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Abstract 

The evolution of ecological specialization can be summed up in a single question: why 

would a species evolve a more-restricted niche space? Various hypotheses have been developed 

to explain the promotion or suppression of ecological specialization. One hypothesis, 

competitive diversification, states that increased intraspecific competition will cause a population 

to broaden its niche breadth. With individuals alike in resource use preference, more individuals 

reduce the availability of preferred resources and should grant higher fitness to those that use 

secondary resources. However, recent studies cast doubt on this hypothesis with increased 

intraspecific competition reducing niche breadth in some systems. We present a game-theoretic 

evolutionary model showing greater ecological specialization with intraspecific competition 

under specific conditions. This is in contrast to the competitive diversification hypothesis. Our 

analysis reveals that specialization can offer a competitive advantage. Largely, when facing weak 

competition, more specialized individuals are able to acquire more of the preferred resources 

without greatly sacrificing secondary resources and therefore gain higher fitness. Only when 

competition is too great for an individual to significantly affect resource use will intraspecific 

competition lead to an increased niche breadth. Other conditions, such as a low diversity of 

resources and a low penalty to specialization, help promote ecological specialization in the face 

of intraspecific competition. Through this work, we have been able to discover a previously 

unseen role that intraspecific competition plays in the evolution of ecological specialization. 
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Introduction 

Through the process of adaptation and speciation, evolution by natural selection has 

produced a multitude of species of varying forms, all presumably optimized to their environment 

(Darwin, 1859). Despite the diversity of resources and environments available to each organism, 

each species is restricted to a subset of them. This “place” to which a species belongs is known 

as the niche (Leibold, 1995). Grinell first defined the niche as the requirements necessary for an 

organism to survive; this was later described by Hutchinson as the n-dimensional space within a 

system of n-dimensional ecological axes in which a species’ population can persist, its 

fundamental niche (hereafter, usage of the word niche refers to the fundamental niche unless 

otherwise specified) (Grinell, 1917; Hutchinson, 1957). This fundamental niche is intrinsic to the 

organism, often resistant to eco-evolutionary changes (Holt and Gaines, 1992; Wiens et al., 

2010). Not only does niche space among species vary in position along the ecological axes but 

also in shape and size. Species which are said to have a smaller niche space are more restricted 

ecologically and said to be specialized compared to those with larger spaces. The existence of 

species with smaller niche space seems to be a paradox. Less specialized species with greater 

niche space should have higher fitness as they have access to more resources and are less 

vulnerable to extinction (REFs). And yet, specialization exists. This raises the question: why 

would a species evolve to restrict the environments in which it can live or the resources it can 

consume? 

Many theories have been brought up as to why a species may specialize (Futuyma and 

Moreno, 1988). These include environmental constancy, trade-offs (Kotler and Mitchell, 1995; 

McNickle et al., 2016), genetic and phenotypic constraints (Futuyma et al., 1993; Futuyma et al., 

1995; DeWitt et al., 1998), adaptation in and to a heterogeneous landscape (Holt and Gaines, 
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1992), co-evolution among mutualists (Fleming and Holland, 1998; Bronstein, 2009), and 

predation (Jeffries and Lawton, 1984). One factor given considerable attention is competition 

(Diamond, 1978). In particular, interspecific competition between species is assumed to promote 

specialization. Essentially, the presence of other species removes potential niche space from a 

focal species, which goes on to specialize on the remaining niche space and eventually has its 

previously realized niche become its fundamental niche (Van Valen, 1965; Cox and Ricklefs, 

1977; Bolnick et al., 2010). This has been borne out in both theoretical (MacArthur and Levins, 

1964; Slatkin, 1980) and experimental studies (reviewed in Araújo et al., 2011). Under this 

perspective, the main factor that determines the size of a species’ ecological niche is the 

availability of resources to individuals within the species. 

Just as the competition can promote specialization, it can act antagonistically towards 

specialization and promote generalization. It is hypothesized that greater intraspecific 

competition (usually by way of a larger population) leads to a species’ generalization (referred to 

as the competitive diversification hypothesis by Jones and Post (2016)) (Araújo et al., 2011; 

Jones and Post, 2013; Jones and Post, 2016). According to the hypothesis, if the individuals 

within a population are alike or broadly similar in niche preference, then more individuals will 

lower fitness in core niche space (usually due to a decline in resource availability). As fitness in 

core niche space declines, individuals who capitalize on the marginal niche spaces gain a relative 

fitness advantage leading to a diversification of resource use and overall generalization within 

the population (Fig. 4). While intuitive, non-theoretical studies have revealed mixed results with 

some showing greater specialization with increased population size and more intraspecific 

competition (reviewed in Jones and Post, 2016). Jones and Post (2013; 2016) developed their 

own hypothesis that whether a population generalizes or specializes depends upon the strength of 
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competition with higher levels of competition leading to specialization (Fig. 4). This hypothesis 

called the intermediate competitive diversification hypothesis extends the competitive 

diversification hypothesis and offers a more nuanced look at the interaction between niche width 

and intraspecific competition.  

Previous theoretical studies have looked how individuals change their niche position, and 

its effect on the population’s niche, with increasing population (Roughgarden, 1972; Svanback 

and Bolnick, 2005; Abrams et al., 2008). That said, individuals do not use a single resource and 

can be flexible and use other resources; in this way, individuals themselves also have a niche 

width. Population niche width will change with individual niche width, and such changes can be 

nearly identical if individual variation in niche position is low (Bolnick et al., 2003). We seek to 

understand how individual niche width may change with increasing population size and what 

effect this has on the entire population. To that end, we created and analyzed a game theoretic 

model of ecological specialization inspired by Ackermann and Doebeli (2004). We used it to 

assess if an increased population and intraspecific competition lead to increased specialization. 

In our model, populations change niche position and specialization in response to various biotic 

and abiotic conditions. Using this model, we performed a parameter sweep to see how a 

population’s optimal niche space varied in response to population size under differing resource 

spreads and penalties to specialization. We show that increased population specialization can 

happen with increased population density especially when the population size is low, resources 

are compact, and the penalty to specialization is low. We hypothesize that this is due to a 

competitive advantage of specialization, adding to previous hypotheses on the interaction 

between niche width and intraspecific competition. 

Methods 
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In order to understand competitive diversification, we created a two-trait, evolutionary 

game theoretic model of resource use based on the G-function developed by Vincent and Brown 

(1987, 2005). In this notation, the population growth rate of species � is defined as 

 
����� �  ����	, �, �
 �����  � � � 1, … , � (1) 

where ��	, �, �
 is the fitness (as defined by per-capita growth rate) of a focal individual with 

strategy 	 in a community, where � �  ���, … , ��
 is the vector of strategies found among the � 

species in the community and � �  ���, … , ��
 is the vector of population densities for each of 

the � species. This fitness generating function ��	, �, �
 generates the fitness of species � when 	 

is set equal to ��. Taking the derivative of the fitness generating function with respect to 	 and 

further substituting 	 for �� gives us the evolutionary dynamics for species � 
 

���

��
� �

���	, �, �


�	
�����

 � � � 1, … , � (2) 

where � is some measure of additive genetic variance for natural selection. 

 Our model follows the concept of the resource utilization curve introduced by MacArthur 

(1972) and is inspired by Ackermann and Doebeli (2004). First, we assume that there exists 

some resource in the environment available to all species. This resource may vary along one or 

more continuous or discrete attribute axes. One can imagine the resource being seeds and an 

attribute being seed size. We approximate the distribution of resource abundances based on 

attributes as Gaussian (equation 3) (Fig. 1a). 

 
���
 � �����

�
	�


�
�
�   (3) 

Here, ���
 specifies the abundance of the resource (seed) of a particular attribute � (size). 

In our model, we assume that the attribute � is discrete. The resource with the highest abundance 

has the attribute � � 0, and abundances fall off according to the rate ��. In this way, �� 
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determines the spread of the resource attributes. A smaller �� denotes a more rapid decline in 

resource availability as the attributes of the resource deviates from � � 0. In our example, � � 0 

may represent medium size seeds (on a log scale) while �� determines the number of small and 

large seeds relative to medium seeds. Resources are assumed to have a high replenishment rate 

leading to timescale separation between the resource and species dynamics and a fixed amount of 

resources in the environment.  

With this resource distribution, we envision how an individual organism may capture and 

utilize resources of various attributes. Equation 4 describes how much of a resource an individual 

can capture at a given instant in time – its utilization curve. We assume that the utilization curve 

is also Gaussian and is maximized at a resource of a specific attribute (Fig. 1b).  

 ���, 	� 
 � 	�
	
�	

��	��

�

���  (4) 

This utilization curve determines the amount of the resource of attribute � that can be 

captured by an individual based on its suite of microevolutionary adaptations 	� � �	�, 	�
. In this 

model, 	� represents the type of resource the individual is most efficient at capturing 

(specifically when � � 	�) and can be thought of as the niche position. As well, 	� determines 

how efficiently it captures resources different from � � 	� and can be thought of as the inverse of 

specialization (larger 	� means a less specialized individual). We can think of 	
 as the preferred 

resource for the individual and 	
 as its flexibility in resource use. 	� does not fundamentally 

alter the curve, it merely shifts it; 	�, on the other hand, does. As specialization increases 	� � 0, 

the total amount of resources captured around 	� – an organism’s core resources – increases 

while capture rate of those farther away from 	� – the marginal resources – decreases. One can 

imagine the organism to be a seed-eating bird. For this bird, 	� may denote how flexible and 

effective it is consuming seeds of various sizes while 	� may denote the behavioral preference of 
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the bird for a specific seed size. 

Under the G-function framework, 	� represents the microevolutionary adaptations of an 

organism. These traits evolve on the order of population timescales. The other parameters (  and 

�) represent macroevolutionary adaptations which evolves on timescales orders of magnitude 

larger than population timescales and can be considered as relatively fixed. These are the 

fundamental constraints that govern the individual’s utilization of the resource. Parameter   can 

be thought of as the intrinsic constraints in how efficiently an organism can gather multiple 

different resources with a larger   denoting fewer constraints. Here, � is a strictly positive 

parameter that determines the tradeoff between obtaining marginal resources versus core 

resources with changes in specialization 	�. If � � �

�
, the individual will gain as much in 

resources as it loses with increasing specialization; if � ! �

�
, then the gain with increasing 

specialization is greater than the loss; and if � " �

�
, the loss is greater than the gain. We call � the 

penalty to specialization. 

 Substituting  ��###� for 	�, we get the utilization curve of an individual of species �. Assuming 

individuals of the same species are identical in ��###�, we can get a utilization curve of the entire 

species ���, ��###�
 $ �� where �� is the population density of the species. If we sum of all utilization 

curves (including the utilization of the focal individual), we can get a “total utilization curve” for 

the community (equation 5) (Fig. 1c). 

 ��%�, 	�, �, �##�& � ���, 	�
 ' ( ���, ��###�
 $ ��

�

���
 (5) 

Here, �##� is a vector of population density among � different species, � is a 2 x � matrix 

with the strategies of the species, and ���, 	�
 remains the utilization curve of a focal individual. If 

the amount of resources at attribute � are sufficient for the entire community ��%�, 	�, �, �##�& "
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���
, then an individual’s capture rate at that attribute is simply ���, 	�
. If however, the amount 

of resources is insufficient for the entire community ��%�, 	�, �, �##�& ! ���
, then competition 

occurs and we assume the individual must “share” those resources with the community. In such a 

case, the amount of resources the individual captures is proportionate to the total amount of 

resources. This gives us the actual utilization curve (equation 6) (Fig. 1d). 

 �*%�, 	�, �, �##�& � + ���, 	�
 , ��%�, 	�, �, �##�& " ���
���, 	�
��%�, 	�, �, �##�& · ���
 , ��%�, 	�, �, �##�& ! ���
 - (6) 

Summing the amount of each resource captured by an individual over all resources gives the 

total amount of resources by an individual (equation 7). 

 .%	�, �, �##�& � ( �*��� , 	�, �, �##�

�

���

 (7) 

We assume all resources captured by an individual is converted into reproduction and the 

creation of more individuals. We also assume that the species’ death rate � is density 

independent, giving us the full G-function. 

 �%	�, �, �##�& � .%	�, �, �##�& / � (8) 

 In order to test the hypothesis of competitive diversification, we saw how optimal 

specialization 	�� changed with population density � under different parameter sets. We assumed 

a fine but discrete class of resources. In our seed example, each seed can be lumped into 

categories of discrete size but transition between each seed size is so fine that it is essentially 

imperceptible to the organisms. This division of the resource class is taken to the limit such that 

it becomes a continuum (see SI). We assumed there was only intraspecific competition, no 

interspecific competition, giving us a single species with identical traits. If the resources are 

symmetrical about 0, then 	� is always optimized at 0 for the population regardless of other 
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parameters. Therefore, only 	� need be optimized (see SI). To determine optimal specialization, 

we fixed all parameters including species density and solved for the 	� such that  

 
0��	�, �#�, �
0	�

���������� 0.�	�, �#�, �
0	�
���������� 0 (9) 

Since optimal specialization cannot be solved analytically, we analyzed it numerically. 

Using this basic setup, we varied the population density � from 0 to 10 in increments of 0.01 and 

saw how 	�� changed in response to population size. We did this under varying resource spread 

�� ranging from 0.1 to 10 by increments of 0.1 and penalty to specialization � ranging from 0.05 

to 5 by increments of 0.05 to see the influence of resource spread and penalty to specialization 

affects competitive diversification. We fixed parameters ���� � 1 and � � 2. 

Results 

 With the parameters selected, we see a wide variation in optimal specialization values, 

ranging from highly specialized (	�� " 0.001) to highly generalized at (	�� ! 2000). Presenting 

this on a log scale, the range is largely symmetrical ranging from 	� � /6.32 to 	� � 7.69. The 

median value of optimal specialization is 	� � /0.62 with the majority being centered at that 

value (50.81% lie within the range -1 to 0 and 70.72% lie within the range -1.5 to 0.5). With this 

basic analysis, we feel confident to have selected a broad enough range in parameters to cover a 

broad range of model behavior. 

 Looking at the results generally, we can say that optimal specialization increases (	

� 

decreases) with lower resource spread and a lower penalty to specialization (Fig. 2c, 3a). This 

makes sense as a lower resource spread reduces available choices, making specialization on the 

most abundant more advantageous. In fact, the effects of spread appear non-linear with the most 

extreme specialization values occurring with �� 6 1 for a given penalty to specialization and 

population density (Fig. 2a,b,c). As well, a lower penalty to specialization means less of a 
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tradeoff which makes specialization more advantageous. 

With regard to population, increased population density can increase optimal 

specialization, but the specifics depend on the parameters. With a moderate penalty to 

specialization and high resource spread, we see what is assumed under the competitive 

diversification hypothesis – increasing the population size increases the niche width of the 

population (Fig. 2e, 3f). If resource spread is moderate and the penalty to specialization is 

moderate, then we see what we expect from the intermediate competitive diversification 

hypothesis, namely an increase in the niche width followed by a decrease (Fig. 2e,3e). We also 

see this phenomenon when resource spread is fairly high and the penalty to specialization is high 

(Fig. 2d,3f). 

We also see some new phenomena not captured by either hypotheses. Firstly, there are 

areas which show a constant increase in specialization. This occurs with low resource spread and 

a moderate penalty to specialization as well as a high penalty to specialization (Fig. 2d,3d). We 

also sometimes see an increase in specialization follow by generalization. This mostly occurs 

with a low penalty to specialization, regardless of how much spread there is in the resources, and 

a little bit when there is a high penalty to specialization and resource spread is moderate (Fig. 

2d,2f,3e). 

Discussion 

 Intraspecific competition is generally thought to lead to a generalization in resource use, 

but recent evidence suggests that the opposite can happen as equally as likely (Jones and Post, 

2016). We sought to examine the conditions under which one might see this response by creating 

and analyzing a game-theoretic model of resource use. Our analysis shows that increasing 

population density (and thereby increasing intraspecific competition) can lead to greater 
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specialization of the population. This especially occurs at lower absolute population densities. 

Other conditions likely to promote increased specialization are both a low penalty to 

specialization and resource spread. Our model adds to the literature by showing that increased 

specialization with increased competition can happen at low levels of competition.  

Some of our results concur with previous work. When the penalty to specialization and 

resource spread are high, specialization decreases before increasing with respect to population 

(Fig. 2d,3f). This pattern replicates the expectation of the intermediate competitive 

diversification hypothesis which states that moderate levels of competition lead to a 

generalization but high levels of competition lead to specialization as resources become ever 

more depleted (Fig. 4) (Jones and Post, 2016). We also see high specialization and convergence 

when resource spread is low (Fig. 3a). Previous studies have shown that strategy convergence 

can occur when resources are essential (Abrams, 1987; Fox and Vasseur, 2008). While our 

resources are substitutable, the lack of available options means that when resource spread is low, 

the central resource is essentially essential. 

 Our model also suggests new results. One thing we see is multiple points of optimal 

specialization (Fig. S1). This particularly occurs when resource spread is high and the penalty to 

specialization is high or moderate. We are currently unsure why this occurs, why it is restricted 

to these areas, or what it may mean. As mentioned earlier, we also see that increased 

specialization can be the initial response to an increased population, especially when the penalty 

to specialization is low. This creates a U-shaped response of population niche width to 

population density, opposite of the hump-shaped response of the intermediate competitive 

diversification hypothesis (Fig. 4). We reckon that this may be due to a competitive advantage 

that comes with specialization. Previous studies have shown that specialist species can be more 
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competitive than generalists in the competition for resources, but have looked at it primarily 

from an interspecific framework (MacArthur and Levins, 1964; Dykhuizen and Davies, 1980). 

Our study seems to suggest that specialization can offer a competitive advantage within species 

and populations. Under our model, if there is an insufficient amount of a resource, then that 

resource will be shared amongst species within the community proportional to each species 

utilization of said resource. Those more specialized on a resource will have higher utilization 

rates which means they get proportionally more of the resource and therefore could potentially 

have higher fitness. This creates a competitive advantage to specialization, especially when the 

penalty is low. We can also see this competitive advantage when looking at the non-linear 

response of specialization to resource spread. Even though resource spread declines linearly, 

specialization increases rapidly (Fig. 2a,b,c). This non-linear response may occur because 

competition becomes increasingly intense as resources become scarcer.  

 Our results may show this because we analyzed for the niche width of individuals and not 

just niche position. Previous analyses looked at how a population changes its niche width by 

looking at how individuals change their niche position and preferred resources with competition 

(Roughgarden, 1972; Abrams et al., 2008; Ackermann and Doebeli, 2004). Our analysis instead 

directly measured the change of individual niche width with respect to population size while 

individuals of the population kept the same resource preference (Rosenzweig, 1991). Having the 

same resource preference enhances the effects of competition and therefore increases the 

advantage specialization brings. This disconnect is also borne out in our analysis. We also 

determined whether the population given all the parameters showed stabilizing or disruptive 

selection on niche width by calculating whether the population is at a maximum or minimum of 

the adaptive landscape respectively with respect to niche position 
������,����,��

���
. Firstly, disruptive vs. 
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stabilizing selection seems to correlate with absolute specialization level. Secondly, with 

increasing population, more often there is solely disruptive selection, solely stabilizing selection, 

or disruptive followed stabilizing selection with increasing population size (Fig. S2, S3). Only in 

a few cases, namely with high resource spread and low to moderate penalty to specialization, do 

we see stabilizing followed by disruptive selection, and even so it is only at higher population. At 

lower population sizes under those conditions, there is disruptive followed by stabilizing 

selection (Fig. 4, S2b,c, S3c). These differences are likely the reasons as to why our study 

revealed the competitive advantage of specialization. 

 Through our study, we have generated a hypothesis on the reason as to why increased 

population specialization is seen with increased competition in nature. Whether or not it is valid 

to a particular natural system depends on several things. Firstly, when competition increases and 

preferred resources deplete, an individual has two options: shift resource preference or broaden 

resource use with the former leading to more individual variation (Rosenzweig, 1991; Svanback 

and Bolnick, 2005). If the majority of organisms retain a shared preference for a resource (as it is 

more abundant or calorific) and intraspecific variation is minimal, then individuals broadening 

their resource use may be the more immediate response to changes in population specialization. 

Individual variation in resource in populations use can be high or low and is overall largely 

equivocal. Secondly, shifts in preferred resource versus a broadening of resource use may be a 

function of whether they are a behavioral vs morphological response. For example, Smith (1990) 

showed that though large-billed and small-billed varieties of an African finch, Pyrenestes 

ostrinus, shared similar preferences for soft seeds, the large-billed individuals were able to more 

readily switch to harder seeds when the softer seeds were rarer. In this case, shifts in resource 

preference were largely down to a behavioral response while the ability to broaden resource use 
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was down to a morphological response (bill size). Determining the type of response based on the 

shift will be key to determining the changes in population specialization. Lastly, the initial 

population size/density from its increase remains an important factor. With competitive 

advantage, increased specialization with increased competition occurred when population (and 

therefore competition) was initially low while increased specialization with increased population 

occurred when competition was initially moderate to high for the intermediate competitive 

diversification hypothesis (Fig. 4) (Abrams et al., 2008; Jones and Post, 2013; Jones and Post, 

2016). Determining the population size and the strength of competition will govern whether 

increased specialization was due to competitive advantage or competitive diversification. In our 

model, mortality is a strategy-independent term that governs the equilibrial population size. In 

this case, the competitive advantage reason may be seen among species with higher mortalities 

while the intermediate competitive diversification may be seen among species with lower 

mortalities. Taking into account these three factors would help tease apart the reasons for 

increased specialization. 

 We have created and analyzed a model of resource use with evolvable individual 

specialization to see how changes in population size affect the optimal specialization. We show 

that increases in the population, though generally lead to more generalized resource use, can lead 

to increases in specialization, particularly at low population sizes. We hypothesize that this may 

be due to the competitive advantage that specialization can bring. This work adds dimensions 

and flavor to previous work and offers a potential hypothesis as to why increased specialization 

may be seen in nature.  
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Figure 1 A visual representation of our mathematical model. (a) Abundance of a resource given 

its attribute. We assume the resources are so finely divided and packed together that the resource 

class is taken to the limit and represents a continuous Gaussian distribution (solid line). (b) The 

individual utilization curves of four different species, here represented by different colors. Each 

utilization curve determines how well an individual can gather and assimilate the resource 

assuming there are enough resource (dashed lines). Individual utilization curves vary in 

preference (niche position) and flexibility (width) which alters the total amount of resources the 

respective individual can use. The actual amount captured by each individual in the absence of 

competition depends upon the abundance of resources and is represented by the shaded areas. (c) 

The utilization curves of individuals from many different species can be added together to grant 

the total utilization curve for the community. (d) Individuals are forced to share the resource 

shrinking the actual amount of resource captured by each individual (the new shaded area). 

Figure 2 (a, b, c) Optimal niche width with varying population densities and resource spread 

given a penalty to specialization. Warm colors indicated a population with a smaller niche width 

(more specialized) while cool colors indicated a population with a larger niche width (more 

generalized). The data presented are log transformed. (d, e, f) How niche width changes with 

resource spread and incremental increases in population. This figure shows the sign of the 

difference in niche width between adjacent population sizes. Cyan colors indicate a shrinking 

niche width (specialization) with an incremental increase in the population while magenta colors 

indicate the opposite. Our results show the presence of increasing specialization with increasing 

population size under a variety of conditions. This can occur like the intermediate competitive 

diversification hypothesis with a decrease in specialization before an increase in specialization 

(d, e), as a persistent increase in specialization which seems to be more common with a low 
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spread of resources (d, e), or at low population sizes before increased generalization as seen with 

a low penalty to specialization (f). 

Figure 3 (a, b, c) Optimal niche width with varying population densities and penalty to 

specialization given a resource spread. (d, e, f) How niche width changes with resource spread 

and incremental increases in population. The colors indicate the same phenomena as in Figure 2. 

Our results show the presence of increasing specialization with increasing population size under 

a variety of conditions. This can occur like the intermediate competitive diversification 

hypothesis with a decrease in specialization before an increase in specialization (d, e), as a 

persistent increase in specialization which seems to be more common with a low spread of 

resources (d, e), or at low population sizes before increased generalization as seen with a low 

penalty to specialization (f). 

Figure 4 A schematic comparing our results to previous hypotheses. Under the competitive 

diversification hypothesis (CD), increases in the level of competition and population size lead to 

increased population niche width regardless (dotted line). Under the intermediate competitive 

diversification hypothesis (ICD), increased intraspecific competition at low levels results in 

greater population niche width but increases at high levels result in a smaller population niche 

width (dashed line). Our results show that indicate that there may be a competitive advantage to 

specialization such that increasing competition can increase specialization which seems to 

primarily occur at lower population sizes (CA, solid line). 
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Fig. 1 
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Fig. 4 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.04.458988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.04.458988
http://creativecommons.org/licenses/by-nc/4.0/

