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Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a system is composed
of a Casl2a effector that acts as a deoxyribonucleic acid (DNA)-cleaving endonuclease and a crispr
ribonucleic acid (crRNA) that guides the effector to the target DNA. It is considered a key molecule for
inducing target-specific gene editing in various living systems. Here, we improved the efficiency and
specificity of the CRISPR-Casl2a system through protein and crRNA engineering. In particular, to
optimize the CRISPR-Casl12a system at the molecular level, we used a chimeric DNA-RNA guide
chemically similar to crRNA to maximize target sequence specificity. Compared to the wild type (wt)-
Casl2a system, when using enhanced Casl2a system (en-Casl2a), the efficiency and target
specificity improved on average by 7.41 and 7.60 times respectively. In our study, when the chimeric
DNA-RNA guided en-Casl2a effector was used, the gene editing efficiency and accuracy were
simultaneously increased. These findings could contribute to highly accurate genome editing, such as

human gene therapy, in the near future.

Introduction

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system, which is known
to be a bacterial defense system, is composed of Cas endonuclease and guide ribonucleic acid
(RNA); it is known to operate in various living organisms (1-3). Recently, it has been used as a key
tool for in vivo therapeutics because it can be reprogrammed specifically for a target gene. Thus, it is
easy to use the CRISPR-Cas system to access genetic diseases (4, 5). The field of gene therapy is
growing into a large market in which these advanced genome editing tools are frequently employed;
thus, it is important to determine whether the CRISPR-Cas system can accurately induce mutations
into a target (6, 7). The target sequence specificity of CRISPR occurs due to molecular-level
interactions resulting from its intrinsic properties (8-10). CRISPR-Cas endonuclease recognizes
target deoxyribonucleic acid (DNA) based on the complementary nucleotide sequence contained in
the guide RNA. CRISPR-Cas recognizes the protospacer adjacent motif (PAM) sequence in the target
gene through the PAM interaction (Pl) domain, melts the DNA double helix, and propagates the
hybridization of guide RNA and target DNA to form a stable R-loop that induces target DNA cleavage
(11-14). It has been reported that the hybridization between the guide RNA and the target DNA, which
is formed to aid the CRISPR-Cas system in stably binding to the target DNA, is approximately 20-24
bp; it can have various mismatch tolerances depending on the target sequence (15-19). Accordingly,
the possibility of inducing cleavage to off-targets similar to the target sequence has been reported,
and efforts have been made to reduce such errors (9, 20-22).

Among CRISPR-Cas endonucleases, the CRISPR-Casl12a system, which belongs to Class Il and
type V, has excellent target specificity. Therefore, it has attracted much attention as an accurate
genome editing tool for use as a therapeutic agent for human beings in the future (14, 23-26).

Unfortunately, the CRISPR-Casl2a system has also been reported to have a tolerance for
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mismatches in the intermediate region (8-9 bp), or in the PAM distal region inside the protospacer,
which is necessary for target recognition (16). This off-target cleavage effect appears to be more
serious for engineered CRISPR-Cas12a, which has enhanced target recognition and improved gene
editing efficiency (27, 28). When considering gene therapy for human systems in the future, efficiency
and safety will likely be important issues; they must be addressed simultaneously to improve the
CRISPR-Cas12a system.

In this study, we devised a technology that dramatically lowers the induction of off-target mutations,
while efficiently inducing on-target mutations by effectively recognizing various target nucleotide
sequences in human-derived cell lines. When using this enhanced Casl12a system (en-Cas12a) with
strong target recognition, the average efficiency of inducing mutations in the target sequence
increased (1.7-17.16 fold) when guided by a chimeric DNA-RNA guide, compared to the wild-type
Casl2a (wt-Casl12a) system. In addition, the average (0.5-10.6%) of the mutation induction efficiency
of off-target nucleotide sequences was reduced (0.1-3.6%) by using a chimeric DNA-RNA guide,
which increased the target specificity 7.6-fold on average. Using the chimeric DNA-RNA guide-based
en-Casl2a system developed in this study, it is possible to induce target-specific, high-efficiency gene
editing. Therefore, our proof of concept study could contribute to the fundamental treatment of various

incurable human diseases resulting from genetic mutations in the near future.
Results

Comparison of target DNA cleavage activity of chimeric DNA-RNA-guided engineered en-
AsCasl12a and wt-AsCasl12a

The CRISPR-Casl12a system uses single-stranded crispr RNA (crRNA) to hybridize target DNA with
20 bases, form a stable R-loop, and induce target DNA cleavage. When the amino acid residues
(Lys548, Ser542, and Glul74) interacting near the PAM (TTTN) sequence were changed to positive
residues for the interaction between Casl2a and the target DNA (Fig. la, left inset), the target-
induced indel ratio (%) was improved for various genes (28). From these results, we speculate that
PAM recognition contributes to the kinetics of the entire Cas12a target recognition and DNA cleavage
process, and that it can eventually affect stable R-loop formation through the hybridization of DNA and
crRNA. The target specificity (on-target editing/off-target editing) of the Cas12a system has previously
been optimized by substituting DNA for the 3'-end of the crRNA to change the hybridization energy
between crRNA and target DNA (Fig. 1a, right inset) (29). Based on this system, here we attempted
to maximize the target specificity and genome editing efficiency using en-AsCas12a(Acidaminococcus
sp. Casl2a), which has enhanced target recognition. First, to improve target specificity by changing
the binding energy of the target DNA-crRNA hybridization region, we gradually substituted the crRNA
with DNA; we then confirmed the influence of this substitution on the target DNA cleavage for wt-
AsCasl2a and en-AsCasl2a effectors (Fig. 1b). Amplicon cleavage assays were performed on the
target nucleotide sequences of both genes (DNMT1 and CCRS5 site2) (Supplementary Fig. 1). When
DNA was gradually substituted from the 3'-end of the crRNA (recognized by AsCasl12a), en-AsCasl12a
showed improved target recognition compared with wt-AsCas12a; it demonstrated more tolerance to
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the DNA substitution of crRNA (Fig. 1b, Supplementary Fig. 2). As previously reported (29), when 12
or more DNAs are substituted from the 3'-end of Cas12a, the cleavage activity of the DNA amplicon is
reduced, and almost no activity is shown in substitutions over 16 nt DNAs. However, en-AsCasl12a
showed robust cleavage activity after 12 nt DNA substitutions at the 3'-end of crRNA, but showed a
decrease in activity by more than half following 16 nt or more DNA substitutions. This indicates that
en-AsCasl12a is more tolerant to DNA substitution at the 3'-end of crRNA than wt-AsCas12a, which is

advantageous for target DNA cleavage.

Optimization of the genome editing activity of engineered en-AsCasl12a based on a chimeric
DNA-RNA guide to atarget nucleotide sequence on the intracellular genome

To check whether the engineered en-AsCasl2a effector, based on this chimeric DNA-RNA guide,
could effectively induce target-specific gene mutations in human cells, various chimeric DNA-RNA
guides were used to induce mutations and the efficiency was analyzed in comparison with wt-
AsCasl2a. Comparative analysis of mutation induction efficiencies for the target nucleotide
sequences of three genes (DNMT1, IL2A-AS1, and CCR5 sitel), revealed that engineered en-
AsCasl2a outperformed wt-AsCas12a in terms of editing efficiency (Fig. 2, Supplementary Fig. 1).
In particular, the induction of gene mutations targeting intracellular loci showed a different trend from
that of amplicon cleavage (Fig. 1b). Unlike wt-AsCasl12a, which exhibited a significantly lower
operating efficiency based on chimeric DNA-RNA guides for the target sequence in the genome,
engineered en-AsCas12a allowed up to 8 nt DNA substitutions (8DNA) from the 3'-end of the crRNA
while maintaining the editing activity (Fig. 2, Supplementary Fig. 3). Surprisingly, engineered en-
AsCasl2a showed 1.5- to 13.6-fold improvements in mutation induction efficiency compared to wt-
AsCasl2a when the 3'-end of crRNA was substituted with 8 nt DNA to increase target specificity. This
effect was universally confirmed in various genes (CCRS5 site2, FANCF); on average, a 7.3-fold higher
recovery was achieved (Supplementary Figs. 3, 4). Previous studies have reported that when
AsCasl2a targets the intracellular genome and operates based on a chimeric DNA-RNA guide, it is
difficult to induce mutations in the target nucleotide sequence due to many restrictions on the topology
of the intracellular genome (29). Accordingly, in this study, we attempted to change the genome
topology near the target sequence by using nickase. We compared the resulting changes in the
genome editing efficiency of the target sequence for wt-AsCasl2a and en-AsCasl2a
(Supplementary Figs. 1, 3, 4). In the case of wt-AsCas12a, the mutation induction efficiency, which
was reduced by the use of a 8 nt DNA substituted chimeric DNA-RNA guide (8DNA), was completely
recovered by co-treatment with nickase. In the case of en-AsCas12a, the mutation induction efficiency
was maintained at a level similar to that of wt-crRNA using chimeric DNA-RNA (8DNA); it was not
significantly affected by nickase (Fig. 2, Supplementary Figs. 3, 4). Therefore, these data indicate
that using the en-AsCas12a effector, based on the chimeric DNA-RNA guide (8DNA), enables more
effective genome editing than wt-AsCas12a when inducing mutations on the target DNA, without the
help of nickase.

Improving target specificity for inducing genetic mutations in the intracellular genome using
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chimeric DNA-RNA guide-based engineered en-AsCas12a

Next, we compared the chimeric DNA-RNA guide-based engineered en-AsCas12a and wt-AsCasl12a
effectors regarding their target specificities under optimized conditions (3'-end 8DNA substitution of
crRNA) that effectively induced mutations in the target sequence (Fig. 3, Supplementary Fig. 1). In
the case of wt-Casl12a-based targeting of the CCR5-sitel, the target mutation induction efficiency was
greatly reduced by the use of chimeric DNA-RNA (Fig. 3a). Unlike wt-AsCas12a, in which mutation
induction efficiency was recovered in a nickase-dependent manner, for en-AsCasl2a the target
mutation efficiency was maintained in a nickase-independent manner by using chimeric DNA-RNA, in
which the 3'-end was substituted with 8 nt DNA (Fig. 3b). The nickase dependency was lowered by
11.25 times (Fig. 3c), and target specificity was increased by 2.79 times (Fig. 3d) using en-AsCas12a.
In addition, when the chromosome topology near the target sequence was changed using nickase,
the target specificity using chimeric DNA-RNA was further increased by 3.45-fold, compared to that of
wt-AsCas12a (Fig. 3d). We further compared the target specificities of the engineered en-AsCasl12a
and wt-AsCasl2a effectors in the target sequences of two other genes (AAVS1-sitel and DNMT1-
site2) (Fig. 3e-l). When a chimeric DNA-RNA guide was used for AAVS1-sitel, neither en-AsCasl12a
nor wt-AsCasl2a effectors showed nickase dependence, and gene mutations were induced with
similar efficiencies to conditions using wt-crRNA (Fig. 3e-h). However, when using the en-AsCasl2a
effector to target the AAVS1-sitel sequence, the indel ratio (%) was significantly higher (3.9-fold) than
that of wt-Cas12a. However, there were also more unintentional mutations in the off-target sequence
(off-targetl) (Fig. 3e, f). We confirmed that the number of mutations induced in the off-targetl
sequence was dramatically reduced by the use of chimeric DNA-RNA, in which the 3'end was
substituted with 8 nt DNA. Therefore, the overall target specificity was increased 3.5-fold compared to
that of wt-AsCas12a when chimeric DNA-RNA (8DNA) guided en-AsCasl2a was used (Fig. 3h). The
DNMT1-site2 showed the same trend as the AAVS1-sitel locus targeted by the Casl2a system (Fig.
3i-1). In the case of the en-AsCasl12a effector based on the chimeric DNA-RNA guide with 8 nt DNA
substitution at the 3'-end, the indel ratio (%) was significantly increased (1.9-fold) compared to that of
wt-AsCas12a. Furthermore, the off-target nucleotide sequence (off-targetl, 2)-induced mutations
were dramatically reduced (Fig. 3i, j). As a result, the target specificity was increased twofold,
regardless of the use of nickase (Fig. 3k, I). In conclusion, by inducing mutations in three genes using
chimeric DNA-RNA guided engineered en-AsCasl12a, the targeted indel ratio (%) was improved 7.3-
fold on average, without the help of nickase. The off-target mutation induction efficiency was also

reduced. Eventually, the target specificity was improved 3.1-fold compared to that of wt-AsCas12a.

A model for improving target specificity and mutation induction efficiency of en-Cas12a, based
on chimeric DNA-RNA guides

Combining all of the above findings, the results of the working mechanism of en-Cas12a, compared to
the existing wt-Casl12a, are presented in Fig. 4, based on the chimeric DNA-RNA guide. When wt-
Casl2a was used to cleave the target sequence in the genome of the cell, there was tolerance for
mismatches between the protospacer (20bp) middle part and the PAM (TTTN) distal region, so there
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was a possibility that Casl12a could recognize and cleave off-target sequences. When wt-Cas12a,
based on the chimeric DNA-RNA guide, was used (in which the 3'-end was substituted with 8 DNAS),
the off-target effect could be reduced by changing the binding energies of the target DNA and crRNA.
However, when chimeric DNA-RNA based cleavage was performed on the genome in the cell, the
mutation-inducing effect on the target nucleotide sequence was largely decreased. So, the target
specificity was increased only by changing the topology of the genome with the simultaneous use of

nickase.

In the case of en-Casl2a, in which target sequence recognition is reinforced by engineering the
interacting amino acids of the PAM sequence recognition part, its efficiency in inducing target
sequence mutations for various genes was increased compared to that of Cas12a, but its unintended
off-target effects also increased greatly. Using the chimeric DNA-RNA-based en-Cas12a effector to
target the intracellular genome can dramatically reduce the effects of off-target mutations. Without the
help of nickase, it is thus possible to increase the target sequence editing efficiency and dramatically
lower the off-target sequence editing efficiency. Regarding the efficient induction of gene mutations
with respect to the use of chimeric guides, accurate and high-efficiency gene targeting is possible
when using chimeric DNA-RNA-based en-Cas12a.

Discussion

The CRISPR-Casl2a effector is attracting attention as a potential future target-specific genome
editing tool as it is known to be capable of inducing mutations in a target sequence on a desired gene;
it also has the highest target specificity among previously known CRISPR systems. However, the
Casl2a system has been reported to have lower activity than Cas9 in general, and there remains
room to improve the properties of the endonuclease itself for applications in various in vivo conditions.
Efforts have been made to more effectively recognize the target DNA sequence and induce cleavage
by engineering the Casl2a system (27, 28). These studies have shown overall improved activity
compared to wt-Casl2a in various genes, through enhanced binding, by changing amino acids
around the domain, within Casl2a, and by recognizing the PAM sequence in the target DNA.
However, most CRISPR endonucleases induce double-stranded cleavage by forming an R-loop,
through the complementary binding of target-strand DNA and crRNA. In general, as the tolerance
increases due to enhanced binding affinity, off-target binding also increases. Therefore, we believe
that the effects of off-target binding would be maximized when using engineered Casl12a systems, so

a method for increasing target specificity is also required, in parallel with methods to enhance activity.

Previous studies have improved target specificity by applying crRNA engineering to the Casl2a
system; target-specific gene mutations have been effectively induced by optimizing the length of DNA
substitution. Mismatch tolerance has been reduced by changing the complementary binding energy of
target-strand DNA and crRNA through sequential 8nt DNA substitutions at the 3'-end of crRNA. This
principle confirms that the induction of off-target mutations can be reduced while maintaining the
efficiency of inducing target mutations. Based on this, here we used chimeric DNA-RNA crRNA to

engineer en-AsCasl2a, which displayed maximized target sequence recognition and improved
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mutation induction efficiency in various target nucleotide sequences, compared to wt-AsCasl2a.
Surprisingly, the induction of off-target mutations was dramatically decreased, and eventually the
target specificity was largely improved. Interestingly, the observed discrepancy between amplicon
cleavage (Fig. 1b) and genome editing inside the cell (Fig. 2) showed that the cleavage activity of
Casl2a endonuclease is greatly influenced by DNA topology. Chimeric DNA-RNA crRNA-based en-
AsCasl2a and wt-AsCasl2a displayed differing sensitivities to the intracellular genome, so en-
AsCasl2a showed a higher gene mutation induction efficiency than wt-AsCasl2a. These results
suggest that en-AsCasl12a can, to some extent, overcome structures that are unfavorable to target
DNA cleavage due to unstable R-loop formation (due to the DNA substitution of crRNA in the genomic
sequence). This is achievable by enhancing PAM recognition through protein engineering. In general,
the low operating efficiency induced in the intracellular genome by wt-Casl2a (based on the DNA
substitution of crRNA to improve target specificity) could be recovered by changing the genome
topology by using nickase around the target sequence. However, in the case of en-Casl2a, it was
possible to induce original levels of mutation following up to eight DNA substitutions at the 3' end of
the crRNA, without the help of nickase. Therefore, when using chimeric DNA-RNA guide-based en-
AsCasl2a, it was possible to simultaneously improve the genome editing efficiency (%) and the target
specificity (on-target editing [%]/off-target editing [%]) compared to those of wt-AsCasl12a by changing
the hybridization energy of the target DNA strand and crRNA.

In this study, we developed a technology that maximizes the safety and efficiency of genome editing
using chimeric DNA-RNA crRNA-based en-Casl12a. In the future, many improvements are needed in
terms of efficiency and safety regarding the application of gene therapy to humans using the CRISPR
system, or for sophisticated gene editing in in vivo systems. Through this technology, it is expected
that the safety and efficacy of various CRISPR endonucleases can be optimized in a similar way

when applied in vivo.
Methods
Preparation of the CRISPR-Cas12a recombinant protein and chimeric guides

wt- and en-AsCasl2a recombinant proteins were prepared for the in vitro DNA cleavage assay.
Codon-optimized AsCasl12a (Acidaminococcus sp. Casl2a) coding sequence was cloned into a
pET28a bacterial expression vector and then transformed into BL21 (DE3) Escherichia coli cells.
Transformed bacterial colonies were cultured at 37 °C until the optical density reached 0.6, after
which isopropylthio-B-galactoside (IPTG) inoculation was performed. After 48 h, E. coli cells were
precipitated at 4 °C and 5,000 rpm, following which the culture medium of the upper layer was
removed. The precipitated E. coli cell pellet was resuspended in lysis buffer [10 mM pB-
mercaptoethanol, 300 mM NaCl, 20 mM Tris-HCI (pH8.0), 1 mM PMSF, and 1% TritonX-100]. In order
to disturb the bacterial cell membrane, sonication was performed on ice water for 3 min, following
which the cell lysate was precipitated for 10 min at 5,000 rpm at 4 °C. Next, the nitrilotriacetic acid (Ni-
NTA) resin was pre-washed with wash buffer [20mM Tris-HCI (pH 8.0), 300 nM NaCl] and the
precipitated cell lysate was stirred at 4 °C for 90 min. Washing was performed with ten times the
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volume of wash buffer to remove non-specific binding components in the mixed cell lysate solution.
For the elution of AsCasl12a protein, an elution buffer [20 mM Tris-HCI (pH 8.0), 300 nM NaCl, 200
mM imidazole] was used and finally exchanged against the storage buffer [200 mM NaCl, 50 mM 4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES; pH 7.5), 1 mM dithiothreitol (DTT), 40%
glycerol] using a Centricon (Millipore, Amicon® Ultra-15), and stored at -80 °C. Chimeric DNA-RNA
oligonucleotides (Bioneer) were synthesized for each target gene sequence and dissolved in diethyl
pyrocarbonate (DEPC) water and then stored at -80 °C (Supplementary Table S1).

Preparation of the guide RNA for Cas12a and nCas9(D10A)

Guide RNAs for Cas12a and nCas9(D10A) were generated by in vitro transcription. A DNA template
for in vitro transcription was constructed using annealing or extension polymerase chain reaction
(PCR) with sense and antisense DNA oligonucleotides (Macrogen) containing the target DNA
sequence (Supplementary Table S2). DNA templates were mixed with T7 RNA polymerase (NEB,
MO0251L) and reaction buffer mixture (50 mM MgCI2, 100 mM ribonucleoside tri-phosphate (rNTP;
Jena Bio, NU-1014), 10X RNA polymerase reaction buffer, 100 mM DTT, RNase inhibitor Murine,
DEPC), and incubated at 37 °C. After 16 h, to remove the original DNA template, DNase | was added
and the mixture was incubated for another 1 h at 37°C. The transcribed RNA was purified using a
column (MP Biomedicals, GENECLEAN® Turbo Kit). The purified RNA was concentrated through
lyophilization (2,000 rpm) at -55 °C for 1 h.

In vitro DNA cleavage assay

On-/off-target site PCR amplicons of each gene (DNMT1, CCRS5, IL2A-AS1, and AAVS1) were
obtained from purified human genomic DNA using DNA primers (Supplementary Table S2). The
purified target PCR amplicon was incubated with purified recombinant wt- or en-Casl12a protein and
crRNA (RNA-guides or chimeric DNA-RNA guides) in 10X buffer (NEBuffer3.1, NEB) for 1 h. After
adding a stop buffer [L00 mM ethylenediaminetetraacetic acid (EDTA), 1.2% sodium dodecyl sulfate
(SDS)] to stop the reaction, the cleaved fragment was separated using 2% agarose gel
electrophoresis. DNA cleavage efficiency (cleaved fragment intensity [%]/total fragment intensity [%])

was measured using ImageJ software (NIH).
Cell culture and transfection

The HEK293FT (ATCC) cell line was cultured in Dulbecco’s modified Eagle medium (DMEM, Gibco)
with 10% fetal bovine serum (FBS, Gibco) at 37 °C and in 5% CO,. To ensure efficient chimeric DNA-
RNA guide delivery, we performed sequential transfection with wt- or en-Casl2a expression vectors
and crRNAs. For the primary transfection, 10° cells were mixed with a plasmid vector (AsCas12a, n-
SpCas9 (D10A, H840A)) and 20 pl of electroporation buffer (Lonza, V4XC-2032) and were
nucleofected according to the manufacturer's instructions (program: CM-137). The transfected cells
were transferred to a 24-well plate with 500 pl of media and incubated at 37 °C in 5% CO,. Twenty
four hours after primary transfection, for secondary transfection, crRNA (200 pmol), single guide RNA
(sgRNA; 30 pmol), 1 pl P3000, and 1.5 pl Lipofectamine 3000 reagent (Thermo) were mixed in 50 pl
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Opti-MEM (Gibco), incubated for 10 min, and added to DMEM media. Forty-eight hours after the
second transfection, cells were harvested and genomic DNA was extracted using a genomic DNA

purification kit (Qiagen, DNeasy Blood & Tissue Kit).
Deep sequencing and data analysis

To analyze the indel frequency of the on-/off-target locus of each gene, targeted deep sequencing was
performed using PCR amplicons. The Cas-OFFinder (http://www.rgenome.net/cas-offinder/) web tool
was used to select potential off-target sites corresponding to each on-target site. For the preparation
of PCR amplicons, PCR amplification was performed using DNA primers corresponding to each
endogenous locus (Supplementary Table S2). To add adapter and index sequences to each 5' and 3’
ends, nested PCR was performed using Phusion™ High-Fidelity DNA Polymerase (Thermo). After
index tagging, the PCR amplicon mixture was analyzed using a Mini-Seq (lllumina, SY-420-1001)
according to the manufacturer's guidelines. Sequencing read fatstq files were analyzed using Cas-
Analyzer (http://www.rgenome.net/cas-analyzer/), and the indel ratio (mutant DNA read number/total

DNA read number) was calculated.
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Figure 1. Comparison of target DNA cleavage activity of chimeric DNA-RNA guided en-Casl12a
and wt-Cas12a. a, Structure of target-strand DNA-crRNA-AsCas12a complex(PDB: 5B43). left inset:

amino acids in AsCasl12a interacting with around the PAM

sequence in the target DNA, right inset:

Amino acid (Lys414) interacting with the target-strand DNA-crRNA duplex in AsCasl12a (hydrogen

bonding with the 2'-OH group on the crRNA 3'-end side). b,

Comparison of cleavage efficiency of wt-

AsCasl2a and en-AsCasl12a using a chimeric DNA-RNA guide. Comparison of cleavage efficiency of

DNA amplicons including target nucleotide sequences (DNMT1, CCRS5-site2) with gradual DNA

substitution from the 3'-end of crRNA. NC: Negative control, WT: Wild-type crRNA was treated with

wt- or en-AsCasl12a. The RNA region of the (cr)RNA is shown in blue, and the substituted DNA region
is shown in red ('8-44DNA' indicates a number of substituted DNA nucleotides in (cr)RNA). The X-axis

indicates the efficiency of the target gene (DNMT1, CCR5)
various chimeric DNA-RNA guides (DNA substitution from
efficiency were calculated from agarose gel separated band

cleavage by wt- and en-AsCasl12a using
the 3'-end of the (cr)RNA). All cleavage
intensity (cleaved fragment intensity (%) /

total fragment intensity (%)) and normalized to wild-type (cr)RNA (Supplementary Fig. 2). Data are

shown as means + s.e.m. from three independent experiments. P-values are calculated using a two-

way ANOVA with sidak’s multiple comparisons test (ns: not significant, P*:<0.0332, P**:<0.0021,

P***:<0.0002, P****:<0.0001).
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Figure 2. Comparison and optimization of genome editing efficiency of en-Casl2a and wt-

Casl2a based on chimeric DNA-RNA guide targeting intracellular genome. a-c. Comparison of

genome editing efficiency (%) of wt-AsCasl12a and en-AsCasl12a using a chimeric DNA-RNA guide

for human-derived cell line (HEK293FT). Comparison of indel induction efficiency (%) in intracellular
genome target sequences (DNMT1, IL2A-AS1, CCR5-sitel) by gradual DNA substitution of the 3'-end
of crRNA. All the indel ratio was calculated from targeted amplicon sequencing (Indel ratio(%) =

mutant DNA read number / total DNA read number). Data are shown as means + s.e.m. from three

independent experiments. P-values are calculated using a two-way ANOVA with sidak’s multiple
comparisons test (ns: not significant, P*:<0.0332, P**:<0.0021, P***:<0.0002, P****:<0.0001). NC:

negative control, WT: Wild-type crRNA was treated with wt- or en-AsCasl2a, 8-44DNA: Chimeric
crRNA (sequential 8-44DNA substitution at 3'-end of crRNA) was treated with wt- or en-AsCas12a.
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Figure 3. Comparison of genome editing specificity of en-AsCasl12a and wt-AsCasl12a based
on chimeric DNA-RNA guide targeting intracellular genome. a-l, Comparison of genome editing
target specificity (on-target editing(%) / off-target editing(%)) of wt-AsCasl12a and en-AsCasl2a on
genome in human cell line(HEK293FT) using an optimized chimeric DNA-RNA guide(8DNA). a-d,
Comparison of target specificity between wt- and en-AsCas12a on the intracellular genome target
sequence (CCR5-sitel) using wt-crRNA(WT) and 3'-end 8nt DNA substituted crRNA(8DNA). e-h,
Comparison of target specificity on the target sequence (AAVS1-sitel). i-l, Comparison of target
specificity on the target sequence (DNMT1-site2). Data are shown as means + s.e.m. from three
independent experiments. P-values are calculated using a two-way ANOVA with sidak’s multiple
comparisons test (ns: not significant, P*:<0.0332, P**:<0.0021, P***:<0.0002, P****:<0.0001). NC:
negative control, only Casl12a: only protein treated, WT: Wild-type crRNA was treated with wt- or en-
AsCasl2a, 8DNA: Chimeric crRNA (sequential 8DNA substitution at 3'-end of crRNA) was treated
with wt- or en-AsCas12a. nCas9: nickase Cas9(D10A), Nickase dependency = (w/o nCas9 editing(%)
/ w/ nCas9 editing (%)), Specificity = (on-target editing(%) / off-target editing(%)).
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Figure 4. A model for enhancing target specificity and editing efficiency of en-Cas12a based on
chimeric DNA-RNA guided engineering. wt-crRNA guided wt-Cas12a system: In general, the wt-
Casl2a effector can induce genetic mutations in target sequences, but can also induce mutations in
similar off-target sequences., wt-crRNA guided en-Cas12a system: Recognition of a target sequence
is enhanced by a effector engineered by amino acid substitution, and thus the efficiency of inducing
gene mutations is increased compared to that of the wt-Cas12a effector. However, due to the same
principle as target sequence recognition, there is a problem in that the mutation induction efficiency of
off-target sequences is also increased., chimeric-crRNA guided wt-Casl2a system: Effectively
reduced off-target mutation induction efficiency when using a chimeric DNA-RNA guide with 8nt DNA
substituted at the 3'-end. However, the efficiency of mutation induction for the target nucleotide
sequence in the genome is also reduced, so the efficiency is restored only when there is the action of
nickase on the nucleotide sequence near the target., chimeric-crRNA guided en-Casl2a system:
Maximizes the target sequence indel ratio(%) and minimizes the off-target indel ratio(%) when using a
chimeric DNA-RNA(8DNA) guided en-Cas12a effector which is engineered by amino acid substitution.
It can induce more accurate and high-efficiency gene editing than wt-Cas12a on genomic DNA. DNA
cleavage points are indicated by red arrows, and the degree of cleavage is indicated by arrow size
according to the Casl2a activity. The wt-Cas12a and en-Casl2a effectors are shown in blue and
brown, respectively. In the wt-crRNA and chimeric DNA-RNA guides, RNA is indicated in dark blue,
and nucleotides replaced with DNA are indicated in green.
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