

1 September 3, 2021

2

3 **Over-expression Screen of Interferon-Stimulated Genes Identifies RARRES3 as a Restrictor**
4 **of *Toxoplasma gondii* Infection**

5

6 Nicholas Rinkenberger^a, Michael E. Abrams^b, Sumit K. Matta^a, John W. Schoggins^b, Neal M. Alto^b, David Sibley^{a*}

7

8 ^aDepartment of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA

9 ^bDepartment of Microbiology, University of Texas Southwestern, Dallas, Texas, USA

10

11 Running title: *ISG screen for Toxoplasma inhibitors*

12 *Corresponding author: sibley@wustl.edu

13

14 **Abstract**

15 *Toxoplasma gondii* is an important human pathogen infecting an estimated 1 in 3 people worldwide. The cytokine
16 interferon gamma (IFN γ) is induced during infection and is critical for restricting *T. gondii* growth in human cells.
17 Growth restriction is presumed to be due to the induction interferon stimulated genes (ISGs) that are upregulated to
18 protect the host from infection. Although there are hundreds of ISGs induced by IFN γ , their individual roles in
19 restricting parasite growth in human cells remain somewhat elusive. To address this deficiency, we screened a library
20 of 414 IFN γ induced ISGs to identify factors that impact *T. gondii* infection in human cells. In addition to IRF1, which
21 likely acts through induction of numerous downstream genes, we identified RARRES3 as a single factor that restricts
22 *T. gondii* infection by inducing premature egress of the parasite in multiple human cell lines. Overall, while we
23 successfully identified a novel IFN γ induced factor restricting *T. gondii* infection, the limited number of ISGs capable
24 of restricting *T. gondii* infection when individually expressed suggests that IFN γ mediated immunity to *T. gondii*
25 infection is a complex, multifactorial process.

26 **Key words:** Intracellular parasite, egress, cell death, interferon gamma, growth restriction

27

28

29 **Introduction**

30 *Toxoplasma gondii* infection is common in humans, and while typically self-limiting in immunocompetent individuals,
31 it can be severe in congenital toxoplasmosis and in immunodeficient individuals (1). Additionally, *T. gondii* is a leading
32 cause of infectious retinochoroiditis (2). Eye disease is most prominent in Latin America and Africa with
33 approximately one third of uveitis cases being attributed to ocular toxoplasmosis(3). Although mechanisms of
34 immune control are well studied in the mouse, they are less well understood in humans with currently known
35 mechanisms of restriction observed in a cell type dependent manner(4).

36 In response to pathogen infection, host cells express and secrete interferons (IFNs), which signal in an autocrine
37 or paracrine manner through IFN receptors to induce factors designed to block infection. Interferons fall into three
38 categories: type I (including IFN α and IFN β), type II (IFN γ), and type III (IFN λ 1-4). In general, receptors for type I and II
39 IFN are ubiquitously expressed whereas type III IFN sensitivity is restricted to epithelial barriers. Conventionally, IFN
40 signaling involves the induction of interferon stimulated genes (ISGs) involved in host defense via JAK-STAT mediated
41 signaling (5-7). Although IFN upregulates expression of many genes, induction of ISGs is only semiconserved between
42 cell types, with many ISGs being cell type dependent (7). Variability in ISG expression is perhaps due to the induction
43 of noncanonical IFN signaling pathways that have been observed in a cell type dependent manner(8, 9). To identify
44 and study the functions of this diverse set of genes, a wide variety of approaches have been utilized including ectopic
45 overexpression, siRNA-mediated knockdown, and more recently CRISPR-Cas9 screening approaches(7). For the
46 purpose of our study, several previous over-expression screens have been informative: an ectopic expression-based
47 screen of type II IFN induced genes developed by Abrams et al., and the prior screen developed by Schoggins et al.,
48 which focused on type I IFN induced genes (10, 11). These screens utilized a lentiviral based expression cassette to
49 express a curated library of commonly expressed ISGs in a one gene per well format. Abrams et al., successfully used
50 this approach to identify novel ISGs which impact *Listeria monocytogenes* infection while the screen developed by
51 Schoggins et al., has been used to identify many ISGs impacting a broad range of pathogens including both bacteria
52 and viruses(10-13).

53 Interferon gamma (IFN γ) has been known since the 1980s to be expressed during *T. gondii* infection and to be
54 critical for restricting infection in mice(14-16). IFN γ mediated restriction has been attributed to the expression of a
55 group of interferon stimulated genes (ISGs) including immunity related GTPases (IRGs) and guanylate binding
56 proteins (GBPs). IRGs and GBPs are recruited to the parasitophorous vacuole membrane (PVM) resulting in a loss of
57 membrane integrity and parasite death(17, 18). As a defense, type I and II strains of *T. gondii* express the Ser/Thr
58 kinase ROP18, which phosphorylates and inactivates IRG proteins to prevent PVM damage(19). Additionally,
59 increased nitric oxide production due to induction of inducible nitric oxide synthase (iNOS) has also been shown to
60 play a role in restricting *T. gondii* infection in mice *in vivo* and *in vitro*(20-22).

61 IFNy is similarly important for *T. gondii* restriction in human cells *in vitro* and IFNy expression has been shown to
62 correlate with disease severity *in vivo*(23, 24). However, in contrast to the situation in mouse, the mechanisms
63 underlying IFNy mediated *T. gondii* restriction in humans tend to be cell-type specific. Humans possess one truncated
64 IRG that likely lacks GTPase activity and only one nontruncated IRG that is not IFNy or infection inducible(25). Hence,
65 it is unlikely IRGs play a role in human resistance to *T. gondii* infection. Although human GBP1 has been shown to
66 restrict *T. gondii* infection, it does so in a cell type dependent manner. GBP1 restricts infection in IFNy-treated human
67 mesenchymal stromal cells (MSCs) and lung epithelial cells (i.e. A549 cells) but not myeloid-derived cells (i.e. HAP1
68 cells)(26-28). GBP1 is also implicated in an inflammasome pathway that results in host cell death in human
69 macrophages following *T. gondii* infection (29). Additionally, GBP5 has been shown to play a role in the clearance of
70 *T. gondii* from human macrophages *in vitro*, albeit in an IFNy independent manner (30). Humans also possess an
71 ISG15-dependent, IFNy inducible, noncanonical autophagy (ATG) pathway that restricts *T. gondii* growth in human
72 cervical adenocarcinoma cells (HeLa cells) and A549 cells(31, 32). A similar noncanonical ATG dependent pathway has
73 been reported in human umbilical vein epithelial (HUVEC) cells, although it differs slightly in culminating in lysosome
74 fusion(33). Finally, indoleamine 2,3-dioxygenase (IDO1) has been shown *in vitro* to restrict *T. gondii* growth by
75 limiting L-tryptophan availability in human fibroblasts and monocyte derived macrophages as well as in human
76 derived cell lines of myeloid, foreskin, liver, or cervix origin (e.g. HAP1s, HFFs, Huh7s, and HeLas) but not in cells lines
77 originating from mesenchymal stem cells, the large intestine, or the umbilical endothelium (e.g. MSCs, CaCO₂s, or
78 HUVECs)(26, 34-38).

79 Collectively, the previous studies examining IFNy mediated growth restriction in human cells support a model
80 where different mechanisms make variable contributions in distinct lineages. However, the known pathways for
81 restriction only cover a small fraction of the genes that are normally upregulated in different human cell types
82 following treatment with IFNy (7, 39). Hence, there may be additional control mechanisms not yet defined, including
83 either those that are lineage-specific or that operate globally in all cell types. To explore this hypothesis, we screened
84 a library of 414 IFNy induced interferon stimulated genes (ISGs) in a one gene per well format to attempt to identify
85 novel human factors with the ability to restrict *T. gondii* infection.

86 Results

87 To identify novel ISGs that impact *T. gondii* infection, we employed a library of 414 IFNy induced ISGs cloned into a
88 lentiviral expression cassette co-expressing tagRFP, as previously described by Abrams et al. (10). To screen for ISGs
89 that restrict *T. gondii* infection, we developed a high-throughput method to quantitatively measure infection of GFP-
90 expressing type III strain CTG parasites using automated microscopy. A549 lung epithelial cells were infected with
91 CTG-GFP and the size of individual parasitophorous vacuoles (PVs), the number of vacuoles per field, and the
92 percentage of vacuoles with a size consistent with containing ≥ 8 parasites was determined after 36 hr of culture
93 (**Figure 1A-C**). Cells were transduced with lentivirus in a one gene per well format and challenged with CTG-GFP

94 (Figure 1D). Transduction efficiency was high for most ISGs with 86% (357/414) of ISGs expressed in at least 50% of
95 the cell population and 50% of ISGs (205/414) expressed in 90% of the cell population (Dataset 1). Using this
96 approach, we found three ISGs that restricted infection: IRF1, TRIM31, and RARRES3 (Figure 1E, Dataset 1). All hits
97 were identified as significant by a two-way ANOVA ($P < 0.0001$). We found it curious that IDO1 was not identified by
98 this screen considering its significant impact on infection observed in some but not all cell lines (26, 34-38). There
99 have been no previous reports as to the role of IDO1 during infection in A549s and as such we generated an IDO1
100 deficient A549 cell line and challenged with CTG-GFP in the presence of IFN γ . Consistent with the results of our
101 screen, IDO1 deficiency did not impair IFN γ -mediated restriction of CTG-GFP suggesting that IDO1 does not play a
102 role in the restriction of *T. gondii* in A549 cells (Figure 1F).

103 *Validation of Screen Hits*

104 Cells ectopically expressing IRF1, TRIM31, and RARRES3 expanded normally and showed similar viability compared to
105 a luciferase control when stained with the live-dead stain SYTOX green, suggesting that the overexpression of these
106 genes is not cytotoxic (Figure 2A-B). To confirm that these genes restrict *T. gondii* infection, we ectopically expressed
107 these genes in A549 cells and challenged with CTG-GFP for 36 or 96 h. RARRES3 and IRF1 ectopic expression resulted
108 in a reduction in average vacuole size at 36 h (Figure 2A-B). At 96 h, the total area infected per well was significantly
109 lower for RARRES3 and IRF1 expressing cells compared to control as was the average size of infection foci (Figure 2C-
110 D). TRIM31 had no significant effect on infection in validation experiments and it was not studied further. IRF1 has a
111 known role in amplifying IFN γ mediated transcription, and its role relative to IFN γ is further explored below. RARRES3
112 is a small, 18.2 kDa single domain protein in the HRASLS family(40). It displays phospholipase A1/2 activity *in vitro*
113 and has been shown to suppress Ras signaling and promote apoptosis(41, 42). Although RARRES3 was described by a
114 previous screen to be antiviral(12), it was not studied further and little is known about its involvement in immunity to
115 other pathogens. In studies described below, we explore its role in restricting growth of intracellular *T. gondii*.

116 *IRF1 versus IFN γ induced genes*

117 In mice, *Irf1* deficiency has been shown to result in increased susceptibility to *T. gondii* infection (43), consistent with
118 the secondary induction of a broad set of ISGs downstream of IFN dependent STAT-mediated gene expression(44).
119 However, it is unknown what subset of IFN γ -induced genes are regulated by IRF1 in A549 cells. To define these two
120 gene sets, we ectopically expressed IRF1 or luciferase control in A549 cells, treated a subset of control cells with IFN γ ,
121 and analyzed transcriptional changes by RNA-seq. For both IFN γ and IRF1, the majority of changes were due to
122 upregulation and we focused our analysis on these genes (Figure 3A,B). We identified 160 genes upregulated by IRF1
123 and 380 genes upregulated by IFN γ in A549 cells (FDR ≤ 0.05 , 2 fold) (Dataset 2). When we compared these gene lists
124 with the ISG library with which we challenged *T. gondii* infection, we found that 41.1% (86/160) of IFN γ induced
125 genes and 53.8% (156/380) of IRF1 induced genes were represented by the library (Dataset 3). Notably, strongly
126 induced ISGs were more commonly represented in the ISG library with 69% of the top 100 strongest induced genes

127 by IFNy and 67% of those induced by IRF1 being represented (**Figure 3C, Dataset 3**). Gene ontology (GO) analysis for
128 the lists of IRF1 and IFNy induced genes revealed induction of very similar processes that were grouped into IFN
129 signaling, immune response regulation, host defense, and antigen presentation (**Figure 3D-E**). Interestingly, RARRES3
130 was strongly induced by both IRF1 and IFNy treatment.

131 *RARRES3 does not affect immune signaling*

132 To determine if the observed reduction in infection with RARRES3 overexpression might also be due to induction of
133 interferon expression and downstream ISG induction, we used CRISPR/Cas9 mediated gene editing to generate a
134 STAT1^{-/-} A549 cell line (**Figure 4A-B**). We ectopically expressed RARRES3 in these cells and subsequently infected with
135 CTG-GFP parasites. The same phenotypes were observed with RARRES3 ectopic expression irrespective of the
136 presence of STAT1, suggesting that decreased infection on over-expression of RARRES3 is not due to induction of
137 IFNy signaling (**Figure 4C-F**). Interestingly, we noticed that RARRES3 ectopic expression resulted in a modest increase
138 in the number of PVs observed at 36 h in wild type cells and was slightly more pronounced in STAT1^{-/-} cells (**Figure 2C,**
139 **4C**). We further tested if ectopic expression of RARRES3 impacted NF- κ B or interferon signaling by using κ B-, ISRE-,
140 and GAS-luciferase reporter cell lines. RARRES3 did not significantly impact luciferase expression for any of the
141 reporters tested (**Figure 4G-J**). These findings suggest that RARRES3 does not modulate immune signaling pathways
142 and instead plays a direct role in restricting infection.

143 *Endogenous RARRES3 can restrict infection*

144 To determine if endogenously expressed RARRES3 impacts infection, we next used CRISPR/Cas9 mediated gene
145 editing to generate a RARRES3^{-/-} A549 cell line. Alternatively, cells were transduced with an expression cassette
146 containing Cas9 and a previously used nontargeting sgRNA to serve as a negative control(45). RARRES3 deficiency did
147 not alter the susceptibility of quiescent cells to infection (**Figure 5A-B**). However, RARRES3 deficiency partially
148 alleviated IFNy-mediated restriction of CTG-GFP infection and this deficiency was complemented with RARRES3
149 ectopic expression (**Figure 5A-B**). As previously mentioned, RNA-seq analysis showed that RARRES3 expression was
150 strongly induced by both IRF1 and IFNy. Since RARRES3 was the only ISG identified by our screen to restrict *T. gondii*
151 infection, we wanted to determine if the impact of IRF1 on infection was solely due to upregulation of RARRES3
152 expression. To test this, we ectopically expressed IRF1 or luciferase control in WT and RARRES3^{-/-} A549 cells and
153 challenged them with CTG-GFP. However, loss of RARRES3 did not impact IRF1 mediated restriction of infection
154 (**Figure 5C**). This suggests that either IRF1 mediated infection restriction is RARRES3 independent or involves multiple
155 factors with RARRES3 playing a redundant role in the process of restricting growth. CTG is a type III strain of *T. gondii*
156 that is less virulent in mice and more susceptible to IFNy mediated restriction than other strains (46-48). We wanted
157 to determine if RARRES3 also impacts other strains of *T. gondii*. To test this, we infected A549s ectopically expressing
158 RARRES3 with GFP expressing RH88 (Type I) and Me49 (Type II). However, RARRES3 had no impact on the infection of

159 either of these two strains (**Figure S1**). Differential expression or polymorphic virulence factors may explain the
160 disparity in susceptibility to RARRES3 mediated restriction between strains(48, 49).

161 *RARRES3 promotes premature egress*

162 We subsequently revisited our previous finding that infection in RARRES3 ectopically expressing cells results in more,
163 smaller PVs at 36 h than control. This result suggested to us that RARRES3 might be promoting premature egress of
164 the parasite. To test this possibility, we infected A549 cells ectopically expressing RARRES3 with CTG-GFP parasites
165 and measured lactose dehydrogenase (LDH) release (**Figure 6A**). RARRES3 ectopic expression resulted in increased
166 LDH release in CTG-infected cells compared to control cells (**Figure 6A**). We next sought to differentiate if the
167 observed LDH release was due to PKG dependent, active parasite egress or a form of induced cell death. To
168 differentiate between these two hypotheses, we treated cells during infection with a trisubstituted pyrrole *T. gondii*
169 protein kinase G (PKG) inhibitor known as Compound 1(50, 51). Compound 1 is a potent inhibitor of parasite egress
170 and has also been shown to promote differentiation from tachyzoites to bradyzoites, significantly slowing parasite
171 growth thus also delaying or preventing egress(52-54). Treatment with Compound 1 blocked the LDH release
172 observed during infection and compound 1 treated cells did not stain with propidium iodide, suggesting that host cell
173 death as measured by LDH release was due to parasite egress (**Figure 6B**, **Figure S2A**).

174 In addition to increased parasite egress, we observed a reduction in host cell number during infection in cells
175 ectopically expressing RARRES3 compared to control (**Figure 6C**). Similar to above, this phenotype was blocked by
176 Compound 1 addition. A common trigger of premature egress is the induction of cell death pathways, of which there
177 is a diversity of types controlled by different mechanisms (55-58). Hence, we were curious if extending this timepoint
178 further would reveal host cell death even with blockage of parasite egress by Compound 1. However, Compound 1
179 addition during infection resulted in no significant increase in LDH release or propidium iodide staining even 72 h
180 after infection (**Figure 6D**, **Figure S2B**). Meanwhile, in untreated, infected cultures the cell monolayer was nearly
181 completely lysed and LDH activity was elevated in the supernatant (**Figure 6D**, **Figure S2C**). Collectively, these findings
182 suggest that induction of cell death by RARRES3 is not the trigger for promotion of parasite egress. To further test
183 this idea, we treated cells with a panel of inhibitors during infection either individually or in combination as indicated
184 (**Figure 6E**). These inhibitors included the pan-caspase inhibitor Z-VAD-FMK, which blocks apoptosis; the necroptosis
185 inhibitors GSK'963, GSK'872, and necrosulfonamide (NSA), which block RIP1, RIP3, and MLKL activity respectively;
186 and the pyroptosis inhibitor Z-YVAD-FMK, which blocks caspase 1. No single drug or combination thereof was capable
187 of inhibiting LDH release during infection except for GSK'872, which partially prevented LDH release in both RARRES3
188 ectopically expressing and control cells. Overall, we conclude from these experiments that it is unlikely that over
189 expression of RARRES3 induces cell death and therefore it must trigger premature egress by some other means.

190 A similar premature egress phenotype to that observed here has previously been identified in HFF cells(57). We
191 hypothesized that RARRES3 might play a role in this process. To test this possibility, we ectopically expressed

192 RARRES3 in HFF cells and infected with CTG-GFP parasites. RARRES3 ectopic expression was found to restrict CTG
193 infection (**Figure 7A-B**). We next ablated RARRES3 expression in HFFs using CRISPR/Cas9 mediated gene editing. Loss
194 of RARRES3 resulted in a partial reduction in IFNy -dependent cell death in RARRES3^{-/-} HFF cells compared to control
195 cells expressing Cas9 and a nontargeting sgRNA (**Figure 7C**). This finding indicates that RARRES3 plays a role in
196 premature egress but is not the only factor involved in HFF cells. In line with this finding, RARRES3 deficiency in HFF
197 cells partially abrogated IFNy -mediated restriction of CTG-GFP infection (**Figure 7D**). Moreover, treatment with
198 Compound 1 completely blocked cell death during infection, suggesting that cell death is caused by PKG dependent
199 parasite egress (**Figure 7E, Figure S2D-F**). Collectively, this data suggests that RARRES3 over-expression promotes
200 premature parasite egress independently of host cell death pathways in multiple cell lines which presumably stunts
201 parasite growth leading to reduced infection overall.

202 **Discussion**

203 Although mechanisms of IFNy-mediated immunity are highly conserved across different cell types in mice, the
204 currently known restriction mechanisms in humans show dramatic differences between cell types with no common
205 or widespread restriction mechanism being observed. However, of the hundreds of ISGs, the vast majority have
206 never been studied in relation to *T. gondii*, leaving open the possibility of unidentified restriction mechanisms.
207 Herein, we performed a screen of IFNy induced ISGs to identify novel mechanisms of IFNy-mediated immunity in
208 humans. Our screen identified RARRES3 and IRF1 as ISGs restrictive to *T. gondii* infection in human cells. Further
209 study revealed that RARRES3 induced premature egress of *T. gondii* from host cells in a cell death independent
210 manner. Not unexpectedly, IRF1 induced genes were largely found to be a subset of those induced by IFNy, including
211 RARRES3. These findings suggest that IRF1 works by the collective action of multiple ISGs. The relative lack of
212 individual ISGs that are active alone also suggest that control mechanisms effective against *T. gondii* rely on
213 complexes of multiple ISGs or cellular proteins working in concert. Hence the control of intracellular eukaryotic
214 pathogens contrasts with that of bacterial and viral pathogens, mirroring differences in their overall biological
215 complexity.

216 We identified RARRES3 as an ISG promoting premature egress of type III strains of *T. gondii* in two different
217 human cell lines. This phenotype occurs independently of triggering downstream immune signaling. A common cause
218 of premature egress is the induction of host cell death pathways (55-57). And indeed, such a mechanism might be
219 suggested due to the fact that RARRES3 ectopic expression has been previously shown to induce apoptosis(42).
220 However, in our system RARRES3 ectopic expression was not found to impact cell death. Additionally, basal levels of
221 LDH release were not increased in cells ectopically expressing RARRES3. Finally, when we blocked cell death
222 pathways individually or in tandem, we did not see a reduction in LDH. The one exception to this pattern was the
223 reduced release of LDH following treatment with GSK'872. We suspect this result is due to RIP3 inhibition mediated
224 induction of apoptosis as has been demonstrated previously with GSK'872 treatment (59). Thus, following treatment

225 with GSK'872 it is likely that infection is hindered by host cell apoptosis and LDH release is not observed since cell
226 membranes remain largely intact. The early egress phenotype observed here was similar to an IFNy dependent
227 premature parasite egress observed in HFF cells that was independent of known cell death pathways(57). We found
228 that ablation of RARRES3 expression partially prevented the IFNy and infection dependent cell death phenotype in
229 HFF cells. Furthermore, we observed that LDH release was blocked via Compound 1 mediated inhibition of PKG
230 suggesting that RARRES3 over-expression leads to parasite egress resulting in host cell lysis. Although previous
231 studies using CDPK3 inhibition concluded that blocking egress was not sufficient to prevent cell death, our findings
232 differ from this conclusion, possibly due to the stronger role for PKG in controlling egress(53). It is presently unclear
233 how RARRES3 leads to premature egress, although it is possible that its phospholipase A1/A2 activity may alter
234 cellular lipid pools that could induce premature egress. As an example of the sensitivity of egress to membrane lipid
235 constituents, increases in phosphatidic acid(60), or the activity of lipolytic lecithin: cholesterol acyltransferase(61)
236 have been shown to trigger egress of *T. gondii*.

237 In addition to RARRES3, we found that ectopic expression of IRF1 was sufficient to restrict *T. gondii* infection. It
238 was not surprising to us that we identified IRF1 in this screen considering the well-known role of IRF1 in the
239 secondary induction of ISGs and other protective factors downstream of IFN signaling(44). Mice deficient in *lrf1* were
240 previously shown to be more susceptible to *T. gondii* infection(43). However, considering the limited number of ISGs
241 found to restrict *T. gondii* infection in our screen, we were curious as to what genes or pathways were being induced
242 by IRF1 ectopic expression and how this compared to IFNy mediated gene expression in A549s. Although few genes
243 were substantially downregulated by IRF1 expression, 160 genes were upregulated ≥ 2 fold by IRF1 compared to 380
244 genes with IFNy treatment. IRF1 induced genes were largely a subset of those IFNy inducible genes. Notably, this is
245 not always the case with a significant disparity in genes being induced by IRF1 compared to IFNs being reported
246 previously in BEAS-2B cells(62). Overall, similar processes were induced by both IRF1 and IFNy and these were related
247 to antigen processing and presentation, host defense, and immune signaling. We observed that IRF1 and IFNy both
248 strongly induced the expression of RARRES3 which led us to question if infection restriction by IRF1 was due to the
249 induction of RARRES3 expression. However, we found that this was not the case, suggesting that RARRES3 either
250 does not play a role in IRF1 mediated restriction of *T. gondii* infection or plays a redundant role. Hence it is likely that
251 IRF1 leads to overexpression of multiple ISGs that collectively inhibit parasite growth.

252 Although our study is the first to broadly screen ISGs for anti-protozoal activity, it is curious that we only
253 identified two genes that were inhibitory to *T. gondii* infection. In contrast, similar screens challenging viruses and
254 bacteria have commonly identified a minimum of 2-3 times this number of ISGs that were restrictive to infection(10-
255 13). One possible explanation of this difference is that *T. gondii* separates itself from the host cytoplasm via the host
256 derived PVM that forms a barrier to otherwise harmful ISGs in the cytosol. Another explanation is that a common
257 mechanism of ISG activity is the manipulation or shutdown of host processes required for pathogen infection.
258 Examples include PKR and IFIT mediated inhibition of host translation machinery, processes that directly affect viral

259 infection (7). In contrast, *T. gondii* is a relatively autonomous intracellular pathogen with relatively limited need for
260 host machinery for its growth and replication. Hence, the fact that so few genes were identified by this screen may
261 reflect a secluded existence of *T. gondii* within the PVM and its autonomy of cellular processes relative to viral or
262 bacterial pathogens.

263 Alternatively, the low number of single genes that restrict growth of *T. gondii* in A549 cells suggests that IFNy -
264 dependent restriction is a complex process requiring the cooperation of multiple host factors at a time. Hence, the
265 expression of single factors may not be sufficient to restrict infection. For example, a requirement for additional
266 factors could explain why ISG15 was not identified by this screen as ISGylation also requires ubiquitin-like
267 conjugation to attach to target proteins(63). ISG15 knockout was previously found to enhance *T. gondii* growth in
268 A549 cells (31) and this was attributed to its role in the targeting of autophagy machinery to the PV during infection
269 leading to restriction of parasite growth. Currently, over 200 genes have been found to be involved in autophagy in
270 human cells according to the human autophagy database (HADb, <http://autophagy.lu/clustering/index.html>).
271 Furthermore, coimmunoprecipitation experiments indicated that ISG15 interacts directly or indirectly with more than
272 240 proteins(31). Thus, although ISG15 may be necessary for autophagy mediated infection restriction as observed
273 with knockout based studies, its individual ectopic expression may not be sufficient to induce this mechanism of
274 infection restriction. A similar explanation can be made for GBP1 that was shown via knockout experiments to be
275 important for restriction of *T. gondii* in A549 cells previously(28). Gbp1 recruitment to the PV and parasite clearance
276 in mice has been shown to require the autophagy machinery(64) and the interaction of GBP1 with ATG5 has been
277 reported in a human cell line(31). In human macrophages, the AIM2 inflammasome has been reported to induce host
278 cell death in a GBP1 dependent manner(29). Thus, the expression of GBP1 individually may not be sufficient to
279 restrict *T. gondii* infection. A similar argument is unlikely to explain the lack of a phenotype for IDO1, which is not
280 thought to require any other genes for its function. However, this pathway does not seem to operate in all human
281 cells(26, 36, 37). Our findings demonstrate that IDO1 does not impact infection specifically in A549s. Finally, it is also
282 possible that ISGs important for *T. gondii* were missed by this screen as the library used herein is not an exhaustive
283 list of all ISGs expressed in A549 cells. Hence it is possible that other ISGs that restrict *T. gondii* infection could be
284 identified using a more focused library or using a similar approach in a different human cell line.

285 Although we successfully identified a novel anti-parasitic ISG impacting *T. gondii* infection, the scarcity of ISGs
286 identified with the screening approach used here is also of interest. Our results suggest that immunity to *T. gondii* is a
287 complex process requiring multiple factors to impact infection. This complexity differs from other intracellular
288 pathogens such as bacteria and viruses, where single ISGs are often sufficient to inhibit infection. As such, a future
289 loss-of-function based screen for ISGs targeting *T. gondii* infection may reveal additional mechanisms of *T. gondii*
290 restriction.

292 **Acknowledgements**

293 We thank members of the Sibley lab for helpful suggestions. Partially supported by NIH grants (R21 AI154048, R01
294 AI118426 to L.D.S.). The Welch Foundation (I-1704 to N.M.A.) and the National Institutes of Health (AI083359 to
295 N.M.A.).

296

297 **Author contributions**

298 Conceptualization: N.R., L.D.S.; Methodology: N.R.; Investigation: N.R.; Formal analysis: N.R.; Resources: M.E.A.,
299 S.M.K., J.W.S., N.M.A.; Supervision: L.D.S.; Writing, reviewing, editing: N.R., L.D.S., N.M.A., J.W.S., S.M.K

300 **Conflicts**

301 We state no conflict of interest.

302 **Data deposits**

303 RNASeq data generated here have been deposited to GEO with the accession number GSE181861.

304

305 **Methods**

306 **Cell lines and Parasites**

307 HeLa adenocarcinoma, A549 lung carcinoma (ATCC # CCL-185), HFF foreskin fibroblast (ATCC # SCRC-1041),
308 and human embryonic kidney-derived 293T cells (ATCC # CRL-3216) were grown in DMEM supplemented with 10%
309 FBS, 10 mM HEPES (pH 7.5), 2 mM L-glutamine, and 10 µg/mL gentamicin. Cells were grown at 37° C with 5% CO₂.
310 *Toxoplasma gondii* strains RH88 (Type I), Me49 (Type II), and CTG (Type III) expressing GFP were generated via
311 random insertion of pGRA1.GFP.GRA2.DHFR after electroporation as described previously (65). Clonal populations
312 expressing GFP were generated via limiting dilution. *T. gondii* lines were passaged as described previously in HFFs
313 grown under the conditions listed above(66). Parasite and host cell lines were confirmed to be negative for
314 mycoplasma using an e-Myco plus kit (Intron Biotechnology).

315 **Plasmids and Cloning**

316 The plasmids TRIP.RARRES3 and control constructs were kindly provided by Neal Alto and John Schoggins.
317 Briefly, the TRIP plasmid encodes an expression cassette flanked by lentiviral LTRs. Expression of a bicistronic
318 transcript including tagRFP and a gene of interest is driven by a CMV promoter. The gene of interest and tagRFP are
319 translated independently via an internal ribosome entry site. Cas9 resistant RARRES3 was generated from the WT
320 TRIP.RARRES3 construct by overlap extension PCR. For CRISPR/Cas9 experiments, RARRES3 and nontargeting guides
321 were cloned into plentiCRISPRv2 (Addgene plasmid #52961)(67). Primers for the above cloning are listed in

322 supplementary table 1. For IDO1, an IDO1 targeting sgRNA was cloned into pLenti-Cas9-GFP (Addgene plasmid
323 #86145). Briefly, pLenti-Cas9-GFP was digested with BsmBI (New England Biolabs). Primers listed in supplemental
324 table 1 were annealed and ligated into the digested plasmid using T4 ligase (New England Biolabs). For the
325 generation of pGRA1.GFP.GRA2.DHFR, an expression cassette consisting of the GRA1 5' UTR (M26007.1, nucleotides
326 4-615) driving the expression of GFP (MN114103.1, coding sequence) flanked by the GRA2 3' UTR (XM_002366354.2,
327 nucleotides 997-1114) was cloned into pH931 along with DHFR (XM_002367211.2, coding sequence) expressed
328 from its native promoter and flanked by its 3' UTR (L08489.1).

329 Lentivirus Production and Cell Line Generation

330 TRIP lentiviruses were produced as previously described(68). Lentiviruses derived from Lenti-Cas9-GFP,
331 lentiCRISPRv2 and HAGE NFkB-TA-LUC-UBC-GFP-W were produced similarly. Briefly, 293T cells were seeded at 4×10^5
332 cells per well into 6-well plates. Cells were transfected with 1 μ g pTRIP, pLenti-Cas9-GFP, plentiCRISPRv2 or pHAGE
333 NFkB-TA-LUC-UBC-GFP-W, 0.2 μ g plasmid expressing VSVg, and 0.8 μ g plasmid expressing HIV-1 gag-pol using X-
334 tremeGENE 9 (Sigma). Media was changed 6 h later and lentivirus containing culture supernatants were collected at
335 48 and 72 h post-transfection. Pooled supernatants were clarified by centrifugation at $800 \times g$ for 5 min. Polybrene
336 and HEPES were added to a final concentration of 4 μ g/mL and 35 mM respectively. Lentivirus was stored at -80° C
337 until use.

338 For lentivirus transductions, cells were seeded at 7×10^4 cells per well in 24 well plates. The next day, media
339 was changed to DMEM supplemented with 4 μ g/mL polybrene, 3% FBS, 35 mM HEPES, 2 mM glutamine, and 10
340 μ g/mL gentamicin. Cells were transduced by spinoculation at $800 \times g$, 45 min, 37° C. For the ISG screen, media was
341 changed 6 h later to normal growth medium. Cells were replated at 48 h post transduction for subsequent
342 experimentation.

343 For knockout cell line generation, cells were transduced with lentiCRISPRv2 or pLenti-Cas9-GFP containing
344 the appropriate sgRNA for Cas9 targeting as above. For lentiCRISPRv2, cells were selected for at least two weeks in
345 growth media containing 4 μ g/mL puromycin before experimentation. For IDO1^{-/-}, STAT1^{-/-} and RARRES3^{-/-} A549 cell
346 lines, cells were transduced with a single lentivirus and clonal cell lineages were established through limiting dilution.
347 For HFFs, a heterogenous bulk population RARRES3 knockout cell line was generated by transducing at a tissue
348 culture infectious dose of 90% (TCID₉₀) with two different lentiCRISPRv2 based lentiviruses expressing separate
349 RARRES3 targeting sgRNAs. Nontargeting control cell lines were generated for use as a control in all experiments
350 involving RARRES3^{-/-} cells. Here, cells were transduced with a single lentiCRISPRv2 based lentivirus containing a single
351 nontargeting guide. For RARRES3 and STAT1, editing was confirmed by PCR amplifying targeted loci using primers
352 listed in supplementary table 1 followed by Sanger sequencing. Editing efficiency was quantitated using Synthego ICE
353 analysis (<https://ice.synthego.com/#/>). For single cell clones, >90% editing was verified. For HFF bulk population
354 knockout of RARRES3, 68% editing of sequenced alleles was observed. For STAT1, editing was further confirmed

355 functionally via testing the sensitivity of cells to IFN treatment as determined by IRF1 induction. For IDO1, editing was
356 confirmed via loss of protein expression observed by western blot.

357 Infections

358 A549 and HeLa cells were seeded at 1.5×10^4 in 96 well plates 24 h prior to infection. HFFs were seeded at 2×10^4 in
359 96 well plates 24 h prior to infection. Cells were infected with parasites diluted in 200 μ L normal growth medium for
360 1 h at 37 °C. Media was subsequently changed to 300 μ L normal growth medium. For single life cycle infections
361 (typically indicated as 36 h infections), an MOI of 1 was used. For focus forming assay (typically indicated as 96 h
362 infections), an MOI of 0.03 was used. For LDH assays, media was changed to 200 μ L normal growth medium. For
363 experiments involving IFN γ , cells were pretreated with or without IFN γ diluted in normal growth medium as indicated
364 for 24 h prior to infection. For infections involving cell death inhibitors or compound 1, drugs were added during the
365 media change after the 1 h infection period. For imaging-based experiments, cells were fixed in 4% formaldehyde for
366 10 min after infection and washed with PBS before subsequent experimentation.

367 Drugs

368 Stocks of the cell death inhibitors Z-VAD-FMK (R&D Systems), GSK'963 (Selleck Chemicals), GSK'872 (Selleck
369 Chemicals), NSA (Tocris), and Z-YVAD-FMK (Sigma) as well as Compound 1 (obtained from MERCK & CO., Inc.) were
370 prepared in DMSO. For use, the drugs were diluted in normal growth medium to the following working
371 concentrations: Z-VAD-FMK (50 μ M), GSK'963 (1 μ M), GSK'872 (5 μ M), NSA (10 μ M), Z-YVAD-FMK (10 μ M),
372 Compound 1 (5 μ M). A DMSO control was included in experiments involving these drugs with a final DMSO
373 concentration of 1%.

374 LDH Assays

375 LDH assays were performed with the CyQuant LDH Cytotoxicity Assay Kit (Invitrogen) according to the manufacturer's
376 protocol. Briefly, A549 or HFF cells split in 96-well plates were infected for 1 h as described above with CTG-GFP at an
377 MOI of 40 or 15 respectively and subsequently treated with drugs as indicated. After 36 or 72 h, 20 μ L of 10X lysis
378 buffer or PBS was added to each well and incubated at 37 °C for 30 min. Afterwards, 50 μ L of cell supernatant was
379 mixed with 50 μ L of assay buffer and substrate for 30 min at room temperature. The reaction was stopped with 50 μ L
380 stop solution and absorbance was measured at 490 nm.

381 Luciferase Assays

382 HeLa cells expressing GAS-Fluc, GFP-Fluc, or ISRE-Gluc reporters were transduced with TRIP.RARRES3 or TRIP.Fluc
383 lentivirus as described above. For kB-luc, HeLa cells were additionally transduced with HAGE NFkB-TA-LUC-UBC-GFP-
384 W lentivirus. After 48 h, cells were split into 96 well plates at 1.5×10^4 cells/well. Cells were treated with or without
385 100 U/ml IFN β or IFN γ as indicated for 24 h and subsequently infected as indicated with CTG-GFP at an MOI of 2 for

386 24 h. For firefly luciferase assays, cells were lysed in 50 μ L of 1X Luciferase Cell Culture Lysis Buffer (Promega). For
387 Gaussia luciferase assays, supernatant was collected. Luciferase assays were conducted using Pierce Gaussia
388 Luciferase Glow Assay Kit (Thermo Scientific) or Luciferase Assay System kit (Promega) according to the
389 manufacturer's protocol.

390 Next Generation RNA-Sequencing Sample Preparation and Analysis

391 A549 cells transduced with TRIP.IRF1 or TRIP.FLUC derived lentivirus were split at 3.5×10^6 into 100 mm dishes. After
392 24 h, cells were treated with or without IFNy at 1000 U/mL for an additional 12 h before harvest with RLT buffer. RNA
393 was isolated with a Qiagen RNeasy mini kit according to the manufacturer's protocol. Prior to sequencing, RNA
394 quality was determined on an Agilent Bioanalyzer to have a RIN > 8.0. Libraries prepared from samples were analyzed
395 with an Illumina NovaSeq 6000 S4 generating a minimum of 3×10^7 reads per sample. Data was analyzed with Partek
396 Flow software. Prior to alignment, 5 bp were trimmed from the 5' end of transcripts. Only fragments ≥ 25 bp in
397 length were considered for alignment. Alignment was conducted with the STAR aligner and differential expression
398 analysis was conducted using GSA analysis with recommended settings. Genes were characterized here as induced by
399 IFNy or IRF1 if they induced gene expression ≥ 2 fold with an FDR < 0.05 . Gene lists were compared using GeneVenn
400 (<http://genevenn.sourceforge.net/index.htm>). For GO analysis, gene lists were analyzed with the PANTHER
401 classification system using the GO biological process complete dataset(69, 70). Statistical significance was
402 determined with Fisher's exact test using the Bonferroni correction for multiple testing. Only processes containing at
403 least 25 total genes with a p-value ≤ 0.05 were considered.

404 Immunofluorescence and Imaging

405 Samples were fixed in 4% formaldehyde for 10 min at room temperature. Wash buffer (WB) consisted of 1%
406 FBS, 1% normal goat serum (NGS), and 0.02% Saponin in PBS. Samples were blocked for 30 min with PBS containing
407 5% FBS, 5% NGS, and 0.02% Saponin. Samples were incubated with 1:2000 anti-RFP antibody (Invitrogen) and 1:2000
408 anti-GFP (Invitrogen) in WB overnight, washed 4 times in WB for 5 min each, and probed with 1:1000 goat anti-
409 mouse Alexa Fluor 488 (Life Technologies) and 1:1000 goat anti-rabbit Alexa Fluor 568 (Life Technologies) in WB for 1
410 h. For IRF1 staining, 1:500 anti-IRF1 primary antibody (Cell Signaling Technology) and 1:1000 anti-rabbit Alexa Fluor
411 488 secondary antibody (Life Technologies) were used instead. Samples were washed 3 times with WB and nuclei
412 were stained for 5 min with Hoechst 33342 (Life Technologies) in WB. Samples were imaged with a Cytation 3 imager
413 (BioTek) and images were analyzed in CellProfiler v3.1.9.

414 Western Blotting

415 A549 cells were split at 2.5×10^5 cells per well into 6-well plates in standard growth medium. The following
416 day, media was changed to standard growth medium supplemented with or without 1000 U/mL IFNy. After 24 h,
417 cells were washed with PBS, trypsinized with 0.05% trypsin, and spun down at 200 x g for 5 min. Cell pellets were

418 washed once with PBS and lysed with CellLytic M (Millipore) supplemented with 20 mM DTT and 125 U/mL
419 benzonase (Millipore). Samples were incubated at room temperature for 20 min, run on a 10%, 37.5:1
420 polyacrylamide gel, and transferred to nitrocellulose membranes. Membranes were blocked with 0.1% Tween-20
421 PBS-T containing 5% bovine serum albumin (BSA) for 30 min. Membranes were incubated with 1:1000 rabbit anti-
422 IDO1 (Cell Signaling) and 1:5000 mouse anti-actin (Sigma) in 5% BSA PBS-T for 1 h, washed 4 times with PBS-T for 3
423 min each, incubated with 1:5000 goat anti-mouse 680RD (LI-COR) and 1:5000 goat anti-rabbit 800CW (LI-COR) in 5%
424 BSA PBS-T for 30 min, washed 4 times in PBS-T for 3 min each, and washed 2 times in PBS. Membranes were imaged
425 with a LI-COR Odyssey scanner.

426 **Statistical Analysis**

427 For most datasets including those normalized to control, statistical significance was determined with a two-way
428 ANOVA and Tukey's honestly significant difference post-hoc test conducted on raw data prior to normalization and
429 considered variance between experimental replicates and variance between experimental conditions. For LDH and
430 luciferase reporter experiments, statistical significance was determined after normalization and considered variance
431 between experimental replicates and variance between experimental conditions. For experiments in Figure 2A and
432 2B, statistical significance was determined using a Brown-Forsythe and Welch ANOVA. Specifically for datasets not
433 normalized to control with only two conditions, a Mann-Whitney U test was used to determine statistical
434 significance. The term 'technical replicate' refers to separate samples derived from the same original source within
435 the same experiment (i.e. wells of a plate) processed on the same day. The term 'biological replicate' refers to
436 separate experiments conducted on different dates with different samples.

437

438

439 **References**

- 440 1. Furtado JM, Smith JR, Belfort R, Jr., Gattey D, Winthrop KL. 2011. Toxoplasmosis: a global threat. *Journal of*
441 *global infectious diseases* 3:281-284.
- 442 2. Weiss LM, Dubey JP. 2009. Toxoplasmosis: A history of clinical observations. *International journal for*
443 *parasitology* 39:895-901.
- 444 3. Furtado JM, Winthrop KL, Butler NJ, Smith JR. 2013. Ocular toxoplasmosis I: parasitology, epidemiology and
445 public health. *Clinical & Experimental Ophthalmology* 41:82-94.
- 446 4. Fisch D, Clough B, Frickel E-M. 2019. Human immunity to *Toxoplasma gondii*. *PLoS pathogens* 15:e1008097-
447 e1008097.
- 448 5. Alspach E, Lussier DM, Schreiber RD. 2019. Interferon γ and Its Important Roles in Promoting and Inhibiting
449 Spontaneous and Therapeutic Cancer Immunity. *Cold Spring Harbor perspectives in biology* 11:a028480.
- 450 6. Lazear HM, Schoggins JW, Diamond MS. 2019. Shared and Distinct Functions of Type I and Type III
451 Interferons. *Immunity* 50:907-923.
- 452 7. Schoggins JW. 2019. Interferon-Stimulated Genes: What Do They All Do? *Annual Review of Virology* 6:567-
453 584.

454 8. van Boxel-Dezaire AHH, Stark GR. 2007. Cell Type-Specific Signaling in Response to Interferon- γ , p 119-154. In
455 Pitha PM (ed), Interferon: The 50th Anniversary doi:10.1007/978-3-540-71329-6_7. Springer Berlin
456 Heidelberg, Berlin, Heidelberg.

457 9. van Boxel-Dezaire AHH, Rani MRS, Stark GR. 2006. Complex Modulation of Cell Type-Specific Signaling in
458 Response to Type I Interferons. *Immunity* 25:361-372.

459 10. Abrams ME, Johnson KA, Perelman SS, Zhang L-s, Endapally S, Mar KB, Thompson BM, McDonald JG,
460 Schoggins JW, Radhakrishnan A, Alto NM. 2020. Oxysterols provide innate immunity to bacterial infection by
461 mobilizing cell surface accessible cholesterol. *Nature Microbiology* 5:929-942.

462 11. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM. 2011. A diverse range of gene
463 products are effectors of the type I interferon antiviral response. *Nature* 472:481-5.

464 12. Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, Richardson RB, Ratushny
465 AV, Litvak V, Dabelic R, Manicassamy B, Aitchison JD, Aderem A, Elliott RM, García-Sastre A, Racaniello V,
466 Snijder EJ, Yokoyama WM, Diamond MS, Virgin HW, Rice CM. 2014. Pan-viral specificity of IFN-induced genes
467 reveals new roles for cGAS in innate immunity. *Nature* 505:691-5.

468 13. Perelman SS, Abrams ME, Eitson JL, Chen D, Jimenez A, Mettlen M, Schoggins JW, Alto NM. 2016. Cell-Based
469 Screen Identifies Human Interferon-Stimulated Regulators of *Listeria monocytogenes* Infection. *PLoS Pathog*
470 12:e1006102.

471 14. Suzuki Y, Orellana MA, Schreiber RD, Remington JS. 1988. Interferon-gamma: the major mediator of
472 resistance against *Toxoplasma gondii*. *Science* 240:516-8.

473 15. McCabe RE, Luft BJ, Remington JS. 1984. Effect of murine interferon gamma on murine toxoplasmosis. *J
474 Infect Dis* 150:961-2.

475 16. Shirahata T, Shimizu K. 1980. Production and properties of immune interferon from spleen cell cultures of
476 *Toxoplasma*-infected mice. *Microbiology and immunology* 24:1109-1120.

477 17. Gazzinelli RT, Mendonça-Neto R, Lilue J, Howard J, Sher A. 2014. Innate resistance against *Toxoplasma gondii*:
478 an evolutionary tale of mice, cats, and men. *Cell host & microbe* 15:132-138.

479 18. MacMicking JD. 2012. Interferon-inducible effector mechanisms in cell-autonomous immunity. *Nat Rev
480 Immunol* 12:367-82.

481 19. Hunter CA, Sibley LD. 2012. Modulation of innate immunity by *Toxoplasma gondii* virulence effectors. *Nature
482 reviews Microbiology* 10:766-778.

483 20. Khan IA, Schwartzman JD, Matsuura T, Kasper LH. 1997. A dichotomous role for nitric oxide during acute
484 *Toxoplasma gondii* infection in mice. *Proc Natl Acad Sci U S A* 94:13955-60.

485 21. Adams LB, Hibbs JB, Taintor RR, Krahenbuhl JL. 1990. Microbiostatic effect of murine-activated macrophages
486 for *Toxoplasma gondii*. Role for synthesis of inorganic nitrogen oxides from L-arginine. *The Journal of
487 Immunology* 144:2725.

488 22. Meisel R, Brockers S, Heseler K, Degistirici Ö, Bülle H, Woite C, Stuhlsatz S, Schwippert W, Jäger M, Sorg R,
489 Henschler R, Seissler J, Diloo D, Däubener W. 2011. Human but not murine multipotent mesenchymal
490 stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2,3-
491 dioxygenase. *Leukemia* 25:648-654.

492 23. Pfefferkorn ER, Eckel M, Rebhun S. 1986. Interferon-gamma suppresses the growth of *Toxoplasma gondii* in
493 human fibroblasts through starvation for tryptophan. *Mol Biochem Parasitol* 20:215-24.

494 24. Meira CS, Pereira-Chioccola VL, Vidal JE, de Mattos CCB, Motoie G, Costa-Silva TA, Gava R, Frederico FB, de
495 Mattos LC, Toxoplasma G. 2014. Cerebral and ocular toxoplasmosis related with IFN- γ , TNF- α , and IL-10
496 levels. *Frontiers in microbiology* 5:492-492.

497 25. Bekpen C, Hunn JP, Rohde C, Parvanova I, Guethlein L, Dunn DM, Glowalla E, Leptin M, Howard JC. 2005. The
498 interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in
499 the human lineage. *Genome biology* 6:R92-R92.

500 26. Qin A, Lai D-H, Liu Q, Huang W, Wu Y-P, Chen X, Yan S, Xia H, Hide G, Lun Z-R, Ayala FJ, Xiang AP. 2017.
501 Guanylate-binding protein 1 (GBP1) contributes to the immunity of human mesenchymal stromal cells
502 against *Toxoplasma gondii*. *Proceedings of the National Academy of Sciences of the United States of America*
503 114:1365-1370.

504 27. Ohshima J, Lee Y, Sasai M, Saitoh T, Su Ma J, Kamiyama N, Matsuura Y, Pann-Ghill S, Hayashi M, Ebisu S,
505 Takeda K, Akira S, Yamamoto M. 2014. Role of mouse and human autophagy proteins in IFN-gamma-induced
506 cell-autonomous responses against *Toxoplasma gondii*. *J Immunol* 192:3328-35.

507 28. Johnston AC, Piro A, Clough B, Siew M, Virreira Winter S, Coers J, Frickel E-M. 2016. Human GBP1 does not
508 localize to pathogen vacuoles but restricts *Toxoplasma gondii*. *Cellular microbiology* 18:1056-1064.

509 29. Fisch D, Bando H, Clough B, Hornung V, Yamamoto M, Shenoy AR, Frickel EM. 2019. Human GBP1 is a
510 microbe-specific gatekeeper of macrophage apoptosis and pyroptosis. *Embo j*
511 doi:10.15252/embj.2018100926.

512 30. Matta SK, Patten K, Wang Q, Kim BH, MacMicking JD, Sibley LD. 2018. NADPH Oxidase and Guanylate Binding
513 Protein 5 Restrict Survival of Avirulent Type III Strains of *Toxoplasma gondii* in Naive Macrophages. *mBio* 9.

514 31. Bhushan J, Radke JB, Perng YC, McAllaster M, Lenschow DJ, Virgin HW, Sibley LD. 2020. ISG15 Connects
515 Autophagy and IFN- γ -Dependent Control of *Toxoplasma gondii* Infection in Human Cells. *mBio* 11.

516 32. Selleck EM, Orchard RC, Lassen KG, Beatty WL, Xavier RJ, Levine B, Virgin HW, Sibley LD. 2015. A
517 Noncanonical Autophagy Pathway Restricts *Toxoplasma gondii* Growth in a Strain-Specific Manner in IFN-
518 gamma-Activated Human Cells. *MBio* 6:e01157-15.

519 33. Clough B, Wright JD, Pereira PM, Hirst EM, Johnston AC, Henriques R, Frickel EM. 2016. K63-Linked
520 Ubiquitination Targets *Toxoplasma gondii* for Endo-lysosomal Destruction in IFN γ -Stimulated Human Cells.
521 *PLoS Pathog* 12:e1006027.

522 34. Bando H, Sakaguchi N, Lee Y, Pradipta A, Ma JS, Tanaka S, Lai D-H, Liu J, Lun Z-R, Nishikawa Y, Sasai M,
523 Yamamoto M. 2018. *Toxoplasma* Effector TgIST Targets Host IDO1 to Antagonize the IFN- γ -Induced Anti-
524 parasitic Response in Human Cells. *Frontiers in immunology* 9:2073-2073.

525 35. Pfefferkorn ER. 1984. Interferon gamma blocks the growth of *Toxoplasma gondii* in human fibroblasts by
526 inducing the host cells to degrade tryptophan. *Proc Natl Acad Sci U S A* 81:908-12.

527 36. Woodman JP, Dimier IH, Bout DT. 1991. Human endothelial cells are activated by IFN-gamma to inhibit
528 *Toxoplasma gondii* replication. Inhibition is due to a different mechanism from that existing in mouse
529 macrophages and human fibroblasts. *The Journal of Immunology* 147:2019.

530 37. Dimier IH, Bout DT. 1997. Inhibition of *Toxoplasma gondii* replication in IFN-gamma-activated human
531 intestinal epithelial cells. *Immunol Cell Biol* 75:511-4.

532 38. Schmitz JL, Carlin JM, Borden EC, Byrne GI. 1989. Beta interferon inhibits *Toxoplasma gondii* growth in human
533 monocyte-derived macrophages. *Infect Immun* 57:3254-6.

534 39. Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, Chapman R, Hertzog PJ. 2013. INTERFEROME
535 v2.0: an updated database of annotated interferon-regulated genes. *Nucleic Acids Research* 41:D1040-
536 D1046.

537 40. Mardian EB, Bradley RM, Duncan RE. 2015. The HRASLS (PLA/AT) subfamily of enzymes. *J Biomed Sci* 22:99.

538 41. Uyama T, Jin X-H, Tsuboi K, Tonai T, Ueda N. 2009. Characterization of the human tumor suppressors TIG3
539 and HRASLS2 as phospholipid-metabolizing enzymes. *Biochimica et Biophysica Acta (BBA) - Molecular and*
540 *Cell Biology of Lipids* 1791:1114-1124.

541 42. Tsai F-M, Shyu R-Y, Jiang S-Y. 2007. RIG1 suppresses Ras activation and induces cellular apoptosis at the Golgi
542 apparatus. *Cellular Signalling* 19:989-999.

543 43. Khan IA, Matsuura T, Fonseka S, Kasper LH. 1996. Production of nitric oxide (NO) is not essential for
544 protection against acute *Toxoplasma gondii* infection in IRF-1-/- mice. *The Journal of Immunology* 156:636.

545 44. Feng H, Zhang Y-B, Gui J-F, Lemon SM, Yamane D. 2021. Interferon regulatory factor 1 (IRF1) and anti-
546 pathogen innate immune responses. *PLOS Pathogens* 17:e1009220.

547 45. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R,
548 Virgin HW, Listgarten J, Root DE. 2016. Optimized sgRNA design to maximize activity and minimize off-target
549 effects of CRISPR-Cas9. *Nat Biotechnol* 34:184-191.

550 46. Khaminets A, Hunn JP, Könen-Waisman S, Zhao YO, Preukschat D, Coers J, Boyle JP, Ong YC, Boothroyd JC,
551 Reichmann G, Howard JC. 2010. Coordinated loading of IRG resistance GTPases on to the *Toxoplasma gondii*
552 parasitophorous vacuole. *Cell Microbiol* 12:939-61.

553 47. Boothroyd JC, Grigg ME. 2002. Population biology of *Toxoplasma gondii* and its relevance to human infection:
554 do different strains cause different disease? *Current Opinion in Microbiology* 5:438-442.

555 48. Saeij JPJ, Boyle JP, Coller S, Taylor S, Sibley LD, Brooke-Powell ET, Ajioka JW, Boothroyd JC. 2006. Polymorphic
556 secreted kinases are key virulence factors in toxoplasmosis. *Science (New York, NY)* 314:1780-1783.

557 49. Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA, Jensen KDC, Saeij JPJ. 2011. Strain-specific activation of the
558 NF-kappaB pathway by GRA15, a novel *Toxoplasma gondii* dense granule protein. *The Journal of
559 experimental medicine* 208:195-212.

560 50. Gurnett AM, Liberator PA, Dulski PM, Salowe SP, Donald RG, Anderson JW, Wiltsie J, Diaz CA, Harris G, Chang
561 B, Darkin-Rattray SJ, Nare B, Crumley T, Blum PS, Misura AS, Tamas T, Sardana MK, Yuan J, Biftu T, Schmaltz
562 DM. 2002. Purification and molecular characterization of cGMP-dependent protein kinase from
563 Apicomplexan parasites. A novel chemotherapeutic target. *J Biol Chem* 277:15913-22.

564 51. Donald RGK, Zhong T, Wiersma H, Nare B, Yao D, Lee A, Allococo J, Liberator PA. 2006. Anticoccidial kinase
565 inhibitors: Identification of protein kinase targets secondary to cGMP-dependent protein kinase. *Molecular
566 and Biochemical Parasitology* 149:86-98.

567 52. Nare B, Allococo JJ, Liberator PA, Donald RG. 2002. Evaluation of a cyclic GMP-dependent protein kinase
568 inhibitor in treatment of murine toxoplasmosis: gamma interferon is required for efficacy. *Antimicrob Agents
569 Chemother* 46:300-7.

570 53. Lourido S, Tang K, Sibley LD. 2012. Distinct signalling pathways control *Toxoplasma* egress and host-cell
571 invasion. *The EMBO journal* 31:4524-4534.

572 54. Radke JR, Donald RG, Eibs A, Jerome ME, Behnke MS, Liberator P, White MW. 2006. Changes in the
573 expression of human cell division autoantigen-1 influence *Toxoplasma gondii* growth and development. *PLoS
574 pathogens* 2:e105-e105.

575 55. Yao Y, Liu M, Ren C, Shen J, Ji Y. 2017. Exogenous tumor necrosis factor-alpha could induce egress of
576 *Toxoplasma gondii* from human foreskin fibroblast cells. *Parasite (Paris, France)* 24:45-45.

577 56. Persson EK, Agnarson AM, Lambert H, Hitziger N, Yagita H, Chambers BJ, Barragan A, Grandien A. 2007.
578 Death Receptor Ligation or Exposure to Perforin Trigger Rapid Egress of the Intracellular Parasite *Toxoplasma
579 gondii*. *The Journal of Immunology* 179:8357.

580 57. Niedelman W, Sprokholt JK, Clough B, Frickel E-M, Saeij JPJ. 2013. Cell death of gamma interferon-stimulated
581 human fibroblasts upon *Toxoplasma gondii* infection induces early parasite egress and limits parasite
582 replication. *Infection and immunity* 81:4341-4349.

583 58. Rosenberg A, Sibley LD. 2021. *Toxoplasma gondii* secreted effectors co-opt host repressor complexes to
584 inhibit necroptosis. *Cell Host Microbe* 29:1186-1198.e8.

585 59. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J, MacFarlane M, Cain
586 K, Meier P. 2011. The Ripoptosome, a Signaling Platform that Assembles in Response to Genotoxic Stress and
587 Loss of IAPs. *Molecular Cell* 43:432-448.

588 60. Bisio H, Lunghi M, Brochet M, Soldati-Favre D. 2019. Phosphatidic acid governs natural egress in *Toxoplasma
589 gondii* via a guanylate cyclase receptor platform. *Nature Microbiology* 4:420-428.

590 61. Pszenny V, Ehrenman K, Romano JD, Kennard A, Schultz A, Roos DS, Grigg ME, Carruthers VB, Coppens I.
591 2016. A Lipolytic Lecithin:Cholesterol Acyltransferase Secreted by *Toxoplasma* Facilitates Parasite Replication
592 and Egress. *J Biol Chem* 291:3725-46.

593 62. Panda D, Gjinaj E, Bachu M, Squire E, Novatt H, Ozato K, Rabin RL. 2019. IRF1 Maintains Optimal Constitutive
594 Expression of Antiviral Genes and Regulates the Early Antiviral Response. 10.

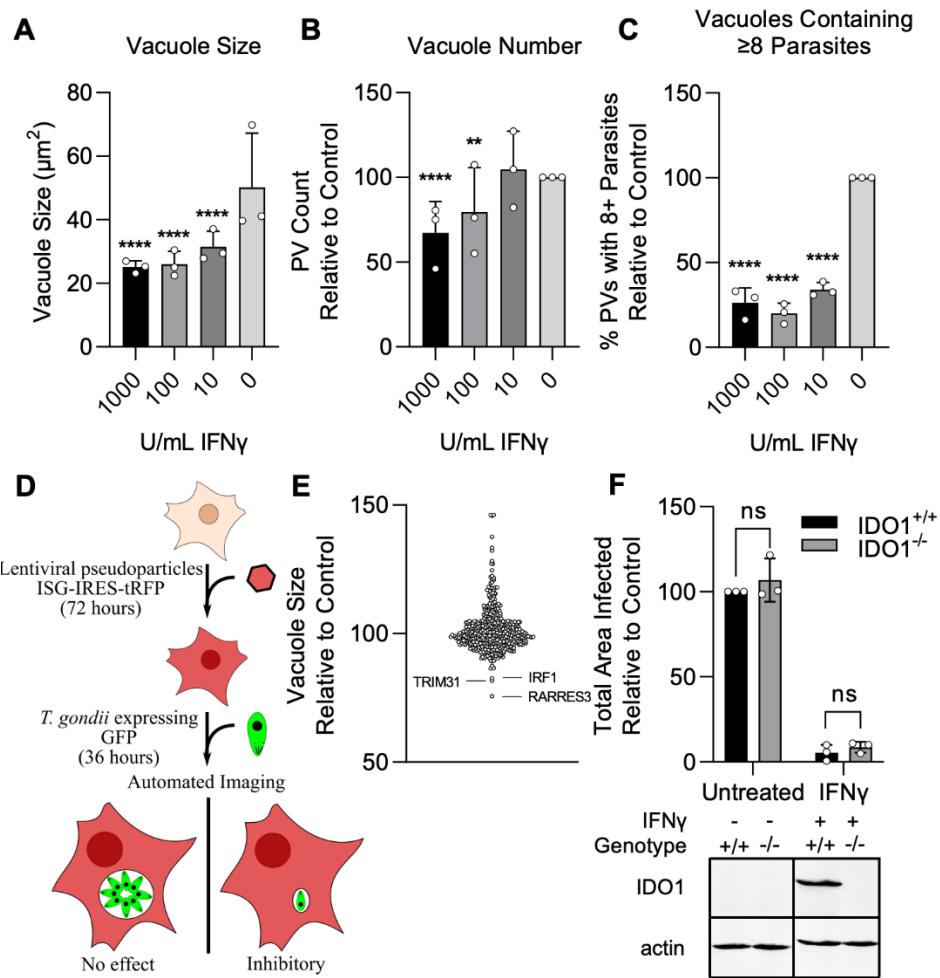
595 63. Perng Y-C, Lenschow DJ. 2018. ISG15 in antiviral immunity and beyond. *Nature Reviews Microbiology* 16:423-
596 439.

597 64. Selleck EM, Fentress SJ, Beatty WL, Degrandi D, Pfeffer K, Virgin HW, Macmicking JD, Sibley LD. 2013.
598 Guanylate-binding protein 1 (Gbp1) contributes to cell-autonomous immunity against *Toxoplasma gondii*.
599 *PLoS pathogens* 9:e1003320-e1003320.

600 65. Shen B, Brown K, Long S, Sibley LD. 2017. Development of CRISPR/Cas9 for Efficient Genome Editing in
601 *Toxoplasma gondii*, p 79-103. In Reeves A (ed), *In Vitro Mutagenesis: Methods and Protocols*
602 doi:10.1007/978-1-4939-6472-7_6. Springer New York, New York, NY.

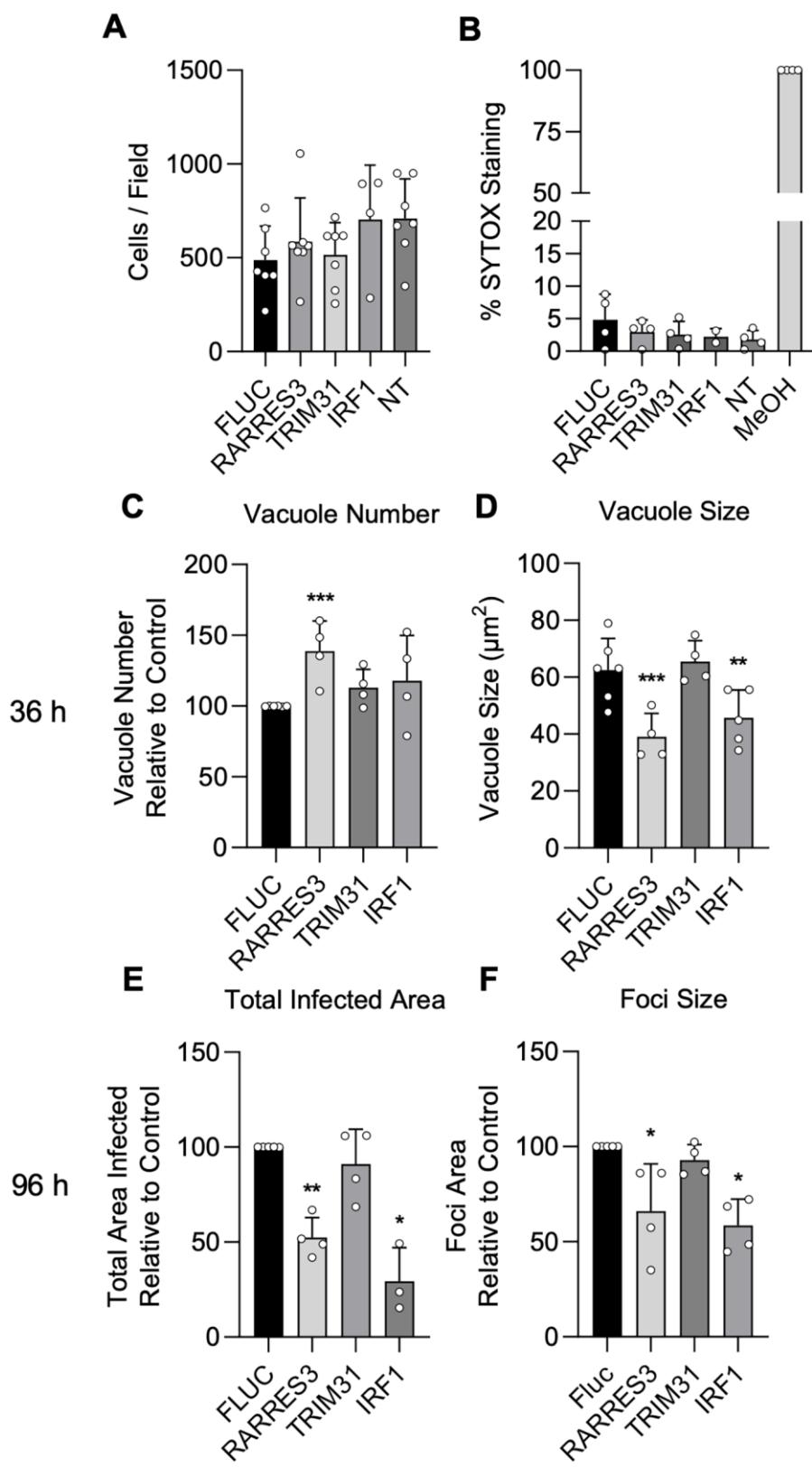
603 66. Khan A, Grigg ME. 2017. *Toxoplasma gondii*: Laboratory Maintenance and Growth. *Current protocols in
604 microbiology* 44:20C.1.1-20C.1.17.

605 67. Sanjana NE, Shalem O, Zhang F. 2014. Improved vectors and genome-wide libraries for CRISPR screening. *Nat
606 Methods* 11:783-4.


607 68. Schoggins JW, Dorner M, Feulner M, Imanaka N, Murphy MY, Ploss A, Rice CM. 2012. Dengue reporter
608 viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in
609 vitro. *Proc Natl Acad Sci U S A* 109:14610-5.

610 69. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A.
611 2003. PANTHER: a library of protein families and subfamilies indexed by function. *Genome research* 13:2129-
612 2141.

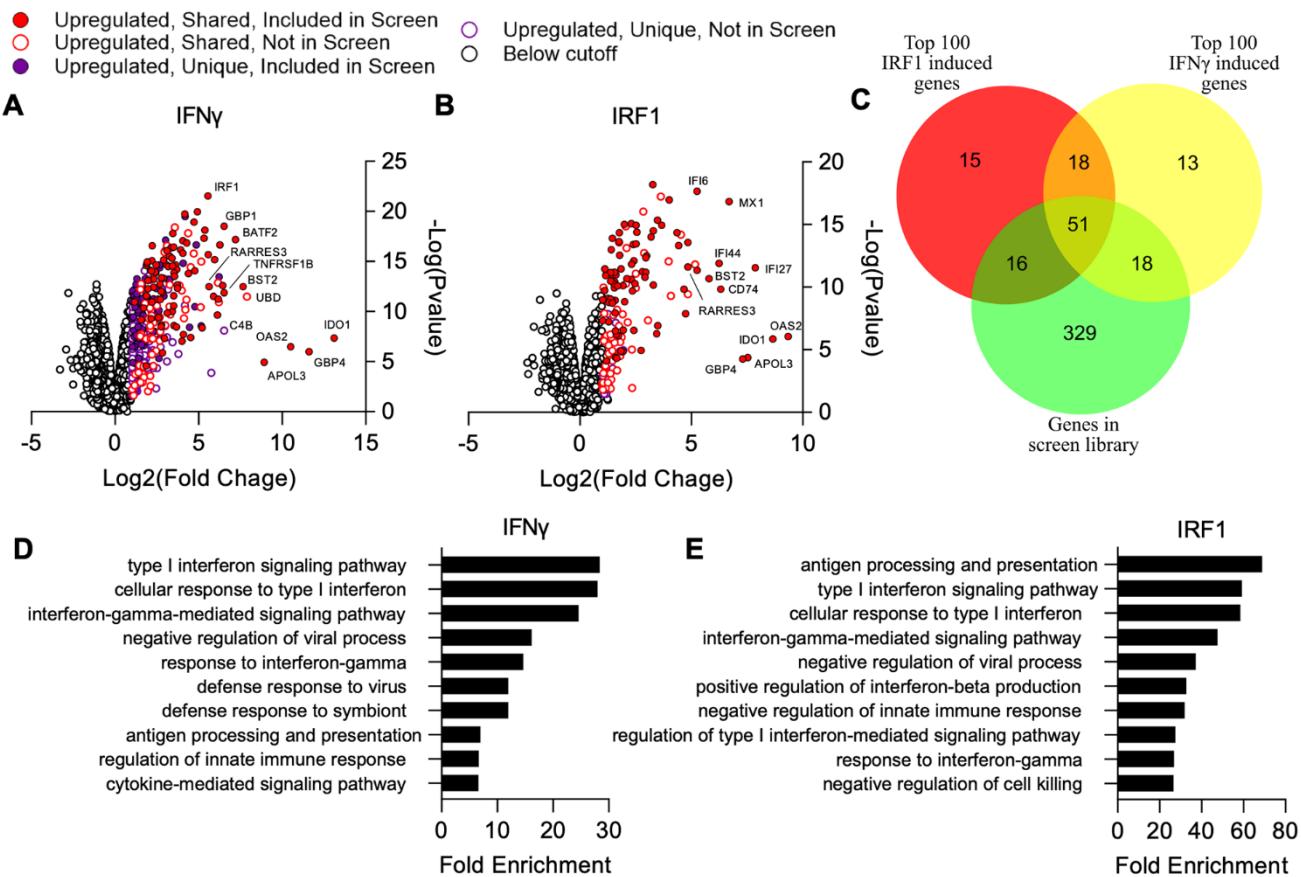
613 70. Thomas PD, Kejariwal A, Guo N, Mi H, Campbell MJ, Muruganujan A, Lazareva-Ulitsky B. 2006. Applications
614 for protein sequence–function evolution data: mRNA/protein expression analysis and coding SNP scoring
615 tools. *Nucleic Acids Research* 34:W645-W650.


616

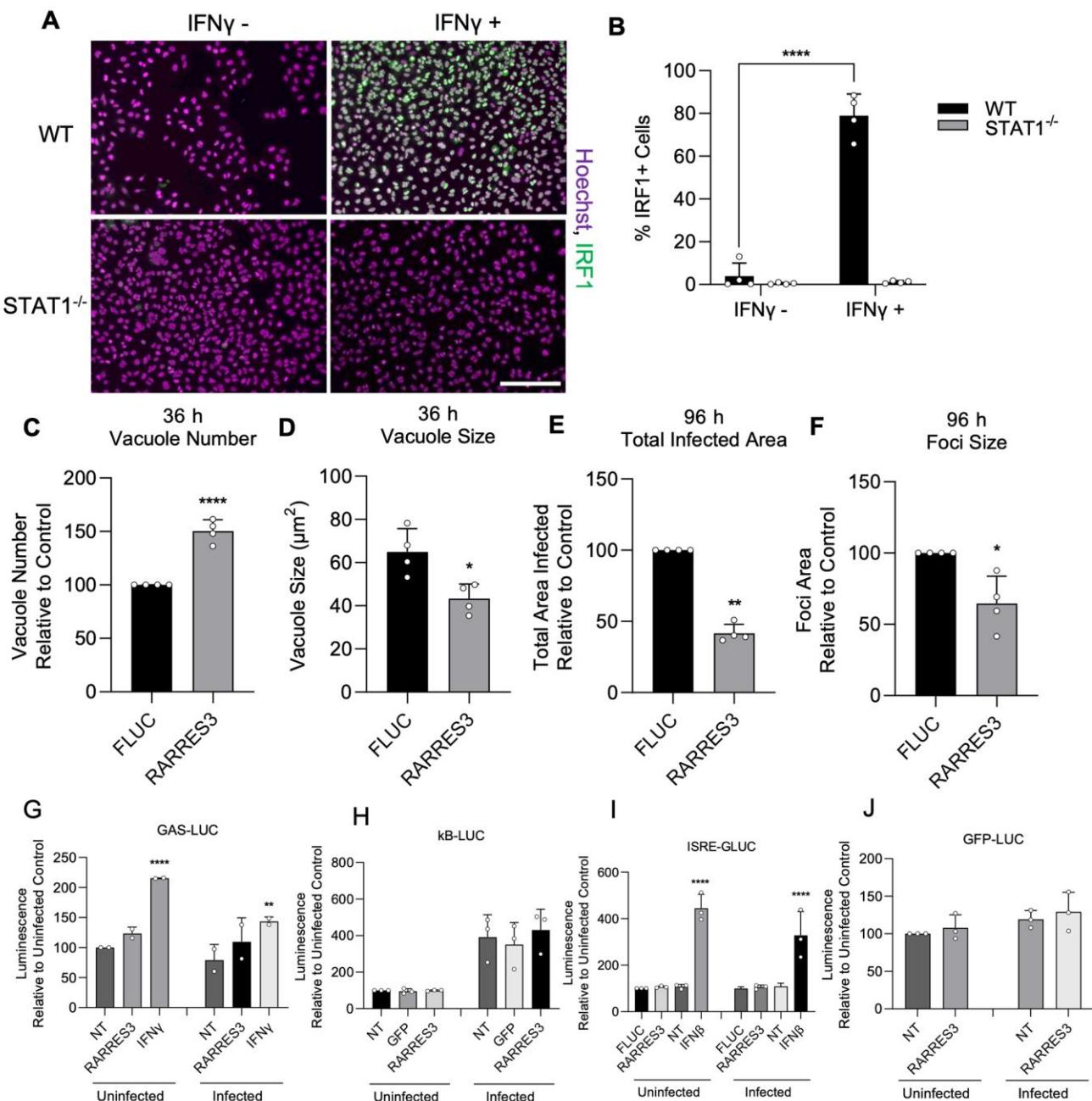
617

618 Figure Legends

619 **Figure 1. Screen for interferon stimulated genes (ISGs) impacting *T. gondii* infection.** A549 cells were treated with
620 indicated concentrations of IFN γ for 24 h and subsequently infected with the type III strain CTG expressing GFP (CTG-
621 GFP) for 36 h (A-C). Cells were fixed, stained with anti-GFP and anti-RFP antibodies, and imaged using a Cytaion3
622 Imager. (A-C) Average parasitophorous vacuole (PV) size (A), PVs per field (B), and the percentage of vacuoles
623 containing ≥ 8 parasites (C) was quantitated for data from 36 h image sets. (D) Illustration of the method used to
624 conduct the screen presented in E. (E) A549 cells were transduced with a lentiviral expression cassette co-
625 transcriptionally expressing tagRFP and an ISG of interest in a one gene per well format. After 72 h cells were infected
626 with CTG-GFP for 36 h, fixed, stained with anti-GFP and anti-RFP antibodies, and imaged with a Cytaion3 Imager. (F)
627 WT and $\text{IDO1}^{-/-}$ A549 cells were infected with CTG-GFP for 96 h. Cells were fixed, stained with anti-SAG1 antibody,
628 and imaged with a Cytaion3 Imager. Average total infected area per well is shown. Loss of IDO1 in $\text{IDO1}^{-/-}$ A549 cells
629 was confirmed via western blot. Briefly, cells were treated with or without 1000 U/mL IFN γ for 24 h before samples
630 were harvested and IDO1 expression was determined. (A-C, F) Data represent the mean \pm standard deviation of three
631 biological replicates conducted in technical triplicate. (E) Data represent mean \pm standard deviation of two biological



replicates conducted in technical duplicate. Statistical significance was determined using two-way ANOVA with Tukey's test for post-hoc analysis. ns (not significant) $P > 0.05$, ** $P < 0.01$, **** $P < 0.0001$.


Figure 2. IRF1 and RARRES3 restrict *Toxoplasma* infection. (A-B) Wild type (WT) A549 cells were either not transduced (NT) or transduced with TRIP.RARRES3 or TRIP.FLUC control and split 48 h later. After 60 h, cells were stained with Hoechst 33342, SYTOX green, and imaged with a Cytaion3 imager. As a positive control, cells were permeabilized by treatment with methanol (MeOH) for 5 min prior to staining. Average cell number (A) and the percentage of SYTOX staining cells (B) were determined. (C-F) WT A549 cells were transduced with TRIP.RARRES3 or TRIP.FLUC control and infected 72 h later with CTG-GFP for 36 (C-D) or 96 (E-F) h. Cells were fixed, stained with anti-GFP and anti-RFP antibodies, and imaged using a Cytaion3 Imager. Average PV number per field (C) and PV size (D) were quantitated for 36 h infections

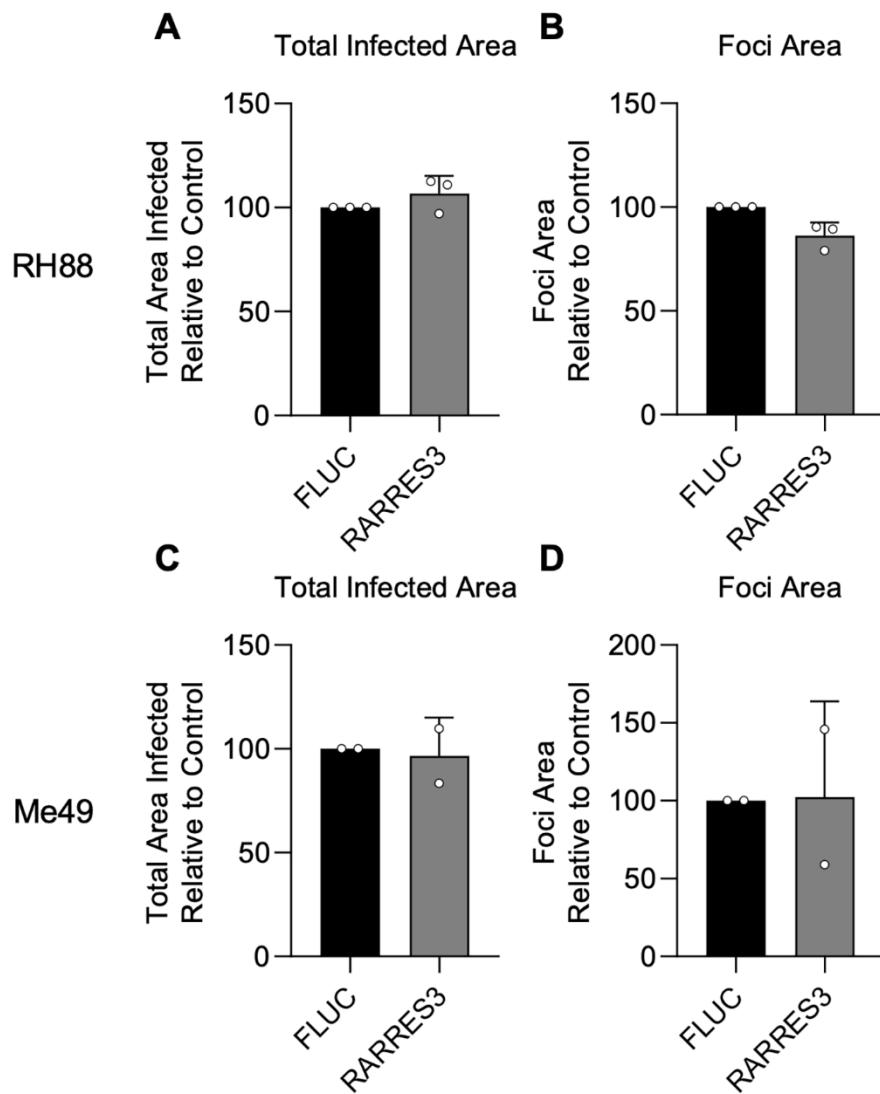
663 while total area infected per sample (E) and average foci size (F) were quantitated for 96 h infections. Data in A
 664 represent four to seven biological replicates conducted in technical triplicate. Data in B represent two to four
 665 biological replicates conducted in technical triplicate. Data in C-F represent three to four biological replicates

666 conducted in technical triplicate. Statistical significance was determined using a Brown-Forsythe and Welch ANOVA
 667 (A-B) or a two-way ANOVA with Tukey's test for post-hoc analysis (C-F). * $P \leq 0.05$, ** $P < 0.01$.

668
 669 **Figure 3. Comparison of genes induced by IRF1 and IFNy in A549 cells.** Cells were transduced with TRIP.IRF1 or
 670 TRIP.FLUC control lentivirus. Cells transduced with FLUC were further treated 72 h later with or without 1000 U/mL
 671 IFNy for 24 h. All cell populations were subsequently harvested and analyzed by RNA-Seq. (A-B) Changes in gene
 672 expression relative to FLUC control expressing cells for cells treated with IFNy (A) or ectopically expressing IRF1 (B).
 673 (C) Comparison of genes induced ≥ 2 fold with a false discovery rate cutoff of 0.05 by each condition and their
 674 overlap with the ISG library used in the screen described in figure 1. (D-E) Lists of induced genes were analyzed with
 675 PANTHER gene ontology analysis. The top ten most enriched processes amongst genes induced by IFNy (D) and IRF1
 676 (E) are shown. Redundant terms were excluded from these lists with only the most enriched version of each term
 677 remaining.

678

679 **Figure 4. RARRES3 restricts *Toxoplasma* infection in a STAT1 independent manner.**

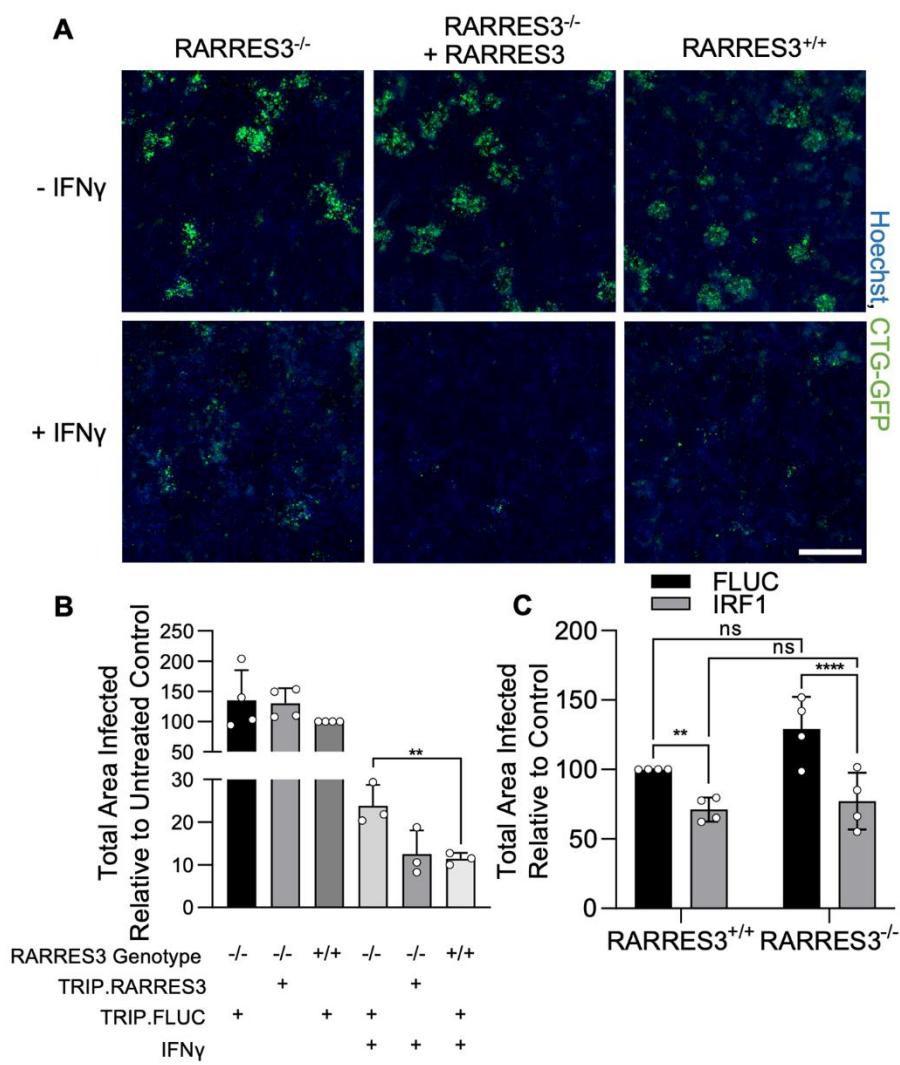

680 To determine if restriction of *T. gondii* growth was STAT1 dependent, STAT1^{-/-} A549 cells were generated. To confirm
 681 complete insensitivity to interferon treatment, WT or STAT1^{-/-} A549 cells were treated with or without 4,000 U/ml
 682 IFNγ for 6 h, fixed, stained with anti-IRF1 antibodies, and imaged with a Cytovation3 Imager. (A) Representative images
 683 and (B) quantitation are shown. Scale bar = 50 μm. (C-F) STAT1^{-/-} A549 cells were transduced with TRIP.RARRES3 or
 684 TRIP.FLUC control and infected 72 h later with CTG-GFP for 36 (C-D) or 96 (E-F) h. Cells were fixed, stained with anti-
 685 GFP and anti-RFP antibodies, and imaged using a Cytovation3 Imager. Average PV number per field (C) and PV size (D)
 686 were quantitated for 36 h infections while total area infected per sample (E) and average foci size (F) were
 687 quantitated for 96 h infections. HeLa reporter cell lines expressing GAS-LUC (G), kB-LUC (H), ISRE-GLUC (I), and GFP-
 688

688 LUC (J) were either not transduced (NT) or transduced with TRIP.RARRES3, TRIP.FLUC, or TRIP.GFP. After 72 h, cells
689 were mock treated or treated with 100 U/mL IFN β or IFNy as indicated and infected with CTG-GFP for 36 h. Cells
690 were harvested for luciferase assay. Data in B represent means \pm S.D. of four biological replicates conducted in
691 technical duplicate. Data in C-F represent means \pm standard deviation of four biological replicates conducted in
692 technical triplicate. Data represent means \pm S.D. of two (G) or three (H-I) biological replicates conducted in technical
693 duplicate. Statistical significance was determined using two-way ANOVA with Tukey's test for post-hoc analysis
694 except for D where Mann-Whitney's U test was used. * $P \leq 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$.

695

696

697



698 Supplemental Figure 1. RARRES3 does not restrict infection of Type I or II strains of *Toxoplasma gondii*.

A549 cells were transduced with TRIP.RARRES3 and infected 72 h later with a type I strain expressing GFP (RH88-GFP) (A-B) or a type II strain expressing GFP (Me49-GFP) (C-D) for 4 d or 6 d respectively. Cells were fixed, stained with anti-GFP and anti-RFP antibodies, and imaged using a Cytation3 Imager. Average total infected area per well (A, C) and average area of infection foci (B, D) is shown. Data represent means \pm standard deviation of two to three biological replicates conducted in technical triplicate. Statistical significance was determined using two-way ANOVA with Tukey's test for post-hoc analysis.

720

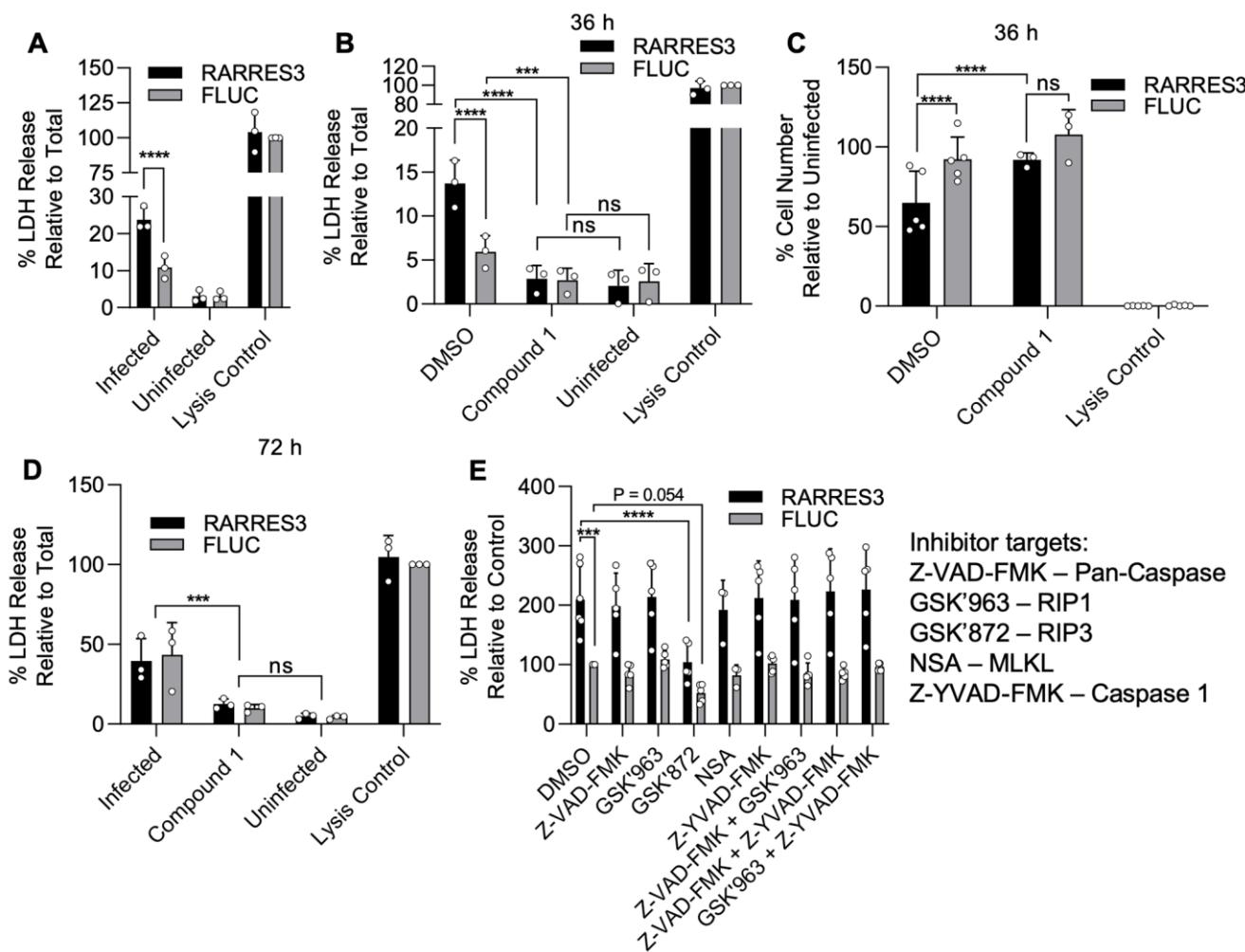
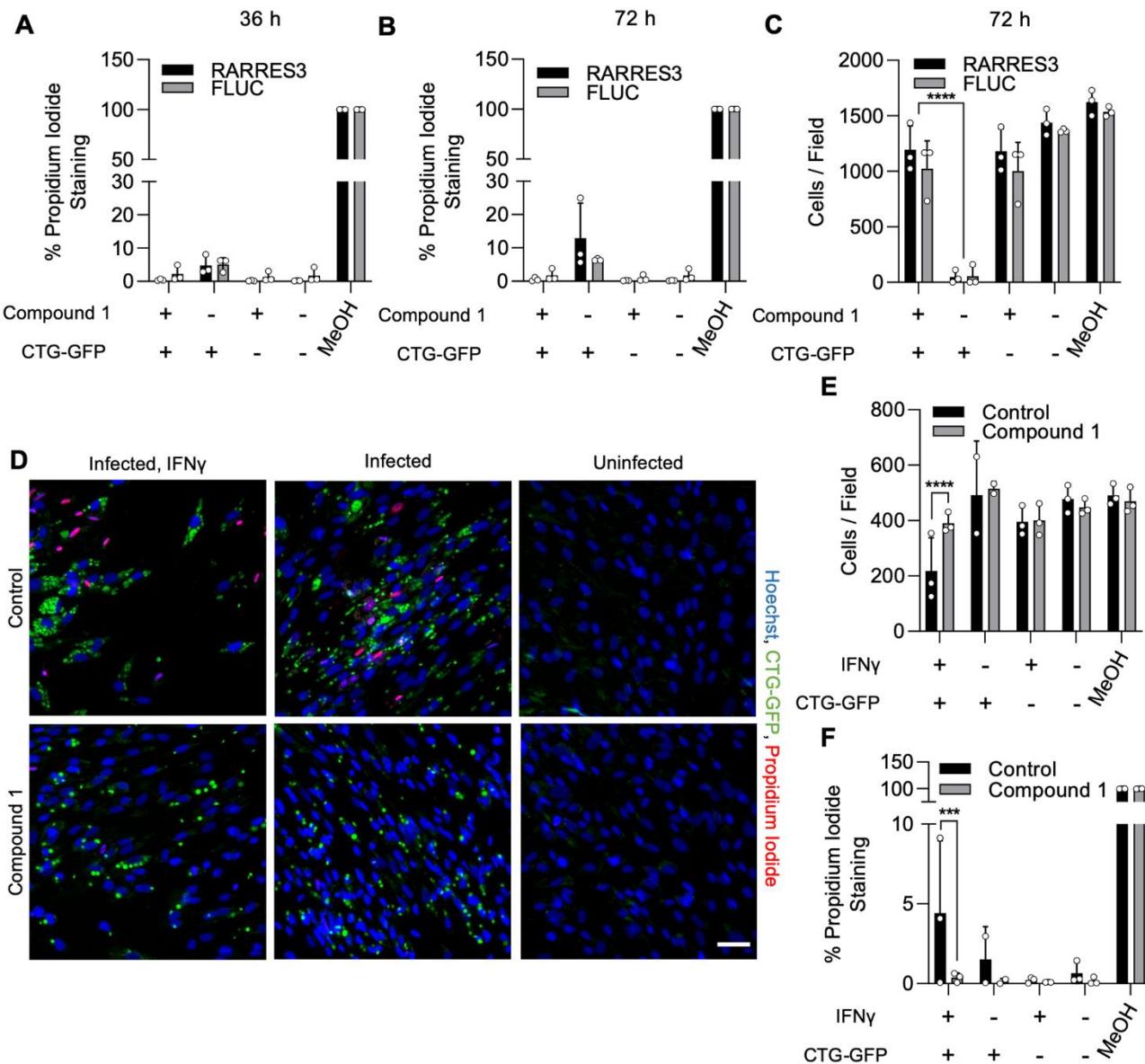

721

Figure 5. RARRES3 deficiency partially reverses IFN γ mediated restriction of *Toxoplasma* infection. RARRES3^{-/-} A549s or wildtype cells transduced with a nontargeting CRISPR/Cas9 sgRNA were transduced with Cas9 resistant TRIP.RARRES3 or TRIP.FLUC as indicated. 72 hours later, cells were treated with or without 100 U/mL IFN γ for 24 h as indicated and subsequently infected with CTG-GFP for 96 h. Cells were harvested, stained with anti-GFP and anti-RFP antibodies, and imaged with a Cytaion3 Imager. (A) Representative images and (B) quantitation are shown. Scale bar = 500 μ m. (C) RARRES3^{-/-} or RARRES3^{+/+} A549 cells transduced with a nontargeting

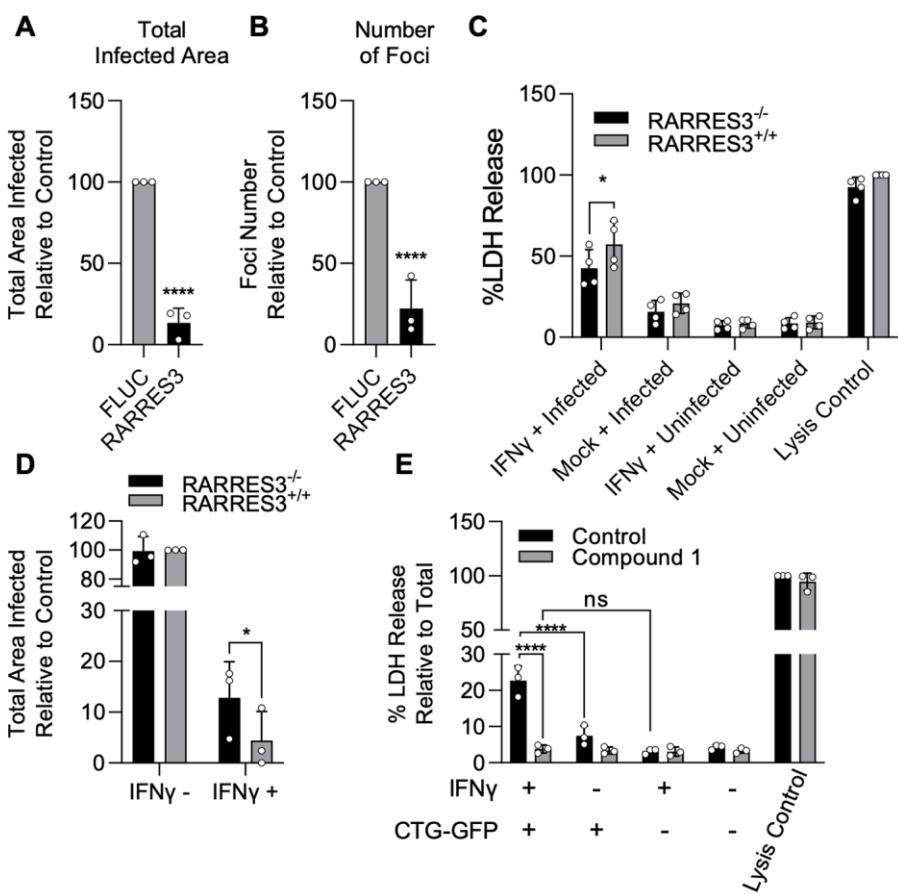
743 CRISPR/Cas9 control sgRNA were transduced with TRIP.FLUC or TRIP.IRF1 derived lentivirus. After 72 h, cells were
 744 infected with CTG-GFP for 96 h, harvested, stained with anti-GFP and anti-RFP antibodies, and imaged with a
 745 Cytaion3 Imager. Average total infected area per well is shown. Data represent means \pm standard deviation of four
 746 biological replicates conducted in technical triplicate. Statistical significance was determined using two-way ANOVA
 747 with Tukey's test for post-hoc analysis. ns $P > 0.05$, ** $P < 0.01$, **** $P < 0.0001$.


748

749

750 **Figure 6. RARRES3 promotes premature egress of *T. gondii*.** A549 cells were transduced with TRIP.RARRES3 or
 751 TRIP.FLUC control and infected 72 h later with CTG-GFP for 36 (A-C, E) or 72 (D) h. Cells were treated with the cell
 752 death inhibitors Z-VAD-FMK (50 μ M), GSK'963 (1 μ M), GSK'872 (5 μ M), NSA (10 μ M), or Z-YVAD-FMK (10 μ M) as
 753 indicated during infection. (A, B, D, E) Cell supernatant was collected after infection and lactate dehydrogenase (LDH)
 754 activity was determined to measure cell lysis. As a control to measure maximal LDH release, cells were lysed before
 755 supernatant collection. (C) Cells were fixed, stained with anti-RFP and anti-GFP antibodies, and imaged with a
 756 Cytaion3 Imager. Average cells per field are shown. Data represent the means \pm standard deviation of three to five
 757 biological replicates conducted in technical duplicate. Statistical significance was determined using two-way ANOVA
 758 with Tukey's test for post-hoc analysis. ns $P > 0.05$, * $P \leq 0.05$, *** $P < 0.001$, **** $P < 0.0001$.

759



760

761

Supplemental Figure 2. Compound 1 prevents host cell death during infection.

(A-C) A549 cells were transduced with TRIP.RARRES3 or TRIP.FLUC control and infected 72 h later with CTG-GFP for 36 h (A) or 72 h (B-C). Cells were stained with Hoechst 33342, propidium iodide, and imaged with a Cyvation3 imager. As a positive control, cells were permeabilized by treatment with methanol (MeOH) for 5 min prior to staining. The percentage of propidium iodide staining cells (A, B) and average cell number per field (C) were determined. (D-F) HFF cells were pretreated with or without IFNy for 24 h and subsequently infected with CTG-GFP for 36 h. Cells were stained with Hoechst 33342, propidium iodide, and imaged with a Cyvation3 imager. As a positive control, cells were permeabilized by treatment with methanol (MeOH) for 5 min prior to staining. (D) Representative images are shown. Scale bar = 50 μm. Average cell number (E) and the percentage of propidium iodide staining cells (F) were determined. Data represent means ± standard deviation of two or three biological replicates conducted in technical duplicate. Statistical significance was determined using two-way ANOVA with Tukey's test for post-hoc analysis. *** P < 0.001, **** P < 0.0001.

Figure 7. IFN γ -dependent host cell death during infection in HFFs is partially RARRES3 dependent. (A-B)
 HFF cells were transduced with TRIP.RARRES3 or TRIP.FLUC control and infected 72 h later with CTG-GFP for 96 h. Cells were fixed, stained with anti-GFP and anti-RFP antibodies, and imaged using a Cytation3 Imager. Total infected area per well (A) and average number of infection foci (B) is shown. (C-D) WT HFFs expressing a nontargeting sgRNA control or RARRES3 deficient HFFs were pretreated with or without 1000 U/mL IFN γ for 24 h. (C) Cells were

789 infected with CTG-GFP for 36 h. Supernatant was collected and lactate dehydrogenase (LDH) activity was determined.
 790 As a control to measure maximal LDH release, cells were lysed before supernatant collection. (D) Cells were infected
 791 with CTG-GFP for 96 h. Samples were treated as in A. Total infected area per sample is shown. (E) HFFs were infected
 792 with CTG-GFP for 36 h in the presence or absence of 5 μ M Compound 1. Supernatant was collected and LDH activity
 793 was determined. Data represent means \pm standard deviation of three (A,B,D,E) or four (C) biological replicates
 794 conducted in technical duplicate (A,B,D,E) or singlet (C). Statistical significance was determined using two-way
 795 ANOVA with Tukey's test for post-hoc analysis. * $P \leq 0.05$, *** $P < 0.001$, **** $P < 0.0001$.

796

797

798 **Supplemental Table 1. List of primer sets used.**

799 **Dataset 1. Summary of over-expression screen in A549 cells.**

800 **Dataset 2. List of genes induced by IRF1 ectopic expression or IFN γ treatment in A549 cells.**

801 **Dataset 3. Comparison of genes induced by IRF1 or IFN γ with genes in the type II ISG screen library.**