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ABSTRACT 24 

The chytrids (phylum Chytridiomycota) are a major early-diverging fungal lineage of 25 

ecological and evolutionary importance. Despite their importance, many fundamental 26 

aspects of chytrid developmental and cell biology remain poorly understood. To 27 

address these knowledge gaps, we combined quantitative volume electron 28 

microscopy and comparative transcriptome profiling to create an ‘atlas’ of the cellular 29 

and molecular basis of the chytrid life cycle, using the model chytrid 30 

Rhizoclosmatium globosum. From our developmental atlas, we show that zoospores 31 

exhibit a specialised biological repertoire dominated by inactive ribosome 32 

aggregates, and that lipid processing is complex and dynamic throughout the cell 33 

cycle. We demonstrate that the chytrid apophysis is a distinct subcellular structure 34 

characterised by high intracellular trafficking, providing evidence for division of labour 35 

in the chytrid cell plan, and show that zoosporogenesis includes ‘animal like’ 36 

amoeboid cell morphologies resulting from endocytotic cargo transport from the 37 

interstitial maternal cytoplasm. Taken together, our results reveal insights into chytrid 38 

developmental biology and provide a basis for future investigations into early-39 

diverging fungal cell biology.  40 

 41 

INTRODUCTION 42 

The chytrids (phylum Chytridiomycota) are an early-diverging and predominantly 43 

unicellular fungal lineage of ecological importance. For example, some chytrid 44 

species are the causative agents of the global amphibian panzootic (Fisher and 45 

Garner, 2020) and virulent crop pests (van de Vossenberg et al., 2019), whilst others 46 

are algal parasites and saprotrophs in marine and freshwater ecosystems (Frenken 47 
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et al., 2017; Grossart et al., 2019; Klawonn et al., 2021). Chytrid zoospores contain 48 

large amounts of intracellular storage lipids that are consumed by grazing 49 

zooplankton, making them responsible for a significant form of trophic upgrading in 50 

aquatic ecosystems (Kagami et al., 2017, 2014, 2007; Rasconi et al., 2020). Chytrids 51 

are also important from an evolutionary perspective as they retain cellular traits from 52 

the last common ancestor of branching fungi (Fig. 1A) that are now absent in hyphal 53 

fungi (Berbee et al., 2017; Nagy et al., 2018), as well as traits from the common 54 

ancestor of animals and fungi in the Opisthokonta (Medina et al., 2016; Prostak et 55 

al., 2021). This makes chytrids powerful models to explore the origin and evolution of 56 

innovations in fungal cell biology and the wider eukaryotic tree of life. To help fully 57 

appreciate chytrids in terms of their ecological and evolutionary contexts, it is 58 

necessary to resolve their core cell biology (Laundon and Cunliffe, 2021). 59 

 Central to chytrid cell biology is their distinctive dimorphic life cycle, consisting 60 

of a motile free-swimming uniflagellate zoospore that transforms into a sessile walled 61 

thallus with anucleate attaching and feeding rhizoids (Fig. 1B) (Laundon et al., 2020; 62 

Medina et al., 2019). The cell body component of the thallus develops into the 63 

zoosporangium from which the next generation of zoospores are produced (Fig. 1B). 64 

Any biological life cycle inherently represents a temporal progression, yet the chytrid 65 

life cycle can be categorised into four distinctive contiguous life stages (Berger et al., 66 

2005). The first stage is the motile ‘zoospore’ which lacks a cell wall, does not feed, 67 

and colonises substrates or hosts. The second stage is the sessile ‘germling’ which 68 

develops immediately after zoospore settlement following flagellar retraction (or 69 

sometimes detachment), cell wall production (encystment), and initiation of rhizoid 70 

growth from an initial germ tube. The third stage is the vegetative ‘immature thallus’ 71 

which is associated with the highest levels of rhizoid development and overall 72 
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cellular growth (Laundon et al., 2020). The cell plan of the immature thallus can be 73 

divided into three parts (Fig. 1B): the cell body which is ultimately destined for 74 

reproduction (zoosporogenesis), the rhizoid for attachment and feeding, and (in 75 

some chytrid species) a bulbous swelling between the cell body and rhizoid termed 76 

the ‘apophysis’, the function of which is currently poorly understood (Laundon and 77 

Cunliffe, 2021). The final life stage is the reproductive ‘mature zoosporangium’, 78 

which appears once the immature thallus has reached maximum cell size and the 79 

cell body cytoplasm is cleaved into the next generation of zoospores (Fig. 1B).  80 

 Representative model strains have an important role to play in understanding 81 

the biology of chytrids (Laundon and Cunliffe, 2021). Rhizoclosmatium globosum is a 82 

widespread aquatic saprotroph and the strain R. globosum JEL800 has emerged as 83 

a promising model organism in laboratory investigations (Laundon et al., 2020; 84 

Roberts et al., 2020; Venard et al., 2020) due to an available genome (Mondo et al., 85 

2017), easy axenic culture, and amenability to live-cell fluorescent microscopy 86 

(Laundon et al., 2020). R. globosum JEL800 exhibits an archetypal chytrid cell plan 87 

(Fig. 1B) and rapid life cycle, making it a useful model system to interrogate cellular 88 

development (Laundon et al., 2020; Laundon and Cunliffe, 2021).  89 

The chytrid cell cycle has so far been characterised with largely descriptive 90 

approaches (e.g Berger et al., 2005) with only a few quantitative studies focusing on 91 

specific processes, such as rhizoid morphogenesis (Dee et al., 2019; Laundon et al., 92 

2020) and actin formation (Medina et al., 2020; Prostak et al., 2021). These 93 

important studies provide a foundation on which to develop a quantitative approach 94 

to understand the biology of the chytrid cell plan and the drivers of the transitions 95 

between the life stages. To investigate the cellular and molecular underpinnings of 96 

the chytrid life cycle and associated cell biology, we studied the four major life stages 97 
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of the R. globosum cell cycle by combining quantitative volume electron microscopy 98 

and transcriptomics (Fig. 1C), with the addition of supplementary targeted live-cell 99 

fluorescent microscopy and lipid analysis. The aim of our approach was to quantify 100 

the cellular traits that define the major chytrid life stages and identify the biological 101 

processes that take place during the developmental transitions between them. As 102 

such, we have created a developmental ‘atlas’ with R. globosum for the archetypal 103 

chytrid lifecycle, which in turn generated specific avenues for targeted investigation 104 

of important biological processes, namely lipid biology, apophysis function, and 105 

zoosporogenesis.  106 

By culturing R. globosum and sampling the populations at different stages 107 

through their temporal development (0 h zoospore, 1.5 h germling, 10 h immature 108 

thallus, and a 24 h mixed population including mature zoosporangia) (Fig. 1C), we 109 

examined chytrid populations with both 3D reconstructions by Serial Block Face 110 

Scanning Electron Microscopy (SBF-SEM) and mRNA sequencing. We used single-111 

cell SBF-SEM reconstructions (n = 5) (Suppl. Fig. 1) to quantify the cellular 112 

structures at each life stage and population-level transcriptomic analysis of 113 

significant KEGG pathway categories (n = 3, Differentially Expressed Genes (DEGs)) 114 

to identify the major biological differences between the life stages through temporal 115 

development (Fig. 1C). As these stages represent key time points in the progression 116 

of the linear temporal chytrid life cycle, pairwise comparison of transcriptomes from 117 

contiguous life stages achieved an account of the major putative biological 118 

transitions (e.g. germling vs. zoospore, immature thallus vs. germling) (Fig. 2C; 119 

Suppl. Figs 2-5). Our findings provide insights into chytrid developmental processes 120 

and serve as a resource from which to resolve the biology of this ecologically and 121 

evolutionary important fungal lineage.  122 
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 123 

RESULTS 124 

A cellular and molecular atlas of Rhizoclosmatium globosum  125 

The orientation, subcellular localisation, and morphology of the cellular ultrastructure 126 

determined with SBF-SEM of the R. globosum zoospore, germling, and immature 127 

thallus life stages are shown in (Fig. 2A; Movie 1; Suppl. Mov. 1-21; Suppl. File 1), 128 

with the volumetric transition from zoospore (20.7±1.7 µm3) to germling (33.0±2.0 129 

µm3) to immature thallus (1,116.3±206.2 µm3) exceeding an order of magnitude. 130 

These ultrastructural differences in the cell patterns at each life stage (Fig. 2B-D) are 131 

complemented with differential gene expression analysis focusing on characterising 132 

the transitions between life stages (Fig. 2E-J). Full statistical details of cell volumetric 133 

and molecular comparisons are provided in (Suppl. Fig. 5-7; Suppl Tables 1-5; 134 

Suppl. File 2). As the mature zoosporangium samples were taken from a mixed 135 

population of cell stages (Fig. 1C), they were conservatively excluded from 136 

comparison with the first three stages and will be treated separately in this analysis.    137 

The zoospore cell body is a prolate spheroid with an apical flagellum and is 138 

volumetrically dominated by a structurally distinct ribosome cluster (20.5±2.8 %) in 139 

the cell interior which was not detected in the other life stages (Fig. 2A-B; Suppl. Fig. 140 

2; Suppl. Mov. 1-5). The loss of the ribosome cluster in the germling from the 141 

zoospore stage matched a downregulation of ribosome and ribosome biogenesis 142 

KEGG categories in the germling relative to the zoospore (Fig. 2G; Suppl. File 2). 143 

There was no observed significant molecular signature associated with elevated 144 

protein synthesis in zoospores, suggesting that ribosome presence and aggregation, 145 

but not activity, govern chytrid zoospores. Only two other KEGG categories were 146 
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downregulated in germlings relative to zoospores. These were linked to peroxisomes 147 

and ATP-binding cassette (ABC) transporters (Fig. 2G), both of which are associated 148 

with lipid metabolism (discussed further below).  149 

 Following encystment, the germling stage marks the origin of a complete cell 150 

wall, Golgi apparatuses (3 out of 5 replicates), and peripheral bodies i.e. vesicular 151 

structures bound to the cell periphery putatively associated with cell wall deposition 152 

(Fig. 2A&C; Suppl. Fig. 2; Suppl. Mov. 6-10), as well as the beginning of rhizoid 153 

growth from an apical germ tube. Transcriptome analysis indicated that the germling 154 

exhibits a greater range of active processes compared to the zoospore, with 155 

upregulation of primary and secondary metabolism (e.g. amino acid and secondary 156 

metabolite biosynthesis), feeding and energy release (e.g. carbon metabolism and 157 

Tricarboxylic Acid Cycle), and transcription and translation (e.g. spliceosome and 158 

aminoacyl-tRNA biosynthesis) KEGG categories (Fig. 2H). A similar pattern is shown 159 

when comparing KEGG categories downregulated in immature thalli relative to 160 

germlings (Fig. 2I). In the germling stage, we also show upregulation of genes 161 

associated with proteasome activity (Fig. 2H). Taken together, these data show that 162 

the transition from zoospore to germling is characterised by the apparent activation 163 

of diverse biological processes including central metabolic pathways, cellular 164 

anabolism, and feeding.  165 

 Compared to the germling, immature thalli devoted a smaller volumetric 166 

proportion to the cell wall (IT 2.4±0.3 % vs G 7.6±1.2 %, p<0.01) and peripheral 167 

bodies (IT 0.3±0.1 % vs G 1.7±0.3 %, p<0.01) (Fig. 2A&D; Suppl. Fig. 5; Suppl. Mov. 168 

11-15). Similarly, nuclei (IT 4.8±2.5 % vs G 12.2±0.5 %, p<0.01) and mitochondria 169 

(IT 7.0±0.1 % vs G 9.1±0.7%, p<0.001) occupied a smaller volumetric proportion 170 

(Fig. 2A&D; Suppl. Fig. 5). Conversely, immature thalli displayed larger glycogen 171 
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stores (IT 9.4±2.0 % vs G 1.3±0.4%, p<0.01) and vacuole fractions (IT 13.0±1.8 % 172 

vs G 7.6±0.9 %, p<0.001) than germlings (Fig. 2A&D; Suppl. Fig. 5). Quantification 173 

of the increased vacuolisation of immature thalli in the SBF-SEM reconstructions 174 

was correlated with upregulation of related KEGG categories including endocytosis 175 

and phagosomes relative to germlings (Fig. 2J). Within these categories are genes 176 

related to microtubules and actin, including actin-related proteins-2/3 (ARP2/3), 177 

indicating that the immature thalli are associated with higher cytoskeletal activity 178 

compared to germlings. Some immature thallus replicates were multinucleate 179 

(1.8±1.3 nuclei per cell), indicating the onset of nuclear division (Fig. 2A), which 180 

matched the upregulation of cell cycle and DNA replication KEGG categories relative 181 

to germlings. The apophysis (12.2±6.0 µm3) was observed at the immature thallus 182 

stage (discussed further below). Overall, these data show that the biological shift 183 

from germling to immature thallus is characterised by a move from initiating general 184 

metabolic activity to intracellular trafficking and the start of zoosporogenesis. 185 

 As anticipated, the SBF-SEM reconstructions showed that the zoospore is 186 

wall-less unlike the germling and immature thallus stages (Fig. 2). Single cell 187 

fluorescent-labelling of chitin (the primary wall component) however showed that 188 

precursory material is produced by zoospores at the apical pole near the flagellum 189 

base (Fig 3A) suggesting that cell wall production is initiated to some extent during 190 

the free-swimming zoospore stage of the R. globosum cell cycle. In a previous study 191 

(Laundon et al., 2020), we identified twenty-eight candidate genes for 192 

glycosyltransferase (GT2) domain-containing proteins putatively involved in chitin 193 

synthesis in R. globosum and searched for their individual regulation in the 194 

transcriptome data. There was no clear pattern of differential regulation of these 195 

genes between the life stages overall, however five putative chitin synthase genes 196 
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were upregulated during the zoospore stage (Suppl. File 2). Nine genes were only 197 

found upregulated in the thallus relative to the germling, six of which had >5-fold 198 

change increase in abundance. Six genes were not recovered in any the 199 

transcriptomes. Interestingly, a putative β-1,6-glucan synthase gene (ORY39038) 200 

identified in (Laundon et al., 2020) as having a possible role in wall formation in R. 201 

globosum was downregulated in germlings relative to wall-less zoospores. Together, 202 

this suggests that cell wall formation is a dynamic process throughout the chytrid life 203 

cycle, with alternative synthesis enzymes employed at different stages. 204 

 205 

Changes in subcellular lipid-associated structures are linked with variation in 206 

lipid composition 207 

Fluorescent labelling and SBF-SEM reconstructions showed that zoospores and 208 

germlings possess a single lipid globule (Z 0.9±0.6 and G 1.9±1.1 µm3) whereas 209 

immature thalli have multiple (68.8±55.2) but smaller (0.5±0.8 µm3) globules 210 

scattered throughout the cell body (Fig. 3A-B; Movie 2). The lipid globule (red) in the 211 

zoospore and germling stages was associated with an apically oriented structure 212 

called the rumposome (grey), which is a chytrid-specific organelle putatively 213 

associated with cell signalling (Powell, 1983), and a basally oriented microbody 214 

(pink) that likely functions as a lipid-processing peroxisome (Powell, 1976) (Fig. 3B-215 

C; Movie 2). Together these structures form the lipid-rumposome-microbody (LRM) 216 

complex. The rumposome was larger in zoospores than in germlings (Z 0.3±0.0 % vs 217 

G 0.1±0.1 %, p<0.001) (Suppl. Fig. 5), indicating increased activity in zoospores. In 218 

immature thalli, LRM complexes were not detected. Unlike in zoospores and 219 

germlings, the bulk of the lipids in the immature thalli were intravacuolar (89.8±8.5 % 220 
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total lipids) (Fig. 3D). There was no proportional volumetric difference in lipid 221 

fractions determined with SBF-SEM reconstructions between the three life stages (Z 222 

4.3±2.6 % vs G 5.7±3.7 % vs IT 4.0±1.6 %, p>0.05) (Fig. 2B-D; Suppl. Fig. 5).  223 

 Live-population imaging of Nile Red-labelled storage lipids showed that 224 

initially (0-2 h) the chytrid life cycle was characterised by a decrease (-49.7±9.8 %) in 225 

lipid fluorescence suggesting that neutral storage lipid catabolism was taking place, 226 

before fluorescence increased suggesting that lipid anabolism was occurring up to 227 

zoospore release (Fig. 3E-F). The initial lipid fluorescence decreased even in the 228 

presence of a carbon replete growth medium in line with the non-feeding habit of 229 

zoospores (Fig. 3F). Live-single cell imaging revealed a similar response as shown 230 

at the population level, and additionally showed that the zoospore lipid globule 231 

remains intact and detectable until at least the point of visible lipid anabolism in the 232 

developing cell when the globule becomes undisguisable from the new lipids (Fig. 233 

3G, Movie 3; Suppl. Mov. 22).  234 

 Extraction and quantification of lipids from cells harvested at the major life 235 

stages showed shifts in lipid profiles. Individual zoospores possessed 1.2±0.1 pg, 236 

germlings 2.2±0.3 pg, and immature thalli 904.5±201.0 pg of lipid per cell (Fig. 3H), 237 

however lipid composition as a percentage of dry mass (Z 74.8±11.8 % vs G 238 

69.5.0±11.5 % vs IT 61.0±3.3 %) was similar across the life stages (Fig. 3I). 239 

Sphingolipids were present in both zoospores and immature thalli (Z 41.6±3.6 % and 240 

IT 11.5±2.6 %), but below detection in germlings (Fig. 3J). Likewise, glycolipids were 241 

present in both zoospores (40.7±27.1%) and immature thalli (40.6±27.3 %), but 242 

below detection in germlings. Conversely, polar lipids were below detection in 243 

zoospores yet present in germlings (51.7±27.5 %) and immature thalli (74.0±3.4 %).  244 
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The differences in lipid composition between the zoospore and germling 245 

stages (Fig. 3J) correlated with higher expression of genes in KEGG categories 246 

associated with peroxisome activity and ABC-transporters in zoospores compared to 247 

germlings (Fig. 2G). Most of the genes identified under the peroxisome category are 248 

involved in lipid oxidation and acyl-CoA metabolism, and therefore likely involved in 249 

the catabolic processing of the lipid globule (Suppl. File 2). Lipid reductases were 250 

also detected, which have previously been identified with phospholipid anabolism 251 

(Lodhi and Semenkovich, 2014) and, together with the increase in endomembrane 252 

between germlings and zoospores determined with SBF-SEM (Figure 2B-C), point to 253 

increased phospholipid synthesis for membrane production. ABC-transporters are 254 

also involved in lipid transport into peroxisomes from lipid stores (Tarling et al., 255 

2013). Together, these results suggest that glycolipid, and potentially sphingolipid, 256 

catabolism likely form part of storage lipid utilisation from the globule via the 257 

peroxisome, and polar lipid anabolism for endomembrane production are biological 258 

characteristics of the transition from zoospore to germling. 259 

 We also observed the upregulation of genes associated with fatty acid 260 

degradation and peroxisomes in the immature thallus stage compared to the 261 

germling stage (Fig. 2J) coinciding with new lipids being produced (Fig. 3). The 262 

genes were associated with similar acyl-CoA pathways as the zoospore peroxisome 263 

category, in addition to alcohol and aldehyde dehydrogenation (Suppl. File 2). 264 

Interestingly, although the peroxisome category was also upregulated in immature 265 

thalli, the associated genes were not identical to those in zoospores. Many similar 266 

acyl-CoA metabolic signatures were shared (16 genes), but with the addition of 267 

alcohol and isocitrate dehydrogenation and superoxide dismutase activity. This 268 

suggests that in immature thalli lipid production is driven by an interplay of fatty acid 269 
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degradation and lipid anabolism, illustrating that some aspects of lipid catabolism 270 

and conversion in zoospores are bidirectionally repurposed for anabolism in 271 

immature thalli.  272 

 273 

The apophysis is a compartmentalised junction for intracellular trafficking 274 

between the rhizoids and cell body  275 

The apophysis is ubiquitous across the Chytridiomycota (James et al., 2006), but the 276 

function of the structure is poorly understood (Laundon and Cunliffe, 2021). Here we 277 

show that the apophysis exhibits high endomembrane density and active intracellular 278 

trafficking between the feeding rhizoids and cell body (Fig. 4). Live-population 279 

imaging of FM1-43 labelled endomembrane in R. globosum cells (excluding 280 

apophysis and rhizoids) showed stability in fluorescence at the beginning of the life 281 

cycle (0-2 h), before a constant increase to the point of zoospore release (Fig. 4A). 282 

Matching this, SBF-SEM reconstruction revealed that immature thalli devoted a 283 

larger proportion of cell body volume to endomembrane than zoospores and 284 

germlings (Z 2.3±1.5 % vs G 7.6±0.9 % vs IT 13.0±1.8 %, p<0.001), as well as 285 

vacuoles (Fig. 2B-D, Fig. 4B; Suppl. Fig. 5). The associated upregulation of KEGG 286 

categories such as protein processing in the endoplasmic reticulum (ER) and 287 

ubiquitin mediated proteolysis (Fig. 2J) with the transition from the germling to the 288 

immature thallus stage suggests that this structural endomembrane is at least in part 289 

ER and coupled with protein turnover.  290 

The immature thalli SBF-SEM reconstructions showed that apophyses 291 

displayed even greater structural endomembrane than their corresponding cell 292 

bodies (apophysis 12.2±5.2 % vs cell body 2.7±0.6 %, p<0.01) (Fig. 4C-D; Suppl. 293 
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Fig. 6; Movie 4). Apophyses also had comparatively more cell wall than the larger 294 

cell bodies (A 11.0±0.5 % vs CB 2.4±0.3 %, p<0.01) (Fig. 4D; Suppl. Fig. 6). In R. 295 

globosum the cytoplasm between the apophysis and the cell body is connected via 296 

an annular pore (0.40±0.07 µm in diameter) in a distinctive chitin-rich pseudo-septum 297 

(Fig. 4 E&G), causing spatial division within the immature thallus cell plan. Live 298 

single cell imaging showed dynamic endomembrane activity in the apophysis linking 299 

the intracellular traffic between the rhizoid system and apical base of the cell body 300 

via the pore (Movie 5; Suppl. Mov. 23). Taken together, we propose that a function of 301 

the apophysis is to act as a cellular junction that regulates intracellular traffic and 302 

channels material from feeding rhizoids through the pseudo-septal pore to the cell 303 

body dedicated for reproduction.  304 

 305 

Developing zoospores in the zoosporangium display an amoeboid morphology 306 

resulting from endocytotic trafficking  307 

Understanding zoosporogenesis, including how the thallus differentiates into the next 308 

generation of zoospores, is integral to closing the chytrid life cycle. We were unable 309 

to achieve a synchronised population of mature zoosporangia, however imaging and 310 

sequencing of mixed populations (~4% cells at the mature zoosporangia stage, 311 

Suppl. Fig. 8) still allowed structural characterisation of this life stage, including the 312 

SBF-SEM reconstruction of an entire mature zoosporangium containing 82-313 

developing zoospores (Fig. 5; Suppl. Fig. 2; Movie 6; Suppl. Mov. 16). Mature 314 

zoosporangia are characterised by internal membrane cleavage (Fig. 5A) where 315 

coenocytic immature cytoplasm and organelles are allocated into nascent 316 

zoospores. The volume of the SBF-SEM reconstructed mature zoosporangium was 317 
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3,651.5 µm3, showing that a single chytrid cell volumetrically increases by more than 318 

two orders of magnitude over its entire life cycle. The developing zoospores were 319 

flagellate, with the flagellum coiled round the cell body in two neat and complete 320 

rotations (Fig. 5B). Zoospores are held within the cell wall of the zoosporangium 321 

during zoosporogenesis (Fig. 5B), before exiting through the basally oriented 322 

discharge pore (an aperture in the cell wall) when developed. During development, 323 

the pore is obstructed by a fibrillar discharge plug (49.7 µm3 in volume) (Fig. 5C).  324 

The single entire zoosporangium reconstruction (Fig. 5B) allowed the 325 

visualisation of developing zoospores in context, but to understand the detailed 326 

structural basis of this process it was necessary to reconstruct individual zoospore 327 

cells in the zoosporangium at higher resolution for comparison with free-swimming 328 

zoospores (Fig. 5D-G; Suppl. Fig. 7; Suppl. Mov. 17-21). This was coupled with 329 

comparison of transcriptomes from the mature zoosporangia (taken from the mixed 330 

populations) with transcriptomes from the free-swimming zoospores. Relative to 331 

mature free-swimming zoospores, developing zoospores in the zoosporangium 332 

displayed an amoeboid morphology and had greater intracellular trafficking, 333 

characterised by a larger volumetric proportion of endomembrane (DZ 1.7±0.3 % vs 334 

MZ 0.9±0.4 %, p<0.05), vacuoles, (DZ 8.4±2.1 % vs MZ 2.3±1.5 %, p<0.001) and 335 

the presence of Golgi apparatuses and a vesicle class not observed in mature free-336 

swimming zoospores (Fig. 5D-E; Suppl. Fig. 7). Developing zoospores in the 337 

zoosporangium also exhibited larger glycogen stores (DV 5.5±1.5 % vs MV 1.6±1.2 338 

%, p<0.01), indicating that glycogen utilisation occurs between the two stages, and a 339 

smaller rumposome (DV 0.1±0.0 % vs MZ 1.3±0.0 %, p<0.001) (Fig 5D-E) than their 340 

mature free-swimming counterparts. 341 
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The amoeboid morphology of the developing zoospores was in part a result of 342 

endocytotic engulfment activity, where vacuoles extended from within the zoospore 343 

cell interior to the surrounding interstitial maternal cytoplasm of the zoosporangium 344 

(Fig. 5F-G). The transcriptome of the mature zoosporangia stage showed an 345 

upregulation of phagosome genes relative to the free-swimming zoospore stage (Fig. 346 

5I). The zoospore vacuoles contained electron-dense cargo similar to lipids (Fig. 5F). 347 

The prominence of this engulfment across replicates suggests that endocytosis is 348 

the primary mode by which resources are trafficked from the maternal cytoplasm into 349 

developing zoospores post-cleavage, and that zoospore development does not 350 

cease once cleavage has been completed. Notably, developing zoospores did not 351 

yet display a detectable ribosomal cluster, as in the free-swimming zoospores (Fig. 352 

2), and the only KEGG categories higher in free-swimming zoospores than in the 353 

mature zoosporangia samples were associated with ribosomes (Fig. 5J), indicating 354 

that this structure is formed later in zoospore development than captured here. The 355 

apparent importance of maintaining ribosomes in the biology of zoospores closes the 356 

chytrid life cycle when considered with our early discussion on the distinctiveness of 357 

zoospores in the zoospore-germling transition.  358 

 359 

DISCUSSION  360 

This study into the cellular and molecular biology of R. globosum has generated a 361 

developmental atlas of an archetypal chytrid life cycle, shedding light on the cell 362 

patterns of major life stages and the biological processes governing the transitions 363 

between them. Our key findings are summarised in (Fig. 6).  364 
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In the R. globosum zoospore cell body, the ribosome cluster is a distinctive 365 

and dominating feature. Historically called the ‘nuclear cap’, ribosome clusters have 366 

been observed in zoospores throughout the Chytridiomycota (e.g. Koch, 1961) and 367 

in the closely related Blastocladiomycota (e.g. Lovett 1963). Lovett (1963) showed in 368 

Blastocladiella (Blastocladiomycota), as we show here with R. globosum, the 369 

ribosome cluster dissipates during the transition between the free-swimming 370 

zoospore and germling stages causing the release of the previously contained 371 

ribosomes throughout the cell. Lovett (1963, 1968) related the Blastocladiella 372 

zoospore ribosome cluster and subsequent dissipation with the biological activity of 373 

the cell during the zoospore-germling transition, proposing the role of the cluster was 374 

to maintain the ribosomes through the zoospore stage and to spatially isolate the 375 

ribosomes to prevent translation occurring until when the cluster dissipates (i.e. the 376 

germling stage) and protein synthesis is initiated. Other investigations into protein 377 

synthesis in chytrids (Léjohn and Lovett, 1965) and the Blastocladiomycota (Lovett, 378 

1968; Schmoyer and Lovett, 1969) also suggest that translation does not begin until 379 

germination and that the zoospore is at least partially dependent on maternally-380 

provisioned mRNA and ribosomes.  381 

Our transcriptome data add molecular detail to this process, with KEGG 382 

categories related to ribosome maintenance downregulated and categories 383 

associated with translation and biosynthesis upregulated during the zoospore-384 

germling transition. Similarly, (Rosenblum et al., 2008) detected high levels of 385 

transcripts associated with posttranslational protein modification in Batrachochytrium 386 

dendrobatidis (Bd) zoospores, but low transcriptional activity. Comparable 387 

translational activity is seen in dikaryan spore germination (Brambl and Van Etten, 388 

1970; Mirkes, 1974; Rado and Cochrane, 1971). Taken together, the chytrid 389 
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zoospore life stage represents a sophisticated and well-adapted specialised 390 

biological repertoire optimised for dispersal to new growth substrates or hosts rather 391 

than general metabolism, which is only initiated by the release of the ribosome 392 

cluster at the germling stage once favourable conditions are found.  393 

The germling stage is characterised by major cell plan remodelling, including 394 

rhizoid growth, and concomitant activation of diverse metabolic pathways. Similar 395 

upregulation of metabolic pathways has been observed at the transcriptional level 396 

associated with conidial germination in dikaryan fungi (Sharma et al., 2016; Zhou et 397 

al., 2018). Interestingly, we detected the upregulation of proteasome genes in the 398 

germling relative to the zoospore, which are also necessary for dikaryan germination 399 

(Seong et al., 2008; Wang et al., 2011). A previous study into flagellar retraction in R. 400 

globosum showed that the internalised flagellum is disassembled and degraded in 401 

the germling stage, at least partially by proteasome-dependent proteolysis (Venard 402 

et al., 2020). Our findings of increased proteasome expression may likewise be 403 

associated with flagellar degradation and the recycling of redundant zoospore 404 

machinery in the germling.  405 

 The immature thallus displayed increased cellular and molecular signatures 406 

associated with the reproductive cell cycle, intracellular trafficking, and protein 407 

processing. A key structural development was the vacuolisation of the cell body. 408 

Highly vacuolated dikaryan cells (El Ghaouth et al., 1994; Gow and Gooday, 1987) 409 

are associated with diverse cellular processes including general homeostasis, 410 

protein sorting, cell cycling, and intracellular trafficking (Veses et al., 2008), any of 411 

which could at least partially explain the high vacuolisation of immature chytrid thalli. 412 

Noticeable in the context of chytrid cell biology however is the upregulation of actin-413 

driven cytoskeletal genes, including those assigned to the Arp2/3 complex. The role 414 
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of actin in vacuolisation and endocytosis has been demonstrated in yeast (Eitzen et 415 

al., 2002; Gachet and Hyams, 2005), similar to our observations here in R. 416 

globosum. Arp2/3-dependent actin dynamics drive crawling α-motility in some chytrid 417 

zoospores when moving freely in the environment (Fritz-Laylin et al., 2017; Medina 418 

et al., 2020) and the presence of animal-like actin components that have been lost in 419 

multicellular fungi makes chytrids useful models to investigate the evolution of the 420 

fungal cytoskeleton (Prostak et al., 2021). Although R. globosum zoospores do not 421 

crawl, the immature thallus has actin patches, cables, and perinuclear shells 422 

(Prostak et al., 2021). Here we show that, for a non-crawling chytrid, actin-423 

associated genes are upregulated in immature thalli and are associated with a cell 424 

stage with high vacuolisation and endocytosis, which could possibly be associated 425 

with the early onset of zoosporogenesis.   426 

 We did not find any differences in molecular signatures related to cell wall 427 

synthesis between the different life stages at the higher categorical level in R. 428 

globosum, instead we observed individual differentially expressed genes suggesting 429 

that the process is dynamic and complex. Higher levels of putative chitin synthase 430 

gene transcripts (e.g. ORY39038) in wall-less zoospores was coupled with the 431 

detection of precursory cell wall material at the base of the flagellum. Bd 432 

transcriptomes also show specific transcripts associated with chitin synthesis to be 433 

higher in zoospores than in sessile thalli (Rosenblum et al., 2008). Chitin synthase 434 

activity has been shown associated with the Blastocladiella emersonii zoospore 435 

membrane (Dalley and Sonneborn, 1982). Early initiation of cell wall synthesis 436 

warrants further study and may explain why early chemical inhibition induces 437 

phenotypic disruptions to normal development in chytrids (Laundon et al., 2020). 438 
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This emphasises the need to include the wall-less zoospore stage in investigations 439 

into chytrid cell wall biology. 440 

 This study has highlighted the complexity of lipid dynamics across the R. 441 

globosum lifecycle. Our data show that the volume of the lipid globule, total lipid by 442 

volume, and lipid as a percentage of dry mass remain unchanged between 443 

zoospores and germlings, yet we observed a shift in lipid type, moving from 444 

sphingolipids and neutral glycolipids (likely storage triacylglycerides) to polar lipids 445 

(likely membrane-associated phospholipids) between zoospores and germlings. 446 

Similarly, during the B. emersonii zoospore-germling transition glycolipids decrease 447 

and phospholipids increase (Dalley and Sonneborn, 1982). Previous research has 448 

characterised fatty acid profiles in chytrids (Akinwole et al., 2014; Gerphagnon et al., 449 

2019; Rasconi et al., 2020) and shown differences between chytrid zoospores and 450 

sessile thalli of the same species (Taube et al., 2019). As the Nile Red emission 451 

spectrum undergoes a red shift in increasingly polar environments (Bertozzini et al., 452 

2011), we propose that our live-cell data do not quantify the structural degradation of 453 

the lipid globule per se but rather biochemical polarisation as neutral storage lipids 454 

are catabolised and polar phospholipids are synthesised. The larger volumetric 455 

proportion of glycogen stores in developing zoospores over mature free-swimming 456 

zoospores also indicates that glycogen catabolism between the two stages 457 

contributes to the zoospore energy budget during motility as previously proposed 458 

(Powell, 1979). 459 

Changes in lipid profiles were coupled with subcellular ultrastructure in R. 460 

globosum. The enzymatic function of LRM-associated microbodies as lipolytic 461 

organelles has been previously proposed (Powell, 1979, 1977, 1976), where 462 

evidence suggests that enzymatic activity increases following germination (Powell, 463 
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1976). From our data, this organelle may have bidirectional function and be 464 

associated with lipid production (anabolism and conversion) as well as catabolism. A 465 

key component of the LRM is the enigmatic chytrid rumposome, which was larger in 466 

zoospores than germlings. Previous hypotheses have proposed that this organelle is 467 

associated with environmental reception and signal transduction in flagellar 468 

regulation (Dorward and Powell, 1983). An enlarged rumposome in motile zoospores 469 

would support a flagellar role, but its retention in germlings implies additional 470 

functions, unless there is a prolonged delay in its degradation. The bulk of lipids in 471 

immature thalli during anabolism were intravacuolar and comparable intravacuolar 472 

inclusions have been identified in chytrid and dikaryan fungi in the past (Beakes et 473 

al., 1992; Bourett and Howard, 1994; Lösel, 1990). Intravacuolar lipid droplets have 474 

been previously investigated in yeast but in a catabolic capacity (Van Zutphen et al., 475 

2014; Vevea et al., 2015). Although de novo storage lipid synthesis is associated 476 

with the ER (Vevea et al., 2015), the vacuoles identified here may cache and 477 

aggregate nascent globules as part of the lipid anabolic pathway.   478 

 The function of the chytrid apophysis has long been overlooked, despite its 479 

ubiquity in the Chytridiomycota (Powell, 1974; Powell and Gillette, 1987; Taylor and 480 

Fuller, 1980). Here we provide evidence that the apophysis is a distinct subcellular 481 

structure that acts as a junction for dynamic intracellular trafficking from the multiple 482 

branches of the rhizoid network into the central cell body. The localisation of high 483 

endomembrane activity in the apophysis and subsequent passage through the 484 

annular pore in the pseudo-septum into the cell body implicates this structure as a 485 

possible regulatory intermediary consolidating the rhizoid network. The ability of 486 

multicellular dikaryan fungi to translocate assimilated nutrients through their hyphal 487 

network from the site of uptake is sophisticated (van’t Padje et al., 2021; Whiteside 488 
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et al., 2019), and the observed analogous endomembrane flow from feeding rhizoids 489 

to the cell body in chytrids is perhaps not surprising. However, the localisation of 490 

high endomembrane activity to the apophysis and through the pseudo-septum into 491 

the cell body implicates this structure as a regulatory and intermediary junction. 492 

The pseudo-septation of the apophysis and rhizoids from the cell body is 493 

evidence for functional compartmentation (i.e. feeding vs. reproduction) within the 494 

thallus of a unicellular fungus. Comparable structures are also present in other 495 

chytrid species (e.g. Barr, 2011; Beakes et al., 1992). Division of multicellular 496 

dikaryan fungi by septa, where continuity between distinct cytoplasmic 497 

compartments is maintained by septal pores, is integral to multicellularity, cellular 498 

differentiation, and resilience (Bleichrodt et al., 2015, 2012). The origin of hyphal 499 

septa was a major innovation in fungal evolution (Berbee et al., 2017; Nagy et al., 500 

2020) occurring at the node shared by hyphal and rhizoidal fungi (Berbee et al., 501 

2017). The role of the apophysis/cell body pseudo-septum (or an analogous 502 

structure) in chytrids in delineating functionally dedicated subcellular compartments 503 

may represent an evolutionary precursor to dikaryan septa and differentiation. 504 

Therefore, investigating the chytrid apophysis is not only important for understanding 505 

intracellular trafficking biology in the phylum, but also the evolution of multicellularity 506 

more widely across the fungal kingdom.  507 

 Our quantitative reconstructions of individual developing zoospores in the 508 

zoosporangium and comparison with their free-swimming counterparts have added 509 

to understanding the underpinning biology of chytrid zoosporogenesis. Perhaps our 510 

most striking finding is the amoeboid morphology of developing zoospores, resulting 511 

from engulfment, and trafficking structures, suggesting that developing zoospores 512 

assimilate material from the maternal cytoplasm post-cleavage. Although dikaryan 513 
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sporogenesis is complex and diverse, it typically involves the septation of hyphal 514 

cytoplasm via cell wall synthesis (Cole, 1986; Money, 2016). As walled cells, 515 

dikaryan spores are incapable of such engulfment activity and therefore amoeboid 516 

zoospores have more in common with their more distant opisthokont relatives in this 517 

regard. Nucleariid amoebae (Yoshida et al., 2009), choanoflagellates (Laundon et 518 

al., 2019), and various animal cell types (Bayne, 1990) exhibit analogous endocytotic 519 

engulfment behaviour as we show here in fungal zoospores. This apparent 520 

conservation may indicate that such engulfment behaviour to assimilate subcellular 521 

cargo during sporogenesis of wall-less zoospores existed in the last common 522 

ancestor of branching fungi and was lost in dikaryan fungi as spores became walled.  523 

 In conclusion, our characterisation of the R. globosum life cycle has revealed 524 

changes in cell structure and associated biological processes driving chytrid 525 

development, some of which show analogies in dikaryan fungi and others in ‘animal 526 

like’ cells. As important saprotrophs, parasites, and pathogens, our findings provide 527 

information into the cellular processes that underpin the ecological importance of 528 

chytrids. In addition, our characterisation of an early-diverging fungus that retains 529 

cellular characteristics from the last common ancestor of branching fungi is a step 530 

forward in reconstructing the putative biology of this organism. This study 531 

demonstrates the utility of developmental studies with model chytrids such as R. 532 

globosum and reiterates the need for fundamental biology in investigating the 533 

function of chytrid cells.     534 

 535 

METHODS AND MATERIALS  536 
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Culture maintenance. Rhizoclosmatium globosum JEL800 was maintained on 537 

peptonised milk, tryptone, and glucose (PmTG) agar plates (Barr, 1986) in the dark 538 

at 23 °C. To collect zoospores, mature plates were flooded with 5 ml PmTG and the 539 

cell suspension was passed through a 10 μm cell sieve (pluriSelect) to remove non-540 

zoospore life stages. Zoospore density was quantified under a Leica DM1000 (10 x 541 

objective) with a Sedgewick Raft Counter (Pyser SCGI) diluted to 1:1000 and fixed in 542 

0.2% formaldehyde. Zoospores were diluted to a working density of 3 x 106 ml-1 prior 543 

to inoculation for all light microscopy experiments.   544 

Cell harvesting for SBF-SEM, transcriptomics, and lipid quantification. R. 545 

globosum was grown to progress through the life cycle and sampled at key time 546 

points: 0 h (zoospore), 1.5 h (germling), 10 h (immature thalli), and at 24 h when the 547 

population was a mix of stages including mature zoosporangia (Fig. 1C, Suppl. Fig. 548 

8). For zoospores, each replicate was harvested from 10 ml of undiluted cell 549 

suspension immediately after plate flooding. For germlings, each culture flask 550 

(83.3910, Sarstedt) contained 40 ml of liquid PmTG and was inoculated with 10 ml of 551 

zoospore suspension, incubated for 1.5 h, and pelleted after scraping the flask with 552 

an inoculation loop to dislodge adherent cells. Immature thalli replicates were pooled 553 

from 10 x culture flasks of 25 ml liquid PmTG inoculated with 50 µl zoospore 554 

suspension and incubated for 10 h. Mixed 24 h populations containing mature 555 

zoosporangia were harvested and strained through a 40 µm cell strainer (11587522, 556 

FisherBrand) to remove smaller life stages. All incubations were conducted at 23 oC 557 

and cells were pelleted at 4,700 rpm for 5 min. For SBF-SEM, cell pellets were 558 

resuspended and fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer pH 7.2. 559 

Cells were harvested identically for RNA Seq (n = 3) with the exception that the 560 

supernatant was removed before being flash frozen in liquid nitrogen and stored at -561 
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80 oC. Sub-samples from cell pellets were diluted 1:1000, fixed in 0.2% 562 

formaldehyde, and stained with FM 1-43FX to visualise cell membranes in order to 563 

qualitatively confirm the synchronicity of cultures under a confocal microscope (see 564 

further below) before being processed further (Suppl. Fig. 8). Cell pellets were 565 

harvested for lipid extraction and quantification as per RNA samples (n = 3).  566 

SBF-SEM imaging and reconstruction. Samples were further fixed in buffered 567 

glutaraldehyde, pelleted, and embedded in either agar or Bovine Serum Albumin 568 

(BSA) gel. Blocks were processed into resin using a modified protocol by Deerinck 569 

and colleagues (https://tinyurl.com/ybdtwedm). Briefly, gel-embedded chytrids were 570 

fixed with reduced osmium tetroxide, thiocarbohydrazide, and osmium tetroxide, 571 

before being stained with uranyl acetate and lead aspartate. Stained blocks were 572 

dehydrated in an ethanol series, embedded in Durcupan resin, and polymerised at 573 

60 oC for 24-48 h. Blocks were preliminarily sectioned to ascertain regions of interest 574 

(ROIs) using transmission electron microscopy (FEI Tecnai T12 TEM). ROIs were 575 

removed from the resin blocks and remounted on aluminium pins, which were 576 

aligned using scanning electron microscopy (Zeiss GeminiSEM) on a Gatan 3 view 577 

serial block face microtome and imaged. 578 

Stacks of chytrid cells were acquired at 75 nm z-intervals with an XY pixel 579 

resolution of 2 nm (zoospore, germling, and developing zoospore inside a mature 580 

zoosporangium), 4 nm (immature thallus), and 8 nm (mature zoosporangium). 581 

Although XY pixel size differed between life stages, 2-4 nm resolutions were above 582 

the minimum sampling limits for quantitative comparison of reconstructed organelles. 583 

Due to the lack of replication, the mature zoosporangium was only considered 584 

qualitatively. Acquired stacks were cropped into individual cells (n = 5) and imported 585 

into Microscopy Image Browser (MIB) (Belevich et al., 2016) for reconstruction. Prior 586 
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to segmentation, images were converted to 8-bit, aligned, contrast normalised 587 

across z-intervals using default parameters, and then were processed with a 588 

Gaussian blur filter (sigma = 0.6). Stacks were segmented using a combination of 589 

manual brush annotation and the semi-automated tools available in MIB (Suppl. Fig. 590 

1). Briefly, flagella, lipids, microbodies, nuclei, ribosomal clusters, rumposomes, 591 

peripheral bodies, striated inclusions, vacuoles, and vesicles were segmented 592 

manually using interpolation every 3-5 slices where appropriate; the discharge plug, 593 

endomembrane, glycogen granules, Golgi apparatuses, and mitochondria were 594 

masked by coarse manual brushing and then refined by black-white thresholding; 595 

and cell boundaries were segmented using the magic wand tool. All models were 596 

refined by erosion/dilation operations and manually curated. Models were also 597 

refined by statistical thresholding at size cut-offs for each structure consistent across 598 

all life stages (either 500 or 1000 voxels).   599 

 Structures were volumetrically quantified within MIB. For visualisation of 600 

reconstructed cells .am model files were resampled by 33% in XY and imported as 601 

arealists into the Fiji (Schindelin et al., 2012) plugin TrakEM2 (Cardona et al., 2012), 602 

smoothed consistently across life stages, and exported as 3D .obj meshes for final 603 

rendering in Blender v2.79. All quantification was conducted on unsmoothed models 604 

scaled by 50%. Flagella and rhizoids were excluded from quantification as they are 605 

not a component of the cell body, and their total length were not imaged in this study. 606 

The unassigned cytosol fraction was defined as the total volume of assigned 607 

organelles subtracted from the total cell volume and is inclusive of small structures 608 

such as ribosomes, vesicles, and small endomembrane and glycogen objects that 609 

could not be confidently assigned and were conservatively excluded. Only 610 
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endomembrane not considered to be predominantly structural (i.e. an organelle or 611 

cell-compartment boundary) was reconstructed in the endomembrane category.  612 

RNA extraction. RNA was extracted from the cell pellets using the RNeasy 613 

extraction kit (Qiagen) following the manufacturer’s instructions with minor 614 

modifications. Cell pellets were thawed in 600 ml RLT lysis buffer containing 10 μl 615 

ml-1 of 2-mercaptoethanol and lysed at room temperature for 5 min with periodic 616 

vortexing. Cell debris was removed by centrifuging at 8000 xg for 1 min, before the 617 

lysate was recovered and passed through a QIA shredder (Qiagen). An equal 618 

volume of 100 % ethanol was added to the homogenised lysate before being 619 

transferred to a RNeasy extraction column. RNA was then extracted following the 620 

manufacturers protocol and included an on-column DNase digestion step using the 621 

RNase-Free DNase (Qiagen). RNA was quantified using both a NanoDrop 1000 622 

spectrophotometer (Thermo) and the RNA BR assay kit (Invitrogen) on the Qubit 4 623 

fluorometer (Invitrogen). RNA quality was assessed using the RNA 6000 Nano kit 624 

total RNA assay (Agilent) run on the 2100 Bioanalyzer instrument (Agilent).  625 

Sequencing and bioinformatics. Sequencing was carried out using Illumina 626 

NovaSeq 6000 technology and base calling by CASAVA, yielding 20,122,633 – 627 

23,677,987 raw reads by Novogene (www.novogene.com). Raw reads were filtered 628 

for adaptor contamination and low-quality reads (ambiguous nucleotides > 10% of 629 

the read, base quality < 5 for more than 50% of the read) resulting in 19,665,560 – 630 

22,917,489 clean reads. Reads were mapped against the JEL800 genome using 631 

HISAT2 before differentially expressed genes (DEGs) between life stages were 632 

determined using DESeq2 as part of the Novogene pipeline (Love et al., 2014). 633 

Transcriptomic profiles were highly conserved between replicates within each of the 634 

three life stages (Suppl. Fig. 9). All further analyses were performed in house in R 635 
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v3.6.1 (R Core Team) using output from the Novogene analysis pipeline. Shared 636 

genes between life history stages were displayed using UpSetR (Conway et al., 637 

2017). Volcano plots of differentially expressed genes were produced using ggplot2 638 

based upon a conservative threshold of log2FoldChange > 0, padj < 0.05. Gene 639 

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 640 

analysis was carried out using the enricher function in the R package clusterProfiler 641 

v3.12 (Yu et al., 2012) with a threshold of padj < 0.05. Differentially expressed KEGG 642 

categories were plotted using the dotplot function (Fig. 2) and GO maps generated 643 

using the emapplot function (Suppl. Figs. 10-13). For the purposes of this study, 644 

analysis and discussion of KEGG pathways was favoured over GO categories as 645 

KEGG pathways allow for a more process-oriented interpretation of activity between 646 

the life stages.  647 

Confocal microscopy of subcellular structures. Cell structures were labelled in a 648 

24 h mixed population with 5 µM calcofluor white (chitin), 1 µM Nile red (neutral 649 

lipid), and 5 µM FM1-43 (membranes). Cells were imaged under a 63 x oil immersion 650 

objective lens with a Leica SP8 confocal microscope (Leica, Germany). Image 651 

acquisition settings were as follows: for cell wall excitation at 405 nm and emission at 652 

410-500 nm (intensity 0.1%, gain 20); for lipids excitation at 514 nm and emission at 653 

550-710 nm (intensity 0.1%, gain 50); and for membranes excitation at 470 nm and 654 

500-650 nm (intensity 5%, gain 50). All life stages were imaged under identical 655 

acquisition settings. Cell wall and lipid images are maximum intensity projections at 656 

0.3 µm z-intervals and membrane images are single optical sections.  657 

Live-cell widefield microscopy. Time-lapse imaging of the development of 658 

fluorescently labelled subcellular structures was optimised for LED intensity and dye 659 

loads that did not interfere with normal cellular development relative to a no-dye 660 
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control (Suppl. Fig. 14). Population-level development was imaged using an 661 

epifluorescent Leica DMi8 microscope (Leica, Germany) with a 20 x objective lens, 662 

and single-cell development with a 63 x oil-immersion lens. Cell structures were 663 

labelled as above, with the exception of 1 µM FM1-43 (membrane). Image 664 

acquisition settings were as follows: for cell wall excitation at 395 nm and emission at 665 

435-485 nm (intensity 10%, FIM 55%, exposure 350 ms); for lipids excitation at 575 666 

nm and emission at 575-615 nm (intensity 10%, FIM 55%, exposure 1 s); for 667 

membranes excitation at 470 nm and 500-550 nm (intensity 10%, FIM 55%, 668 

exposure 2 s); and bright field (intensity 15, exposure 150 ms). Images were 669 

captured using a CMOS Camera (Prime 95B™, Photometrics). 500 μl of diluted 670 

zoospore suspension was applied to a glass bottom dish and cells were allowed to 671 

settle in the dark for 15 min. After this, the supernatant was removed and 3.5 ml of 672 

dye-containing PmTG was added to the dish and imaged immediately. To prevent 673 

thermal and hypoxic stress during the imaging period, the dish was placed into a P-674 

Set 2000 CT stage (PeCon, Germany) where temperature was controlled at 22 oC by 675 

an F-25 MC water bath (Julabo, Germany), and the dish was covered by an optically 676 

clear film which permits gas exchange. Single images were taken at 15 min intervals 677 

for a total of 18 h for population-level development, and 50 µm z-stacks (2 µm z-678 

intervals) at an interval of 10 min for a total of 14 h for single-cell development. Lipid 679 

degradation in live, settled zoospores was likewise imaged using 100 µl zoospore 680 

suspensions labelled with Nile Red in glass bottom dishes. For comparison, labelled 681 

zoospores fixed in 0.2% formaldehyde were also imaged to control for 682 

photobleaching. Cells were imaged at 30 s intervals for 2 h. To visualise 683 

endomembrane trafficking in the apophysis, 100 µl of 24 h mixed PmTG cultures 684 
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stained with 10 µM FM 1-43 were likewise imaged in glass bottom dishes under a 63 685 

x oil immersion objective at 30 s intervals for 30 min.  686 

Image analysis for live-cell microscopy. Developmental time series of 687 

fluorescently labelled subcellular structures were analysed with a custom workflow 688 

(Suppl. File 3-4) based around scikit-image 0.16.2 (Van Der Walt et al., 2014) run 689 

with Python 3.7.3 implemented in Jupyter Notebook 6.0.3. Briefly, cells were 690 

segmented using the bright-field channel by Sobel edge detection (Kanopoulos et 691 

al., 1988) and Otsu thresholding (Otsu, 1979). This mask was used to quantify 692 

normalised intensity in the fluorescence channel. For lipid tracking during single-cell 693 

development, images from the lipid channel were converted to maximum intensity 694 

projections and lipid globules were automatically detected using differences of 695 

Gaussian (DoG) detection in the Fiji plugin TrakMate (Tinevez et al., 2017). Tracking 696 

of the initial lipid globule was conducted using a simple LAP tracker.  697 

Lipid extraction and quantification. Lipids were extracted using the Bligh and Dyer 698 

method (Bligh and Dyer, 1959). Lyophilised culture pellets were submersed in a 699 

2:1:0.8 (v/v/v) methanol (MeOH), dichloromethane (DCM) and phosphate-buffer (PB) 700 

and sonicated for 10 min in an ultrasonic bath before being centrifuged at 3,000 rpm 701 

for 2 min. The supernatant was collected, and the pellet was re-extracted twice. The 702 

combined supernatant was phase separated via addition of DCM and PB (giving an 703 

overall ratio of 1:1:0.9 (v/v/v)) and centrifugation at 3000 rpm for 2 min. The lower 704 

solvent phases were extracted prior to washing the remaining upper phase twice 705 

with DCM. The three lower solvent phases were collected and gently evaporated 706 

under oxygen-free nitrogen (OFN) in a water bath held at 25 °C (N-EVAP, 707 

Organomation, USA). The initial lipid extracts were weighed to quantify total lipid 708 

biomass before being dissolved in 9:1 (v/v) DCM:MeOH and loaded onto 709 
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preactivated silica gel (4 h at 150 °C) columns for fractionation. Lipid fractions were 710 

separated by polarity via washing the column with one volume of DCM, followed by 711 

one volume of acetone and two volumes of MeOH. Each fraction was collected 712 

separately, evaporated to dryness under OFN and weighed.  713 

Statistical analysis. All data were tested for normality and homogeneity 714 

assumptions using a Shapiro and Levene’s test respectively. If assumptions could be 715 

met, then differences between zoospore, germling, and immature thallus volumetric 716 

proportions were assessed using ANOVA followed by Tukey HSD posthoc testing, or 717 

if not, then by a Kruskal-Wallis followed by a Dunn’s posthoc test. If a structure was 718 

entirely absent from a life stage (e.g. no cell wall in the zoospore stage) then the life 719 

stage was eliminated from statistical analysis to remove zero values and the 720 

remaining two life stages were compared using a t-test or Mann-Whitney U test 721 

depending on assumptions, and then the removed life stage qualitatively assigned 722 

as different. The differences between cell bodies and apophyses in the immature 723 

thallus life stage, and between mature zoospores and developing zoospores, were 724 

compared using either a paired t-test or a Mann-Whitney U test depending on 725 

assumptions. All statistical analysis was conducted using the scipy package 726 

(Virtanen et al., 2020) run with Python 3.7.3 implemented in Jupyter Notebook 6.0.3. 727 
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 1058 

FIGURE LEGENDS  1059 

Figure 1 Chytrids are an early-diverging fungal phylum with a dimorphic life 1060 

cycle. (A) Chytrids (phylum Chytridiomycota) are an early-diverging fungal lineage, 1061 

many members of which exhibit cellular characteristics retained from the last 1062 

common ancestor of branching (rhizoidal and hyphal) fungi (star). Simplified 1063 

phylogenetic tree from (Laundon and Cunliffe, 2021; Tedersoo et al., 2018). (B) 1064 

Rhizoclosmatium globosum exhibits an archetypal chytrid life cycle and cell plan 1065 

delineated here into four discrete major stages. Labelled is the apophysis (a), cell 1066 

body (b), and rhizoids (r). Scale bar = 10 µm. (C) Diagrammatic workflow of the 1067 

experimental setup used in this study for comparative cellular Serial Block Face 1068 

Scanning Electron Microscopy (SBF-SEM) and molecular (transcriptome) analysis.  1069 

Figure 2 Serial Block Face Scanning Electron Microscopy (SBF-SEM) 1070 

reconstructions and transcriptome analysis provided an atlas of the 1071 

Rhizoclosmatium globosum life cycle. (A) Representative SBF-SEM 1072 

reconstructions of the first three life stages of the R. globosum lifecycle. Bottom row 1073 

shows the stages to scale. Organelle colours as in (B-D) and conserved throughout. 1074 

(B-D) Volumetric composition of assigned organelles in SBF-SEM reconstructions (n 1075 

= 5) of zoospores (B), germlings (C), and immature thalli (D). EM = endomembrane, 1076 

MB = microbodies, PB = peripheral bodies, SI = striated inclusion. (E) Shared and 1077 

unique gene expression counts between life stages. Inset shows total expressed 1078 

genes per life stage. (F) Pairwise comparison of differentially expressed genes 1079 

(DEGs) between germlings and zoospores, and immature thalli and germlings. (G-J) 1080 

Pairwise comparison of significant (p < 0.05) differentially expressed KEGG 1081 
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categories between germlings and zoospores (G-H), and immature thalli and 1082 

germlings (I-J).  1083 

Figure 3 Changes in lipid and lipid-associated cell structures occur with 1084 

transitions between R. globosum life stages. (A) Fluorescent labelling of R. 1085 

globosum shows distinct shifts in lipid structures across the chytrid life cycle and cell 1086 

wall. Dashed line demarks cell boundary where not labelled in the zoospore. 1087 

Zoospore inset shows precursory cell wall material at the flagellar base contrast-1088 

brightness adjusted for visualisation. Apophysis (a), cell body (b), flagellum (f), 1089 

rhizoid (r). Scale bars = 5 µm. (B) Representative SBF-SEM reconstructions of lipid 1090 

globules and lipid-associated structures across chytrid life stages. (C-D) 1091 

Representative single false-coloured SBF-SEM slices (top) and SBF-SEM 1092 

reconstructions (bottom) of the lipid-rumposome-microbody (LRM) complex from 1093 

zoospores (also seen in germlings) (C) and intravacuolar lipid globules (D) from 1094 

immature thalli. Scale bars = 1 µm. (E) Live-cell imaging (n = 5) of R. globosum 1095 

population-level Nile red-stained lipid dynamics. Red = mean lipid fluorescence (± 1096 

min/max), black = mean total cell area (± min/max), dashed line = mean sporulation 1097 

time of population. (F) Immediately following zoospore settlement, the population-1098 

level (n = 5) lipid fluorescence (red) decreases relative to fixed photobleaching 1099 

control populations (black). (G) Live-cell imaging revealed differential lipid dynamics 1100 

across the chytrid life cycle. Note that the original zoospore lipid globule (arrowhead) 1101 

remains intact up to the point of lipid anabolism in the immature thallus. Timestamp = 1102 

HH:MM. Scale bar = 10 µm. (H-J) Lipid analysis shows shifts in lipid composition of 1103 

the chytrid lifecycle. Lipid quantities as total mass per cell (H) and as a percentage of 1104 

total dry mass (I) between chytrid life stages. Changes in lipid fractions were found 1105 

between chytrid life stages (J). Dashed line = below analytical detection.  1106 
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Figure 4 The apophysis is a distinct subcellular structure characterised by 1107 

increased endomembrane trafficking. (A) Live-cell imaging (n = 5) of R. globosum 1108 

population-level FM1-43-stained endomembrane dynamics. Purple = mean 1109 

endomembrane fluorescence (± min/max), black = mean total cell area (± min/max), 1110 

dashed line = mean sporulation time of population. (B-C) Representative SBF-SEM 1111 

reconstructions of endomembrane across chytrid life stages (B) and the apophysis 1112 

from immature thalli (C). Volumetric composition of SBF-SEM reconstructions (n = 5) 1113 

of immature thallus apophyses (D). Representative single false-coloured SBF-SEM 1114 

slice (E) and reconstruction (F) of the endomembrane and thickened cell wall 1115 

(asterisk) at the apophysis-cell body junction. Fluorescent labelling of the chitin rich 1116 

wall around the apophysis-cell body connecting pore and associated endomembrane 1117 

structures (G). Labels as in Fig. 3A. All scale bars = 1 µm. 1118 

Figure 5 Developing zoospores in the zoosporangium have amoeboid 1119 

morphology with endocytotic activity. (A) Fluorescent labelling of lipids, cell wall, 1120 

and endomembrane in an R. globosum mature zoosporangium. Scale bar = 5 µm. 1121 

(B-C) SBF-SEM reconstructions of an 82-zoospore containing mature 1122 

zoosporangium (B) highlighting the discharge plug, shown in coral (C). (D) 1123 

Representative SBF-SEM reconstructions of a developing zoospore. Organelle 1124 

colours as in Fig. 5E. (E) Volumetric composition of SBF-SEM reconstructions of 1125 

developing zoospores (n = 5). (F-G) Representative single false-coloured SBF-SEM 1126 

slice (F) and reconstruction (G) of the endocytotic vacuoles in developing zoospores. 1127 

Dashed line delineates the zoospore cell boundary in (F). Scale bar = 1 µm. (H) 1128 

Pairwise comparison of differentially expressed genes (DEGs) between mature 1129 

zoosporangia and the free-swimming zoospore life stage. (I-J) Pairwise comparison 1130 
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of significant differentially expressed KEGG categories between mature 1131 

zoosporangia and the free-swimming zoospore life stage. 1132 

Figure 6 Summary of key components of the chytrid cell plan and biological 1133 

processes associated with the transition between stages in the R. globosum 1134 

life cycle. Inner life cycle shows life stages to scale. Grey dashed lines indicate the 1135 

beginning of the rhizoid system.   1136 

Supplementary Figure 1 Workflow of the image analysis protocol used to generate 1137 

and visualise 3D reconstructions of chytrid cells from SBF-SEM stacks.  1138 

Supplementary Figure 2 Examples of subcellular components identified in this 1139 

study taken from single SBF-SEM slices. (A) Whole cell slices of each chytrid life 1140 

stage showing the localisation and orientation of subcellular structures in context. (B) 1141 

High magnification images of individual subcellular structures identified across life 1142 

stages, where present. (C) Individual subcellular structures largely unique to 1143 

individual life stages. a = apophysis, d = discharge plug, e = endomembrane, g = 1144 

glycogen, ga = Golgi apparatus, l = lipid globule, m = mitochondria, mb = 1145 

microbodies, n = nucleus, r = ribosomal cluster, ru = rumposome, s = striated 1146 

inclusion, v = vacuoles. Asterisks in (C) show electron-dense plate at the base of the 1147 

zoospore flagella. Scale bars = 1 µm (A) and 0.2 µm (B-C).  1148 

Supplementary Figure 3 Individual 3D SBF-SEM reconstructions of R. globosum 1149 

cells (not to scale) across life stages labelled with replicate ID’s. Organelle colours 1150 

as in Fig. 2A-D. Top row shows all replicates to scale.   1151 

Supplementary Figure 4 Individual volumetric compositions of assigned organelles 1152 

from R. globosum SBF-SEM reconstructions across life stages labelled with replicate 1153 

ID’s. Organelle colours as in Fig. 2A-D. 1154 
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Supplementary Figure 5 Comparisons of volumetric proportions of subcellular 1155 

structures across chytrid life stages (n = 5). n.s p > 0.05 (not significant), *p < 0.05, 1156 

**p < 0.01, ***p < 0.001.  1157 

Supplementary Figure 6 Comparisons of volumetric proportions of subcellular 1158 

structures between immature thalli cell bodies and their corresponding apophyses (n 1159 

= 5). n.s p > 0.05 (not significant), *p < 0.05, **p < 0.01, ***p < 0.001.  1160 

Supplementary Figure 7 Comparisons of volumetric proportions of subcellular 1161 

structures between developing and mature zoospores (n = 5). n.s p > 0.05 (not 1162 

significant), *p < 0.05, **p < 0.01, ***p < 0.001.  1163 

Supplementary Figure 8 Representative images from confocal surveys conducted 1164 

to assess the synchronicity of cell cultures for SBF-SEM and RNA-Seq harvesting. 1165 

Cells diluted 1:1000, fixed in 0.2% formaldehyde, and stained with FM 1-43FX to 1166 

visualise cell membranes. Asterisks mark mature zoosporangia in mixed 1167 

populations.  1168 

Supplementary Figure 9 Heatmap clustering of all DEGs between zoospore, 1169 

germling, and immature thallus replicates.  1170 

Supplementary Figure 10 GO enrichment map showing significant (p < 0.05) 1171 

differential expression of GO clusters, downregulated in germlings relative to 1172 

zoospores. Circle size represents numbers of genes, colour represents adjusted p-1173 

value.  1174 

Supplementary Figure 11 GO enrichment map showing significant (p < 0.05) 1175 

differential expression of GO clusters, upregulated in germlings relative to 1176 

zoospores. Circle size represents numbers of genes, colour represents adjusted p-1177 

value.  1178 
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Supplementary Figure 12 GO enrichment map showing significant (p < 0.05) 1179 

differential expression of GO clusters, downregulated in immature thalli relative to 1180 

germlings. Circle size represents numbers of genes, colour represents adjusted p-1181 

value.  1182 

Supplementary Figure 13 GO enrichment map showing significant (p < 0.05) 1183 

differential expression of GO clusters, upregulated in immature thalli relative to 1184 

germlings. Circle size represents numbers of genes, colour represents adjusted p-1185 

value.  1186 

Supplementary Figure 14 Comparison of sporulation times (as a proxy for normal 1187 

cell development) for dye-labelled chytrid populations (n = 5) imaged by live-cell 1188 

microscopy, relative to no dye-controls. n.s p > 0.05 (not significant). 1189 

MOVIE LEGENDS 1190 

Movie 1 SBF-SEM reconstructions allowed the structural comparison of life 1191 

stages in R. globosum. Representative SBF-SEM reconstructions of the zoospore, 1192 

germling, and immature thallus life stages for comparison. Zoospore and germling 1193 

cells shown to scale at the beginning of the movie, and later enlarged.   1194 

Movie 2 Structural shifts in lipid globules were observed across R. globosum 1195 

life stages, associated with the change from catabolism/conversion to 1196 

anabolism. Representative SBF-SEM reconstructions of the zoospore, germling, 1197 

and immature thallus lipid structures for comparison. 1198 

Movie 3 The zoospore lipid globule remained as an intact structure across the 1199 

R globosum life cycle. Automated particle tracking of lipid globules (red) across the 1200 

chytrid lifecycle. Magenta circles mark individual lipid globules. Yellow track shows 1201 
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particle tracking of the initial lipid globule into the period of lipid anabolism. Cell wall 1202 

shown in cyan. Timestamp = HH:MM. 1203 

Movie 4 The R. globosum apophysis is structurally dominated by 1204 

endomembrane structures. Representative SBF-SEM reconstruction of a chytrid 1205 

apophysis from an immature thallus.  1206 

Movie 5 The R. globosum apophysis regulates intracellular trafficking between 1207 

the rhizoids and cell body.  Live-cell imaging of endomembrane dynamics in the 1208 

chytrid apophysis. The apophysis links endomembrane dynamics between the 1209 

rhizoid system and thallus. Shown are DIC (left), endomembrane (centre), and 1210 

overlay (right) channels. Timestamp = MM:SS.  1211 

Movie 6 SBF-SEM reconstruction of an R. globosum mature zoosporangium.   1212 

Movie 7 Developing zoospores were more amoeboid than mature zoospores in 1213 

R. globosum, due to elevated endocytosis and trafficking. Representative SBF-1214 

SEM reconstructions of the ‘mature’ zoospore and developing zoospore life stages 1215 

for comparison.  1216 

Supplementary Movies 1-21 All individual SBF-SEM reconstructions used in this 1217 

study. Replicates of zoospores (Suppl. Mov. 1-5), germlings (Suppl. Mov. 6-10), 1218 

immature thalli (Suppl. Mov. 11-15), a mature zoosporangium (Suppl. Mov. 16), 1219 

and developing zoospores (Suppl. Mov. 17-21).  1220 

Supplementary Movie 22 Replicates of automated particle tracking of lipid globules 1221 

(red) across the chytrid lifecycle. Magenta circles mark individual lipid globules. 1222 

Yellow track shows particle tracking of the initial lipid globule into the period of lipid 1223 

anabolism. Cell wall shown in cyan. Timestamp = HH:MM. 1224 
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Supplementary Movie 23 Replicates of live-cell imaging of endomembrane 1225 

dynamics in the chytrid apophysis. The apophysis links endomembrane dynamics 1226 

between the rhizoid system and thallus. Shown are DIC (left), endomembrane 1227 

(centre), and overlay (right) channels. Timestamp = MM:SS. 1228 

 1229 

SUPPLEMENTARY TABLES  1230 

Supplementary Table 1. Volumetric quantities of cellular structures recorded across 1231 

chytrid life stages.  1232 

Supplementary Table 2. Numerical quantities of cellular structures recorded across 1233 

chytrid life stages.  1234 

Supplementary Table 3. Volumetric percentages and statistical comparisons of 1235 

cellular structures recorded across chytrid life stages.  1236 

Supplementary Table 4. Volumetric percentages and statistical comparisons of cell 1237 

bodies and their corresponding apophyses in immature thalli.   1238 

Supplementary Table 5. Volumetric percentages and statistical comparisons of 1239 

free-swimming and developing zoospores.  1240 

 1241 

SUPPLEMENTARY FILES  1242 

Supplementary File 1 All SBF-SEM reconstructions available as 3D objects.  1243 

Supplementary File 2 Raw data associated with figures and in-text discussions 1244 

presented in this study.  1245 
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Supplementary File 3 Python script used to quantify population level fluorescence 1246 

of developing chytrid cells (Fig. 3E, Fig. 4A).  1247 

Supplementary File 4 Python script used to quantify single-cell Nile Red 1248 

fluorescence of settled chytrid zoospores (Fig. 3F).  1249 

 1250 
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1 2 3

4 5 6

1. SBF-SEM stack imported 
into Microscopy Image Browser (MIB) 

2. Images converted to 8-bit → Aligned
→ Contrast Normalised → Gaussian

Blur (0.6 sigma) → Brightness/ Contrast
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Supplementary Figure 13
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Supplementary Table 1. Volumetric quantities of cellular structures recorded across chytrid life stages. Data given to 3 decimal places. 

 

*A functional category defined by the sum of cytosolic and vacuole-bound lipids.  

**A functional category defined by the sum of the endomembrane, Golgi apparatus, microbodies, peripheral bodies, vacuoles incl. lipid contents, and vesicles.  

 

Cellular 
Structure 

Chytrid Life stage – Volume in µm3 

Zoospore 
(n = 5) 

± 
S.D 

Germling 
(n = 5) 

± 
S.D 

Immature 
Thallus (n = 5) 

± 
S.D 

Imm. Thall. 
Apophysis (n = 5) 

± 
S.D 

Dev. Zoospore 

(n = 5) 
± 

S.D 

Total Volume 20.749 1.687 33.991 2.042 1116.291 206.198 12.179 5.951 21.455 0.590 

Cell Wall 0.000 0.000 2.594 0.425 26.448 3.112 1.326 0.600 0.000 0.000 

Cytosolic Lipid 0.894 0.558 1.889 1.127 3.754 1.983 0.115 0.183 1.451 0.183 

Endomembrane 0.195 0.070 0.479 0.410 30.829 11.485 1.390 0.729 0.346 0.072 

Glycogen 0.332 0.253 0.433 0.138 104.359 27.516 0.000 0.000 1.190 0.334 

Golgi Apparatus 0.000 0.000 0.106 0.101 4.498 0.898 0.153 0.149 0.079 0.033 

Microbodies 0.226 0.189 0.336 0.118 2.025 1.857 0.000 0.000 0.194 0.253 

Mitochondria 1.937 0.170 3.092 0.347 78.194 14.392 0.977 0.934 1.803 0.113 

Nucleus 2.143 0.372 4.129 0.293 63.155 30.682 0.000 0.000 1.544 0.057 

Peripheral Bodies 0.000 0.000 0.580 0.125 3.620 0.753 0.121 0.270 0.000 0.000 

Ribosome Cluster 4.228 0.522 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Rumposome 0.053 0.005 0.024 0.014 0.000 0.000 0.000 0.000 0.028 0.003 

Striated Inclusion 0.032 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Vacuole-bound Lipid 0.000 0.000 0.000 0.000 42.568 20.506 0.132 0.090 0.000 0.000 

Vacuoles excl. Lipid Contents 0.488 0.311 2.576 0.369 144.077 31.251 1.568 1.234 1.809 0.472 

Vesicles 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.135 0.024 

Total Assigned Organelles 10.527 1.399 16.240 0.607 503.526 89.771 5.781 2.508 8.579 0.632 

Unassigned Cytosol 10.222 1.268 17.751 1.670 612.764 122.699 6.398 3.675 12.877 0.389 

Vacuoles incl.  Lipid Contents 0.488 0.341 2.576 0.369 186.645 40.006 1.700 1.240 1.809 0.472 

Total Lipid Fraction * 0.909 0.558 1.889 1.127 46.322 21.419 0.247 0.189 1.451 0.183 

Total Endomembrane Fraction ** 0.275 0.375 4.018 0.802 227.616 51.755 3.363 1.212 2.563 0.445 
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Supplementary Table 2. Numerical quantities of cellular structures recorded across chytrid life stages. Data given to 3 decimal places.  

 

*A functional category defined by the sum of cytosolic and vacuole-bound lipids.  

**A functional category defined by the sum of the endomembrane, Golgi apparatus, microbodies, peripheral bodies, vacuoles incl. lipid contents, and vesicles.  

Cellular 
Structure 

Chytrid Life stage – Volume in µm3 

Zoospore 
(n = 5) 

± 
S.D 

Germling 
(n = 5) 

± 
S.D 

Immature 
Thallus (n = 5) 

± 
S.D 

Imm. Thall. 
Apophysis (n = 5) 

± 
S.D 

Dev. Zoospore 

(n = 5) 
± 

S.D 

Total Volume NA NA NA NA NA NA NA NA NA NA 

Cell Wall 0.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000 

Cytosolic Lipid 1.000 0.000 1.000 0.000 68.800 55.233 13.600 14.276 1.000 0.000 

Endomembrane 57.000 14.782 88.800 18.336 1513.800 641.545 45.000 35.050 88.400 21.629 

Glycogen 331.200 76.424 167.800 56.193 1075.000 137.099 0.000 0.000 91.400 32.601 

Golgi Apparatus 0.000 0.000 1.400 1.342 62.200 13.180 1.800 1.095 1.400 0.548 

Microbodies 1.400 0.548 1.400 0.548 10.800 11.692 0.000 0.000 1.200 0.447 

Mitochondria 2.800 2.490 1.200 0.447 237.200 129.820 27.600 31.198 9.000 3.082 

Nucleus 1.000 0.000 1.000 0.000 1.800 1.304 0.000 0.000 1.000 0.000 

Peripheral Bodies 0.000 0.000 3.600 2.074 52.600 23.650 1.200 2.683 0.000 0.000 

Ribosome Cluster 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Rumposome 1.000 0.000 0.8 0.447 0.000 0.000 0.000 0.000 1.000 0.000 

Striated Inclusion 0.600 0.548 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Vacuole-bound Lipid 0.000 0.000 0.000 0.000 70.600 39.835 4.400 2.074 0.000 0.000 

Vacuoles excl. Lipid Contents 8.000 1.581 4.200 3.271 69.800 37.164 19.800 14.856 12.200 9.497 

Vesicles 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 53.600 8.905 

Total Assigned Organelles 405.000 81.557 272.200 59.302 3163.600 756.752 114.400 62.408 260.200 48.561 

Unassigned Cytosol NA NA NA NA NA NA NA NA NA NA 

Vacuoles incl.  Lipid Contents 8.000 1.581 4.200 3.271 69.800 37.164 19.800 14.856 12.200 9.497 

Total Lipid Fraction * 1.000 0.000 1.000 0.000 139.400 60.789 18.000 15.922 1.000 0.000 

Total Endomembrane Fraction ** 75.400 19.424 99.400 19.501 1709.200 617.922 67.800 43.540 156.800 22.797 
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Supplementary Table 3. Volumetric percentages and statistical comparisons of cellular structures recorded across chytrid life stages. Data 

given to 3 decimal places.  

 

*A functional category defined by the sum of cytosolic and vacuole-bound lipids.  

**A functional category defined by the sum of the endomembrane, Golgi apparatus, microbodies, peripheral bodies, vacuoles incl. lipid contents, and vesicles.  

Cellular 
Structure 

Chytrid Life stage – Volumetric % 

Zoospore 
(n = 5) 

± 
S.D 

Germling 
(n = 5) 

± 
S.D 

Immature 
Thallus (n = 5) 

± 
S.D 

Statistical Test used  p- Value  Posthoc 
Annotation 

Total Volume 100.000 0 100.000 0 100.000 0.000 NA NA NA 

Cell Wall 0.000 0.000 7.644 1.245 2.409 0.328 Mann Whitney U <0.01 A B C 

Cytosolic Lipid 4.290 2.610 5.714 3.678 0.341 0.159 Kruskal <0.01 A A B 

Endomembrane 0.948 0.353 1.371 1.112 2.691 0.597 ANOVA <0.01 A A B 

Glycogen 1.590 1.213 1.265 0.376 9.399 1.969 Kruskal <0.01 A A B 

Golgi Apparatus 0.000 0.000 0.321 0.313 0.414 0.104 Mann Whitney U >0.05 A B B 

Microbodies 1.052 0.836 0.978 0.293 0.167 0.156 ANOVA <0.05 A AB B 

Mitochondria 9.363 0.861 9.086 0.732 7.005 0.143 ANOVA <0.001 A A B 

Nucleus 10.297 1.187 12.151 0.512 5.749 2.477 ANOVA <0.001 A A B 

Peripheral Bodies 0.000 0.000 1.696 0.278 0.336 0.100 Mann Whitney U <0.01 A B C 

Ribosome Cluster 20.457 2.798 0.000 0.000 0.000 0.000 NA NA A B B 

Rumposome 0.258 0.030 0.095 0.071 0.000 0.000 T-Test <0.001 A B C 

Striated Inclusion 0.147 0.139 0.000 0.000 0.000 0.000 NA NA A B B 

Vacuole-bound Lipid 0.000 0.000 0.000 0.000 3.689 1.596 NA NA A A B 

Vacuoles excl. Lipid Contents 2.322 1.453 7.560 0.852 12.958 1.780 ANOVA <0.001 A B C 

Total Assigned Organelles 50.724 4.754 47.857 2.082 45.159 2.087 ANOVA >0.05 A AB B 

Unassigned Cytosol 49.276 4.754 52.143 2.082 54.841 2.087 ANOVA <0.05 A AB B 

Vacuoles incl.  Lipid Contents 2.322 1.453 7.560 0.852 16.647 0.930 Kruskal <0.01 A A B 

Total Lipid Fraction * 4.290 2.610 5.714 3.678 4.030 1.604 Kruskal >0.05 A A A 

Total Endomembrane Fraction ** 4.322 1.113 11.745 1.719 20.255 1.248 ANOVA <0.001 A B C 
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Supplementary Table 4. Volumetric percentages and statistical comparisons of cell bodies and their corresponding apophyses in immature 

thalli.  Data given to 3 decimal places. 

 

*A functional category defined by the sum of cytosolic and vacuole-bound lipids.  

**A functional category defined by the sum of the endomembrane, Golgi apparatus, microbodies, peripheral bodies, vacuoles incl. lipid contents, and vesicles.  

 

 

Cellular 
Structure 

Cellular Structure – Volumetric % 

Cell Body  
(n = 5) 

± 
S.D 

Apophysis 
(n = 5) 

± 
S.D 

Statistical Test used  p- Value  

Total Volume 100.000 0.000 100.000 0.000 NA NA 

Cell Wall 2.409 0.328 11.034 0.534 Mann Whitney U <0.01 

Cytosolic Lipid 0.341 0.159 1.308 2.318 Mann Whitney U >0.05 

Endomembrane 2.691 0.597 12.155 5.202 Mann Whitney U <0.01 

Glycogen 9.399 1.969 0.000 0.000 NA NA 

Golgi Apparatus 0.414 0.104 1.047 0.627 Mann Whitney U >0.05 

Microbodies 0.167 0.156 0.000 0.000 NA NA 

Mitochondria 7.005 0.143 6.429 4.215 Mann Whitney U >0.05 

Nucleus 5.749 2.477 0.000 0.000 NA NA 

Peripheral Bodies 0.336 0.100 0.693 1.551 Mann Whitney U >0.05 

Vacuole-bound Lipid 3.689 1.596 1.056 0.350 Mann Whitney U <0.05 

Vacuoles excl. Lipid Contents 12.958 1.780 14.589 13.420 Mann Whitney U >0.05 

Total Assigned Organelles 45.159 2.087 48.312 9.136 Paired T-Test >0.05 

Unassigned Cytosol 54.841 2.087 51.688 9.136 Paired T-Test >0.05 

Vacuoles incl.  Lipid Contents 16.647 0.930 15.645 13.371 Mann Whitney U >0.05 

Total Lipid Fraction * 4.030 1.604 2.364 2.407 Paired T-Test >0.05 

Total Endomembrane Fraction ** 20.255 1.248 29.542 9.135 Mann Whitney U <0.05 
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Supplementary Table 5. Volumetric percentages and statistical comparisons of free-swimming and developing zoospores.  Data given to 3 

decimal places. 

 

**A functional category defined by the sum of the endomembrane, Golgi apparatus, microbodies, peripheral bodies, vacuoles incl. lipid contents, and vesicles. 

 

 

 

 

Cellular 
Structure 

Chytrid Life stage – Volumetric % 

Mature Zoospore 
(n = 5) 

± 
S.D 

Developing Zoospore 
(n = 5) 

± 
S.D 

Statistical Test used  p- Value  

Total Volume 100.000 0.00 100.000 100.000 NA NA 

Cytosolic Lipid 4.290 2.610 6.766 0.859 Mann Whitney U >0.05 

Endomembrane 0.948 0.353 1.607 0.296 T-Test  <0.05 

Glycogen 1.590 1.213 5.536 1.494 T-Test  <0.01 

Golgi Apparatus 0.000 0.000 0.367 0.156 NA NA 

Microbodies 1.052 0.836 0.909 1.191 Mann Whitney U >0.05 

Mitochondria 9.363 0.861 8.400 0.403 T-Test >0.05 

Nucleus 10.297 1.187 7.202 0.361 T-Test  <0.001 

Ribosome Cluster 20.457 2.798 0.000 0.000 NA NA 

Rumpsome 0.258 0.030 0.129 0.013 T-Test  <0.001 

Striated Inclusion 0.147 0.139 0.000 0.000 NA NA 

Vacuoles 2.322 1.453 8.410 2.082 T-Test  <0.001 

Vesicles 0.000 0.000 0.630 0.113 NA NA 

Total Assigned Organelles 50.724 4.754 39.956 2.145 Mann Whitney U <0.05 

Unassigned Cytosol 49.276 4.754 60.044 2.145 Mann Whitney U <0.05 

Total Endomembrane Fraction ** 4.322 1.113 11.923 1.856 T-Test  <0.001 
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