tumor-suppressor gene, was strongly connected with the
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same cluster suggesting that CREBBP regulates the SWI/SNF complex. This is
consistent with previous reports of CREBBP function (Alver et al., 2017; Mathies et
al., 2020). Furthermore, in agreement with the results described above, we found that
DUSP4 has an expression signature similar to components of the MAPK signaling
pathway. This cluster contains known regulators of the MAPK pathway (MAPK1,
PTEN and NF1) and the cell cycle (CDKN1B, CDKN1A and CDKNZ2A) (Fig. 7A).

We used this dataset to query the cMAP drug repurposing hub (Subramanian et al.,
2017). For each gene we selected the top and bottom 150 expressed genes (using Z-
scored expression profiles). We identified compounds with similar and opposing
signatures to each of these genes (Supplementary Table 8). Perturbagen classes
(PCLs) are a collection of molecules and give a more robust connectivity score
(Corsello et al., 2017). We found known compounds that were correctly connected to
a gene knockout. For example, we found that knockout of regulators of the mTOR
pathway, MTOR, RPTOR and PIK3CA, was positivity connected to the mTOR
compound PCL, and that PTEN knockout, a negative regulator of the pathway, had a
negative connection to the mTOR compound signature (Fig. 7B). By comparing
signatures of the novel BC tumor-suppressor genes and oncogenes, we identified
drugs that could be potentially used as inhibitors (Fig. 7C, D).

Discussion

GWAS have been highly successful in identifying variants associated with BC risk.
However, a major obstacle in translating these findings to meaningful biological
insights is that the majority of risk variants are non-coding and the gene targets of the
associations are not clear. Following fine mapping to identify the CCVs for BC,
prioritizing loci with relatively few CCVs, chromatin conformation capture (3C) and
luciferase assays, have been performed at 16 BC risk loci implicating regulation of
TERT (Bojesen et al., 2013), CCND1 (French et al., 2013), FGFR2 (Meyer et al.,
2013), IGFBPS5 (Baxter et al., 2021), MAP3K1 (Glubb et al., 2015), ESR1, RMND1
and CCDC170 (Dunning et al., 2016), KLF4 (Orr et al., 2015), NRBF2 (Darabi et al.,
2015), ABHD8 (Lawrenson et al., 2016), FGF10 and MRPS30 (Ghoussaini et al.,
2016), KLHDC7A, PIDD1, CITED4, PRKRIP1 and RASA4 (Michailidou et al., 2017),
DUSP4 (Glubb et al., 2020), NTN4 (Beesley et al., 2020b), TBX3 (Beesley et al.,
2020a) and novel IncRNAs, CUPID1 and CUPIDZ2 (Betts et al., 2017).

Identifying GWAS gene targets and evaluating functional mechanisms at all known
BC-risk loci individually is challenging. Therefore, we developed INQUISIT, an
algorithm that priorities candidate gene targets of risk loci (Fachal et al., 2020;
Michailidou et al., 2017). To validate INQUISIT predictions and to pinpoint the gene
targets and mechanisms of these BC-risk associated loci, we used pooled CRISPR
activation and suppression screens to simultaneously evaluate hundreds of putative
GWAS target genes. This identified 21 genes, predicted by INQUISIT with high-
confidence to be GWAS targets, which mediate a cancer phenotype. Although about
half of these are known BC driver genes (Fachal et al., 2020), the remainder were not
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previously implicated in BC biology (Fig. 7E). This proof of principle experiment
demonstrates the utility of functional screens in identifying GWAS targets. Future
studies using a similar approach with other cancer-related readouts will likely identify
other GWAS hits that regulate different phenotypes. CRISPRqtl identified 22
INQUISIT Level 1 genes that did not score in our functional screen. This includes
KLF4, which has been previously shown to be regulated by BC risk CCVs (Orr et al.,
2015), indicating these are high confidence hits. Since our proliferation and DNA repair
CRISPR screens did not identify these genes, it is likely that these regulate other
cancer phenotypes that we did not measure in the current study.

One of the strengths of our study was that we used four different phenotypic assays.
Recent studies have shown the added utility of using 3D cell-based screens which
more accurately measure cell proliferation than those carried out in 2D (Han et al.,
2020). Similar to these studies, we also found that 3D proliferation assays gave a
stronger and more robust signal (Fig. 3). However, unlike genome wide 2D screens
which failed to identify even known tumor-suppressor genes (Han et al., 2020), here
we show that in a smaller scale screen we are able to robustly identify known and new
tumor-suppressors. This is likely due to the increased sensitivity that we achieved by
increasing the number of cells infected with a given sgRNA (1000 cells/sgRNA as
opposed to 300-500 cells/sgRNA typically used in whole genome screens (Sanson et
al., 2018). Our results suggest that increasing the number of infected cells and
sequencing reads increases sensitivity and enables robust detection of small
proliferation changes. This should be considered in genome-wide gain of function
CRISPR screens.

Another strength of our study was that we used six immortal mammary cell lines, each
with different characteristics. Some genes scored in most cell lines, but the majority of
genes only scored in a few (Fig. 2H, 4D and 5C). Although most genes did not pass
our hit threshold in all cell lines, the phenotypes we observed were highly correlated
between different cell lines (Supplementary Fig. 4F). However, some of the differences
between cell lines following individual gene validation (Fig. 3) might be because the
activity of the genes is context specific. These observations demonstrate the
robustness of the screens and show the importance of using multiple cell lines and
multiple assays when measuring the effect of gene perturbation on phenotypes.

Enrichment analysis showed that INQUISIT Level 1 genes were significantly over-
represented across most screen modalities, compared not only to background genes
but also to INQUISIT Level 2 genes, predicted with moderate-confidence, and genes
identified by TWAS, providing confidence in INQUISIT’s ranking of putative target
genes (Fig. 5F). Recently, several other algorithms that predict enhancer targets,
including Activity By Contact (ABC) have been described (Boix et al., 2021; Nasser et
al., 2021). Of the functional genes detected in our screens, only 13 are predicted using
the ABC method in breast derived samples. It is worth noting that, of the 21 INQUISIT
Level 1 target genes that scored in our CRISPR screens, eight are potentially impacted
by CCVs through splicing or coding changes which are not considered by ABC.
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INQUISIT did not identify any target genes for 15 of the 205 BC risk signals. For these,
we therefore included all genes within a 2Mb window centered on the risk signal (105
genes in total). Of these, only one gene (JAZF1) scored in our functional screens, and
only with CRISPRI in two cell lines (hit rate of 1/105<1%), consistent with background
detection levels. Using CRISPRqtl we identified potential targets for nine of these loci
but for three we did not identify any targets. The CCVs at these loci may regulate
genes in non-breast cell types, such as immune cells, or need specific stimuli;
alternatively, the targets may be unannotated genes or non-coding RNAs. For
example, we have recently identified several novel IncRNAs, unannotated in public
databases, which are regulated by BC risk variants (Betts et al., 2017; Moradi
Marjaneh et al., 2020).

Using CRISPR activation and suppression screens we found 13 genes, predicted by
TWAS, that induced a proliferation or DNA damage phenotype. We did not validate or
further pursue these 13 genes because we did not find any enrichment of hits among
the TWAS genes, and others have shown inconsistencies in the direction of effect
between TWAS findings and known Mendelian genes, including for BC (Connally et
al., 2021). However, some of them might be genuine BC risk genes.

The most common mechanism for non-coding risk variants is through chromatin
interactions to regulate gene expression. Although most studies of enhancer function
have utilized chromatin confirmation experiments, two major factors limit the utility of
chromatin structure studies: a) the majority of these studies are performed in cultured
cells which may not recapitulate the native in vivo chromatin structure; b) enhancers
frequently interact with multiple genes making functional interpretation challenging.
Here, we use a combination of functional CRISPR screens, HiChIP and CRISPRqtl to
identify chromatin interactions and phenotypes associated with BC-associated risk
loci. Since the chromatin interaction experiments we performed were in cultured cell-
lines, we cannot exclude the possibility that the chromatin interactions we found are
different in vivo. In some cases, chromatin interactions are preserved in vitro and in
vivo and we demonstrate the value of combining HiChlP and CRISPRqtl for identifying
enhancer gene targets. HiChlIP interacting regions tend to be large and it is difficult to
pinpoint at the exact region of association. In CRISPRqtl the effective window is
relatively small (up to 500bp) and thus combing these approaches is likely to yield
better resolution. Furthermore, for all genes that scored in our functional screen we
could identify hits in both CRISPRqtl and HiChIP demonstrating the power of
phenotypic screens in defining GWAS targets. In this study, we demonstrate the added
value of functional phenotypic screens for identifying enhancer targets. Functional
screens target the candidate genes rather than the CCV and thus a phenotype could
be detected even if the chromatin interactions are not preserved in cultured cells, or if
the genes are impacted by coding or splicing variants.

Although further studies into the mechanism of action of the novel BC genes we
identified are necessary, we show the utility of high-throughput mRNA profiling in drug
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repurposing. Using the L1000 database we have identified drugs that are candidate
inhibitors for 11 BC genes.

In summary, we demonstrate that pooled functional CRISPR screening is a cost-
efficient, high-throughput and robust method for identifying genes that are associated
with BC risk loci. Application and extensions of this approach will be important for
harnessing the benefits of cancer GWAS, and for translating genomic findings to
treatments.

Acknowledgments

This work was supported by a DoD grant to J.R. and G.C.T (grant number:
W81XWH1910116). J.R is supported by a Victoria cancer agency fellowship (grant
number: MCRF20035). G.C.T. is an NHMRC Leadership Fellow. S.L.E is an NHMRC
Senior Research Fellow (grant number: 1135932). J.D.F. is supported by a
philanthropic donation from Isabel and Roderic Allpass.

We would like to thank the Functional Genomics Platform, the Bioinformatics Platform
and Micromon genomics platform at Monash University for help with CRISPR screens,
data analysis and single cell experiments. We would like to thank Professor Gail
Risbridger and A/Prof. Renea Taylor, Monash University, for providing NSG mice.

Author contributions

Conceptualization, G.C.T and J.R; Methodology, G.C.T., J.R.,, N.T., J.B.,, M.M., W.S,,
LM, J.P,DB.,AC, KM AH,KH.,SK,HS., JMP,J.F., S.E. Analysis, J.B., J.R.,
N.T., D.P. Resources, R.R., V.M. Writing-Original Draft, J.R., G.C.T, J.B. Writing -
Review & Editing, all authors; Supervision, N.T., G.C.T, J.M.P, J.B. J.R. Funding
Acquisition, J.R. and G.C.T

Declaration of interests

The authors declare no competing interests.

Figure legends

Figure 1: Annotation of candidate genes at BC risk loci. (A) Pie chart showing
locations of CCVs at 205 BC risk signals identified by GWAS. (B) Classes of genes
selected for functional CRISPR screens. INQ_1 - high-confidence INQUISIT
predictions; INQ_2 — moderate-confidence INQUISIT predictions; TWAS - identified
by transcriptome wide association studies and eQTL studies. (C) Experimental
approach.
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Figure 2: CRISPR activation and suppression screens identify genes that
regulate 2D and 3D proliferation. (A) Example of hits in K6+/K19+ cells; INQUISIT
Level 1 genes that scored are labelled with the gene name. (B) Correlation between
CRISPRko and CRISPRi in K5+/K19+ cells. Correlation between 2D and 3D
proliferation in K&6+/K19+ cells using (C) CRISPRko, (D) CRISPRI or (E) CRISPRa.
(F) Proliferation changes in 2D and 3D cultures mediated by CRISPRko of CFL1. (G)
Summary of results from 2D and 3D proliferation screens.

Figure 3: Validation of INQUISIT Level 1 hits that induce a 2D or 3D proliferation
phenotype. Following transduction with sgRNAs targeting INQUISIT Level 1 hits (3
sgRNAs/gene) using either CRISPRko (A, C) or CRISPRa (B, D) proliferation was
measured in 2D (A, B) or 3D (C, D). Results are displayed as an average +/- SD of
three sgRNAs.

Figure 4: In vivo screens identify genes that upon suppression or
overexpression mediate tumor growth in immune deficient mice. Hits from
CRISPRko and CRISPRa in vivo screens in (A) B80-T5_MEKDD. (B)
K5+/K19+_MEKDD (C) HMLE_MEKDD cells. INQUISIT Level 1 predicted genes that
scored are labelled with the gene name. (D) Summary of hits from the in vivo screens.
(E) Validation of INQUISIT Level 1 hits in B80-T5_MEKDD cells. Each time point is an
average +/- SD of three sgRNAs in six mouse tumors. (F) Proliferation in 3D cultures
of B80-T5 or B80-T5_MEKDD cells expressing a DUSP4 sgRNA. Results are an
average +/- SD of three independent sgRNAs. (G) Protein levels of DUSP4 and pERK
following expression of MEKDD. (H) DUSP4 and pERK protein levels in K5+/K19+ or
K5+/K19+_MEKDD treated for 1h with 10nM of trametinib or 100nM of selumetinib. (1)
Proliferation in 3D cultures of B80-T5_MEKDD cells with or without a DUSP4 sgRNA
treated with 5nM of trametnib or 10nM of selumetinib for 21 days. Results are an
average +/- SD of three independent sgRNAs. (J) Enrichment analysis of hits from in
vivo and in vitro proliferation screens from the classes of genes selected for the
screens. INQ_1 — high-confidence INQUISIT predictions; INQ_2 — moderate-
confidence INQUISIT predictions; TWAS - identified by transcriptome wide
association studies or eQTL studies.

Figure 5: Olaparib synthetic lethal screens identify risk genes that regulate the
DNA repair pathway. (A) B80-T5 cells infected with control or BRCA17-targeting
sgRNAs were treated with olaparib for 7 days and proliferation was assessed using
crystal violet staining. (B) Example of hits from CRISPRko, CRISPRi and CRISPRa
screens in B80-TS cells. INQUISIT Level 1 genes are labelled with the gene name.
(C) Summary of hits. Known DNA repair genes were annotated based on (Olivieri et
al., 2020). (D) GSEA pathway enrichment analysis of hits (not including positive
controls). (E) Validation of selected hits in a singleton experiment using a crystal violet
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readout. (F) Quantification of validation experiments. (G) Enrichment analysis of hits
from DNA damage screens from the classes of genes selected for the screens. INQ_1
— high-confidence INQUISIT predictions; INQ_2 — moderate-confidence INQUISIT
predictions; TWAS - identified by transcriptome wide association studies or eQTL
studies.

Figure 6: Chromatin conformation assays confirm interactions between risk loci
and genes that score in functional screens. (A) Summary of chromatin interactions
observed between BC risk loci and genes that scored in functional screens, where
color scale signifies scaled levels of chromatin interaction scores and count. (B)
Example of chromatin interactions between CCVs and ATF7IP. (C) The regulatory
element carrying the protective alleles of CCVs rs16909788, rs17221259, rs11055880
increase ATF7IP promoter activity. Constructs containing all three SNPs were tested
using luciferase reporter assays. PRE mutant 1 contains the protective haplotype with
rs11055880 altered to the risk allele. PRE mutant 2 contains the risk haplotype with
rs16909788 and rs17221259 altered to protective alleles. Bars show mean luciferase
intensity relative to promoter activity and error bars represent 95% confidence
intervals. P-values were determined by two-way ANOVA followed by Dunnett’'s
multiple comparisons test (****p<0.0001). (D) ATF7IP expression was measured in
K5+/K19- cells 21 days post infection with CRISPRi sgRNAs targeting the ATF7IP
CCV-containing enhancer. (E) Strategy used for CRISPRqtl experiment. (F) Z-Scores
from CRISPRqtl screen of sgRNAs targeting 25 TSSs. (G) Gene targets identified by
CRISPRqtl or INQUISIT for six regions included in CRISPRqtl screen that contain
genes that scored in CRISPR functional screens. (H) Example of CRISPRqtl results
at the chr12: 1391331-14913931 locus. sgRNA-gene pairs with a Z-Score < -1 are
shown. Colored lines represent genes that scored as hits (>3 sgRNAs with a Z-
Score<-1). Green - GPRC5A. Blue - EMP1, Red - ATF7IP. (I) Zoom in on ATF7IP
sgRNA-gene pairs showing consistency between HiChIP and CRISPRqtl.

Figure 7: CROPSeq analysis identifies drugs targeting BC associated gene
targets. (A) Unsupervised hierarchical clustering using CROPSeq expression profiles.
(B) PCLs connected to control genes. (C) PCLs connected to genes that scored as
tumor suppressor genes. (D) PCLs connected to genes that scored as oncogenes. (E)
Summary of BC risk loci and INQUISIT Level 1 genes.

Supplementary table legends

Supplementary Table 1: BC risk signals identified in GWAS and INQUSIT gene
predictions. Signals from BC GWAS and INQUISIT gene prediction for these signals.
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Supplementary Table 2: sgRNA sequences. Sequences of sSgRNAs used in various
CRISPR screens in this study.

Supplementary Table 3: Raw counts from different CRISPR screens. Raw
sequencing reads from various CRISPR screens.

Supplementary Table 4: MAGeCK analysis from CRISPR screens. MAGeCK
analysis for identification of enriched and depleted genes in CRISPR screens.

Supplementary Table 5: HiChIP interactions in K5+/K19+ and BRES80-T5 cells.
Chromatin interactions between BC risk signals and genes at a 2Mb window.

Supplementary Table 6: CRISPRqtl identifies genes regulated by breast cancer
risk enhancers. Chromatin interactions between BC risk signals and genes identified
using CRISPRqtl.

Supplementary Table 7: Gene Z-scores obtained following CRISPRko deletion
of the indicated gene. Each score is the mean of three sgRNAs. mRNA expression
profiles following CRISPR deletion.

Supplementary Table 8: L1000 analysis identifies opportunities for drug
repurposing. Drugs identified in L1000 analysis that correlate or anti-correlate with
expression signatures of genes that score as hits in functional screens.

Supplementary figure legends

Supplementary Figure 1 (related to figure 1): Example of genomic features used
in INQUISIT to predict gene targets.

Supplementary Figure 2 (related to figure 2): Identification of genes that upon
suppression or activation promote 2D or 3D growth. (A) PCA analysis using
ATAC-Seq or RNA-Seq data for cell lines used in this study. (B) Top 200 variable
genes identified in RNA-Seq. Genes that are part of the Luminal Progenitor (LumProg)
or mesenchymal (MASC) gene signatures are highlighted demonstrating that
K5+/K19+, K5+/K19- and mesHMLE are more mesenchymal. (C) Distribution of
positive and negative controls in 2D proliferation screens. Plots showing genes that
score in 2D or 3D proliferation screens in: (D) K5+/K19- (E) B80-T5 (F) HMLE (G)
B80-T17 (H) mesHMLE (I) Correlation between proliferation changes observed in 2D
proliferation screens for the indicated cell lines. (J) Proliferation changes in 6 cell lines
following CRISPRko or CRISPRi mediated suppression of ATXN7. (K) Genomic view
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of ATXN7 showing the shared promoter of ATXN7 and THOC7 (L) Proliferation
changes in 6 cell lines following CRISPRko or CRISPRi mediated suppression of
THOCY?. (M) Dependency score (CRES scores) in 796 cell lines for ATXN7 and
THOCY from DepMap (Hahn et al., 2021). Correlation between 2D and 3D proliferation
assays in (N) CRISPRko (O) CRISPRI or (P) CRISPRa.

Supplementary Figure 3 (related to figure 3): Validation of hits from 2D and 3D
proliferation assays. (A) Western blot analysis of candidate tumor-suppressor genes
using CRISPRko. (B) Western blot analysis of candidate oncogenes using CRISPRa.

Supplementary Figure 4 (related to figure 4): Identification of genes that upon
suppression or activation promote growth in immune deficient mice. (A) 3D
proliferation of the indicated cell lines with or without MEKDD expression. (B)
Representative tumors from in-vivo validation in B80-T5-MEKDD cells. (C) Western
blot of phosphor proteins regulated by the MAPK pathway. (D) Correlation between
different proliferation assays.

Supplementary Figure 5 (related to figure 5): Identification of genes that upon
suppression or activation modulate the DNA damage response. Plots showing
genes that score in olaparib synthetic lethal screen (A) K5+/K19- (B) K5+/K19+ (C)
mesHMLE (D) HMLE (E) B80-T17.

Supplementary Figure 6 (related to figure 7): CROPSe(q identifies signatures and
opportunities for drug repurposing. (A) Threshold of sgRNA UMIs in CROPSeq.
Using a threshold of 10 most cells contain only one sgRNA. (B) Expression of target
gene following CRISPRko mediated suppression in CROPSeq. (C) Target gene
expression in CROPSeq for genes with low (normalized expression < 0.1) or high
(normalized expression > 0.1) expression. (D) GSEA analysis identifies mTORC
signature following CRISPRko mediated suppression of RPTOR in CROPSeq. (E)
AXINZ expression in CROPSeq showing that negative regulators of the WNT signaling
pathway activate AXINZ2 expression.
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STAR Methods

Key resources table

Reagent or resource Source Identifier

Experimental models - Mice

Mice Strain Source Identifier

NOD/SCID Animal Resource Ethics Approval Number: 24197

Centre (ARC), WA or
A/Prof Renea Taylor,
Monash Biomedicine
Discovery Institute

Experimental models: Cell lines

Cell line name Source Identifier

B80-T5 (Toouli et al., 2002)

B80-T17 (Toouli et al., 2002)

HMLE (Elenbaas et al., 2001)

mesHMLE (Mani et al., 2008)

K5+/K19+ (Zhao et al., 2010)

K5+/K19- (Zhao et al., 2010)

HEK293FT Thermo Fisher R70007

Media Composition

HEK293FT Working Conc. Source Identifier
D-MEM (high glucose) 1x Sigma D6429

Fetal bovine serum (FBS) | 10% SCIENTIFIX FBSFR-SO0FU
Non-essential amino acids | 0.1mM Life technologies | 11140-050
L-glutamine 6mM Sigma G7513
Sodium Pyruvate Solution | 1mM Sigma S8636
Pen-Strep Solution 1% Sigma P4458
B80-T5 Working Conc. Source Identifier
RPMI 1x Sigma R8758

Fetal bovine serum (FBS) | 10% SCIENTIFIX FBSFR-SO0FU
L-glutamine 2mM Sigma G7513
Pen-Strep Solution 1% Sigma P4458
B80-T17 and HMLE Working Conc. Source Identifier
MEGM 1x Sigma 815-500
mesHMLE Working Conc. Source Identifier
DMEM:F12 1x Thermo Fisher 11320033
Fetal bovine serum (FBS) | 5% SCIENTIFIX FBSFR-SO0FU
Insulin 10ug/ml Sigma 15500

EGF 20ng/ml Sigma E4127
Hydrocortisone 0.5ug/ml Sigma H4001
Gentamycin 5ug/mi Gibco 15750-060
human TGF-beta 1 2.5ng/ml RnD systems 7754-BH-005
K5+/K19- and K5+/K19+ | Working Conc. Source Identifier
MEM Alpha 1x Thermo Fisher 12561056
Ham's F12 1x Thermo Fisher 11765-054
HEPES 0.1M Life Technologies | 15630080
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Insulin 1Tug/ml Sigma 15500
EGF 12.5ng/ml Sigma E4127
Hydrocortisone Tug/mi Sigma H4001
Gentamycin 10ug/ml Gibco 15750-060
Transferrin 10ug/ml Sigma T2252
Cholera toxin 1ng/ml Sigma C8052
Bovine Pituitary Extract 35ug/ml Thermo Fisher 13028-014
Phosphoethanolamine 14.1ug/ml Sigma P0503
B-Estradiol 0.545ng/mi Sigma E2257
Na+ Selenite 2.6ng/ml Sigma S1382
Triiodothryonine 6.5ng/ml Sigma T5516
Ethanolamine 0.006x Sigma E9508
Ascorbic Acid 10ug/ml Sigma A4034
L-glutamine 2mM Sigma G7513
Fetal bovine serum (FBS) | 1% SCIENTIFIX FBSFR-SO0FU
2D/3D Proliferation

Reagent Source Identifier
Corning® Costar® Ultra-Low Attachment Multiple | Corning CLS3473
Well Plate

CellTiter-Glo 2.0 Promega G9241
Cellstar white 96-well plates Griener MO0187
Crystal Violet Sigma C0775
DPBS without Calcium Chloride and Magnesium | Sigma D8537
Chloride, Sterile-Filtered

Trypsin 0.25% EDTA Life Technologies | 25200056
Nuclease Free Water Sigma w4502
Dimethyl Sulfoxide (DMSO) Sigma D2650
Tris-EDTA buffer Sigma 93283
Lentiviral Selection

Reagent Source Identifier
Hygromycin B Thermo Fisher 10687010
Blasticidin S HCI Thermo Fisher A1113903
Puromycin Thermo Fisher A1113803
Transfection

Reagent Source Identifier
Lipofectamine 3000 Transfection Reagent Life Technologies | L3000075
Optimem Life Technologies | 31985062
Drugs

Reagent Source Identifier
Virinostat Selleckchem S1047
Vincristine MERCK V0400000
Trametinib Selleckchem S2673
Selumetinib Selleckchem S1008
Olaparib Selleckchem S1060
sgRNA Cloning

Reagent Source Identifier
Esp3l Life Technologies | FD0454
Glycoblue Thermo Fisher AM9516



https://doi.org/10.1101/2021.09.07.459221
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.07.459221; this version posted September 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

NEB buffer 3.1 NEB B7203S

T4 DNA ligase NEB M0202S
NEB Stable Competent E.coli (High Efficiency) NEB C3040H
SOC outgrowth medium NEB B9020S
Ampicillin Astral A051B
QlAprep Spin Miniprep Kit Qiagen 27106
QlAquick PCR Purification Kit Qiagen 70002186
Generation and amplification of pooled libraries

Reagent Source Identifier
NEB 5-alpha Electrocompetent E. coli NEB C2989K
Corning® square bioassay dishes Sigma CLS431111
Qiagen Maxi prep kit Qiagen 70002180
Tango Buffer (10X) Thermo Scientific | BY5

T7 DNA ligase NEB M0318S
ATP NEB P0756S
NEBNext High-Fidelity 2X PCR Master Mix NEB MO0541L
RNase A Thermo Fisher ENO0531
NucleoSpin Blood XL Clontech 740950
Nunc EasYFlasks 225cm2 Thermo Fisher 159934
QIlAquick Gel Extraction Kit Qiagen 28706
AMPure XP Beads Beckman Coulter | A63881
DNeasy Blood & Tissue Kit Qiagen 69504
FLIb_amp_primer (5’03’) AGGCACTTGCTCGTACGACG
RLIb_amp_primer (5°03’) ATGTGGGCCCGGCACCTTAA
RNA Extraction

Reagent Source Identifier
RNeasy mini kit Qiagen 70002188
Western Blotting

Reagent Source Identifier
RIPA Buffer (10X) CST 9806
Protease inhibitor tablets Sigma 11697498001
Pierce BCA Protein Assay Kit Thermo Fisher 23225
Precision Plus Protein Dual Color BioRad 1610374

4 X Laemmli Sample Buffer BioRad 1610747
4-20% Mini-PROTEAN® TGX™ Gel BioRad 4561093
Immun-Blot® Low fluoresence PVDF membrane | BioRad 1620264
Thick Blot Filter Paper, Precut, 7.5 x 10 cm BioRad 1703932
Clarity Max™ Western ECL Substrate BioRad 1705062S
Clarity™ Western ECL Substrate BioRad 1705060S
Bovostar Premium Grade BSA Interpath BSAS100
Antibodies

Reagent Source Identifier
DUSP4 CST 5149
Cyclin D1 CST 2978
Cyclin E1 CST 4129
ATF7IP Sigma 16578
ATF7IP Sigma HPA023505
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ADCY3 Abcam ab199157
ATXN7 Invitrogen PAI-749
CREBBP CST 7389
SAPK/JNK CST 9252
LPAR2 Abcam ab135980
NF1 Bethyl A300-140A-M
Phospho-p38 MAPK (Thr180/Tyr182) CST 4511

p38 MAPK (D13E1) CST 8690

p44/42 MAPK (Erk1/2) CST 4695
Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) | CST 4370
Phospho-SAPK/JNK (Thr183/Tyr185) CST 4668

TRAIL CST 3219
RIP140 Santa Cruz sc518071
GAPDH Santa Cruz sc32233
c-Myc CST 5605
TGFBR2 Santa Cruz sc17792
CASZ1 Santa Cruz s¢398303
CFL1 Abcam ab42824
Anti-mouse 1gG, HRP-linked CST 7076
Anti-rabbit IgG, HRP-linked CST 7074
Plasmids

Reagent Source Identifier
pMD2.G Addgene 12259
psPAX2 Addgene 12260
Lenti-Cas9-2A-Blast Addgene 73310
Lenti-dCas9-KRAB-Blast Addgene 89567
Lenti-dCas9-VP64-Blast Addgene 61425
CROPSeq-Guide-Puro Addgene 86708
pRRLsin-SV40 T antigen-IRES-mCherry Addgene 58993
pXPR502 Addgene 96923
pLentiGuide-Puro Addgene 52963
pLX311-MEKDD-GFP This study
pLENTI-HYGRO-PGK-TP53-DD This study

sgRNAs

Name Target Sequence Application
sgAAVS1_1 GTGGTTGATAAACCCACGTG CRISPRko/a
sgAAVS1_2 CGGGCCCCTATGTCCACTTC CRISPRko/a
sgAAVS1_3 GCCAGCCGTAGAGGTGACCC CRISPRko/a
sgADCY3_1 CTCACACCACCGCCCACCGC CRISPRa
sgADCY3_2 CTAAGTGTGCCTGCGGTGGG CRISPRa
sgADCY3_3 CCCGCCCTAACCCTCATAAA CRISPRa
sgATF7IP_1 AAAAGATTGAATGTAACAAG CRISPRko
sgATF7IP_2 GCTACTACTCAGGTGCCTAG CRISPRko
sgATF7IP_3 GGGATGGGATCACTAGAGGT CRISPRko
sgATF7IP_Enh_1 GCCGGATCCGCCCTAACAAAG CRISPRI Enh
sgATF7IP_Enh_2 | GCCACCAAATCCAGTTCAGGG CRISPRi Enh



https://doi.org/10.1101/2021.09.07.459221
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.07.459221; this version posted September 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

sgATF7IP_Enh_3 | GCCTCGGCAGAGACTTCACTA CRISPRi Enh
sgATF7IP_Enh_4 | GAAATATAAGGCCTGGAGCG CRISPRi Enh
sgATM_1 CCACCAAAAGACGTGAACAC CRISPRko
sgATM_2 GACCTACCTGAATAACACAC CRISPRko
sgATM_3 AGCATCCTTACAGTAAGTCA CRISPRko
SgATXN7_1 CATACTCACATTCTACCATG CRISPRko
SgATXN7_2 GAGCCGCACCAAAACCCTCA CRISPRko
SgATXN7_3 TGGGTTAAGGAATGTGTCTG CRISPRko
sgBRCA1_2 GGCTCAGGGTTACCGAAGAG CRISPRko
sgCASZ1_1 CATGGGAGGTTTGGTCTCGG CRISPRko
sgCASZ1 2 GCTATGATGACCAGAACACG CRISPRko
sgCASZ1_3 GGGAGCGCCTTACTTGACAG CRISPRko
sgCCND1_1 CTCCCGCTCCCATTCTCTGC CRISPRa
sgCCND1_2 GATCAAAGCCCGGCAGAGAA CRISPRa
sgCCND1_3 GTTAAGCAAAGATCAAAGCC CRISPRa
sgCCNE1_1 GGGTCCCGCGCGGCCGCTGA CRISPRa
sgCCNE1_2 GACGGGCTCTGGGTCCCGCG CRISPRa
sgCCNE1_3 TGGGTCCCGCGCGGCCGCTG CRISPRa
sgCFL1_1 TGATGCAACCTATGAGACCA CRISPRko
sgCFL1 2 TTGCATCATAGAGGGCATAG CRISPRko
sgCFL1 3 TCTTGACAAAGGTGGCGTAG CRISPRko
sgCMTR2_1 CCAATGACAAGGAAACCGAT CRISPRko
sgCMTR2_2 ATTCGTCTATTTGAGTGCAT CRISPRko
sgCMTR2_3 AGGAAACTCCGAAGTCTATG CRISPRko
sgCREBBP_1 ATTGCCCCCCTCCAAACACG CRISPRko
sgCREBBP_2 TAATTAATCAGGCTTCACAA CRISPRko
sgCREBBP_3 CTTAGCCCACTGATGAACGA CRISPRko
sgDUSP4_1 ATGAACCGGGACGAGAATGG CRISPRko
sgDUSP4 2 TGGGACCCCACTACACGACC CRISPRko
sgDUSP4 3 TCAGTACAAGTGCATCCCAG CRISPRko
sgLPAR2_1 AGCATGACCACGCGGCCACG CRISPRko
sgLPAR2_2 AGTGAAAGTCGGGCTGTGCG CRISPRko
sgLPAR2_3 CATGCGTGAGCAGCGGTCCA CRISPRko
sgMYC_1 CTCCTGCCTCGAGAAGGGCA CRISPRa
sgMYC_2 CTCCCCTCCTGCCTCGAGAA CRISPRa
sgMYC_3 CTGCCCTTCTCGAGGCAGGA CRISPRa
sgNF1_1 ACCTTAACCATTGCAAACCA CRISPRko
sgNF1_2 GCAACTTTGATGCAGCACGC CRISPRko
sgNF1_3 GGTCCAGTCAGTGAACGTAA CRISPRko
sgNRIP1_1 GAAGAAGGAATGATACCCAT CRISPRko
sgNRIP1_2 TCAATACACAAAATTATGCA CRISPRko
sgNRIP1_3 TGGATCCCAAGTGTTTAGCA CRISPRko
sgNRIP1_1a CTGAAGAGCTGAATGGCGTG CRISPRa
sgNRIP1_2a AAGAGCTGAATGGCGTGGGG CRISPRa
sgNRIP1_3a GCTGAAGAGCTGAATGGCGT CRISPRa
sgSIVA1_1 CACAGCCTTCATCCCACACG CRISPRko
sgSIVA1 2 GCGGACCTTGAGCTGTAGCG CRISPRko
sgSIVA1_3 AGCGCTCGGCGCACACGCCG CRISPRko
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sgTGFBR2_1 AAAGCGACCTTTCCCCACCA CRISPRko

sgTGFBR2_2 ACAGTGATCACACTCCATGT CRISPRko

sgTGFBR2_3 GCAGAAGCTGAGTTCAACCT CRISPRko

sgTNFSF10_1 TTGAGACAAGAGCTGTCCCT CRISPRa

sgTNFSF10_2 AGTTGCAGGTTCAATAGATG CRISPRa

sgTNFSF10_3 GTTGCAGGTTCAATAGATGT CRISPRa

Critical commercial assays

Reagent Source Identifier

Library and Gel Bead Kit v3.1 10X Genomics 1000121

Software and algorithms

Name Used for Source

Poolq Alignment of CRISPR screens https://portals.broadinstitute.org/gpp/
public/software/poolq

CRISPick sgRNA selection https://portals.broadinstitute.org/gppx/
crispick/public

MAGeCK CRISPR screen scores https://github.com/davidliwei/mageck

Cell Ranger | Alignment of single cell https://github.com/10XGenomics/cellr
anger

SCEPTRE CRISPRqtl analysis https://katsevich-lab.github.io/sceptre/

INQUISIT Identification of genes associated | https://github.com/jmbeesley/inquisit_

with risk loci for_bc_screen

Resource availability

Further information and requests for resources and reagents should be directed to and
will be fulfilled by Joseph Rosenbluh (sefi.rosenbluh@monash.edu).

Materials availability

All unique reagents generated in this study will be made available upon request. An
agreement with our Institute’s Materials Transfer Agreement (MTA) may be required.

Data and code availability

RNA-Seq and ATAC-Seq data generated in this study will be made available at GEO.
All CRISPR functional screening raw and analyzed data is available in the
Supplementary Tables of this paper.

Cell lines

Human mammary epithelial cells (HMLE) used in this study was a gift from Prof.
William Hahn (Dana Farber Cancer Institute), the B80 cell lines (B80-T17 and B80-
T5) are in-vitro immortalized mammary cell lines previously described (Toouli et al.,
2002). K5+/K19- and K5+/K19+ cell lines are immortalized progenitor mammary stem
cells (Zhao et al., 2010). HMLE were induced to undergo epithelial to mesenchymal
transition (EMT) to obtain a mesenchymal phenotype (mesHMLE) by culturing cells in
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DMEM:F12 media (1:1) supplemented with 10ug/ml insulin, 20ng/ml EGF, 0.5ug/ml
hydrocortisone, Sug/ml gentamycin, 5% FBS treated with 2.5ng/ml TGFB1 for a
minimum of 14 days (Pillman et al., 2018). HMLE and B80-T17 were propagated in
mammary epithelial growth medium (MEGM) (Sigma). B80-T5 were cultured in RPMI
1640 (Sigma) supplemented with 10% FBS, 1% Penicillin and Streptomycin and 1%
Glutamine. K5+/K19- and K5+/K19- cells were maintained in DFCI medium containing:
MEMo/Ham's F12 nutrient mixture (1:1, vol/vol) supplemented with 0.1M HEPES,
1pg/ml insulin, 1pg/ml hydrocortisone, 12.5ng/ml epidermal growth factor, 10pug/ml
transferrin, 14.1ug/ml phosphoethanolamine, 0.545ng/ul 3-Estradiol, 2mM glutamine,
2.6ng/ml sodium selenite, 1ng/ml cholera toxin, 6.5ng/ml triiodothyronine, 0.1 mM
ethanolamine, 35ug/ml bovine pituitary extract, 10pg/ml gentamycin and 10upg/ml
freshly prepared ascorbic acid. All cell lines were maintained in a humidified incubator
at 37°C with 5%CO:..

Generation of stable cell lines

Lentiviral vector expressing a gene or sgRNA of interest, along with pMD2.G
(Addgene#12259) and psPAX2 (Addgene#12260) were transfected into HEK293FT
packaging cells. Lentiviral supernatant was harvested after 48-hour incubation in
DMEM containing 30% FBS and passed through a 0.45um Milli-hex filter. For
oncogenic potential: K5+/K19- and K5+/K19+ cells were transduced with pLENTI-
Hygro-PGK-TP53-DD and selected using 100ug/ml hygromycin. For colony formation
assays and in vivo assays: HMLE, mesHMLE, B80-T5, B80-T17 and K5+/K19+ were
transduced with pLX311-GFP-MEKDD and selected for GFP using the BD Influx™
cell sorter. K5+/K19- was transduced with pRRLsin-SV40 T antigen-IRES-mCherry
(Addgene #58993) and positive cells were sorted using the BD Influx™ cell sorter. For
CRISPR screens and validations all cell lines were transduced with following lentiviral
vectors: Lenti-Cas9-2A-Blast (Addgene #73310), Lenti-dCas9-KRAB-Blast (Addgene
#89567) and Lenti-dCas9-VP64-Blast (Addgene #61425). Cells were selected and
maintained in blasticidin (5ug/ml to 10ug/ml). For single gene perturbation, 3 sgRNAs
were cloned into BsmBl-digested lenti-Guide-Puro vector (Addgene# 52963) for
CRISPRko and pXPR502 vector (Addgene #96923) for CRISPRa. Cells were infected
with sgRNAs, selected and maintained in puromycin (1ug/ml to 2ug/ml).

RNA-seq

Transcriptome profiling was carried out using strand-specific TruSeq kit. Following
RNA extraction (RNeasy, Qiagen) mRNA was enriched using polyT beads (Genewiz)
and sequencing libraries were prepared using lllumina strand-specific TruSeq kit
(Genewiz). Samples were sequenced on an lllumina HiSeq machine (PE 150bp).
RNA-seq were aligned to Ensembl v70 gene models with STAR v2.7.1a. Duplicate
reads were marked with PicardTools v2.19, then reads mapping to transcriptome
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using featureCounts in subread v1.6.0, count matrix generated using RSEM v1.3.1.
Differential expression analysis was performed using DESeq2 in R v3.6.2.

ATAC-seq:

Profiling of regions of open chromatin using previously reported protocols (Buenrostro
et al., 2015). Duplicate libraries were prepared for each cell type and paired-end
sequenced (150bp) generating a minimum of 40 filtered reads per library. Adapters
trimmed using Cutadapt v1.13 and reads aligned to GRCh37 using Bowtie v2.2.9.
Duplicates marked with Picard MarkDuplicates v2.19. Peaks were called using
MACS2 and cell type-specific replicating peaks identified using BedTools.

HiChIP

HiChIP libraries were generated with the Arima HiChIP kit using an antibody against
H3K27ac (Active Motif AbFlex: 91193). Cells were counted using the Countess Il
automated cell counter (Thermo Scientific) and fixed with 2% formaldehyde using the
Arima HiC+ Kit (Arima, A101020). 1e6 fixed cells were used in restriction enzyme
digest, biotin end filling ligation reactions to the manufacturer’s protocol. Libraries were
prepared using the KAPA Kit (KAPA, KK2620), according to the Arima-HiC kit protocol.
Libraries were indexed using the Swift Biosciences indexing kit then paired-end
sequenced (150bp) with lllumina Novaseq 6000 to generate >500M raw reads per
library. Individual replicate reads were processed with HiC-Pro (v 2.11.4) and aligned
to hg19. Replicate samples for each cell type were quality controlled and checked for
genome-wide signal correlation before merging with HiC-Pro. Enriched regions
representing H3K27ac peaks were detected using MACS2. Chromatin loops were
detected in each cell type-specific dataset using FitHiChIP v8.1 at 2 kb resolution
limiting to 2 Mb interaction distance. Peak-to-peak and peak-to-nonpeak loops were
used for background modelling and a q < 0.01 threshold set to determine significant
interactions.

Generation of pooled sgRNA library

sgRNA sequences in custom libraries are available in Supplementary Table 2.
sgRNAs were designed using CRISPick algorithm (Doench et al., 2016). For each
gene we chose top scoring 5 sgRNAs (based on CRISPick scores). Libraries were
prepared as previously described (Davies et al., 2021; Rosenbluh et al., 2016;
Rosenbluh et al., 2017). Briefly, oligonucleotide pools (CustomArray) contained the
sgRNA sequence appended to BsmBI cutting sites and overhang sequences for PCR

amplification. The final sequence obtained is:
AGGCACTTGCTCGTACGACGCGTCTCACACCG[20nt
spacer]GTTTCGAGACGTTAAGGTGCCGGGCCCACAT. Following PCR

amplification ~ with  Fwd: 5-AGGCACTTGCTCGTACGACG-3’, Rev: 5


https://doi.org/10.1101/2021.09.07.459221
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.07.459221; this version posted September 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

ATGTGGGCCCGGCACCTTAA-3’ primers the PCR product was cloned via Golden
Gate assembly into BsmBI-digested lentiGuide-Puro vector (Addgene# 52963) for
CRISPRko and CRISPRI libraries and into pXRP502 (Addgene #96923) for
CRISPRqtl and CROPSeq oligos were cloned into CROPseq-Guide-Puro
(Addgene#86708). Ligated libraries were electroporated into NEB5a
electrocompetent cells (NEB), plasmid DNA was extracted using Qiagen Maxi Prep.
For each library preparation, a 1000X representation was ensured.

2D and 3D proliferation screens

Mammary cell lines (HMLE, mesHMLE, B80-T5, B80-T17, K5+/K19- and K5+/K19+
cells) stably expressing Cas9 (Addgene# 73310), KRAB-dCas9 (Addgene# 89567) or
dCas9-VP64 (Addgene# 61425) were established. Cells were then transduced with
either the CRISPRko, CRISPRi or CRISPRa Library at a MOI of 0.3 to obtain 1,000
cells/sgRNA. Twenty-four hours post infection cells were selected using Puromycin
(2pg/ml) for 7 days. Cells were then subdivided to assay for 3D proliferation by plating
cells in low attachment conditions (Corning#4615) or on 2D plates. To ensure sgRNA
and Cas9/dCas9 expression, cells were maintained with puromycin and blasticidin
throughout the screen. Twenty-one days post-infection cells were washed in PBS and
genomic DNA was extracted using NucleoSpin Blood XL kit (Clontech). For colonies
grown in low attachment conditions, genomic DNA was extracted using the DNeasy
Kit (Qiagen).

Olaparib synthetic lethal screens

Cell lines stably expressing Cas9 (Addgene# 73310), KRAB-dCas9 (Addgene#
89567) or dCas9-VP64 (Addgene# 61425), were transduced with the CRISPRKko,
CRISPRI or CRISPRa sgRNA libraries at a low MOI (0.3) at a coverage of 1,000
cells/sgRNA. Puromycin containing medium was added 24 hours post-infection and
cells were allowed to undergo selection for 7 days. For all screens, following selection,
cells were trypsinized and divided into two treatment groups: DMSO or Olaparib.
HMLE, mesHMLE, B80-T17, K5+/K19- and K5+/K19+ cells were treated with 5uM of
Olaparib and B80-T5 cells were treated with 2.5uM of Olaparib for 14 days. Media was
replaced every 4 days with DMSO or Olaparib. Cells were harvested by centrifugation
and genomic DNA was extracted using NucleoSpin Blood XL kit (Clontech).

In vivo screen

HMLE-MEKDD, K5+/K19+-MEKDD and B80-T5-MEKDD cells expressing Cas9 or
dCas9-VP64 were infected at MOI=0.3 with CRISPRko or CRISPRa libraries.
Following puromycin selection (2ug/ml) for 7 days, 2e6 cells/site were subcutaneously
injected into NSG mice at 3 sites/mouse. Tumor growth was measured using a digital
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caliper every 48 hours and monitored continuously until tumor volume reached 1cm3
(sum of all three sites). Tumor volume was calculated using the formula length (mm)
x width (mm) x height (mm). Mice were sacrificed once tumors reached 1cm3. Cells
were dissociated using Bead Ruptor machine and glass beads and DNA was extracted
using DNeasy Kit (Qiagen).

Library preparation, sequencing and analysis

High-throughput sequencing library was generated using one-step PCR to amplify the
integrated sequence within the construct and the addition of a barcode as previously
described (Davies et al., 2021; Rosenbluh et al., 2016; Rosenbluh et al., 2017). PCR
products were then purified using AMPure beads and samples sequenced using
HiSeq (lllumina). PoolQ was used for deconvolution and alignment of sgRNA reads.

Crystal violet proliferation assay

Cells were plated at 2,000 cells/well and allowed to propagate until confluent. Media
was aspirated and washed twice in PBS followed by fixation in 10% formalin for 10
minutes at room temperature. Formalin was removed and 0.5% (w/v) of crystal violet
solution (Sigma) was added and incubated for 20 minutes at room temperature. Plates
were washed in dH20 and imaged. For quantification 10% acetic acid was added to
each well and incubated at room temperature for 30 minutes. The crystal violet solution
was quantified by measuring the OD at 590nm using the PHERAstar (BMG).

3D proliferation assays

Cells were plated at 8000 cells/well in a 24-well low attachment plate (Corning).
Colonies were allowed to form for 21 days. Images were taken at 4X magnification
using an EVOS M5000 microscope (Thermo). Quantification of colonies was done by
adding Cell-Titer-Glo Reagent (Promega) to wells, followed by a 10-minute incubation
at room temperature on a shaker. Cell lysates were transferred to a 96-well white plate
and luminescence measured using the PHERAstar (BMG).

Western blot

Cells/tissue were harvested, washed in PBS and resuspended in RIPA buffer (CST-
9806) containing proteinase inhibitors (Roche) and quantified using the Pierce BCA
Protein Assay Kit (Thermo Fisher). Protein lysates diluted in 4 X Laemmli Sample
Buffer (Bio-Rad 161-0747) were loaded onto Bio-Rad 4-20% precast gels. Following
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electrophoresis, proteins were transferred to a pre-activated PVDF membrane using
the Trans-Blot®Turbo™ Transfer System and visualized using ECL (Bio-Rad
Chemidoc). Antibodies used in this study are listed in STARS methods key resource
table.

Animals

The Monash University Animal Ethics Committee approved all animal use in this study
(AEC — approval number 2020-24197-49078). For these experiments, 5-7 week old
female NSG mice were purchased from Australian Research Laboratories (WA,
Australia) or were kindly gifted from Professor Gail Risbridger and A/Prof. Renea
Taylor (Monash University).

Validation of in vivo screens

B80-TS-MEKDD cells stably expressing Cas9 were infected with lentiviruses
containing sgRNA’s targeting AAVS1 (control), ATF7IP, DUSP4, TGFBR2, CREBBP.
Twenty-four hours post-infection, cells underwent puromycin selection for 7 days and
expanded. Cells were trypsinized, washed twice in PBS and injected into NSG mice
subcutaneously under isofluorane anesthesia. For each sgRNA, we injected 2e6
cells/site, 3 sites per mouse. Tumor growth was measured using a digital caliper every
48 hours and monitored continuously until tumor volume reached 1cm? (sum of all
three sites). Tumor volume was calculated using the formula length (mm) x width (mm)
x height (mm). Mice were sacrificed once tumors reached 1cm3.

CRISPRqtl

CRISPRqtl was done as previously described (Gasperini et al., 2019). Briefly,
K5+/K19+ cells stably expressing KRAB-dCas9 were infected with the CRISPRqtl
library at MOI=5. 24h post infection, cells were selected with puromycin (2ug/ml) and
cultured for 10 days. Cells were trypsinized washed with PBS and resuspended in
PBS to reach a concentration of 1,200 cells/ml. Single-cell suspensions were loaded
generated using the 10X Genomics Chromium Controller and Chromium Next GEM
Single Cell 3' GEM, Library and Gel Bead Kit v3.1 (10X Genomics cat #1000121), per
manufacturer's instructions (CG000204 Rev D) with the following modifications and
variables. A single sample was loaded in two wells of the Next Gem Chip G,
overloaded at 150% of the recommended cell input volume, with the corresponding
volume of dH20 deducted at Step 1.2b (using the Cell Suspension Volume Calculator
Table; p26). At Step 2.2d, cDNA was generated using 11 cycles of PCR. Samples
were recombined 1:1 before Step 3.1. Prior to enzymatic shearing, 10% of the cDNA
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was used for sgRNA PCR enrichment. Specifically, A three-step nested PCR was
used for gRNA enrichment (Hill et al., 2018).

PCR 1: 5 ng of 10x cDNA was amplified using NEBNext high fidelity 2x PCR mix (NEB
# MO0541) and the following primers: Rxn1_Fwd:
TTTCCCATGATTCCTTCATATTTGC, Rxn1_Rev: ACACTCTTTCCCTACACGACG.
Cycling conditions: 98°C for 30s, 14x (98°C for 10s, 50°C for 10s, 72°C for 20s), 72°C
for 2min. PCR product was gel purified using the Qiagen MinElute Gel extraction kit
(Qiagen # 28604).

PCR 2: 5ng of PCR 1 was amplified using NEBNext high fidelity 2x PCR mix (NEB #

M0541) and the following primers: Rnx2_Fwd:
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTGTGGAAAGGACGAAACA
C, Rnx2_Rev:

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC.
Cycling conditions: 98°C for 30s, 7x (98°C for 10s, 64°C for 10s, 72°C for 15s), 72°C
for 2min. PCR product was gel purified using the Qiagen MinElute Gel extraction kit
(Qiagene # 28604).

PCR 3: 5ng of PCR 1 was amplified using NEBNext high fidelity 2x PCR mix (NEB #
MO0541) and the following primers: Rnx3_Fwd:
CAAGCAGAAGACGGCATACGAGATGACAGCATGTGACTGGAGTTCAGACGT,
Rnx2_Rev (see PCR_2). Cycling conditions: 98°C for 30s, 11x (98°C for 10s, 64°C for
10s, 72°C for 15s), 72°C for 2min. PCR product was gel purified using the Qiagen
MinElute Gel extraction kit (Qiagene # 28604) and then purified using AMPure beads
(Beckman Coulter # A63881). cDNA and PCR product were pooled at a 1:10 ration
and sequenced on two lanes of an MGISeq machine (Genewiz) using 150 PE-cycles
(total of 569e6 reads).

CROPSeq

CROPSeq analysis was similar to CRISPRqtl with the following modifications.
CROPSeq library was transduced into K5+/K19+ cells expressing WT Cas9 at a MOl
of 0.1 ensuring 1 sgRNA/cell. Single cell isolation and library preparation was exactly
as described for CRISPRqtl but only one 10x chromium lane was used (15,181 cell
isolated) and sequencing was done on one MGISeq lane.

L1000 analysis

For each gene knockout we use the Z-score matrix (Supplementary Table 7) to define
the up and down regulated genes. Top 150 up/down regulated genes were used as
an input for the CMap for reference perturbagen signatures (https://clue.io/query)
(Subramanian et al., 2017). We used version 1 of the CMap signature database for
this analysis and collected both individual compound (PERT) and PCL for each of
these signatures.
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