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 2 

Abstract 27 

The flagellar type III secretion system (fT3SS) is a suite of membrane-embedded and cytoplasmic 28 

proteins responsible for building the bacterial flagellar motility machinery. Homologous proteins 29 

form the injectisome machinery bacteria use to deliver effector proteins into eukaryotic cells, and 30 

other family members have recently been reported to be involved in the formation of membrane 31 

nanotubes. Here we describe a novel, ubiquitous and evolutionarily widespread hat-shaped 32 

structure embedded in the inner membrane of bacteria, of yet-unidentified function, that is related 33 

to the fT3SS, adding to the already rich repertoire of this family of nanomachines. 34 
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 3 

Type III secretion systems (T3SS) assemble bacterial machinery with diverse functions. In 36 

addition to forming the flagellum and the injectisome, they have also been reported recently to be 37 

involved in the formation of membrane tubes [1]. The flagellar type III secretion system (fT3SS) 38 

consists of a cytoplasmic part containing an ATPase and an inner-membrane (IM)-embedded part 39 

known as the core complex (fT3SScc). The fT3SScc consists of five proteins (FliP, FliQ, FliR, 40 

FlhB and FlhA), with another protein, FliO, required for assembly but which does not form part 41 

of the complex [2,3]. Initially, FliP forms a pentameric platform on which FliQ, FliR and FlhB 42 

assemble to create a FliP5FliQ4FliR1FlhB1 subcomplex upon which an FlhA ring is built [4]. 43 

 44 

While using electron cryo-tomography (cryo-ET) to study the process of flagellar assembly in 45 

Helicobacter pylori, we identified a periplasmic hat-shaped structure embedded in the inner 46 

membrane (IM) of the cell (Fig. 1). The structure was abundant and, in contrast to the polar flagella 47 

of this species, did not show any preferred spatial localization in the cell (e.g., not exclusively at 48 

the cell pole). Carefully reexamining tens of thousands of cryotomograms of other, 49 

phylogenetically-diverse bacterial species our lab has imaged over the past 15 years, we found that 50 

this hat-like structure is widespread in diverse Gram-negative and Gram-positive bacteria (Fig. 2; 51 

see also Supporting Figure S1). In many cases, we observed multiple hat-like structures (up to 10 52 

in some cells) distributed around the cell (see Movie S1 for an example from an E. coli cell that 53 

was partially lysed, enhancing visibility of periplasmic structures). Subtomogram averages of the 54 

structure from different species revealed conserved characteristics: a hat-shaped part in the 55 

periplasm and two cytoplasmic densities beneath (Fig. 2). In general, the periplasmic hat-like 56 

portion had a diameter of ~24-26 nm at its widest point at the outer surface of the IM. The 57 

cytoplasmic densities were absent in the averages from three species: Pseudoalteromonas 58 
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luteoviolacea, Hylemonella gracilis and Bacillus subtilis. The absence of these densities in P. 59 

luteoviolacea and B. subtilis is likely due to the fact that these were lysed and not intact cells. We 60 

also observed that the cytoplasmic density did not resolve into two distinct sections in all species. 61 

 62 

We also identified the same structure in several H. pylori flagellar mutants: fliP*, ∆flgS fliP*, 63 

∆fliM fliP*, ∆fliG fliP*, ∆fliO fliP*, and ∆fliQ fliP*. The H. pylori fliP*strain contains a naturally-64 

occurring point mutation that disrupts the function of FliP [5] and prevents the assembly of the 65 

fT3SScc (manuscript in preparation). The other mutants remove additional fT3SScc proteins 66 

(ΔfliO and ΔfliQ), flagellar basal body proteins (ΔfliM and ΔfliG), or the tyrosine kinase 67 

responsible for expression of the class II flagellar genes (ΔflgS) [6]. Curiously, in all of these 68 

mutants the diameter of the hat-like density was reduced to only ~20 nm (at its widest part) and 69 

the two cytoplasmic densities were missing (or less well resolved) (Fig. 3 A-G). This difference 70 

was not due to decreased resolution, since more particles were averaged than from wild-type cells 71 

(see Materials and Methods). This observation suggested to us that the hat-like structure is related 72 

to the fT3SScc. Indeed the general shape is reminiscent of the MS-ring of the flagellar motor, and 73 

we observed the disappearance of two similar cytoplasmic densities in the motor (corresponding 74 

to FlhAC) in the same mutants while studying flagellar assembly (manuscript in preparation). The 75 

reduced width of the hat-like structure in fliP* cells is also reminiscent of the reduced width of 76 

flagellar complexes in the absence of the fT3SScc [7]. 77 

 78 

To explore this relationship, we examined Campylobacter jejuni mutants of other fTSScc proteins. 79 

These included mutants of the C-terminal domains of FlhA (∆flhAc) and FlhB (∆flhBc) [8]. In 80 

∆flhAc cells, compared to wild-type, the periplasmic hat-like part was again smaller in diameter 81 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.09.03.458937doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458937
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

and the two cytoplasmic densities disappeared (Fig. 3 I & J). In contrast, the hat-like structure in 82 

∆flhBc cells was indistinguishable from the wild-type complex both in diameter and the presence 83 

of the associated cytoplasmic densities (Fig. 3 K). This is not too surprising, since, unlike the large 84 

pentameric FliP ring or the nonameric FlhA ring, FlhB is a small protein present in a monomeric 85 

form in the fT3SScc. Although the absence of the C-terminus of FlhB renders the fT3SS non-86 

functional (no full flagella assemble in ΔflhBc C. jejuni [8]), the fT3SScc can still assemble 87 

(manuscript in preparation). To confirm the generality of the relationship between the fT3SScc 88 

and the hat-like complex, we imaged an flhA mutant in P. aeruginosa (flhA*, obtained from a 89 

transposon insertion mutant library). Here also, the hat-like structure was smaller in size and lacked 90 

clear cytoplasmic densities compared to wild-type (Fig. 3 L & M). 91 

 92 

Based on the apparent relationship between the fT3SScc and the hat-like structure, we 93 

hypothesized that the novel complex is formed by the flagellar MS-ring protein, FliF, adopting a 94 

different, more closed conformation than that seen in the fully-assembled flagellar motor. Hence, 95 

we generated and imaged a ∆fliF mutant in the H. pylori fliP* background. However, the hat-like 96 

complex was still present in this mutant, indicating that it is not formed by FliF (Fig. 3 H). Thus 97 

our observations suggest that while the cytoplasmic densities of the complex could be FlhAC, the 98 

periplasmic density is not formed by FliF or any of the fT3SScc proteins. Of course, it is also 99 

possible that FlhAC does not directly constitute the cytoplasmic densities, but rather that the 100 

fT3SScc proteins are regulating the expression (or localization) of another protein(s) that does.  101 

 102 

One possibility is that the hat-like structure we discovered here might represent an as-yet 103 

unidentified scaffold that helps the fT3SScc assemble. If this structure is some sort of scaffold and 104 
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the fT3SScc (or part of it) assembles within the hat-like portion and if the cytoplasmic densities 105 

are FlhAC, this would explain the disappearance of the cytoplasmic densities and the smaller 106 

diameter of the periplasmic portion in fliP* and flhA mutants. The second possibility is that 107 

fT3SScc proteins in some way regulate other proteins which themselves form the hat-like complex. 108 

Such a regulatory role has been indicated previously for one of the fT3SScc proteins, FliO, which 109 

is responsible for the optimal expression of other flagellar genes [9].  110 

 111 

Whatever the function of this hat-like complex, it joins the already-rich repertoire of the (f)T3SS, 112 

which has roles in flagellar motility, protein translocation and possibly membrane nanotube 113 

formation. Whether the hat-like structure is connected to any of these functions or plays another, 114 

yet-unidentified role remains to be elucidated. It is also possible that the apparently ancient 115 

structure may have diverged to serve different functions in different species. 116 

  117 
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Figures 151 

Figure 1 152 

 153 
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Figure 2 155 
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Figure 3 177 

 178 

 179 
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Figure legends: 180 

Figure 1: Identification of a novel hat-like complex in H. pylori. A & B) slices through electron 181 

cryotomograms of H. pylori (A) or H. pylori fliP* (B) cells showing the presence of hat-like 182 

complexes (enlarged in red boxes). Black scale bars 100 nm, red scale bars 25 nm. 183 

 184 

Figure 2: The hat-like complex is a widespread bacterial structure. A gallery of the hat-like 185 

complex in different bacterial species (Xanthomonas citri, Vibrio harveyi, V. fischeri, V. cholerae, 186 

Salmonella enterica, Pseudoalteromonas luteoviolacea, Proteus mirabilis, Pseudomonas flexibilis, 187 

P. aeruginosa, Legionella pneumophila, Escherichia coli, Hyphomonas neptunium, 188 

Agrobacterium tumefaciens, Azospirillum brasilense, Brucella abortus, Helicobacter hepaticus, 189 

H. pylori, Campylobacter jejuni, Hylemonella gracilis and Bacillus subtilis). Sub-tomogram 190 

averages are shown, except for C. jejuni and H. hepaticus, where not enough data was available 191 

for averaging so single tomographic slices are shown. Color coding indicates taxonomic class: 192 

green, Gammaproteobacteria; pink, Alphaproteobacteria; yellow, Epsilonproteobacteria; purple, 193 

Betaproteobacteria; and black, Bacilli. Scale bars are 20 nm. 194 

 195 

Figure 3: The effect of various flagellar-related mutations on the hat-like complex. Central 196 

slices through sub-tomogram averages (except (I), where a single tomographic slice is shown) of 197 

the  hat-like complex in wild-type cells and the indicated mutants of H. pylori (A-H), C. jejuni (I-198 

K) and P. aeruginosa (L & M). Scale bars are 20 nm. 199 

  200 
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Supporting Figures:  209 
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Figure S1: Slices through electron cryotomograms of various bacterial species highlighting the 266 

presence of hat-like complexes (dotted yellow circles in the enlarged views). Black scale bars 100 267 

nm, red scale bars 20 nm.  268 
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Movie S1: 289 

An electron cryotomogram of a partially-lysed E. coli cell highlighting the presence of multiple 290 

hat-like complexes in the inner membrane (indicated by red circles). 291 

 292 
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Extended Materials and Methods: 312 

Strains and growth conditions: 313 

E. coli cells were grown as described in ref. [1]. X. citri cells were grown in 2xTY medium for 14 314 

hours to stationary phase. V. cholerae, V. harveyi and V. fischeri were grown as previously 315 

described [2]. P. luteoviolacea were grown as described in ref. [3]. P. mirabilis were grown as 316 

described in ref. [4]. P. aeruginosa were grown in LB medium at 37° C overnight. The P. 317 

aeruginosa flhA* mutant was obtained from a transposon library (mutant number 3296 from the 318 

non-redundant library http://pa14.mgh.harvard.edu/cgi-bin/pa14/downloads.cgi) from Dianne 319 

Newman’s lab at Caltech. L. pneumophila were grown as described in ref. [5]. S. enterica were 320 

grown as in ref. [6]. P. flexibilis were grown in Lactose growth medium. H. neptunium were grown 321 

to exponential phase in PYE medium. A. tumefaciens wild-type cells with plasmid-borne VirC1-322 

GFP translational fusion under control of the VirB promoter were grown in AB medium with 150-323 

300 ug/ml of kanamycin. A. brasilense and B. abortus were grown as described in ref. [7].  H. 324 

hepaticus ATCC 51449 and H gracilis were grown as described in ref. [1,8] C. jejuni and its 325 

mutants were grown as described in ref. [6,9,10]. B. subtilis protoplasts were prepared using 326 

lysozyme using a protocol based on ref. [11]. A motile revertant H. pylori 26695 isolate was 327 

selected by serial passage in Brucella broth supplemented with 10% heat inactivated fetal bovine 328 

serum at 37° C, 5% CO2 for 4 days until cultures reached an OD600 ~ 0.4. Non-motile H. pylori 329 

fliP* mutants were propagated on TSAII blood agar plates (BD Biosciences) at 37 °C, 5% CO2 for 330 

either 24 or 48 h prior to collection with a sterile cotton swab for grid preparation. Helicobacter 331 

pylori mutants (ΔfliM fliP*, ΔfliO fliP*, ΔflgS fliP*, ΔfliG fliP*, ΔfliQ fliP*) were grown directly 332 

from glycerol stocks on sheep blood agar at 37 °C with 5% CO2 for 48 hours. Then, the cells were 333 

either collected from the plate using a cotton swab and dissolved in PBS and spun down and 334 
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plunge-frozen directly, or the cells were spread on a new plate and allowed to grow for 24 hours 335 

under the same conditions before plunge-freezing. No difference could be discerned between the 336 

two samples by cryo-ET. 337 

 338 

H. pylori mutagenesis: 339 

Flagellar mutants were generated in the non-motile H. pylori 26695 background as previously 340 

described [12]. Briefly, constructs were generated to replace the coding region of the gene of 341 

interest with an in-frame, non-polar kanamycin resistance cassette.  The target gene and 342 

approximately 500 base pairs (bp) upstream and downstream of flanking regions were amplified 343 

and cloned into pGEM T-Easy (Promega). This construct was used as a template for inverse PCR 344 

to remove the majority of the target gene coding region and to introduce incompatible restriction 345 

sites for directional cloning. A kanamycin resistance cassette driven by a promoter transcribed in 346 

the same direction as the endogenous operon was cloned into the ligated inverse PCR plasmid. H. 347 

pylori 26695 was transformed via natural competence, and single colonies resistant to kanamycin 348 

(12.5 µg/ml) were selected. PCR was used to verify that the kanamycin resistance cassette had 349 

inserted into the target locus in the same orientation as operon transcription. 350 

 351 

Electron cryo-tomography sample preparation and imaging:  352 

Sample preparation for cryo-ET imaging was done as described in references [2,13,14]. Total 353 

cumulative electron dose used for each tilt-series in each species was: 354 

Species name Class Cumulative electron 

dose (e-/ Å2) 

Xanthomonas citri Gammaproteobacteria 120 
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Vibrio harveyi Gammaproteobacteria 160 

Vibrio fischeri Gammaproteobacteria 150 

Vibrio cholerae Gammaproteobacteria 160 

Salmonella enterica Gammaproteobacteria 200 

Pseudoalteromonas 

luteoviolacea 

Gammaproteobacteria 180 

Proteus mirabilis Gammaproteobacteria 160 

Pseudomonas flexibilis Gammaproteobacteria 100 

Pseudomonas fluorescens Gammaproteobacteria 200 

Pseudomonas aeruginosa Gammaproteobacteria 170 

Legionella pneumophila Gammaproteobacteria 100 

Escherichia coli Gammaproteobacteria 130 

Shewanella oneidensis MR1 Gammaproteobacteria 150 

Hyphomonas neptunium Alphaproteobacteria 180 

Agrobacterium tumefaciens Alphaproteobacteria 200 

Azospirillum brasilense Alphaproteobacteria 200 

Brucella abortus Alphaproteobacteria 160 

Helicobacter hepaticus Epsilonproteobacteria 200 

Helicobacter pylori Epsilonproteobacteria 120-130 

Campylobacter jejuni Epsilonproteobacteria 200 

Hylemonella gracilis Betaproteobacteria 75 

Bacillus subtilis Bacilli 160 

 355 
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Image processing and subtomogram averaging: 356 

Three-dimensional reconstructions of tilt-series were performed either automatically through the 357 

RAPTOR pipeline used in the Jensen lab [15] or with the IMOD software package [16]. 358 

Subtomogram averaging was done using the PEET program [17] with a 2-fold symmetrization 359 

applied along the particle Y-axis. The number of particles that were averaged are: 360 

 361 

Figure Number of particles 

Figure 2 X. citri 21 

Figure 2 V. harveyi 46 

Figure 2 V. fischeri 19 

Figure 2 V. cholerae 58 

Figure 2 S. enterica 38 

Figure 2 P. luteoviolacea 50 

Figure 2 P. mirabilis 18 

Figure 2 P. flexibilis 23 

Figure 2 P. aeruginosa 78 

Figure 2 L. pneumophila 149 

Figure 2 E. coli 31 

Figure 2 H. neptunium 23 

Figure 2 A. tumefaciens 29 

Figure 2 A. brasilense 20 

Figure 2 B. abortus 41 

Figure 2 H. pylori 26 
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Figure 2 H. gracilis 30 

Figure 2 B. subtilis 30 

Figure 3A 26 

Figure 3B 118 

Figure 3C 60 

Figure 3D 29 

Figure 3E 27 

Figure 3F 50 

Figure 3G 42 

Figure 3H 146 

Figure 3J 36 

Figure 3K 37 

Figure 3L 78 

Figure 3M 17 

 362 

  363 
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