

1 Title: Pathogenicity effector candidates and accessory genome revealed by pan-
2 genomic analysis of *Parastagonospora nodorum*.

3 Short Title: *Parastagonospora nodorum* pan-genomics

4

5 Darcy A. B. Jones^{1#}, Kasia Rybak¹, Stefania Bertazzoni¹, Kar-Chun Tan¹, Huyen T. T. Phan¹,
6 and James K. Hane^{1,2*#}

7

8 ¹ Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin
9 University, Perth, Australia

10 ² Curtin Institute for Computation, Curtin University, Perth, Australia

11

12 * Corresponding author: james.hane@curtin.edu.au

13

14 Keywords: Fungi, Plant Pathogen, Pathogenicity Effector, *Parastagonospora nodorum*, Pan-
15 genome

16 Abstract

17 The wheat pathogen *Parastagonospora nodorum* has emerged as a model necrotrophic fungal
18 species with growing genomic resources. Recent population-level pan-genome studies were
19 leveraged to provide novel insights into pathogen evolution and effector-like gene contents
20 relevant to local crop disease outbreaks. In this study, we examined 156 isolates representing a
21 regional population from the Western Australian (WA) wheat-belt region, and 17 internationally
22 sourced isolates. We observed a highly diverse local population, within which were numerous
23 small and highly similar clusters of isolates from hotter and drier regions. Pan-genome assembly
24 and orthologous gene datasets resulted in 3579 predicted effector candidates, 2291 of which
25 exhibited presence-absence variation (PAV) across the population, and 1362 were specific to
26 WA isolates. There was an abundance of mutations (including repeat-induced point mutation
27 (RIP)), distributed in 'hot-spots' within the pan-genomic landscape that were rich in effector
28 candidates. Three characterised effector loci (*ToxA*, *Tox1* and *Tox3*) were located within sub-
29 telomeric regions of lower diversity, but were nestled within larger high-diversity regions. RIP
30 was widespread across the genome, but non-synonymous RIP-like mutations were strongly
31 selected against. These improved bioinformatic resources for *P. nodorum*, represent
32 progressive advancements in fungal pan-genomics, with a view towards supporting region-
33 specific surveillance of host-pathogen interactions.

34 Introduction

35 *Parastagonospora nodorum* is a necrotrophic pathogen causing septoria nodorum blotch (SNB)
36 of wheat (*Triticum spp.*) (Solomon et al. 2006) which leads to significant yield losses in Australia
37 (Murray and Brennan 2009). *P. nodorum* is primarily spread by infected seed, infested debris or
38 by wind dispersed sexual ascospores (Solomon et al. 2006). Secondary infections can occur
39 when water splash spreads asexual pycnidiospores to higher leaves and glumes, causing
40 further necrotic patches and crop loss. *P. nodorum* is observed to be highly diverse in the field
41 (Stukenbrock et al. 2006, McDonald et al. 2012), and appears to regularly reproduce sexually
42 (Murphy et al. 2000, Bathgate and Loughman 2001, Sommerhalder et al. 2006). This suggests
43 a high adaptive capacity of *P. nodorum* populations, where application of strong selective
44 pressures may be quickly overcome by extant diversity.

45

46 *P. nodorum* infection heavily relies on the activity of necrotrophic effector proteins (NEs), which
47 are secreted into the host and cause cell death upon recognition by host susceptibility (S)-
48 proteins (Tan et al. 2010). Three NEs have been characterised in *P. nodorum* to date: ToxA (Liu
49 et al. 2006), Tox1 (Liu et al. 2012) and Tox3 (Liu et al. 2009). At least five additional host
50 specific necrosis phenotypic interactions have been described in the *P. nodorum*-wheat
51 pathosystem (Friesen et al. 2007, Friesen et al. 2008, Abeysekara et al. 2009, Zhang et al.
52 2011, Friesen et al. 2012, Gao et al. 2015, Shi et al. 2015, Phan et al. 2018), indicating the
53 presence of additional undiscovered NEs. Identification of the *ToxA* NE has led to deployment
54 of a ToxA resistant wheat cultivar (Tan et al. 2014), and the presence of additional major
55 disease resistance quantitative trait loci (QTL) encourages further development of disease
56 resistant cultivars. However, the known epistatic interactions of Tox1 and Tox2 over Tox3
57 (Friesen et al. 2007, Phan et al. 2016) indicates that the contributions of different effector-
58 receptor interactions to virulence are complex, and that reliable markers of S-genes and
59 knowledge of the epistasis interactions are important for future disease breeding efforts. The
60 discovery of novel NEs in *P. nodorum* (and other fungal pathogens) remains an important
61 element of crop protection research (Vleeshouwers and Oliver 2014). Fungal effector discovery
62 relies heavily on genomic and bioinformatic resources (Jones et al. 2018), and the increased
63 accessibility of sequencing has resulted in a considerable increase in the rate of effector
64 discovery (Kanja and Hammond-Kosack 2020).

65
66 *P. nodorum* was among the first fungal species for which a reference genome sequence was
67 generated (for the Western Australian (WA) isolate SN15) (Hane et al. 2007), and was the first
68 species within the class Dothideomycetes, which comprises several prominent cereal
69 necrotroph and hemibiotroph species (Ohm et al. 2012, Aylward et al. 2017). The SN15
70 reference isolate has predominated molecular plant pathology studies of *P. nodorum* since,
71 becoming an important model for the cereal necrotrophs (Solomon et al. 2006). Significant
72 resources have accumulated over time for the SN15 isolate and *P. nodorum* in general,
73 including transcriptomic (Hane et al. 2007, Ipcho et al. 2012, Syme et al. 2016, Richards et al.
74 2018, Jones et al. 2019), proteomic (Bringans et al. 2009, Syme et al. 2016), and metabolomic
75 (Lowe et al. 2008, Gummer et al. 2013, Chooi et al. 2014, Muria-Gonzalez et al. 2020) datasets.
76 Notable recent additions to the growing pool of *P. nodorum* data include the chromosome-scale
77 genome assemblies of SN15 and 3 other reference isolates (Richards et al. 2018, Bertazzoni et
78 al. 2021).

79 *Parastagonospora nodorum* pan-genomics

80 Improving cost and availability of genome and transcriptome sequencing has significantly
81 advanced plant pathology, enabling conceptual shifts from the focused study of a single
82 reference isolate, to large-scale comparative genomics between numerous isolates over a few
83 short years. Three pan-genomic comparative studies of *P. nodorum* have been conducted to
84 date, comparing global collections of isolates (Syme et al. 2018, Pereira et al. 2020, Bertazzoni
85 et al. 2021), and populations within the USA (Richards et al. 2019). Syme et al. (Syme et al.
86 2018) compared the genomes of *P. nodorum* isolates from Iran, Finland, Sweden, Switzerland,
87 South Africa, the USA, and Australia. They observed frequent presence-absence variation in the
88 effectors *ToxA*, *Tox1*, and *Tox3*, and possible accessory genomic regions with potential roles in
89 virulence. Additionally, numerous genes were observed to be under positive selection pressure,
90 including several effector candidate proteins. They observed distinct regions with large numbers
91 of mutations and some regions with consistently high dN/dS ratios, indicating positive selection
92 and enrichment of adaptively relevant genes in specific genomic regions. Pereira et al. (Pereira
93 et al. 2020) sequenced the genomes of *P. nodorum* isolates from Australia, Iran, South Africa,
94 Switzerland, and the USA to investigate *P. nodorum* adaptation to fungicide use. The highest
95 genetic diversity was found in the Iranian population, consistent with the hypothesis that *P.*
96 *nodorum* co-evolved with wheat during early domestication (Ghaderi et al. 2020), while low
97 diversity was observed within the Australian isolates. A genome-wide association study
98 identified several loci correlated with azole resistance, with higher incidence of fungicide
99 resistance and the identified resistance associated alleles in the Swiss population. Richards et
100 al. (Richards et al. 2019) sequenced 197 *P. nodorum* isolates collected from Spring, Winter and
101 Durum wheat cultivars across the growing region of the USA. Two major US sub-populations
102 were identified corresponding to geographical features and wheat lines grown, with one sub-
103 population almost completely lacking *ToxA*. Both populations had diversified at different loci,
104 indicating distinct selective pressures and resulting in different sets of effector candidates
105 predicted by genome-wide association. The USA population study also highlighted several
106 patterns of gene presence-absence variation (PAV) between isolates. The known effector genes
107 *ToxA*, *Tox1* and *Tox3* were absent in 37%, 5% and 41% of US isolates respectively. Gene PAV
108 was commonly associated with transposons in USA isolates, yet there was no significant
109 association with frequency of secreted or effector-like proteins.

110

111 Collectively, these genomic studies have highlighted the high diversity of *P. nodorum* genomes,
112 and that studies focusing only on reference isolates are missing considerable amounts of

113 information. The 400 kb accessory chromosome 23 (AC23), which is missing in the avirulent
114 isolate Sn79-1087, may have a role in host-specific virulence (Bertazzoni et al. 2018) and has a
115 high background rate of mutation (Richards et al. 2018, Bertazzoni et al. 2021). Similarly,
116 regional biases for high AT-base content and RIP-like activity suggests the presence of rapidly
117 mutating accessory regions, primarily within repeat-rich stretches of AC23 and sub-telomeric
118 regions (Richards et al. 2018, Syme et al. 2018, Bertazzoni et al. 2021). Numerous effector
119 candidates have been derived from these genomic studies, utilising features such as signatures
120 of positive selection across isolates, similarity to known effectors, signal peptides, EffectorP
121 results (Sperschneider et al. 2016, Sperschneider et al. 2018), genomic context (e.g. AT-
122 richness or distance to TEs), presence or absence in avirulent isolates, and genome wide
123 association (Richards et al. 2018, Syme et al. 2018, Richards et al. 2019, Bertazzoni et al.
124 2021). In the Australian reference isolate SN15, many of these genomic features have been
125 combined with a broad range of experimental and bioinformatic indicators to refine effector
126 candidate lists, including: *in planta* gene expression (Jones et al. 2019), putative lateral gene
127 transfer with other cereal-pathogenic fungi (<https://effectordb.com>), and predicted effector-like
128 gene and protein properties (Syme et al. 2018, Bertazzoni et al. 2021).

129 The Western Australian *P. nodorum* pan-genome

130 Despite the long history of study of the Australian *P. nodorum* reference isolate SN15, relatively
131 little was known about the genomic diversity of the *P. nodorum* population in WA until recently.
132 A study of 28 SSR loci compared a WA population of 155 isolates collected over 44 years, and
133 contrasted this population with 23 international isolates sourced from France and the USA
134 (Phan et al. 2020). This SSR study identified two core admixed clusters in WA, with three low-
135 diversity satellite clusters that were geographically and temporally restricted. The population
136 shift broadly correlated with historical shifts in wheat cultivar preference, particularly after the
137 mass adoption of the ToxA insensitive cultivar “Mace” in 2013 which covers nearly 70% of the
138 area sown (Trainor et al. 2018). Although wheat cultivar disease resistance has increased over
139 time, more recently sampled isolates from emergent clusters were more pathogenic than older
140 isolates.

141

142 In this study, we further dissect the evolutionary history of a WA *P. nodorum* population
143 previously analysed by Phan et al. (Phan et al. 2020) using whole genome sequencing. Further,
144 we compare these genomes with isolates previously sequenced by Syme et al. (Syme et al.
145 2018), and identify novel effector candidates in *P. nodorum*. Guided by phylogeographic and

146 population structure analyses, we observe a highly diverse population in WA, with numerous
147 small highly similar clusters collected from hotter and drier regions of Western Australia. We
148 present the first report of novel sequences and genes within the growing pool of *P. nodorum*
149 pangenome data, specific to locally-adapted isolates. We also combine new WA pangenome
150 data with existing resources to define new effector candidate orthologous groups, extending
151 effector candidate discovery beyond reference isolates. Overall, this growing wealth of new
152 pathogen population data has enhanced our understanding of the pathogenicity gene content,
153 genome architecture and population dynamics for the model cereal necrotroph, *P. nodorum*.

154

155 Results

156 Quality control of input sequence data

157 A total of 156 Western Australian *P. nodorum* isolates described previously (Syme et al. 2018,
158 Phan et al. 2020) were sequenced using short-read Illumina sequencing. The majority of
159 sequencing read pairs were assigned by Kraken2 to either *Parastagonospora nodorum*
160 (average 74.1%) or were unclassified (average 25.6%) (table S2). A small number of read pairs
161 matched other organisms across kingdoms, but no fastq files had more than 1% of reads
162 assigned to any non-fungal taxon nor were any consistent trends observed. Sequencing read
163 quality was generally high, with only a single lane of sequencing (of three) for the isolate
164 WAC13068 failing QC because of low base quality (data S1). Mean insert sizes for isolates
165 sequenced with 125 bp reads ranged between 441 and 709 bp (mean 632 bp), with standard
166 deviations between 263bp and 760bp. Insert sizes for isolates sequenced with 150bp reads
167 varied between 275bp and 321bp (mean 305 bp) with standard deviations between 208 bp and
168 295 bp.

169 Prediction of mutations across the *P. nodorum* pan-genome 170 relative to the SN15 reference isolate

171 Short variants (SNPs, insertions, and deletions) were predicted from aligned short-read
172 sequenced isolates from this study and 15 previously published additional isolates (Syme et al.
173 2018) (table S1) using the SN15 genome as a reference (Bertazzoni et al. 2021), yielding
174 895,000 variant loci after filtering (table S3, data S2-S8) corresponding to 1 mutation for every
175 41 bases in the genome on average. The majority of variants were SNPs (830,761), compared
176 to 33,943 and 30,296 insertions and deletions. Most SNPs were C↔T or G↔A mutations
177 (296,688 and 296,927, respectively), with an overall transition to transversion ratio of 2.5.
178 Relative to the genome of the SN15 reference isolate, 7.4% of variants were within exon
179 features, 3236 mutations resulted in truncation (gain of stop), 660 mutations resulted in loss of a
180 stop codon, 466 mutations resulting in loss of start codon, 249 and 310 mutations were in splice

181 site acceptor or donor sites respectively, 9896 were frameshift variants, 148,914 were missense
182 mutations, 205,602 were synonymous variants, and there were 1648 and 1591 disruptive in-
183 frame deletions and insertions, respectively.

184 **Phylogeny and structure of the local Western Australian *P.***
185 ***nodorum* population**

186 A subset of SNPs for phylogenetic and population genetics analyses were selected (maximum
187 missing genotypes of 30%, minimum non-major allele frequency of 0.05, and filtering correlated
188 loci within 10 Kb) resulting in 45,194 SNP loci from all illumina sequenced isolates.

189 A phylogenetic tree was estimated from these SNPs using IQTree (Minh et al. 2020) (Fig 1).

190 The resulting tree grouped isolates from WA and non-Australian isolates into distinct clades.

191 Leaf lengths were generally long within the WA clade, however, six groups of isolates with very
192 short branch lengths were observed, with sizes ranging from 3 to 14 isolates (Data S9, Fig S1).

193 Some internal tree nodes had low UFBoot support values (< 95), indicating that some of the
194 high level relationships were poorly resolved. A major split with high SH-aLRT but low UFBoot
195 support was observed, which tended to separate isolates with long branch lengths from a
196 diverse range of locations from a second clade comprised mostly of several highly similar
197 clades which were generally collected from northern regions of the WA wheat growing area
198 (Geraldton and Dandaragan). No obvious correspondence between effector haplotype profiles
199 and high level phylogenetic clades was observed; but at lower level clades effector haplotype
200 profiles appear to be conserved, particularly where member isolates have short branch lengths
201 (Fig 1).

202

203 Analysis of population structure from SNP data with STRUCTURE (Fig 1, Table S4), predicted
204 nine clusters, with the non-Australian isolates forming a single cluster (Structure cluster 8).

205 Within the WA isolates, a single main population was observed (cluster 4) with 7 small satellite
206 clusters. Few isolates were unambiguously assigned to the main cluster (21 of 102 had a
207 posterior probability of > 0.85), with small but appreciable posterior probabilities contributed by
208 satellite clusters and the international cluster. Noting this, we refer to isolates with the highest
209 posterior probability of assignment to cluster 4 as members. These members generally had long
210 branch lengths in the phylogenetic tree and were found in multiple clades. This main cluster
211 corresponds to the two main clusters (1 and 2) presented in Phan et al. (Phan et al. 2020)
212 (referred to hereafter as clusters P1-5) (Fig S2 and S3). The seven remaining clusters identified

213 by STRUCTURE corresponded to clades in the phylogenetic tree where all leaves had very
214 short lengths, indicating that all members were highly similar to each other. Cluster 1 consists of
215 3 isolates collected from Geraldton in 2012 (Fig S4 and S5). Cluster 2 consists of 8 isolates
216 collected from Geraldton in 2005 and 2011. Cluster 3 consists of 14 isolates collected from
217 Geraldton in 2005, 2011, and 2012. Cluster 5 consists of 5 isolates collected from Geraldton in
218 2005 and 2011. Cluster 6 consists of 7 isolates collected from Geraldton, South Perth, or WA
219 (unknown specific location) between the years 1980 and 2011. Cluster 9 consists of 12 isolates
220 collected from Mingenew (near Geraldton) or WA in 2016. Clusters 3, 6, and 9 correspond to
221 the satellite clusters P3, P4, and P5 presented by Phan *et al.* (Phan et al. 2020), respectively.
222 The remaining clusters further separate the main populations identified by Phan *et al.* (Phan et
223 al. 2020), with cluster 1 separating from P2, and clusters 7, 5, and 2 separating from P1. The
224 Tox1 effector haplotypes of members in cluster 5 were highly variable and contained rare
225 variants in the WA population.

226
227 Population diversity statistics indicated that individuals within clusters except the core WA
228 cluster (4) and the international cluster (8) are highly similar (Table 1, Table S4). F_{ST} and
229 average locus expected heterozygosity suggests that the alleles are nearly fixed in these
230 clusters. The mean locus G'_{ST} (a normalised variant of F_{ST} that accounts for multi-allelic
231 markers) (Hedrick 2005) was 0.44, indicating that there is some differentiation between
232 subpopulations. To reduce the effects of nearly identical isolates on local diversity estimates,
233 reduced multilocus genotypes (MLGs) were defined using the IQTree maximum likelihood (ML)
234 distance estimates using complete linkage clustering and a cutoff threshold of 0.1 (Table 1). All
235 clusters other than 4 and 8 (the main WA population and the international isolates) were
236 composed of a single MLG using this strategy. Cluster 4 comprised 89 MLGs (of 102
237 individuals) and cluster 8 comprised 14 MLGs (of 15 individuals). For each sampling location
238 and year, a single individual of each MLG was selected for further comparison, referred to as
239 the “clone-corrected” subset. A mantel test comparing the ML distance matrix with the distance
240 matrix derived from the isolate sampling GPS coordinates indicated no significant correlation
241 between genetic distance and geographic distance in the WA “clone-corrected” population
242 (Mantel test, 999 replications, p-value = 0.381). Principal components analysis (PCA) of the
243 clone corrected samples showed a clear separation of international isolates from those of WA in
244 PC1 which explained 4.7% of the total variance, but no other principal components showed
245 structure in the data correlated with sampling location or year (Fig S6 and S7).

246

247 Permutation tests of the r_d index of association indicated that all clusters except 1 and 7 were in
248 linkage disequilibrium (999 replications, p-value < 0.05) (Table 1). Clusters 1 and 7 both contain
249 only three members, so the test may be underpowered in those cases. Repeated tests for
250 clusters 4 and 8 using the “clone corrected” subset were also significant, indicating that linkage
251 disequilibrium was not associated with isolate clonality.

252 Comparative genomics across the local Western Australian *P.*
253 *nodorum* population indicated telomeric or transposon-rich
254 mutation ‘hotspots’

255 Short variant mutation frequencies were observed to occur in “hotspots” throughout the SN15
256 genome, which were often, but not exclusively, telomeric (Fig 2, Table S8). The accessory
257 chromosome 23 (AC23) was observed to have a higher overall SNP density compared to other
258 chromosomes. Isolates WAC2813, WAC9178, WAC2810, WAC8635, WAC13405, WAC13418,
259 WAC13447 (all from population cluster 6) all had very few SNPs relative to SN15, forming the
260 inner blue circle present in Fig 2. Care was taken that certain biological and technical factors did
261 not unduly influence our interpretation of SNP density at the whole-genome level. A region on
262 chromosome 07 of between 140,979 bp and 623,833 bp, which was identified in a previous
263 study (Bertazzoni et al. 2021) as a potential sequencing artifact exhibited an absence of SNPs
264 in our analysis. Low SNP counts around the rDNA tandem repeat array located on the end of
265 Chromosome 3 (Bertazzoni et al. 2021) and other areas that overlap repeat regions may have
266 also been caused by read-alignment depth filtering rather than the absence of variants. Repeat-
267 induced point mutation (RIP) is an important feature indicating ‘hypermutation’ compartments
268 throughout fungal genomes (Hane et al. 2015). The ratio of RIP-like dinucleotide changes over
269 all transition SNPs across the pan-genome relative to the SN15 reference genome indicated
270 that RIP-like mutations are over-represented and also tend to be localised in hotspots (Fig 3).
271 Hotspots of RIP-like mutation tended to co-locate with regions rich in transposable elements in
272 the SN15 genome, though there are several regions that are enriched for RIP-like mutations for
273 a small group of isolates.

274 Comparative genomics across the WA *P. nodorum* pan-genome

275 The average assembly size for the 156 WA *Parastagonospora nodorum* isolates was 37.8 Mb,
276 with a median N50 of 17 and a median L50 and NG50 of 793431 and 783556 (Table S5).

277 Mitochondrial assemblies produced between 1 and 3 contigs in all cases, with a median size of
278 49591 bp. A common ~1000bp repeated region was observed in the mitochondrial assemblies,
279 which appeared to be the cause of the fragmented assemblies (data not shown). The WA
280 isolates were predicted to be highly complete with a median number of genes predicted by
281 Genemark of 13037, with average completeness estimated via BUSCO at 98.94%, only one
282 isolate (15FG111) had completeness estimated below 98%.

283

284 To identify potential regions of presence-absence variation (PAV), the genome assemblies of
285 this study and previous studies (Richards et al. 2018, Phan et al. 2020) (Table S1) were aligned
286 to the SN15 reference assembly (Bertazzoni et al. 2021). In comparison to the SN15 reference
287 assembly, the majority of the SN15 genome sequence was conserved with resequenced isolate
288 assemblies, with small regions of PAV tending to be observed at telomere ends or large internal
289 repeat regions (Fig 4; Table S8). In addition to being missing in isolate SN79 (Richards et al.
290 2018), the accessory chromosome 23 was wholly absent in isolate 'Northam_Magenta' and
291 partially absent in isolates 16FG160-162, 16FG163_2, 16FG164-171, and WAC13403 (Fig 4).
292 We observed large duplications of genomic regions in some isolates (Fig 4). On SN15
293 chromosome 19 there was a large duplication of a region between 850 kb and 1 Mb in length in
294 isolates WAC13404, WAC13075, and WAC13525. The first 200 kb was duplicated in isolate
295 Meck8 relative to SN15 chromosome 22. Isolate WAC13631 had a large duplication relative to
296 SN15 chromosome 12, of between 750 kb and 1.1 Mb.

297 Genes were predicted in all genome assemblies (including previously published isolates, Table
298 S1), which resulted in a median gene count of 18294 across WA isolates, with a minimum of
299 17633 in isolate SN79 and a maximum of 19125 in isolate RSID03 (Table S6 and S7). The
300 median length of coding domain sequences (CDSs) was 894 bp and was 53 bp for introns. The
301 median BUSCO gene completeness was 3135 or 99.3%, with a median of 16 fragmented and 3
302 missing loci. Orthology clustering of predicted protein products from all *P. nodorum* isolates
303 (including non-WA isolates) produced 34381 'orthogroups', 14098 of which were core to the
304 population (13628 single copy and 470 multi-copy), and 11460 were dispensable (10043 single
305 copy, 1417 multi-copy) (Table S9). An additional 8823 singleton groups were identified (8490
306 single copy, 333 multi-copy) which were only observed in a single isolate. To detect orthogroups
307 with any members potentially under positive selection at any site, dN/dS branch site tests were
308 run for all non-singleton orthogroups using the BUSTED algorithm in HyPhy (Pond et al. 2005).
309 This identified 5306 orthogroups that were undergoing diversifying selection at any point with p-

310 values < 0.01. Of these, 732 orthogroups had more than 20% of sequences within the
311 orthogroup predicted to be subject to positive selection.

312

313 Multiple codon alignment of the coding sequences of the three known effector loci *ToxA*, *Tox1*,
314 and *Tox3* (Data S10) indicated the occurrence of non-synonymous and RIP-like mutations in
315 these loci. The *Tox1* orthogroup (SNOO_20078A) was absent in isolates RSID36, RSID37 and
316 RSID39 (Table S9) and was present as a single copy in all other isolates, or as a C-terminal
317 truncated version in WAC13443 and SN79. Some branches of the orthogroup were predicted to
318 be under positive selection (HyPhy BUSTED test, p-value >= 0.0008), and three codons
319 showed significant position-specific positive selection (HyPhy FUBAR test, posterior probability
320 > 0.90) at alignment codons 108 (GAC↔TCC; p=0.9194), 113 (ACC↔CCC; 0.9296), and 117
321 (GCA↔CAA; 0.9892). The alignment variants at T113P and R117[V,Q] are restricted to WA
322 isolates, while the variant at D108S is restricted to a subset of the international isolates,
323 including SN4. Overall, 13 distinct AA and nucleotide CDS sequences were detected in
324 SNOO_20078A. The *Tox3* orthogroup (SNOO_08981AB) was present in 160 isolates, but
325 absent in SN79, SN2000, and 8 of the 16 remaining non-Australian isolates. SNOO_08981AB
326 was not predicted to be under positive selection (HyPhy BUSTED, p-value=0.05), and no
327 specific positions were detected to be under positive selection using HyPhy FUBAR. Five
328 distinct *Tox3* codon sequences were observed resulting in two distinct AA sequences, with 28
329 WA isolates (including all isolates from population cluster 9) and one Swedish isolate (RSID28)
330 possessing 3 mutations resulting in the codon changes N78D (AAT↔GAT), R102L (CTA↔CGA),
331 and D104E (GAA↔GAT), with the first appearing to be RIP-like. The *ToxA* orthogroup
332 (SNOO_16571A) was present in most isolates but absent in one WA isolate (201FG209), and
333 11 international isolates, including SN79. The *ToxA* orthogroup was not predicted to be under
334 positive selection by HyPhy BUSTED, and no individual sites were predicted to be under
335 positive selection by HyPhy FUBAR. There were non-synonymous mutations, I130V
336 (ATT↔GTT) and E125D (GAA↔GAT), the former exclusive to WA isolates and the latter being

337 RIP-like and present in seven isolates, of which 2 were from WA. Five anomalous ToxA CDS
338 sequences were observed, each with distinct AA sequences, however all of the predicted genes
339 lacked a C-terminal region (which included the RGD motif) annotated in SN15, possibly
340 indicating exon mis-annotation in these isolates.

341
342 Effector prediction using Predector (<https://github.com/ccdmb/predector>) identified 779 effector
343 candidates in the SN15 reference isolate which were predicted to be secreted and with positive
344 EffectorP 2 scores, and 1348 effector candidates with Predector scores greater than zero, of
345 which 132 were homologous to known fungal effectors or had virulence associated Pfam
346 domains. Across the entire pangenome, 2055 orthogroups were predicted to be secreted and
347 have a positive EffectorP 2 prediction, 3398 orthogroups had members with a Predector effector
348 score greater than zero. Of the predector candidates 997 were predicted to be secreted and
349 +have a positive EffectorP 2 prediction, 145 contained effector homologues or virulence related
350 Pfam domains, 411 had members significantly under positive selection, 55 were under positive
351 selection in more than 20% of orthogroup sequences, 750 were accessory orthogroups, and
352 1405 were singleton orthogroups.

353
354 Orthogroups showed some PAV spanning large regions of the genome (Fig 5, Table S9). The
355 largest of these was only present in 31 isolates and contained 385 orthogroups, comparable in
356 gene number to AC23 which contains 218 predicted genes in SN15. Assembled scaffolds
357 containing orthogroups in this PAV group were generally shorter than 200 kb, did not align to
358 any chromosomes in the SN15 genome, but did align to scaffolds in other isolates with a high
359 level of collinearity (Data S11).

360 Accessory regions and candidate effector loci are enriched in
361 RIP-like mutations and unknown functions across the WA pan-
362 genome

363 Statistically significant enrichment (two-tailed hypergeometric test, BH FDR corrected p-value <
364 0.05) of predicted protein functions (by gene ontology (GO) terms) were observed within various
365 subsets of pan-genome orthogroups. The core pan-genome was enriched for 3509 GO terms
366 generally associated with core functions including biosynthesis, cell cycle control, and transport
367 (Table S11). Conversely, the accessory pan-genome was depleted in 1698 terms associated

368 with core functions. Similarly, singleton orthogroups (present in only one isolate) were depleted
369 in 1708 GO terms associated with core functions, as were orthogroups not present in the SN15
370 reference isolate (2946 depleted). Multicopy subsets of the core, accessory, and singleton pan-
371 genomes, and the subset of the accessory pan-genome containing between 20% and 80% of
372 isolates showed similar patterns of enrichment and depletion as their respective supersets.
373 Orthogroups where more than 20% of sequences were predicted to be positively selected were
374 depleted in 139 GO terms relating to core functions (e.g. transport, metabolic processes,
375 response to stimulus).

376

377 Genes of the SN15 reference isolate that were RIP-affected (above the RIP ratio 95th
378 percentile, 0.432) were depleted in 54 core GO terms. AC23 contained two of the four genes in
379 SN15 predicted to be involved in dehydroaustinol biosynthesis, but otherwise GO terms were all
380 depleted. The large PAV group was depleted in 32 terms with general core functions. Overall,
381 the enrichment tests above did not reveal any clear associations between GO terms and
382 features within the genomic landscape. The majority of orthogroups (28767 of 34381) had no
383 GO terms assigned. A complementary series of enrichment tests for a lack of GO terms ('no-
384 GO') were performed using fishers exact tests with an uncorrected p-value threshold of 0.05.
385 The core pan-genome was depleted for no-GO orthogroups, whereas the accessory and
386 singleton pan-genome, positively selected orthogroups with more than 20% of sequences under
387 selection, the PAV group, RIP-affected orthogroups and SN15 loci on AC23 were all
388 significantly enriched no-GO orthogroups.

389

390 Enrichments tests were also performed for predicted secreted proteins and effector-like proteins
391 (predicted secretion and EffectorP2). The accessory pan-genome, singleton pan-genome,
392 orthogroups absent in SN15, and positively selected orthogroups were enriched for secreted
393 proteins. However the core pan-genome and PAV groups were depleted in secreted proteins.
394 Similarly the accessory pan-genome and positively-selected orthogroups were enriched in
395 effector-like orthogroups, while the core and singleton pan-genomes were depleted.

396

397 To find effector candidates a representative member of each orthogroup for each distinct locus
398 was selected (Table S10). For orthogroups with members in the reference isolate SN15, all
399 distinct loci were included selecting the protein isoform with the closest sequence length to the
400 average orthogroup length. Representative members of other orthogroups were selected by
401 taking the member with the closest sequence length to the average orthogroup length, with a

402 preference for alternate reference isolates SN4, SN2000 and SN79. Orthogroups with a
403 Predector score greater than zero, or with a signal peptide predicted by any method and an
404 EffectorP 2 score greater than 0.5 were selected to be effector candidates. This identified 3579
405 candidate orthogroups, of which 788 and 1504 were in the accessory and singleton
406 pangenomes, respectively. The WA isolates contained 1362 candidates (181 accessory) that
407 were not predicted in the international isolates, of which 411 were restricted to the non-core
408 populations (not cluster 4; 64 accessory). The core WA population (cluster 4) possessed 842
409 distinct candidates not present in other clusters (64 accessory), while clusters 6 (which includes
410 SN15) and 8 (international) possessed 96 (1 accessory) and 375 (52 accessory) unique
411 candidates. The reference isolates SN15, SN4, SN2000, and SN79 were missing 1732
412 candidate orthogroups (317 accessory).. There were 66 candidate orthogroups predicted to be
413 under positive selection in at least 20% of orthogroup members, including a Tox3 homologue
414 (SNOO_01097A). The large clusters of orthogroups with PAV identified in Fig 5 contained 18
415 candidate orthogroups. From these 3579 candidates, 1809 orthogroups with known functions or
416 similarity to known effectors were selected (Table 2. Table S10).

417

418

419 Tox1 (SNOO_200780A, SNOO_304660A, SNOO_423420AB, SNOO_436740A,
420 SNOO_531030), four Tox3 (SNOO_089810AB, SNOO_010970A, SNOO_438650A,
421 SNOO_503200), and one ToxA (SNOO_165710A) homologous orthogroups were identified,
422 including each of the original sequences from the SN15 isolate. Numerous other effector
423 homologues were found, including 19 MoCDIP4 (Chen et al. 2013), 7 XYLA (Pollet et al. 2009,
424 Sperschneider et al. 2015), CfTom1 (Pareja-Jaime et al. 2008, Ökmen et al. 2013), 2 FGL1
425 (Voigt et al. 2005), 2 AVR-Pita/AVR-Pita2 (Dai et al. 2010, Chuma et al. 2011), 2 Zt6 (Kettles et
426 al. 2018), 2 HCE2/Ecp2 (Stergiopoulos et al. 2012), 2 NEP/NLP (Oome et al. 2014), 2 BEC2
427 (Schmidt et al. 2014) and 5 other CFEM domain containing proteins, 2 Cgfl (Fungalsin
428 peptidase) (Sanz-Martín et al. 2016), and one each of BEC1019 (Zhang et al. 2019), NIS1
429 (Yoshino et al. 2012, Irieda et al. 2019), MoBas2 (Mosquera et al. 2009), MoCDIP1 (Chen et al.
430 2013), MoMSP1 (Wang et al. 2016), MoSPD5/MoBas4 (Mosquera et al. 2009, Sharpee et al.
431 2017), PevD1 (Bu et al. 2014), and ZtNIP2 (M'Barek et al. 2015). Other notable functions and
432 families identified among these effector candidates include peptidases, nucleases, cupredoxins,
433 CAP-superfamily proteins, Egh16-like virulence factors, Osmotin/Thaumatin-like proteins, Killer
434 toxin KP4, tuberculosis necrotizing toxin, SnoaL-like/NTF2-like domain superfamily, RmIC-like
435 cupin domain superfamily, TolB-like/major royal jelly protein, Ubiquitin and biotin related

436 functions, and WD40/Ankyrin/Kelch repeat-containing proteins. A single UstYa-like mycotoxin
437 biosynthesis protein, and several proteins related to metabolite biosynthesis or detoxification
438 were also found.

439

440 Discussion

441 The transition from the sequencing of a single or few reference genomes to larger populations
442 has broadened the scope of comparative genomics of plant pathogens. This includes the
443 identification of: additional accessory genome content missing from the reference isolate (Badet
444 and Croll 2020); spatial distribution of virulence loci, and; region-specific selection pressures
445 (Richards et al. 2019). To this end, we investigated the interplay between the population
446 structure and genomic features relevant to plant pathogenicity, in a Western Australian
447 population of *Parastagonospora nodorum*.

448 Population structure shows distinct regional sub-populations

449 Previously we have analysed the Western Australian *P. nodorum* population using SSR markers
450 (Phan et al. 2020), and identified five distinct clusters of isolates. Two main clusters were
451 proposed to represent a gradual change over time in response to wheat cultivar use, while the
452 three remaining clusters were highly similar and were proposed to be clonally expanded
453 populations. Interestingly, although the two core populations had a 1:1 ratio of mating type loci,
454 the core population was observed to be in linkage disequilibrium, suggesting a predominantly
455 asexually reproducing population. In contrast, this study indicated that the WA *P. nodorum*
456 population is dominated by a single diverse main population, with seven satellite clusters that
457 are highly similar. The fact that the core population was not split into two as previously observed
458 may be explained by the marker type and number, the number of clusters selected to find, and
459 the clustering method employed, where STRUCTURE (used in this study) explicitly models
460 gene flow. The relative uncertainty of individual assignment to cluster 4 (the main population),
461 suggests that there is some latent structure in the data, but this appears not to correspond to
462 distinct reproductively isolated populations. In addition to the three satellite clusters identified by
463 Phan et al. (Phan et al. 2020), the greater resolution gained by the use of many SNPs identified
464 an additional 4 minor clusters, which were subdivided from the two previously identified core
465 clusters (Fig S3). The relatively low diversity observed in these seven clusters suggests that
466 these are very recent expansions or clonal subpopulations. Analysis of the index of association
467 indicated that all but two small sub-populations are in linkage disequilibrium, suggesting that
468 limited sexual reproduction is occurring in populations. It should be noted that the two
469 exceptional population clusters (1 and 7) contained few isolates and their lack of linkage
470 disequilibrium may be inaccurate. Linkage disequilibrium across WA *P. nodorum* sub-

471 populations was also reported by Phan *et al.* (Phan *et al.* 2020), but they observed that clusters
472 P1 and P2 (corresponding to cluster 4 in this study) had a 1:1 mating type ratio which indicates
473 the potential for sexual reproduction, and that cluster P5 (corresponding to cluster 9 in this
474 study) was in linkage equilibrium. The finding that the international cluster is in linkage
475 disequilibrium is also unexpected as it would imply that the global *P. nodorum* population is
476 largely asexual, in conflict with numerous previous reports (Keller *et al.* 1997, Caten and
477 Newton 2000, Murphy *et al.* 2000, Sommerhalder *et al.* 2006, Stukenbrock *et al.* 2006).
478 Although the r_d values are significantly different from a random background, they are still
479 relatively low so the population may be exhibiting a mixture of clonal and non-clonal
480 reproduction. Alternatively, the permutation method of r_d may not be appropriate for samples
481 with large numbers of SNPs in relatively high density (compared to low-throughput marker
482 studies). Phan *et al.* (Phan *et al.* 2020) suggested that the non-core populations may be hybrids
483 of local and internationally introduced *P. nodorum* isolates. This is not supported by the
484 phylogenetic tree or population structure analysis reported in this study; however, STRUCTURE
485 analysis indicated a cluster of six isolates from population 4 collected from the Northam and
486 Dandaragan regions which had a high posterior probability of assignment to the international
487 subpopulation, suggesting possible historic exchange of genetic material.

488
489 In the overall WA population there was no correlation observed between sampling location and
490 genetic distance when nearly clonal isolates were excluded, suggesting that there are no
491 geographic barriers to migration. Similarly, PCA only indicated an axis of variance separating
492 international isolates from those from WA, with no other principal components showing
493 association with sampling location or year (Fig S6 and S7). Long range wind dispersal of sexual
494 ascospores has long been known to occur in the Western Australian *P. nodorum* population
495 (Bathgate and Loughman 2001), though dispersal by infected seed is often reported
496 internationally (Cunfer 1978, Cunfer 1998, Bennett *et al.* 2005). Both of these mechanisms may
497 explain the lack of geography-dependent population structure observed in this study. Although
498 seed borne dispersal is more likely if the population is mostly asexual, we were unable to find
499 publications describing seed borne epidemics of *P. nodorum* in Australia.

500
501 The majority of isolates from the satellite clusters were collected from northern regions of the
502 WA sampling area, predominantly Geraldton and Mingenew. Within the sampling zones
503 presented in this study, the average rainfall in the south west regions is typically higher than in
504 the dryer northern regions (<http://www.bom.gov.au/climate/current/annual/wa/summary.shtml>).

505 In addition to splash dispersal of secondary inoculum and a general positive correlation of
506 rainfall with *P. nodorum* disease load (Solomon et al. 2006, Shaw et al. 2008), rain impacts can
507 indirectly enable long-distance air travel (Kim et al. 2019), and may have contributed to the
508 increased diversity of south-western regions. Similarly, high temperature during harvest time
509 has been observed to be negatively correlated with *P. nodorum* disease load (Shaw et al.
510 2008), which may favour stronger populations in the southern regions. Numerous environmental
511 factors can influence the lifecycle of *P. nodorum* which may explain these northern clonal sub-
512 populations. However, the samples used in this study were not collected with population
513 genetics analyses in mind, and an intentionally designed experiment may yet reveal the
514 existence of similar structure in the other regions of the WA population. It appears that there is
515 variance in the WA population, but this remains cryptic and is not explained by barriers to gene
516 flow.

517
518 The presence of necrotrophic effector loci, or in some cases specific allele variants, is a direct
519 determinant of crop disease outcomes in combination with the corresponding host sensitivity
520 loci (Vleeshouwers and Oliver 2014). A US-based pan-genome study previously indicated
521 alternate sets of candidate effector loci between two major *P. nodorum* sub-populations
522 (Richards et al. 2019), highlighting the importance of region-specific genomic analysis and
523 refinement of effector predictions in local isolates. The widespread surveillance of effector
524 profiles within pathogen populations has great potential for crop disease management tailored
525 to specific regions. In this WA-based study, low diversity sub-populations tended to have a
526 conserved haplotype profile for the 3 known effector loci *ToxA*, *Tox1* and *Tox3* (Fig 1). In
527 contrast sub-population cluster 5 exhibited notable diversity in its *Tox1* effector haplotypes.
528 Overall this study indicates the potential for resistant cultivars to be broadly recommended for
529 growing across regions identified to have low diversity, but less reliably for regions with higher
530 diversity. Given the extreme potential for genome plasticity in fungal genomes (McClintock
531 1941, Hane et al. 2011, Croll et al. 2013, Testa et al. 2016), it is encouraging that conserved
532 effector haplotype profiles were observed in several cases. Identification of geographic regions
533 exhibiting high variability of effector haplotype profiles within a narrow timeframe may also
534 become an important element of crop disease monitoring in the future.

535 Pan-genome comparisons highlight regional diversity across the 536 genomic landscape and effector contents

537 A previous comparison of *P. nodorum* isolates from the USA and Australia (Richards et al.
538 2018, Bertazzoni et al. 2021), indicated that the smallest chromosome (AC23) is an accessory
539 chromosome with high levels of mutation, diversifying selection, and numerous gene
540 duplications for redundant pathogenicity-related functions. Both AC23 and the region of
541 chromosome 4 encoding the known effector gene *ToxA*, appeared to exhibit structural
542 mutations that may be influenced by breakage-fusion bridge (BFB) formation. BFBs are
543 hypothesised to be a driver of accessory chromosome formation and evolution (Croll et al. 2013,
544 Bertazzoni et al. 2018) and of intrachromosomal recombination events that cumulatively lead to
545 an inter-species conservation pattern termed “mesosynteny” (Hane et al. 2011). The largest
546 duplications or absences in WA isolates relative to SN15 were predominantly located near
547 telomeric regions or on AC23 (Fig 4). This is consistent with the known enrichment of structural
548 rearrangement in subtelomeres (Hocher and Taddei 2020) and proposed prevalence of BFB-
549 mediated rearrangement across the Dothideomycetes (Croll et al. 2013). Complete and partial
550 absences of SN15 AC23 were observed in some Western Australian isolates, suggesting that
551 large structural mutations are occurring in the field (Fig 4).

552

553 SNP density across the WA pan-genome was also consistently highest on AC23 (Fig 2) and
554 near telomeres; however, several intrachromosomal mutation hotspots were also observed,
555 where overall gene and repeat densities appeared relatively normal. The three known effector
556 loci *ToxA*, *Tox1* and *Tox3* are all located at or near telomeres in SN15 (Bertazzoni et al. 2021),
557 which also corresponded with SNP hotspots. Additionally a large orthogroup PAV cluster was
558 observed in a subset of WA isolates, which may represent a previously undescribed accessory
559 chromosome. Future long-read sequencing of these isolates may resolve the structure and
560 history of these fragmented regions.

561

562 Overall, the variable genes and genome regions across the pan-genome (PAV and SNP) did
563 not highlight any clear association with known gene functions. Indeed, the gene ontologies
564 resource used in this study define function very broadly, and are biased towards conserved
565 functions. Variable regions, including accessory, diversifying, repeat-rich and RIP-mutated,
566 appeared to be bereft of known gene functions, but were conversely enriched in effector-like
567 candidate loci. We observed 181 effector candidates that were absent in the international

568 isolates and present in more than one WA isolate, of which 68 were restricted to a single WA
569 subpopulation. This suggests that WA may have a distinct pathogenicity gene profile; however,
570 the number of non-Australian isolates used in study was relatively small, so further comparison
571 with international isolates may find these candidates elsewhere. The large PAV cluster of
572 orthogroups which may represent an accessory chromosome or large chromosomal PAV,
573 contained 18 effector candidates, including two putative cupredoxins. Five Tox1 and four Tox3
574 homologous orthogroups in the pan-genome were found in different frequencies across the
575 different populations. This suggests that these NEs may share a common origin but have since
576 duplicated and diversified sufficiently that they were predicted as distinct orthogroups.
577 Expansion and diversification of effectors within pathogen genomes appears to be a common
578 phenomenon (de Guillen et al. 2015, Praz et al. 2017) in plant pathogens, and these
579 homologues are strong effector candidates which may confer distinct phenotypes from their
580 characterised homologues. Numerous homologues of effectors from other species were also
581 identified, of which the necrotrophic effectors Zt6 and ZtNIP2 homologues are of particular
582 interest to *P. nodorum*. Zt6 is a ribotoxin which cleaves non-self ribosomal sarcin-ricin loops in
583 both wheat and microbial competitors (Kettles et al. 2018). ZtNIP1 induces light-dependent
584 necrosis in wheat with differential responses between cultivars (M'Barek et al. 2015).
585 Interestingly, numerous other homologues of avirulence elicitors and biotrophic effectors were
586 also identified. Many of these have functions related to nutrient and sugar scavenging, but may
587 still have a plausible virulence role in the necrotrophic *P. nodorum*. For example, numerous
588 MoCDIP4 homologues were identified which induces cell death in non-host plants of
589 *Magnaporthe oryzae* (Chen et al. 2013) and interferes with mitochondrial homeostasis, which in
590 turn inhibits mitochondrially mediated resistance responses (Xu et al. 2020). The MoCDIP4-like
591 effector candidate SNOG_01146 (SNOO_01146A) is significantly upregulated *in planta* and in a
592 mutant lacking the effector-regulating PnPf2 transcription factor (Jones et al. 2019). Other
593 effector-like orthogroups without fungal effector homologues but with potentially virulence-
594 related functions were also identified. The putative aldose epimerase SNOO_61690 was one of
595 the highest ranked candidates and only observed in isolate RSID03, but appears to be a highly
596 truncated copy of SNOO_063350A which is present in all other isolates. In *Phytophthora sojae*
597 the apoplastic aldose 1-epimerase AEP1 functions as a virulence factor by scavenging
598 apoplastic aldose, and triggers cell death and pattern triggered immunity in *Nicotiana*
599 *benthamiana* (Xu et al. 2021).
600

601 Comparative genomics across the WA pan-genome also indicated the prevalence of RIP-like
602 mutations in variable regions, and was also associated with candidate effector loci. The
603 presence of distinct genome wide patterns of RIP-like mutation between isolates would indicate
604 that RIP has been actively occurring within a recent time frame. However RIP-like mutations did
605 not correlate with diversifying selection observed across the whole genome, or even within
606 highly ranked effector loci. RIP occurs during pre-meiosis, however, the observation of linkage
607 disequilibrium suggests that the WA population may not be regularly undergoing sexual
608 recombination. Although previous studies indicate *P. nodorum* has the potential for meiosis in
609 WA (Murphy et al. 2000, Bathgate and Loughman 2001), it is yet to be determined if widespread
610 RIP has only occurred in the past or if recent selection pressures have eliminated background
611 isolate diversity. Investigations of the role of RIP in biotrophic and hemibiotrophic pathogens
612 (Testa et al. 2016, Gervais et al. 2017) have indicated that RIP-mediated loss of a recognized
613 avirulence effector may confer a selective advantage. We speculate that the nature of
614 necrotrophic effectors with inverse gene-for-gene interactions with host sensitivity receptors
615 (Fenton et al. 2009, Thrall et al. 2016) may conceal the full influence of RIP in necrotrophic
616 effector diversification, as loss of function mutations are unlikely to be advantageous and would
617 be selected against in the population. The remaining detectable RIP would be observable only
618 for genome regions which do not significantly contribute a selective advantage. Nevertheless
619 the *ToxA* locus resides in a large RIP hotspot on chromosome 4, and the confirmed effector loci
620 *ToxA*, *Tox1* and *Tox3* retain a small number of non-synonymous RIP-like SNPs. The infrequent
621 but constant potential for RIP to introduce potentially virulence enhancing mutations remains an
622 important consideration for genome-guided disease risk assessment in necrotrophs.

623 Conclusion

624 Population-level pan-genome approaches are the next frontier of plant pathogen bioinformatics,
625 which may eventually lead to affordable genome-based crop disease diagnostics and
626 surveillance at a local level. Trends in pathogen genomics have begun to abandon intensive
627 study of a single reference isolate, and are steadily progressing towards regionally-customised
628 and data-driven assessments of pathogen gene-content, particularly with regards to effector
629 genes (Richards et al. 2019, Badet and Croll 2020, Bertazzoni et al. 2021). In this study, we
630 analyse a local Western Australian population of the wheat pathogen *Parastagonospora*
631 *nodorum* and identify multiple genome features of relevance to this pathosystem. We observed
632 an apparently high potential for genome adaptability, suggested by the presence of active RIP

633 and other mutations, but this was not readily observed to drive diversification of its three known
634 highly conserved necrotrophic effectors. Mutation hotspots were identified which were rich in
635 effector candidates and genes of unknown function, and often also classified as dispensable,
636 sub-telomeric or large repeat-rich regions. In a spatial context, we observed regional 'hot' and
637 'cold-spots' of population diversity, that may be linked to climatic factors affecting spore
638 dispersal. Across the local pan-genome, we observed the diversity of haplotype profiles of 3
639 known effector genes to be conserved in regions with lower overall diversity. A total of 3579
640 novel effector candidates were predicted across all isolates, with 2291 of these exhibiting PAV
641 across the genomes and 1362 restricted to WA isolates. Overall this study has progressively
642 improved bioinformatic resources for the *P. nodorum* pathogen, as well as advancing
643 approaches for the study of fungal pan-genomes with a view towards developing a region-
644 specific understanding of host-pathogen interactions.

645

646 Methods

647 DNA extraction and sequencing of Western Australian *P.* 648 *nodorum* isolates

649 Genomic DNA of 141 previously described Western Australian *P. nodorum* isolates (Phan et al.
650 2020) were extracted (Xin and Chen 2012) and sequenced by the Australian Genome Research
651 Facility (Melbourne, Australia) (Illumina HiSeq2500, TruSeq PCR-free, 125bp paired end (PE),
652 600 bp insert size) [NCBI BioProject: PRJNA612761] (Table S1). Genomic DNA of 17 new
653 isolates and 14FG141 and Mur_S3 of the previous 141 were extracted using a Qiagen DNeasy
654 Plant Mini kit (Venlo, Netherlands. Catalogue ID: 69104) and sequenced by Novogene (Beijing,
655 China) (Illumina HiSeq2500, TruSeq PCR-free, 150bp PE, 350bp insert size). Pre-existing draft
656 genomes of 15 international *P. nodorum* isolates (Syme et al. 2018) [NCBI BioProject:
657 PRJNA476481] and chromosome-scale genome assemblies for the reference isolate SN15
658 (Bertazzoni et al. 2021), and for US isolates SN4, SN2000 and SN79-1087 [NCBI BioProject:
659 PRJNA398070] (Richards et al. 2018) were also used.

660

661 Reads were trimmed for TruSeq universal adapters and low-quality using CutAdapt (v1.18) (2
662 passes, 3 trims/pass, terminal Phred score >2, average Phred score \geq 5, length \geq 50) (Martin
663 2011), and for contaminants (e.g. PhiX) using BBduk (v38.38, read kmer coverage of 0.7)
664 (<https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/>), using the UniVec
665 database (<https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/>) and the PhiX genome (NCBI
666 RefSeq: [NC_001422.1](https://www.ncbi.nlm.nih.gov/nuccore/NC_001422.1)) (Sanger et al. 1978) as bait templates. Potential sample contaminants
667 were searched for using Kraken (version 2.0.7) (Wood et al. 2019) searching against a
668 database constructed from all NCBI Refseq bacterial, archaeal, protozoan, viral, and fungal
669 genomes (downloaded: 2019-03-16), as well as the human GRCh38 genome (Wood and
670 Salzberg 2014) (Table S2). The four published reference *P. nodorum* genomes (Richards et al.
671 2018, Bertazzoni et al. 2021) were also included as a positive set. Reads were aligned to the
672 four reference *P. nodorum* genomes using BBmap (<https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/>,
673 version 38.38) to evaluate insert size and completeness. Quality control statistics for each step
674 were collected using FastQC version 0.11.8
675 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>), BBmap and Samtools (Li et al.
676

677 2009), and were collated using MultiQC (Ewels et al. 2016) (Data S1). Code for performing QC
678 steps is available on GitHub at <https://github.com/darcyabjones/qcflow> (commit: [e77715d](#)).

679 Read alignment and variant calling

680 Short reads from all samples were aligned to the *P. nodorum* SN15 reference genome
681 (Bertazzoni et al. 2021) using Stampy version 1.0.32 allowing multi-mapping reads (--
682 sensitive --substitutionrate=0.0001 --xa-max=3 --xa-max-discordant=10) (Lunter
683 and Goodson 2011). PCR duplicate reads in the aligned binary alignment map (BAM) files were
684 marked using Picard version 2.18.29 (<http://broadinstitute.github.io/picard/>). Short variants were
685 then predicted from the BAM files using GATK version 4.1.0.0 (McKenna et al. 2010, Poplin et
686 al. 2018) and the following “bootstrapped” pipeline: 1) Call individual variants using gatk
687 HaplotypeCaller. 2) Combine variants from all samples and run joint genotype prediction
688 using gatk GenotypeGVCFs. 3) filter first pass variants with extreme statistics for each mutation
689 type (snp, indel, or mixed) using gatk VariantFiltration. 4) Recalibrate the base quality
690 scores in the BAM files using the predicted variants, using gatk BaseRecalibrator and gatk
691 ApplyBQSR. 5) Steps 1-4 were repeated using the recalibrated BAM files until there was no
692 difference in base quality score recalibration (BQSR) statistics between successive iterations.
693 Filters applied at each bootstrap iteration are detailed in Table S3. An initial set of variants was
694 found from the 140 isolates initially sequenced (excluding the resequenced SN15 isolate), using
695 5 bootstrap iterations to converge the BQSR scores. Nineteen additional sequenced isolates
696 and 18 previously sequenced isolates (Syme et al. 2018), were then included in the analysis
697 using the previously identified variant loci as starting points for two further bootstrap iterations
698 including alignments from all isolates. Unfiltered variants were taken from the final bootstrap
699 step and filtered more stringently. Individual genotype depth and genotype quality scores were
700 visualised using the R (Team 2013) packages vcfR (Knaus and Grünwald 2017) and ggplot2
701 (Wickham 2016) to determine appropriate statistic cutoff thresholds, and were soft filtered using
702 gatk VariantFiltration to have a minimum genotype “DP” statistic of 8 and minimum “GQ”
703 score of 30. Variant locus “DP” and “MQ” score ranges to include were determined based on
704 scores in non-repetitive regions visualised using vcfR chromoplot. Other variant loci statistics
705 were visualised using ggplot2 to determine cutoff thresholds, and loci were filtered using gatk
706 VariantFiltration separately for each variant type using the selected thresholds. All filtering
707 parameters used during variant prediction are presented in table S3. Filtered variants with

708 effects on the translation of annotated genes (Bertazzoni et al. 2021) (i.e. non-synonymous or
709 nonsense mutations) were identified using SnpEff (Cingolani et al. 2012).

710 Phylogeny estimation and population structure analysis

711 Single nucleotide polymorphisms (SNPs) for phylogenetic and population analyses were
712 selected by excluding SNPs missing in more than 30% of isolates or with a SnpEff impact
713 prediction of "HIGH" or "MODERATE". To reduce the potential impact of small scale linkage
714 disequilibrium, SNPs were selected using PLINK version 1.9 (Purcell et al. 2007) by taking
715 SNPs with the highest minor allele frequency where two SNPs within 10 kb have an R^2 value
716 greater than 0.6 (--indep-pairwise 10 kb 1 0.60). Resulting SNPs were then filtered to
717 have a minimum non-major allele frequency of 0.05 using BCFtools (Li 2011) (--min-af
718 "0.05:nonmajor"). SNPs were converted to a sequence alignment and the substitution model
719 best fitting the data was predicted using ModelFinder in IQTree version 2.0.3 (-st DNA -m
720 "MF+ASC" -mset "GTR,JC,F81,K80,HKY,K81" -cmax 15 -rcluster 25 -safe)
721 (Kalyaanamoorthy et al. 2017). The best performing model was selected and used to construct
722 a maximum likelihood tree using IQTree with 10000 UFBoot (Hoang et al. 2018) and 1000 SH-
723 aLRT iterations (-bb 10000 -bnni -alrt 1000 -st DNA) (Minh et al. 2020). Phylogenetic
724 trees were plotted using the R version 4.0.2 packages phytools v0.7-47 and ggtree v2.2.4 (Yu et
725 al. 2017). Phylogenetic trees from this study and the tree published by Phan et al. (Phan et al.
726 2020) were visually compared using tanglegrams, implemented in the dendextend (version
727 1.14.0) package (Galili 2015).

728
729 Population structure was inferred from SNP data using STRUCTURE version 2.3.4 (Pritchard et
730 al. 2000). To select an appropriate number of subpopulations (K) to model, STRUCTURE was
731 run with 10000 replicate burn-in period and 20000 MCMC replicates for a range of values of K
732 between 1 and 12, rerunning 8 times for each K to account for random starting points. The
733 optimal value of K was selected using STRUCTURE HARVESTER (Earl and vonHoldt 2012)
734 using the method described by Evanno et al. (Evanno et al. 2005). STRUCTURE was run using
735 the selected value of K, using a 20000 replicate burn-in period and 100000 MCMC replications,
736 running with 8 random seeds and selecting the run with the highest log probability of data given
737 the model.

738

739 Population statistics were calculated and visualised using R version 4.0.2 packages: ade4 v1.7-
740 15 (Thioulouse et al. 1997), adegenet v2.1.3 (Jombart 2008), poppr v2.8.6 (Kamvar et al. 2014),
741 and vcfR v1.12.0 (Knaus and Grünwald 2017). The filtered SNP variants were imported into R
742 and locus heterozygosity and G'_{st} (Hedrick 2005) scores were computed using vcfR. To account
743 for effects near identical multilocus genotypes in population statistics calculations, the maximum
744 likelihood (ML) distances from IQTree were used to identify MLGs that are highly similar and
745 collapse them using poppr. For each cluster identified by STRUCTURE, the Shannon, Simpson,
746 and inverse Simpson indices (Hurlbert 1971) were calculated, for both MLG collapsed and
747 uncollapsed data using poppr. To test for linkage disequilibrium in population clusters, isolates
748 from each population cluster were selected and a permutation test of r_d (a modification of I_A)
749 (Agapow and Burt 2001) with 999 permutations was run for polymorphic loci within those
750 isolates using poppr. To test for any correlation of geographic distance with phylogenetic
751 distance in the WA isolate population, a Mantel test with 999 replications was performed using
752 ade4 comparing ML distances from IQTree with euclidean distances of GPS coordinates from
753 Australian clone corrected isolates with known sampling locations and distinct collapsed
754 multilocus genotypes. Patterns of variance were assessed using principal component analysis
755 (PCA) of the filtered SNPs from all isolates with distinct collapsed MLGs using the adegenet
756 package.

757 Genome assembly

758 Overlapping 150 bp paired end reads from the WA isolates were stitched using BBmerge
759 version 38.38 (Bushnell et al. 2017) using the strict mode, kmer size of 62 bp, allowing
760 assembly extension up to 50 bp from the ends of reads (rem mode), and using error correction
761 to assist merging (ecct option). Genomes were assembled using Spades version 3.13.0
762 (Bankevich et al. 2012) (parameters: --careful --cov-cutoff auto). Different kmers were
763 used depending on input read length (Supp table 1) (125 bp PE samples: 21,31,51,71,81,101;
764 150 bp PE samples 31,51,71,81,101,127; 201FG217 [125 bp PE]: 21,31,51,71). Mitochondrial
765 genomes (mtDNA) were assembled using Novoplasty version 2.7.2 (Dierckxsens et al. 2017),
766 using the Sn15 mitochondrial genome assembly [NCBI RefSeq: [EU053989.1](https://www.ncbi.nlm.nih.gov/nuccore/EU053989.1)] (Hane et al. 2007)
767 as a seed sequence, and with kmers between 31 and 81 (table S5). The k-mer resulting in
768 assemblies with the fewest number of contigs within an expected total assembly size of 47-52
769 Kb was manually selected and designated the mtDNA sequence of that isolate. Code for
770 generating the mtDNA assemblies is available at <https://github.com/darcyabjones/mitoflow>.

771 Nuclear genome assemblies were then filtered for mtDNA sequences by aligning reads to
772 assembled scaffolds using BBmap, and aligning mitochondrial scaffolds to assemblies using
773 minimap2 git commit 371bc95 (Li 2018). Genomic scaffolds were considered to be
774 mitochondrial if the alignment coverage with mitochondrial contigs was greater than 95%, and
775 the median read depth was in the top 0.8% overall read depth. Some manual assignment of
776 very short contigs near the threshold cutoffs was undertaken.
777 Genome assembly quality control statistics were collected using Quast version 5.0.2 (Gurevich
778 et al. 2013), bbtools stats version 38.38 (<https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/statistics-guide/>), and KAT version 2.4.2 (Mapleson et al. 2017). Code for running post-
780 assembly quality control and selection of mitochondrial scaffolds is available at
781 <https://github.com/darcyabjones/postasm> (commit: [c94c3b9](#)).

782 **Determining presence-absence variation relative to the SN15
783 reference isolate**

784 Genome assemblies were aligned to the reference isolate SN15 (Bertazzoni et al. 2021), and to
785 long-read assemblies for isolates SN4 [NCBI Assembly: [GCA_002267005.1](#)], SN2000 [NCBI
786 Assembly: [GCA_002267045.1](#)], Sn79 [NCBI Assembly: [GCA_002267025.1](#)] using nucmer
787 version 4.0.0beta2 (--maxmatch) (Marçais et al. 2018, Richards et al. 2018). Alignments were
788 converted to BED format, from which alignment coverage was computed (bedtools
789 genomecov -bga) and combined (bedtools unionbedg) using BEDTools version 2.28.0 into a
790 bedgraph file (Quinlan and Hall 2010). Mean coverage in non-overlapping 50Kb windows of the
791 genome visualised using the R package circlize (Gu et al. 2014).
792 Regions of PAV were extracted from the bedgraph using a custom python script (available at:
793 https://github.com/darcyabjones/mumflow/blob/master/bin/find_pavs.py), and coverage blocks
794 were converted to simple presence-absence values (0 or 1) by collapsing coverage count ≥ 1
795 to 1. Adjacent blocks with identical PAV values in all isolates were merged, and non-overlapping
796 PAV blocks were also merged where for a set of 3 adjacent blocks, the outer 2 blocks had
797 identical PAV values in all isolates and the centre block was $\leq 50\text{bp}$. Code for running these
798 steps is available at <https://github.com/darcyabjones/mumflow>.

799 Annotation of DNA repeats and non-protein coding gene features

800 Transposable elements (TEs) were predicted using a combination of tools: EAHelitron git
801 commit c4c3dca (<https://github.com/dontkme/EAHelitron>), LTRharvest (Ellinghaus et al. 2008)
802 and LTRdigest from genometools version 1.5.10 (Steinbiss et al. 2009), MiteFinder git commit
803 833754b (Hu et al. 2018), RepeatModeler version 1.0.11
804 (<http://www.repeatmasker.org/RepeatModeler>), and RepeatMasker version 4.0.9p2
805 (<http://www.repeatmasker.org>) using the species “Parastagonospora nodorum”. Putative TE
806 protein coding regions in the genomes were identified using MMSeqs2 version 9-d36de
807 (Steinegger and Söding 2017), searching protein profiles from selected Pfam families (table S6),
808 GyDB families (Llorens et al. 2011), and a custom MSA database based on protein collections
809 in TransposonPSI (<http://transposonpsi.sourceforge.net/>) and LTR_retriever (Ou and Jiang
810 2018) (available at: <https://github.com/darcyabjones/pante/tree/master/data/proteins>).
811 Predicted TE sequences from EAHelitron, MiteFinder, RepeatModeler, and MMSeqs protein
812 finding were combined and clustered using VSEARCH version 2.14.1 (Rognes et al. 2016)
813 requiring cluster members to have $\geq 70\%$ identity to the cluster seed sequence (--
814 cluster_fast combined.fasta --id 0.90 --weak_id 0.7 --iddef 0 --qmask dust).
815 Clusters were filtered based on frequency and conservation across the population, requiring
816 presence in ≥ 4 distinct genomic locations to be considered present in a genome, and
817 requiring the cluster to be present in $\geq 20\%$ of the total population. Filtered clusters were
818 aligned using DECIPHER version 2.10.0 (Wright 2015), and classified into subtypes using
819 RepeatClassifier (part of RepeatModeler), which was then used as a final customised library to
820 map repeat locations for each assembly with a final round of RepeatMasker. Genes encoding
821 rRNA and tRNA were predicted with RNAmmer version 1.2 (Lagesen et al. 2007) and
822 tRNAscan-SE version 2.0.3 (Lowe and Chan 2016), respectively. These TE and non-coding
823 RNA predictions were used to “soft-mask” genomes using BEDTools (Quinlan and Hall 2010).
824 Code to run these steps is available at <https://github.com/darcyabjones/pante/> (commit:
825 [2de5d08](#)).

826 Annotation of protein-coding genes

827 Proteins predicted from previous *P. nodorum* SN15 (Bertazzoni et al. 2021), SN4, and SN79
828 annotations (Richards et al. 2018) were aligned to each genome using Spaln version 2.3.3
829 (spaln -KP -LS -M3 -00 -Q7 -ya1 -yX -yL20 -XG20000) (Iwata and Gotoh 2012).

830 Additionally all fungal proteins from the UniRef 50 database release 2019_08
831 (<https://www.uniprot.org/uniref/>, downloaded: 2019-10-29, query: 'taxonomy:"Fungi [4751]" AND
832 identity:0.5') were aligned to genomes using Exonerate version 2.4.0 (--querytype protein -
833 -targettype dna --model protein2genome --refine region --percent 70 --score
834 100 --geneseed 250 --bestn 2 --minintron 5 --maxintron 15000 --showtargetgff
835 yes --showalignment no --showvulgar no) (Guy St C and Ewan 2005) with pre-filtering by
836 MMSeqs2 (-e 0.00001 --min-length 10 --comp-bias-corr 1 --split-mode 1 --max-
837 seqs 50 --mask 0 --orf-start-mode 1) (Steinegger and Söding 2017). Published RNAseq
838 data from *P. nodorum* SN15 *in vitro* and 3 days post infection of wheat leaves (Jones et al.
839 2019) (available in NCBI GEO project: GSE150493; NCBI SRA accessions: SRX8337785,
840 SRX8337784, SRX8337783, SRX8337782, SRX8337777, SRX8337776, SRX8337775, and
841 SRX8337774) were assembled using Trinity v2.8.4 (--jaccard_clip --SS_lib_type FR)
842 (Grabherr et al. 2011) and aligned to genomes using Spaln version 2.3.3 (-LS -00 -Q7 -S3 -
843 yX -ya1 -Tphaenodo -yS -XG 20000 -yL20) (Iwata and Gotoh 2012), and GMAP version
844 2019-05-12 (Wu and Watanabe 2005). RNAseq reads were also aligned to all genomes using
845 STAR version 2.7.0e (Dobin et al. 2013) and assembled into transcript annotations using
846 StringTie version 1.3.6 (--fr -m 150) (Pertea et al. 2015).
847 Genes were initially predicted for each genome using multiple tools: PASA2 version 2.3.3 (-T -
848 -MAX_INTRON_LENGTH 15000 --ALIGNERS blat --transcribed_is_aligned_oriented --
849 TRANSDECODER --stringent_alignment_overlap 30.0) (Haas et al. 2003), GeneMark-ET (-
850 -soft_mask 100 --fungus) (Lomsadze et al. 2014), CodingQuarry version 2.0 (including the
851 unpublished "Pathogen Mode" with signal peptide predicted using SignalP version 5.0b (Testa
852 et al. 2015, Armenteros et al. 2019), Augustus git commit 8b1b14a (independently for both
853 forward and backward strands; --hintsFile=hints.gff3 --strand=\$(Dalman et al.) -
854 -allow_hinted_splicesites='gtag,gcag,atac,ctac' --softmasking=on --
855 alternatives-from-evidence=true --min_intron_len=5) (Stanke et al. 2008), and
856 GeMoMa version 1.6.1 (transferring SN15 annotations only) (Keilwagen et al. 2018). Gene
857 predictions using PASA2 used hints from assembled RNASeq transcripts aligned to the
858 genomes with GMAP and BLAT. Augustus gene predictions used transcript alignments by
859 GMAP, intron locations from STAR read alignments, and Spaln and protein alignments by Spaln
860 as hints.
861
862 Pan-genomic gene sets may be prone to annotation errors in which orthologous loci are
863 incorrectly annotated in some isolates, leading to false absences. To improve annotation

864 consistency between isolates, protein predictions from PASA, Augustus, and CodingQuarry
865 from all isolates were clustered using MMSeqs2 (90% identity and 98% reciprocal coverage),
866 and annotations corresponding to proteins from representative members of the clusters were
867 transferred to all isolates using GeMoMa as described earlier. Annotations and alignments from
868 Genemark-ET, CodingQuarry, Augustus, PASA, both GeMoMa configurations, Exonerate,
869 Spaln protein and transcript alignments, and GMAP alignments were combined using
870 EVidenceModeler (git commit 73350ce) (--min_intron_len 5) (Haas et al. 2008). Because
871 EVidenceModeler does not support prediction of non-standard splice sites or overlapping genes
872 in different strands, Augustus (with all hints and the same parameters described earlier) was
873 used to predict additional genes in regions of the genomes with hints that didn't overlap the
874 EvidenceModeler predicted genes on the same strand. Protein predictions were searched
875 against AntiFam (Eberhardt et al. 2012) using HMMER version 3.2.1 (--cut_ga) and matches
876 to pseudogenes were removed. Genes within the merged Augustus and EVidenceModeler gene
877 sets were marked as "low confidence" if supported only by Spaln or GMAP transcript
878 alignments, Exonerate protein alignments, or transfers of annotations between isolates
879 performed via GeMoMa (excluding the initial set of genes transferred from curated SN15
880 annotations). In SN15, genes only supported by the above tools or Augustus were also marked
881 as low-confidence. "Low-confidence" genes that overlapped other genes on either strand by
882 more than 30% of their length were removed. We corrected errors in the CDS coordinates
883 where phases of gene annotations may lead to incorrect translations in some downstream
884 pipelines by searching against all proteins from other isolates without stop codons, and all
885 Pezizomycota proteins from UniRef-90 (filter: 'taxonomy: "Pezizomycotina [147538]" AND
886 identity:0.9'; downloaded: 2020-05-13) using blastx version 2.10.0 (-strand plus -
887 max_intron_length 300 -evalue 1e-5) (Camacho et al. 2009). Genes with an in-phase
888 BLAST match lacking internal stop codons were fixed and retained, genes with an out-of-phase
889 BLAST match with internal stop codons were marked as pseudogenes, and those with no
890 BLAST match and internal stops were discarded. Genes overlapping predicted rRNA genes by
891 more than 50% of their length were also discarded, and genes with exons overlapping assembly
892 gaps were split into multiple fragmented genes, where each fragmented annotation was ≥ 60
893 bp.
894
895 Gene prediction completeness was evaluated for each isolate using BUSCO version 3 (git
896 commit 1554283) using the "pezizomycotina_odb9" dataset (Waterhouse et al. 2018), and
897 additional statistics were collected by genometools version 1.5.10 (Gremme et al. 2013). The

898 updated SN15 annotations were compared to previously published gene annotation versions
899 (Bertazzoni et al. 2021) using ParsEval/AEGeAn version 0.15.0 (Standage and Brendel 2012).
900 The new SN15 annotations were identified using BEDTools, by excluding all new mRNA
901 predictions overlapping original SN15 “A” and “B” mRNA annotations from (Bertazzoni et al.
902 2021) on the same strand $\geq 20\%$ by length (bedtools subtract -a new -b old -s -A -F
903 0.2), and were designated as the “C” gene.

904 Orthology & positive selection

905 Orthology relationships for predicted proteins were predicted using Proteinortho version 6.0.30
906 (-singles -seflblast) (Lechner et al. 2011) with using Diamond version 2.0.8 (Buchfink et al.
907 2021). Alternative isoforms present in the SN15 annotations were included in the orthology
908 finding. Orthologous clusters were assigned identifiers prefixed by ``SNOO'' (supplementary
909 table S10), where clusters with members in isolate SN15 were assigned numbering
910 corresponded to “SNOG” locus numbers (Bertazzoni et al. 2021) (Complete data:
911 <https://doi.org/10.6084/m9.figshare.12966971.v3>). SNOO groups were also assigned
912 alphabetical prefixes where one or more isoforms were present in SN15. For example
913 “SNOO_434350AB” contains both SNOG_434350 isoforms A and B, and
914 “SNOO_033200A149040A” contains both SNOG_033200A and SNOG_149040A. Clusters
915 without members in SN15 were assigned sequential numbers starting from 50,000. For the
916 purpose of analysis of selection pressure, a representative SN15 isoform was selected for each
917 SNOO orthogroup by selecting the isoform with the closest length to the mean sequence length
918 of the orthogroup. Representative CDS sequences of SNOO orthogroups were codon-aligned
919 using DECIIPHER version 2.16.1 (Wright 2015), and gene trees were estimated using FastTree
920 version 2.1.11 (Price et al. 2010). The SNOO orthogroup codon multiple sequence alignments
921 and the gene trees were used to test for positive selection in the orthogroups using the
922 BUSTED method in the HYPHY package version 2.5.15 (Pond et al. 2005, Murrell et al. 2015).
923 A p-value threshold of 0.01 was used to determine positively selected SNOO orthogroups.
924 Position specific positive selection tests were performed for the known effectors ToxA, Tox1,
925 and Tox3 using the FUBAR method in the HYPHY package (Pond et al. 2005, Murrell et al.
926 2013).
927
928 For the purposes of PAV and pan-genomic comparisons, to account for alternate isoforms
929 present across multiple orthogroups, temporary “locus groups” were constructed by combining

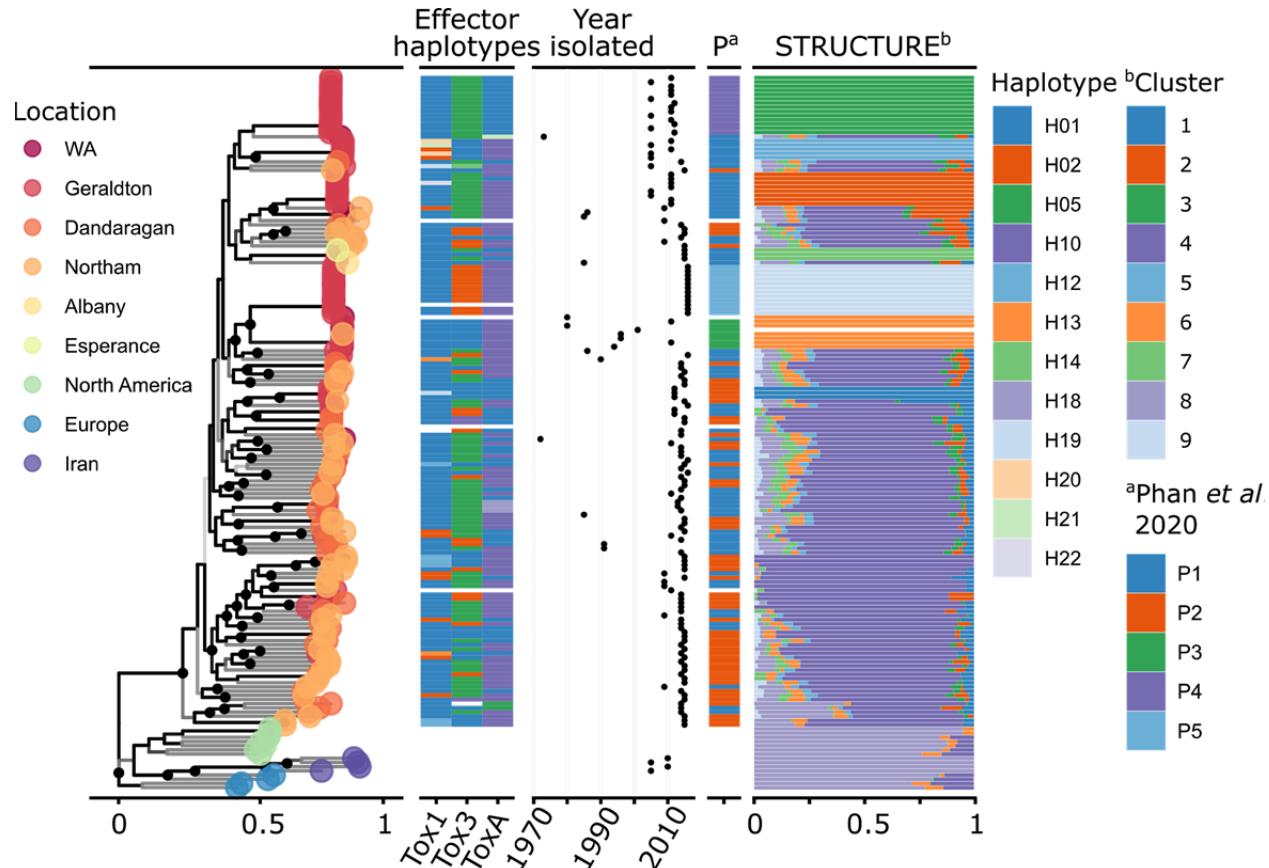
930 orthogroups that share common loci. Copy numbers of locus groups were calculated for each
931 isolate as the number of distinct loci. Large PAV regions were identified by hierarchically
932 clustering locus groups and samples by copy number using UPGMA clustering and the
933 manhattan distance metric for orthogroups and 1 - Pearson's correlation coefficient as a
934 distance metric for isolates. Manually-selected clusters of locus groups showing PAV were
935 aligned to the SN15 genome where possible using MashMap v2.0 (-s 500 –filter_mode none)
936 (Jain et al. 2018). Orthogroups were designated as “core” if all isolates contained at least one
937 member in the parent locus group, as “accessory” if more than one isolate but not all isolates
938 had at least one member in the locus group, and as “singleton” if the locus group was only
939 detected in a single isolate. Additionally, locus groups were designated as “multicopy” if any
940 isolate had more than one member.

941 Functional analysis & effector candidate prediction

942 Predicted whole protein functions were found by searching the Swiss-Prot database version
943 2020_02 (Bairoch and Apweiler 2000) using MMSeqs2 version 11-e1a1c (--start-sens 3 -s
944 7.5 --sens-steps 3 -a) (Steinegger and Söding 2017). Matches were considered reliable for
945 functional annotation if they covered \geq 70% of both sequences, with \geq 60% sequence identity,
946 and an e-value $< 1e-10$. Functional domains were predicted using InterProScan (Jones et al.
947 2014, Mitchell et al. 2019). Additionally, GO-terms and predicted product names were predicted
948 using the web-servers of PANNZER (Koskinen et al. 2015) and eggNOG-Mapper (Huerta-
949 Cepas et al. 2017). GO-term predictions from InterProScan, PANNZER, and eggNOG-Mapper
950 were combined and filtered to exclude terms in the GO do_not_annotate “anti-slim” set
951 (available at: <http://geneontology.org/docs/download-ontology>, downloaded: 2020-05-15) to
952 remove uninformative terms, forming the final GO-term set for the predicted proteomes.
953

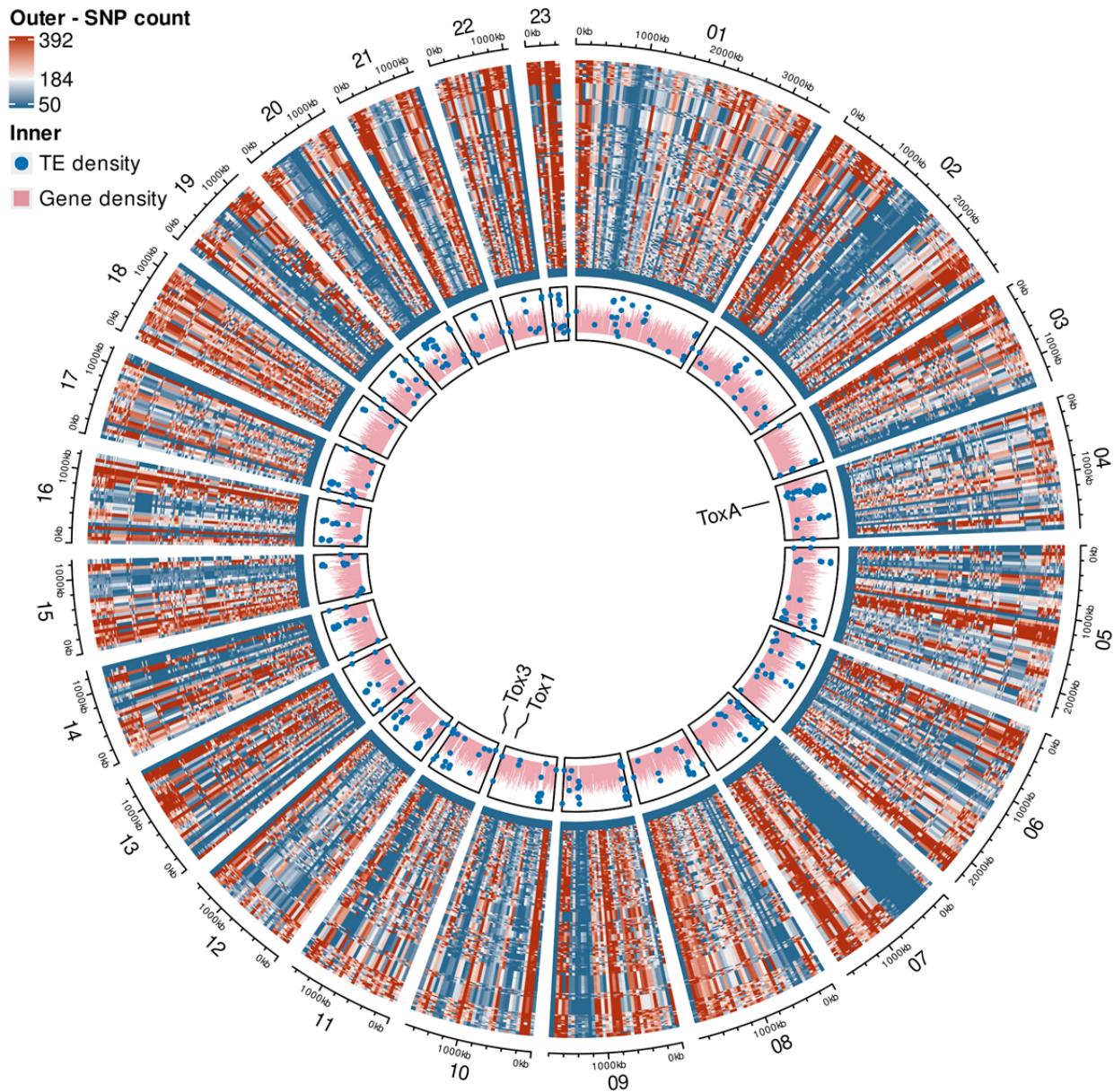
954 Effector-like sequences were predicted using the Predector pipeline
955 (<https://github.com/ccdmb/predector>, version: 0.1.0-alpha), which incorporates several software
956 analyses including SignalP versions 3.0, 4.1g, 5.0b (Armenteros et al. 2019), DeepSig
957 (Savojardo et al. 2018), TargetP version 2.0 (Armenteros et al. 2019), DeepLoc version 1.0
958 (Almagro Armenteros et al. 2017), TMHMM version 2.0c (Krogh et al. 2001), Phobius version
959 1.01 (Käll et al. 2004), EffectorP versions 1 and 2 (Sperschneider et al. 2016, Sperschneider et
960 al. 2018), ApoplastP version 1 (Sperschneider et al. 2018), LOCALIZER (Sperschneider et al.
961 2017), homology searches against dbCAN version 8 using HMMER version 3.3 (Yin et al. 2012,

962 Mistry et al. 2013), and sequence matches against PHI-base version 4.9 (Urban et al. 2020)
963 using MMSeqs2 version 11.e1a1c (Steinegger and Söding 2017).
964 Information from Predector, InterProScan, Pannzer, eggNOG-mapper, positive selection and
965 orthogroup analyses were combined into a single table (summarised in table S10. Complete
966 data available at <https://doi.org/10.6084/m9.figshare.12966971.v3>).
967
968 Enriched and depleted GO terms were detected for core, accessory, and singleton orthogroups
969 (and their multicopy subsets), accessory orthogroups contained in between 20% and 80% of
970 isolates, orthogroups predicted to be under positive selection anywhere in the gene tree and
971 with more than 20% of members, for orthogroups not found in SN15, manually selected clusters
972 of orthogroups identified from hierarchical clustering (Table S9), *P. nodorum* Sn15 genes on
973 accessory chromosome 23, and *P. nodorum* Sn15 genes with a ratio of RIP-like mutations over
974 transitions within 1000 bp of the gene over the 95th percentile, using two-tailed hypergeometric
975 tests implemented in the GOATOOLS version 1.0.6 (Klopfenstein et al. 2018). For each of these
976 sets, two-tailed hypergeometric/Fisher's exact tests were also used to test for enrichment of
977 genes lacking any GO term assignments, genes annotated as secreted by the Predector
978 pipeline, and genes annotated as secreted and with a positive EffectorP 2 prediction using the
979 SciPy Python package (Virtanen et al. 2020).

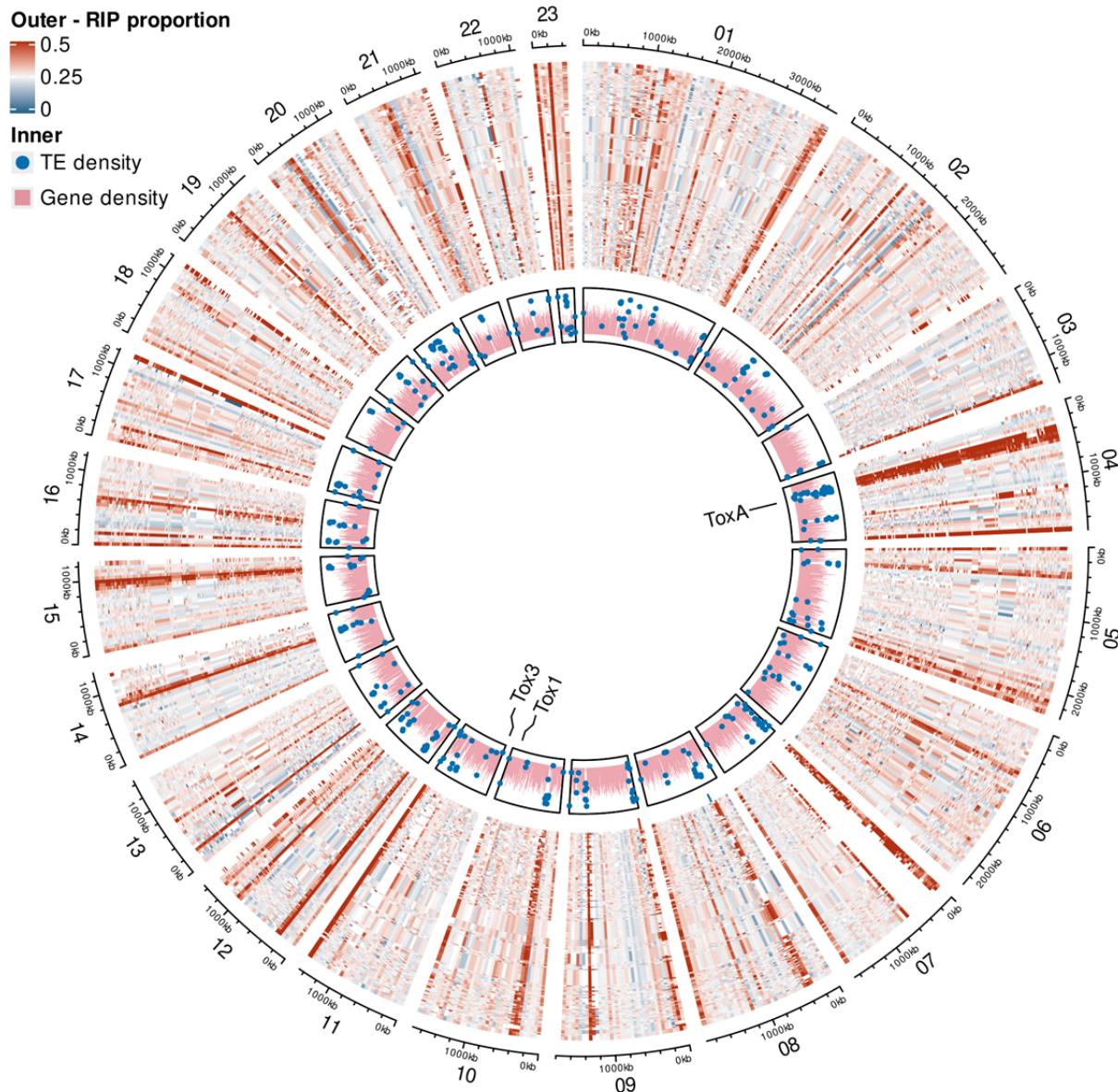

980 Data availability

981 All sequencing data, genomes and annotations generated are available under NCBI Bioproject:
982 PRJNA612761. Gene annotations for isolates SN2000, SN4, and SN79, as well as short variant
983 predictions relative to SN15 are deposited online at
984 (<https://doi.org/10.6084/m9.figshare.13340975>). Complete functional annotations, orthogroup
985 assignments, CDS alignments and trees, and positive selection tests are available online at
986 (<https://doi.org/10.6084/m9.figshare.12966971.v3>). Supplementary material is also available
987 online at (<https://doi.org/10.6084/m9.figshare.13325915.v2>).

988


989 Figure Legends

990

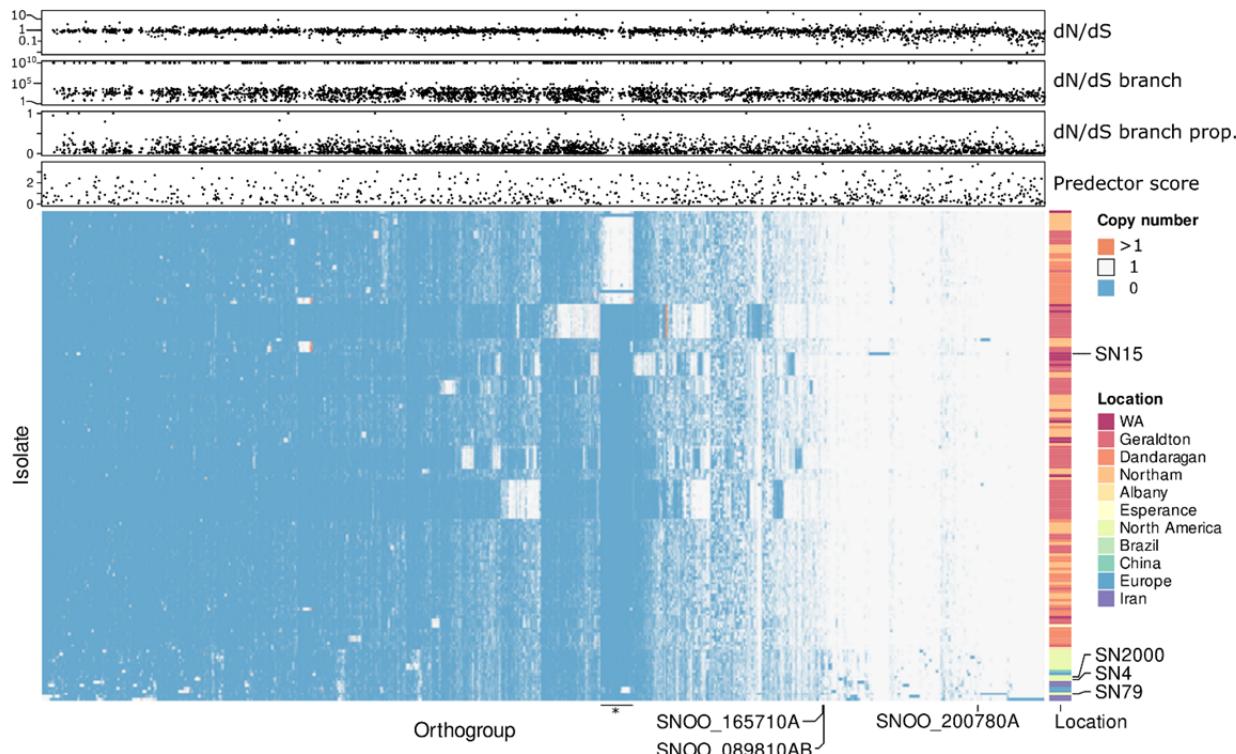

991

992 **Fig 1.** The structure and features of the Western Australian (WA) *Parastagonospora nodorum*
993 population. The tree on the left shows the predicted phylogeny of WA and internationally-
994 sampled *P. nodorum* isolates, with colours corresponding to sampling regions, summarised
995 from Fig S1. Dots on the tree indicate where clades have $\geq 95\%$ UFBoot confidence, and
996 clade shade indicates SH-aLRT scores, with black indicating high support. Effector haplotype
997 profiles for three confirmed effector loci are shown based on data from Phan et al. (Phan et al.
998 2020). A haplotype with white indicates that the isolate has not been haplotyped, or was unable
999 to be amplified by PCR. On the right shows the results of population structure analysis, with
1000 colours indicating discrete population clusters, and the relative size of the bars indicating
1001 posterior probability of an isolate belonging to that cluster. The section indicated as "P" shows
1002 the clusters assigned to that isolate by the SSR study from Phan et al. (Phan et al. 2020), where
1003 white indicates isolates that were not present in that study

1004

1005 **Fig 2.** A circos plot showing SNP density over each of the 23 chromosomes in the SN15
1006 genome assembly. The innermost track shows the proportion of bases covered by genes (CDS
1007 features, red) and transposable elements (TE, blue dots) in non-overlapping 10kb windows. For
1008 TEs, windows with TE base coverage less than 10% are not plotted. The heatmap shows SNP
1009 counts in 50 kb non-overlapping windows for each of the Western Australian isolates in the
1010 outer track (Table S8), with the colour scale boundaries set by the 10th, 50th, and 90th
1011 percentiles (50, 184, and 392, respectively).

1012


1013 **Fig 3.** A circos plot showing the proportion of RIP-like (CA↔TA or TG↔TA) mutations over
1014 transition (C↔T or G↔A) mutations for each of the 23 chromosomes in the SN15 genome
1015 assembly. The innermost track shows the proportion of bases covered by genes (CDS features)
1016 and transposable elements (TE) in 10kb non-overlapping windows. Windows with TE base
1017 coverage less than 10% are not plotted. The heatmap in the outermost track shows the
1018 proportion of RIP-like mutations over the number of transition mutations in 50 kb non-
1019 overlapping windows for each isolate (Table S8). Windows with fewer than 20 SNPs are plotted
1020 in white to avoid high ratios caused by a small number of RIP-like mutations. By chance, 25% of
1021 transition mutations would be expected to be part of a RIP-like dinucleotide pair change.

1022

1023

1024 **Fig 4.** A circos plot showing each *Parastagonospora nodorum* genome assembly alignment
1025 coverage for each of the 23 chromosomes in *P. nodorum* SN15. The innermost track shows the
1026 proportion of bases covered by genes (CDS features) and transposable elements (TE) in 10kb
1027 non-overlapping windows. Windows with TE base coverage less than 10% are not plotted. The
1028 heatmap on the outside track shows average alignment coverage of each isolate genome
1029 assembly to SN15 in 50 kb non-overlapping windows (Table S8).

1030

1031 **Fig 5.** Dispensable and multi-copy orthogroups for each isolate in the *P. nodorum* pan-genome.
1032 “Orthogroups” is used as a general term to cover both orthologues and paralogues, which have
1033 not been separated here. Heatmap rows represent each *P. nodorum* isolate, and columns
1034 indicate each of the dispensable or multicopy orthogroups. Heatmap colour indicates the
1035 number of copies of an orthogroup each isolate has. Orthogroups absent (blue), present with
1036 single copy genes (white) and present with multicopy genes (orange) are shown. The columns
1037 of orthogroups containing ToxA (SNOO_16571A), Tox3 (SNOO_08981AB), and Tox1
1038 (SNOO_20078A) are indicated. Locations that isolates were collected from are indicated on the
1039 right hand side colour bar. The rows corresponding to reference *P. nodorum* isolates are
1040 indicated. The top 3 scatter plots indicate orthogroups with any members with significant
1041 positive selection tests ($p < 0.01$). “dN/dS” indicates the overall dN/dS for the whole orthogroup.
1042 “dN/dS branch” indicates the dN/dS at the branch predicted to be under the highest selection.
1043 “dN/dS branch prop” indicates the proportion of sequences in the orthogroup predicted to be
1044 under positive selection. “Predector score” indicates where the highest scoring member of an
1045 orthogroup was greater than 0.

1046

1047 Tables

1048 **Table 1** Population diversity statistics based on 45,194 SNP variant loci (44,532 biallelic) from
1049 the *P. nodorum* population. Isolates are assigned to populations based on the STRUCTURE
1050 cluster with the highest posterior probability. No isolates had the same SNP profile, so
1051 multilocus genotypes (MLGs) were defined as having a genetic distance (estimated by IQTree)
1052 less than 0.1. The column “# loci” indicates the number of loci within a subpopulation that were
1053 variable and had no missing genotypes. The mean locus Simpson’s index (Mean λ . AKA
1054 expected heterozygosity) is calculated for every locus under analysis, for a biallelic SNP in a
1055 haploid organism the maximum possible value is 0.5. The Simpson’s index (λ), Stoddart-
1056 Taylor’s index (G), and Shannon’s diversity (H) are calculated based on MLGs. The index of
1057 association (I_A) and its normalised form (\bar{r}_d) indicate linkage disequilibrium in each population
1058 cluster, and was calculated only on variant loci with no missing data (# loci) within each cluster.
1059 r_d p-values indicate the result of a permutation test (999 permutations) for higher r_d than would
1060 be expected by random allele distribution across isolates.

	# isolates	# MLG	# loci	F_{ST}	Mean λ	λ	G	H	I_A	\bar{r}_d	\bar{r}_d p-value
Cluster 1	3	1	155	0.99	0.002	0	1	0	0.11	7e-3	0.325
Cluster 2	8	1	149	0.99	0.002	0	1	0	3.77	0.03	0.001
Cluster 3	14	1	156	0.99	0.003	0	1	0	0.58	0.004	0.026
Cluster 4	102	89	10353	0.05	0.311	0.99	81.28	4.45	1.53	0.006	0.001
Cluster 5	5	1	114	0.99	0.002	0	1	0	2.38	0.021	0.001
Cluster 6	7	1	33	1.0	0.001	0	1	0	1.27	0.040	0.021
Cluster 7	3	1	114	0.99	0.001	0	1	0	-0.03	-2e-3	0.363
Cluster 8	15	14	6695	0.0	0.314	0.92	13.24	2.62	11.85	0.013	0.001
Cluster 9	12	1	87	1.0	0.001	0	1	0	0.54	0.006	0.048
Total	169	110	45194		0.320						

1061

1062 **Table 2** Selected effector candidate orthogroups with functional annotations in the *P. nodorum* pangenome. Of the 1908 effector
 1063 candidates with functional predictions, this table includes all candidates with effector homologues and a Predector score > 1, the 5
 1064 top ranking (by Predector) orthogroups that were under positive selection, the top 5 candidates specific to any populations identified
 1065 by structure, and the top 5 candidates restricted to Western Australian or non-core (satellite) WA population clusters. Population
 1066 cluster 8 includes the international isolates, and cluster 4 represents the core WA cluster. For each candidate orthogroup SN15
 1067 members were selected as representatives, or in the case of orthogroups absent in SN15 the member with the highest Predector
 1068 score. Membership of PAV clusters shown in Fig 5 is indicated by the corresponding number, where applicable. Products in bold
 1069 show where a candidate matched a known necrotrophic or avirulence effector. All orthogroup candidates presented here have a
 1070 signal peptide predicted by at least one method, and none any predicted transmembrane (TM) domains.

orthogroup	Pangenome	Population cluster									product	dN/dS	Predector	EffectorP1	EffectorP2	ApoplastP	LOCALIZER					
		SN15	SN4	SN2000	SN79	1	2	3	4	5	6	7	8	9								
SNOO_047630A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	chitin binding domain-containing protein	0	3.94	1	0.98	0.88		
SNOO_616900	S	0	0	0	0	0	0	0	0	0	0	0	1	0	aldose epimerase	0	3.79	0.96	0.93	0.8	2025-11-26	
SNOO_165710A	A	1	1	1	0	3	8	14	101	5	8	3	7	12	ToxA	0	3.76	1	0.95	0.48	C	1789
SNOO_200780A	A	1	1	1	1	3	8	14	102	5	8	3	15	12	Tox1	0	3.73	1	0.97	0.64		1172
SNOO_576590	S	0	0	0	0	0	0	0	0	0	0	0	2	0	Gamma-crystallin-like family protein	0	3.32	1	0.94	0.84		118-11-25
SNOO_423420AB	A	1	0	0	0	0	1	14	54	5	8	3	4	0	Tox1-like protein	0	3.08	1	0.95	0.72		124-11-16
SNOO_109810A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoCDIP4-like glucanase	0	3.04	0.83	0.82	0.73		233-11-23
SNOO_638140	S	0	0	0	0	0	0	0	0	0	0	0	1	0	glycoside hydrolase	0	2.93	0.99	0.85	0.76		110-11-21
SNOO_107590A	A	1	1	1	1	3	8	14	102	5	8	3	17	12	FgXYLA-like xylanase	0	2.93	0.44	0.82	0.8		241-11-22
SNOO_160630A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	Zt6-like endoribonuclease	0	2.92	0.99	0.88	0.56		174-11-24
SNOO_522100	A	0	0	0	0	3	0	1	26	0	0	0	0	0	RWD-like superfamily protein	0	2.88	1	0.78	0.26		108-11-21
SNOO_616750	S	0	0	0	0	0	0	0	0	0	0	0	1	0	glycoside hydrolase	0	2.82	0.93	0.83	0.86		159-11-22
SNOO_304660A	C	1	1	1	1	3	8	15	102	5	8	3	18	12	Tox1-like protein	0	2.81	1	0.93	0.5		84-11-28
SNOO_089810AB	A	1	1	0	0	3	8	14	99	5	8	3	8	12	Tox3	0	2.78	0.87	0.89	0.27		230-11-26
SNOO_568060	A	0	0	0	0	0	0	0	0	0	0	0	2	0	arabinofuranosidase	0	2.71	0.99	0.88	0.7		168-11-24
SNOO_531830	A	0	0	0	0	0	0	0	15	0	0	0	0	0	RWD-like superfamily protein	0	2.71	1	0.74	0.2		108-11-24
SNOO_128450A	A	1	1	1	1	3	8	14	101	5	8	3	17	12	FgXYLA-like xylanase	0	2.63	0.04	0.79	0.88		230-11-24
SNOO_137220A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoMSP1-like cerato-platinin	0	2.58	0.65	0.69	0.91		136-11-24

SNOO_121270A	C	1	1	1	1	3	8	15	102	5	8	3	18	12	MoCDIP4-like glucanase	0	2.56	0.2	0.68	0.78	232
SNOO_096500A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	FgXYLA-like xylanase	0	2.54	0.06	0.64	0.87	221
SNOO_427940A436170A	A	1	0	0	0	3	0	13	51	5	17	0	0	12	RWD-like superfamily protein	1	2.54	1	0.69	0.18	107
SNOO_120370A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoCDIP4-like glucanase	0	2.5	0.29	0.73	0.82	246
SNOO_436740A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	Tox1-like protein	0	2.48	1	0.94	0.76	79
SNOO_138880A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoBas5/MoSPD5-like protein	0	2.44	1	0.91	0.36	106
SNOO_531030	A	0	0	0	0	0	1	2	8	0	0	0	3	0	Tox1-like protein	0	2.43	1	0.89	0.33	N
SNOO_527620	A	0	0	0	0	0	0	0	12	5	0	0	0	0	Major royal jelly family protein	0	2.38	0.9	0.78	0.65	213
SNOO_573060	A	0	0	0	0	0	0	0	2	0	0	0	0	0	outer membrane enzyme PagP beta-barrel family protein	0	2.33	0.87	0.76	0.78	236
SNOO_001310A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoCDIP4-like glucanase	0	2.33	0.3	0.6	0.89	229
SNOO_149380A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoCDIP4-like glucanase	0	2.33	0.4	0.67	0.89	C
SNOO_108620A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	CfTom1-like xylanase	0	2.29	0.01	0.62	0.63	332
SNOO_152700A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	FgXYLA-like xylanase	0	2.26	0.76	0.78	0.75	231
SNOO_010970A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	Tox3-like protein	1	2.23	0.52	0.64	0.25	C
SNOO_086040A	A	1	1	1	1	3	8	14	102	5	8	3	17	12	FgXYLA-like xylanase	0	2.15	0.25	0.71	0.77	258
SNOO_019220A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoCDIP4-like glucanase	0	2.1	0.21	0.56	0.8	222
SNOO_002000A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	VdPevD1-like <i>Alternaria alternata</i> allergen 1 family protein	0	1.85	0.71	0.56	0.87	187
SNOO_575600	S	0	0	0	0	0	2	0	0	0	0	0	0	0	acetylxylyan esterase	0	1.83	0.02	0.62	0.74	301
SNOO_160810A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoCDIP4-like glucanase	0	1.83	0.06	0.58	0.78	248
SNOO_098820A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoCDIP4-like pectin lyase	0	1.82	0.01	0.57	0.91	C
SNOO_008150A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoCDIP4-like glucanase	0	1.77	0	0.24	0.83	239
SNOO_026870A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoCDIP4-like glucanase	0	1.77	0.06	0.33	0.8	222
SNOO_423720A	A	1	1	1	1	3	8	14	102	5	8	3	16	12	LysM domain superfamily protein	1	1.75	0.95	0.67	0.58	116
SNOO_108650A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	FgXYLA-like xylanase	0	1.68	0.04	0.56	0.76	230
SNOO_065020A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	FGL1-like lipase	0	1.63	0	0.36	0.8	307
SNOO_503200	A	0	0	1	0	3	8	14	102	5	0	3	16	12	Tox3-like protein	0	1.63	1	0.71	0.21	167
SNOO_510220	A	0	0	0	0	0	8	14	33	5	0	3	7	0	acetylcholinesterase/carboxylesterase	1	1.63	0.81	0.67	0.23	195
SNOO_159340A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	CfTom1-like xylanase	0	1.56	0.09	0.55	0.76	329
SNOO_140400A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	FgXYLA-like xylanase	0	1.54	0	0.24	0.86	227
SNOO_100710A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoCDIP4-like glucanase	0	1.5	0.07	0.45	0.87	244
SNOO_123500A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoBas2-like protein	0	1.49	0.88	0.24	0.85	105
SNOO_035930A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	CfTom1-like xylanase	0	1.31	0	0.5	0.75	356
SNOO_102410A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	Zt6-like endoribonuclease	0	1.27	0.08	0.45	0.72	133
SNOO_098950A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	NEP-like protein	0	1.25	0.02	0.37	0.76	239
SNOO_069800A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	CfTom1-like xylanase	0	1.1	0	0.1	0.89	397
SNOO_550640	A	0	0	0	0	0	0	0	5	0	0	0	0	0	RWD-like superfamily protein	1	1.09	1	0.57	0.44	754
SNOO_059190A	C	1	1	1	1	3	8	14	102	5	8	3	18	12	MoCDIP4-like glucanase	0	1.05	0.2	0.53	0.48	254
SNOO_057170AB	S	1	0	0	0	0	0	0	0	0	1	0	0	0	PLAC8 motif-containing protein	0	1.04	1	0.91	0.38	91
SNOO_105220A	A	1	1	1	1	3	8	14	102	5	8	3	17	12	AVR-Pita2-like peptidase	0	1.03	0	0.16	0.85	350

1071

1072 ^a(C)ore, (A)ccessory, or (S)ingleton pangenome based on whether an orthogroup was present in all, some, or one isolate.1073 ^bMulti-copy orthogroups have more than one member in at least one isolate.1074 ^cPresence or absence of the orthogroup in the four reference isolates.

1075 ^dNumbers of isolates with an orthogroup copy in each of the population clusters. The reference isolates were not included in the
1076 STRUCTURE analysis, so SN15 was assigned to cluster 6 where it was assigned by Phan et al. (2020), and the remaining reference
1077 isolates were assigned to cluster 8 with the international isolates.
1078 ^etests for positive selection in orthogroups were significant ($p < 0.01$, number members in orthogroup > 0.1)
1079 ^fN=nuclear localized, C=chloroplast localized

1080

1081 **Author Statements**

1082 **Authors and Contributors**

1083 DABJ, JKH, K-CT, and HTTP conceived and designed the study. KR and HTTP performed
1084 laboratory work. DABJ, SB, and JKH performed bioinformatics and data analysis. DABJ and
1085 JKH wrote the manuscript. DABJ, K-CT, HTTP, and JKH edited the manuscript. All authors read
1086 and approved the manuscript.

1087 **Conflicts of Interest**

1088 The authors declare there are no conflicts of interest.

1089 **Funding Information**

1090 This study was supported by the Centre for Crop and Disease Management, a joint initiative of
1091 Curtin University and the Grains Research and Development Corporation (Research Grant
1092 CUR00023). This research was undertaken with the assistance of resources and services from
1093 the Pawsey Supercomputing Centre and the National Computational Infrastructure (NCI), which
1094 is supported by the Australian Government. This research is supported by an Australian
1095 Government Research Training Program (RTP) Scholarship.

1096 **Ethical Approval**

1097 n/a

1098

1099

Parsed Citations

Abeysekara, N. S., T. L. Friesen, B. Keller and J. D. Faris (2009). "Identification and characterization of a novel host-toxin interaction in the wheat–*Stagonospora nodorum* pathosystem." *Theoretical and Applied Genetics* 120(1): 117-126.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Agapow, P.-M. and A. Burt (2001). "Indices of multilocus linkage disequilibrium." *Molecular Ecology Notes* 1(1-2): 101-102.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Almagro Armenteros, J. J., C. K. Sønderby, S. K. Sønderby, H. Nielsen and O. Winther (2017). "DeepLoc: prediction of protein subcellular localization using deep learning." *Bioinformatics* 33(21): 3387-3395.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Armenteros, J. J. A., M. Salvatore, O. Emanuelsson, O. Winther, G. Von Heijne, A. Elofsson and H. Nielsen (2019). "Detecting sequence signals in targeting peptides using deep learning." *Life science alliance* 2(5).

Armenteros, J. J. A., K. D. Tsirigos, C. K. Sønderby, T. N. Petersen, O. Winther, S. Brunak, G. von Heijne and H. Nielsen (2019). "SignalP 5.0 improves signal peptide predictions using deep neural networks." *Nature biotechnology* 37(4): 420-423.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Aylward, J., E. T. Steenkamp, L. L. Dreyer, F. Roets, B. D. Wingfield and M. J. Wingfield (2017). "A plant pathology perspective of fungal genome sequencing." *IMA Fungus* 8(1): 1-15.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Badet, T. and D. Croll (2020). "The rise and fall of genes: origins and functions of plant pathogen pangenomes." *Current Opinion in Plant Biology* 56: 65-73.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bairoch, A. and R. Apweiler (2000). "The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000." *Nucleic acids research* 28(1): 45-48.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V. Sirotnik, N. Vyahhi, G. Tesler, M. A. Alekseyev and P. A. Pevzner (2012). "SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing." *Journal of Computational Biology* 19(5): 455-477.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bathgate, J. A. and R. Loughman (2001). "Ascospores are a source of inoculum of *Phaeosphaeria nodorum*, *P. avenaria* f. sp. *avenaria* and *Mycosphaerella graminicola* in Western Australia." *Australasian Plant Pathology* 30(4): 317.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bennett, R. S., M. G. Milgroom and G. C. Bergstrom (2005). "Population Structure of Seedborne *Phaeosphaeria nodorum* on New York Wheat." *Phytopathology* 95(3): 300-305.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bertazzoni, S., D. A. Jones, H. T. Phan, K.-C. Tan and J. K. Hane (2021). "Chromosome-level genome assembly and manually-curated proteome of model necrotroph *Parastagonospora nodorum* Sn15 reveals a genome-wide trove of candidate effector homologs, and redundancy of virulence-related functions within an accessory chromosome." *BMC genomics* 22(1): 1-16.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bertazzoni, S., A. H. Williams, D. A. Jones, R. A. Syme, K.-C. Tan and J. K. Hane (2018). "Accessories make the outfit: accessory chromosomes and other dispensable DNA regions in plant-pathogenic Fungi." *Molecular Plant-Microbe Interactions* 31(8): 779-788.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bringans, S., J. K. Hane, T. Casey, K.-C. Tan, R. Lipscombe, P. S. Solomon and R. P. Oliver (2009). "Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography and mass spectrometry of proteins from the fungal wheat pathogen *Stagonospora nodorum*." *BMC Bioinformatics* 10(1): 301.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bu, B., D. Qiu, H. Zeng, L. Guo, J. Yuan and X. Yang (2014). "A fungal protein elicitor PevD1 induces *Verticillium* wilt resistance in cotton." *Plant Cell Reports* 33(3): 461-470.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Buchfink, B., K. Reuter and H.-G. Drost (2021). "Sensitive protein alignments at tree-of-life scale using DIAMOND." *Nature methods* 18(4): 366-368.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bushnell, B., J. Rood and E. Singer (2017). "BBMerge – Accurate paired shotgun read merging via overlap." *PLOS ONE* 12(10): e0185056.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer and T. L. Madden (2009). "BLAST+: architecture and applications." *BMC Bioinformatics* 10(1): 421.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Caten, C. and A. Newton (2000). "Variation in cultural characteristics, pathogenicity, vegetative compatibility and electrophoretic karyotype within field populations of *Stagonospora nodorum*." *Plant Pathology* 49(2): 219-226.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen, C., B. Lian, J. Hu, H. Zhai, X. Wang, R. C. Venu, E. Liu, Z. Wang, M. Chen, B. Wang, G.-L. Wang, Z. Wang and T. K. Mitchell (2013). "Genome comparison of two *Magnaporthe oryzae* field isolates reveals genome variations and potential virulence effectors." *BMC Genomics* 14(1): 887.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen, S., P. Songkumarn, R. C. Venu, M. Gowda, M. Bellizzi, J. Hu, W. Liu, D. Ebbole, B. Meyers, T. Mitchell and G.-L. Wang (2013). "Identification and Characterization of *In planta*-Expressed Secreted Effector Proteins from *Magnaporthe oryzae* That Induce Cell Death in Rice." *Molecular Plant-Microbe Interactions* 26(2): 191-202.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chooi, Y.-H., M. J. Muria-Gonzalez and P. S. Solomon (2014). "A genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogen *Parastagonospora nodorum*." *Mycology* 5(3): 192-206.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chuma, I., C. Isobe, Y. Hotta, K. Ibaragi, N. Futamata, M. Kusaba, K. Yoshida, R. Terauchi, Y. Fujita, H. Nakayashiki, B. Valent and Y. Tosa (2011). "Multiple Translocation of the AVR-Pita Effector Gene among Chromosomes of the Rice Blast Fungus *Magnaporthe oryzae* and Related Species." *PLOS Pathogens* 7(7): e1002147.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cingolani, P., A. Platts, L. L. Wang, M. Coon, T. Nguyen, L. Wang, S. J. Land, X. Lu and D. M. Ruden (2012). "A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff." *Fly* 6(2): 80-92.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Croll, D., M. Zala and B. A. McDonald (2013). "Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen." *PLoS Genetics* 9(6): e1003567.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cunfer, B. M. (1978). "The Incidence of *Septoria nodorum* in Wheat Seed." *Phytopathology* 68(6): 832.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cunfer, B. M. (1998). "Seasonal availability of inoculum of *Stagonospora nodorum* in the field in the southeastern US." *Cereal Research Communications* 26(3): 259-263.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dai, Y., Y. Jia, J. Correll, X. Wang and Y. Wang (2010). "Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of *Magnaporthe oryzae*." *Fungal Genetics and Biology* 47(12): 973-980.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dalman, K., K. Himmelstrand, Å. Olson, M. Lind, M. Brandström-Durling and J. Stenlid (2013). "A Genome-Wide Association Study Identifies Genomic Regions for Virulence in the Non-Model Organism *Heterobasidion annosum* s.s." *PLOS ONE* 8(1): e53525.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

de Guillen, K., D. Ortiz-Vallejo, J. Gracy, E. Fournier, T. Kroj and A. Padilla (2015). "Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi." *PLoS pathogens* 11(10): e1005228.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dierckxsens, N., P. Mardulyn and G. Smits (2017). "NOVOPlasty: de novo assembly of organelle genomes from whole genome data." *Nucleic Acids Research* 45(4): e18-e18.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson and T. R. Gingeras (2013). "STAR: ultrafast universal RNA-seq aligner." *Bioinformatics* 29(1): 15-21.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Earl, D. A. and B. M. vonHoldt (2012). "STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method." *Conservation Genetics Resources* 4(2): 359-361.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Eberhardt, R. Y., D. H. Haft, M. Punta, M. Martin, C. O'Donovan and A. Bateman (2012). "AntiFam: a tool to help identify spurious ORFs in protein annotation." *Database* 2012.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ellinghaus, D., S. Kurtz and U. Willhöft (2008). "LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons." *BMC Bioinformatics* 9(1): 18.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Evanno, G., S. Regnaut and J. Goudet (2005). "Detecting the number of clusters of individuals using the software structure: a simulation study." *Molecular Ecology* 14(8): 2611-2620.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ewels, P., M. Magnusson, S. Lundin and M. Käller (2016). "MultiQC: summarize analysis results for multiple tools and samples in a single report." *Bioinformatics* 32(19): 3047-3048.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fenton, A., J. Antonovics and Michael A. Brockhurst (2009). "Inverse-Gene-for-Gene Infection Genetics and Coevolutionary Dynamics." *The American Naturalist* 174(6): E230-E242.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Friesen, T. L., C. Chu, S. S. Xu and J. D. Faris (2012). "SnTox5-Snn5: a novel *S tagonospora nodorum* effector-wheat gene interaction and its relationship with the SnToxA-Tsn1 and SnTox3-Snn3-B1 interactions." *Molecular Plant Pathology* 13(9): 1101-1109.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Friesen, T. L., S. W. Meinhardt and J. D. Faris (2007). "The *Stagonospora nodorum*-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner." *The Plant Journal* 51(4): 681-692.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Friesen, T. L., Z. Zhang, P. S. Solomon, R. P. Oliver and J. D. Faris (2008). "Characterization of the interaction of a novel *Stagonospora nodorum* host-selective toxin with a wheat susceptibility gene." *Plant physiology* 146(2): 682-693.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Galili, T. (2015). "dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering." *Bioinformatics* 31(22): 3718-3720.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gao, Y., J. Faris, Z. Liu, Y. Kim, R. Syme, R. Oliver, S. Xu and T. Friesen (2015). "Identification and characterization of the SnTox6-Snn6 interaction in the *Parastagonospora nodorum*-wheat pathosystem." *Molecular Plant-Microbe Interactions* 28(5): 615-625.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gervais, J., C. Plissonneau, J. Linglin, M. Meyer, K. Labadie, C. Cruaud, I. Fudal, T. Rouxel and M. H. Balesdent (2017). "Different waves of effector genes with contrasted genomic location are expressed by *Leptosphaeria maculans* during cotyledon and stem colonization of oilseed rape." *Molecular plant pathology* 18(8): 1113-1126.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ghaderi, F., B. Sharifnabi, M. Javan-Nikkhah, P. C. Brunner and B. A. McDonald (2020). "SnToxA, SnTox1, and SnTox3 originated in *Parastagonospora nodorum* in the Fertile Crescent." *Plant Pathology*: ppa.13233.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. d. Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman and A. Regev (2011). "Full-length transcriptome assembly from RNA-Seq data without a reference genome." *Nature Biotechnology* 29(7): 644-652.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gremme, G., S. Steinbiss and S. Kurtz (2013). "GenomeTools: A Comprehensive Software Library for Efficient Processing of Structured Genome Annotations." *IEEE/ACM Transactions on Computational Biology and Bioinformatics* 10(3): 645-656.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gu, Z., L. Gu, R. Eils, M. Schlesner and B. Brors (2014). "circlize implements and enhances circular visualization in R." *Bioinformatics* 30(19): 2811-2812.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gummer, J. P. A., R. D. Trengove, R. P. Oliver and P. S. Solomon (2013). "Dissecting the role of G-protein signalling in primary metabolism in the wheat pathogen *Stagonospora nodorum*." *Microbiology* 159(Pt_9): 1972-1985.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gurevich, A., V. Saveliev, N. Vyahhi and G. Tesler (2013). "QUAST: quality assessment tool for genome assemblies." *Bioinformatics* 29(8): 1072-1075.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guy St C, S. and B. Ewan (2005). "Automated generation of heuristics for biological sequence comparison." *BMC Bioinformatics* 6: 31-31.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Haas, B. J., A. L. Delcher, S. M. Mount, J. R. Wortman, R. K. Smith Jr, L. I. Hannick, R. Maiti, C. M. Ronning, D. B. Rusch, C. D. Town, S. L. Salzberg and O. White (2003). "Improving the *Arabidopsis* genome annotation using maximal transcript alignment assemblies." *Nucleic Acids Research* 31(19): 5654-5666.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Haas, B. J., S. L. Salzberg, W. Zhu, M. Pertea, J. E. Allen, J. Orvis, O. White, C. R. Buell and J. R. Wortman (2008). "Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments." *Genome Biology* 9(1): R7.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hane, J. K., R. G. T. Lowe, P. S. Solomon, K.-C. Tan, C. L. Schoch, J. W. Spatafora, P. W. Crous, C. Kodira, B. W. Birren, J. E. Galagan, S. F. F. Torriani, B. A. McDonald and R. P. Oliver (2007). "Dothideomycete-Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat Pathogen *Stagonospora nodorum*." *The Plant Cell* 19(11): 3347-3368.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hane, J. K., T. Rouxel, B. J. Howlett, G. H. Kema, S. B. Goodwin and R. P. Oliver (2011). "A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi." *Genome biology* 12(5): 1-16.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hane, J. K., A. H. Williams, A. P. Taranto, P. S. Solomon and R. P. Oliver (2015). *Repeat-induced point mutation: a fungal-specific, endogenous mutagenesis process. Genetic Transformation Systems in Fungi*, Volume 2, Springer: 55-68.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hedrick, P. W. (2005). "A standardized genetic differentiation measure." *Evolution* 59(8): 1633-1638.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hoang, D. T., O. Chernomor, A. Von Haeseler, B. Q. Minh and L. S. Vinh (2018). "UFBoot2: improving the ultrafast bootstrap approximation." *Molecular biology and evolution* 35(2): 518-522.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hocher, A and A. Taddei (2020). "Subtelomeres as specialized chromatin domains." *BioEssays* 42(5): 1900205.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hu, J., Y. Zheng and X. Shang (2018). "MiteFinderII: a novel tool to identify miniature inverted-repeat transposable elements hidden in eukaryotic genomes." *BMC Medical Genomics* 11(5): 101.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Huerta-Cepas, J., K. Forslund, L. P. Coelho, D. Szklarczyk, L. J. Jensen, C. Von Mering and P. Bork (2017). "Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper." *Molecular biology and evolution* 34(8): 2115-2122.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hurlbert, S. H. (1971). "The Nonconcept of Species Diversity: A Critique and Alternative Parameters." *Ecology* 52(4): 577-586.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ipcho, S. V. S., J. K. Hane, E. A. Antoni, D. Ahren, B. Henrissat, T. L. Friesen, P. S. Solomon and R. P. Oliver (2012). "Transcriptome analysis of *Stagonospora nodorum*: gene models, effectors, metabolism and pantothenate dispensability." *Molecular Plant Pathology* 13(6): 531-545.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Irieda, H., Y. Inoue, M. Mori, K. Yamada, Y. Oshikawa, H. Saitoh, A. Uemura, R. Terauchi, S. Kitakura, A. Kosaka, S. Singkaravanit-Ogawa and Y. Takano (2019). "Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases." *Proceedings of the National Academy of Sciences* 116(2): 496-505.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Iwata, H. and O. Gotoh (2012). "Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features." *Nucleic Acids Research* 40(20): e161-e161.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jain, C., S. Koren, A. Dilthey, A. M. Phillippy and S. Aluru (2018). "A fast adaptive algorithm for computing whole-genome homology maps." *Bioinformatics* 34(17): i748-i756.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jombart, T. (2008). "adegenet: a R package for the multivariate analysis of genetic markers." *Bioinformatics* 24(11): 1403-1405.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jones, D. A. B., S. Bertazzoni, C. J. Turo, R. A. Syme and J. K. Hane (2018). "Bioinformatic prediction of plant-pathogenicity effector proteins of fungi." *Current Opinion in Microbiology* 46: 43-49.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jones, D. A. B., E. John, K. Rybak, H. T. T. Phan, K. B. Singh, S.-Y. Lin, P. S. Solomon, R. P. Oliver and K.-C. Tan (2019). "A specific fungal transcription factor controls effector gene expression and orchestrates the establishment of the necrotrophic pathogen lifestyle on wheat." *Scientific Reports* 9(1): 1-13.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jones, P., D. Binns, H.-Y. Chang, M. Fraser, W. Li, C. McAnulla, H. McWilliam, J. Maslen, A. Mitchell and G. Nuka (2014). "InterProScan 5: genome-scale protein function classification." *Bioinformatics* 30(9): 1236-1240.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Käll, L., A. Krogh and E. L. Sonnhammer (2004). "A combined transmembrane topology and signal peptide prediction method." *Journal of molecular biology* 338(5): 1027-1036.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. von Haeseler and L. S. Jermiin (2017). "ModelFinder: fast model selection for

accurate phylogenetic estimates." *Nature Methods* 14(6): 587-589.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kamvar, Z. N., J. F. Tabima and N. J. Grünwald (2014). "Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction." *PeerJ* 2: e281.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kanja, C. and K. E. Hammond-Kosack (2020). "Proteinaceous effector discovery and characterization in filamentous plant pathogens." *Molecular Plant Pathology* 21(10): 1353-1376.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Keilwagen, J., F. Hartung, M. Paulini, S. O. Twardziok and J. Grau (2018). "Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi." *BMC Bioinformatics* 19(1): 189.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Keller, S. M., J. M. McDermott, R. Pettway, M. Wolfe and B. McDonald (1997). "Gene flow and sexual reproduction in the wheat glume blotch pathogen *Phaeosphaeria nodorum* (anamorph *Stagonospora nodorum*)." *Phytopathology* 87(3): 353-358.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kettles, G. J., C. Bayon, C. A. Sparks, G. Canning, K. Kanyuka and J. J. Rudd (2018). "Characterization of an antimicrobial and phytotoxic ribonuclease secreted by the fungal wheat pathogen *Zymoseptoria tritici*." *New Phytologist* 217(1): 320-331.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kim, S., H. Park, H. A. Gruszewski, D. G. Schmale and S. Jung (2019). "Vortex-induced dispersal of a plant pathogen by raindrop impact." *Proceedings of the National Academy of Sciences* 116(11): 4917-4922.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Klopfenstein, D. V., L. Zhang, B. S. Pedersen, F. Ramírez, A. Warwick Vesztrocy, A. Naldi, C. J. Mungall, J. M. Yunes, O. Botvinnik, M. Weigel, W. Dampier, C. Dessimoz, P. Flick and H. Tang (2018). "GOATools: A Python library for Gene Ontology analyses." *Scientific Reports* 8(1): 10872.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Knaus, B. J. and N. J. Grünwald (2017). "vcfr: a package to manipulate and visualize variant call format data in R." *Molecular Ecology Resources* 17(1): 44-53.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Koskinen, P., P. Törönen, J. Nokso-Koivisto and L. Holm (2015). "PANNZER: high-throughput functional annotation of uncharacterized proteins in an error-prone environment." *Bioinformatics* 31(10): 1544-1552.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Krogh, A., B. Larsson, G. Von Heijne and E. L. Sonnhammer (2001). "Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes." *Journal of molecular biology* 305(3): 567-580.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lagesen, K., P. Hallin, E. A Rødland, H.-H. Stærfeldt, T. Rognes and D. W. Ussery (2007). "RNAmmer: consistent and rapid annotation of ribosomal RNA genes." *Nucleic Acids Research* 35(9): 3100-3108.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lechner, M., S. Findeiß, L. Steiner, M. Marz, P. F. Stadler and S. J. Prohaska (2011). "Proteinortho: detection of (co-) orthologs in large-scale analysis." *BMC bioinformatics* 12(1): 1-9.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li, H. (2011). "A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data." *Bioinformatics* 27(21): 2987-2993.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li, H. (2018). "Minimap2: pairwise alignment for nucleotide sequences." *Bioinformatics* 34(18): 3094-3100.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis and R. Durbin (2009). "The Sequence Alignment/Map format and SAMtools." *Bioinformatics* 25(16): 2078-2079.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, Z., J. D. Faris, R. P. Oliver, K.-C. Tan, P. S. Solomon, M. C. McDonald, B. A McDonald, A. Nunez, S. Lu and J. B. Rasmussen (2009). "SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene." *PLoS pathogens* 5(9): e1000581.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, Z., T. L. Friesen, H. Ling, S. W. Meinhardt, R. P. Oliver, J. B. Rasmussen and J. D. Faris (2006). "The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system." *Genome* 49(10): 1265-1273.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, Z., Z. Zhang, J. D. Faris, R. P. Oliver, R. Syme, M. C. McDonald, B. A McDonald, P. S. Solomon, S. Lu and W. L. Shelves (2012). "The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1." *PLoS pathogens* 8(1): e1002467.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Llorens, C., R. Futami, L. Covelli, L. Domínguez-Escribá, J. M. Viu, D. Tamarit, J. Aguilar-Rodríguez, M. Vicente-Ripolles, G. Fuster, G. P. Bernet, F. Maumus, A. Muñoz-Pomer, J. M. Sempere, A. Latorre and A. Moya (2011). "The Gypsy Database (GyDB) of mobile genetic elements: release 2.0." *Nucleic Acids Research* 39(suppl_1): D70-D74.

Lomsadze, A., P. D. Burns and M. Borodovsky (2014). "Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm." *Nucleic Acids Research* 42(15): e119-e119.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lowe, R. G. T., M. Lord, K. Rybak, R. D. Trengove, R. P. Oliver and P. S. Solomon (2008). "A metabolomic approach to dissecting osmotic stress in the wheat pathogen *Stagonospora nodorum*." *Fungal Genetics and Biology* 45(11): 1479-1486.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lowe, T. M. and P. P. Chan (2016). "tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes." *Nucleic Acids Research* 44(W1): W54-W57.

Lunter, G. and M. Goodson (2011). "Stampy: A statistical algorithm for sensitive and fast mapping of Illumina sequence reads." *Genome Research* 21(6): 936-939.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

M'Barek, S. B., J. H. Cordewener, S. M. T. Ghaffary, T. A. van der Lee, Z. Liu, A. M. Gohari, R. Mehrabi, A. H. America, O. Robert and T. L. Friesen (2015). "FPLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen *Zymoseptoria tritici*." *Fungal Genetics and Biology* 79: 54-62.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mapleson, D., G. Garcia Accinelli, G. Kettleborough, J. Wright and B. J. Clavijo (2017). "KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies." *Bioinformatics* 33(4): 574-576.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Marçais, G., A. L. Delcher, A. M. Phillippy, R. Coston, S. L. Salzberg and A. Zimin (2018). "MUMmer4: A fast and versatile genome alignment system." *PLOS Computational Biology* 14(1): e1005944.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Martin, M. (2011). "Cutadapt removes adapter sequences from high-throughput sequencing reads." *EMBnet.journal* 17(1): 10-12.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

McClintock, B. (1941). "The stability of broken ends of chromosomes in *Zea mays*." *Genetics* 26(2): 234.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

McDonald, M. C., M. Razavi, T. L. Friesen, P. C. Brunner and B. A. McDonald (2012). "Phylogenetic and population genetic analyses of *Phaeosphaeria nodorum* and its close relatives indicate cryptic species and an origin in the Fertile Crescent." *Fungal Genet Biol* 49(11): 882-895.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly and M. A. DePristo (2010). "The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data." *Genome Research* 20(9): 1297-1303.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Minh, B. Q., H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. von Haeseler and R. Lanfear (2020). "IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era." *Molecular Biology and Evolution* 37(5): 1530-1534.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mistry, J., R. D. Finn, S. R. Eddy, A. Bateman and M. Punta (2013). "Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions." *Nucleic acids research* 41(12): e121-e121.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mitchell, A. L., T. K. Attwood, P. C. Babbitt, M. Blum, P. Bork, A. Bridge, S. D. Brown, H.-Y. Chang, S. El-Gebali and M. I. Fraser (2019). "InterPro in 2019: improving coverage, classification and access to protein sequence annotations." *Nucleic acids research* 47(D1): D351-D360.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mosquera, G., M. C. Giraldo, C. H. Khang, S. Coughlan and B. Valent (2009). "Interaction transcriptome analysis identifies *Magnaporthe oryzae* BAS1-4 as biotrophy-associated secreted proteins in rice blast disease." *The Plant Cell* 21(4): 1273-1290.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Muria-Gonzalez, M. J., Y. Yeng, S. Breen, O. Mead, C. Wang, Y.-H. Chooi, R. A. Barrow and P. S. Solomon (2020). "Volatile Molecules Secreted by the Wheat Pathogen *Parastagonospora nodorum* Are Involved in Development and Phytotoxicity." *Frontiers in Microbiology* 11.

Murphy, N., R. Loughman, R. Appels, E. Lagudah and M. Jones (2000). "Genetic variability in a collection of *Stagonospora nodorum* isolates from Western Australia." *Australian journal of agricultural research* 51(6): 679-684.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Murray, G. M. and J. P. Brennan (2009). "Estimating disease losses to the Australian wheat industry." *Australasian Plant Pathology* 38(6): 558-570.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Murrell, B., S. Moola, A. Mabona, T. Weighill, D. Sheward, S. L. Kosakovsky Pond and K. Scheffler (2013). "FUBAR: A Fast, Unconstrained Bayesian AppRoximation for Inferring Selection." *Molecular Biology and Evolution* 30(5): 1196-1205.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Murrell, B., S. Weaver, M. D. Smith, J. O. Wertheim, S. Murrell, A. Aylward, K. Eren, T. Pollner, D. P. Martin, D. M. Smith, K. Scheffler and S. L. Kosakovsky Pond (2015). "Gene-Wide Identification of Episodic Selection." *Molecular Biology and Evolution* 32(5): 1365-1371.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ohm, R. A., N. Feau, B. Henrissat, C. L. Schoch, B. A. Horwitz, K. W. Barry, B. J. Condon, A. C. Copeland, B. Dhillon, F. Glaser, C. N. Hesse, I. Kosti, K. LaButti, E. A. Lindquist, S. Lucas, A. A. Salamov, R. E. Bradshaw, L. Ciuffetti, R. C. Hamelin, G. H. J. Kema, C. Lawrence, J. A. Scott, J. W. Spatafora, B. G. Turgeon, P. J. G. M. d. Wit, S. Zhong, S. B. Goodwin and I. V. Grigoriev (2012). "Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi." *PLOS Pathogens* 8(12): e1003037.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ökmen, B., D. W. Etalo, M. H. A. J. Joosten, H. J. Bouwmeester, R. C. H. d. Vos, J. Collemare and P. J. G. M. d. Wit (2013). "Detoxification of α -tomatine by *Cladosporium fulvum* is required for full virulence on tomato." *New Phytologist* 198(4): 1203-1214.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Oome, S., T. M. Raaymakers, A. Cabral, S. Samwel, H. Böhm, I. Albert, T. Nürnberg and G. Van den Ackerveken (2014). "Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in *Arabidopsis*." *Proceedings of the National Academy of Sciences of the United States of America* 111(47): 16955-16960.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ou, S. and N. Jiang (2018). "LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons." *Plant Physiology* 176(2): 1410-1422.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pareja-Jaime, Y., M. I. G. Roncero and M. C. Ruiz-Roldán (2008). "Tomatinase from *Fusarium oxysporum* f. sp. *lycopersici* is required for full virulence on tomato plants." *Molecular plant-microbe interactions* 21(6): 728-736.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pereira, D., B. A. McDonald and D. Croll (2020). "The genetic architecture of emerging fungicide resistance in populations of a global wheat pathogen." *bioRxiv*: 2020.2003.2026.010199.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pertea, M., G. M. Pertea, C. M. Antonescu, T.-c. Chang, J. T. Mendell and S. L. Salzberg (2015). "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." *Nature Biotechnology* 33(3): 290-295.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Phan, H. T., K. Rybak, S. Bertazzoni, E. Furuki, E. Dinglasan, L. T. Hickey, R. P. Oliver and K.-C. Tan (2018). "Novel sources of resistance to *Septoria nodorum* blotch in the Vavilov wheat collection identified by genome-wide association studies." *Theoretical and Applied Genetics* 131(6): 1223-1238.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Phan, H. T., K. Rybak, E. Furuki, S. Breen, P. S. Solomon, R. P. Oliver and K. C. Tan (2016). "Differential effector gene expression underpins epistasis in a plant fungal disease." *The Plant Journal* 87(4): 343-354.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Phan, H. T. T., D. A. B. Jones, K. Rybak, K. N. Dodhia, F. J. Lopez-Ruiz, R. Valade, L. Gout, M.-H. Lebrun, P. C. Brunner, R. P. Oliver and K.-C. Tan (2020). "Low Amplitude Boom-and-Bust Cycles Define the *Septoria Nodorum* Blotch Interaction." *Frontiers in Plant Science* 10.

Pollet, A., T. Beliën, K. Fierens, J. A. Delcour and C. M. Courtin (2009). "Fusarium graminearum xylanases show different functional stabilities, substrate specificities and inhibition sensitivities." *Enzyme and Microbial Technology* 44(4): 189-195.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pond, S. L. K., S. D. W. Frost and S. V. Muse (2005). "HyPhy: hypothesis testing using phylogenies." *Bioinformatics* 21(5): 676-679.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Poplin, R., V. Ruano-Rubio, M. A. DePristo, T. J. Fennell, M. O. Carneiro, G. A. V. d. Auwera, D. E. Kling, L. D. Gauthier, A. Levy-Moonshine, D. Roazen, K. Shakir, J. Thibault, S. Chandran, C. Whelan, M. Lek, S. Gabriel, M. J. Daly, B. Neale, D. G. MacArthur and E. Banks (2018). "Scaling accurate genetic variant discovery to tens of thousands of samples." *bioRxiv*: 201178.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Praz, C. R., S. Bourras, F. Zeng, J. Sánchez-Martín, F. Menardo, M. Xue, L. Yang, S. Roffler, R. Böni and G. Herren (2017). "AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery

mildew fungus." New Phytologist 213(3): 1301-1314.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Price, M. N., P. S. Dehal and A. P. Arkin (2010). "FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments." PLOS ONE 5(3): e9490.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pritchard, J. K., M. Stephens and P. Donnelly (2000). "Inference of Population Structure Using Multilocus Genotype Data." Genetics 155(2): 945-959.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. W. de Bakker, M. J. Daly and P. C. Sham (2007). "PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses." The American Journal of Human Genetics 81(3): 559-575.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Quinlan, A. R. and I. M. Hall (2010). "BEDTools: a flexible suite of utilities for comparing genomic features." Bioinformatics 26(6): 841-842.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Richards, J. K., E. H. Stukenbrock, J. Carpenter, Z Liu, C. Cowger, J. D. Faris and T. L. Friesen (2019). "Local adaptation drives the diversification of effectors in the fungal wheat pathogen *Parastagonospora nodorum* in the United States." PLOS Genetics 15(10): e1008223.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Richards, J. K., N. A. Wyatt, Z Liu, J. D. Faris and T. L. Friesen (2018). "Reference Quality Genome Assemblies of Three *Parastagonospora nodorum* Isolates Differing in Virulence on Wheat." G3: Genes, Genomes, Genetics 8(2): 393-399.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rognes, T., T. Flouri, B. Nichols, C. Quince and F. Mahé (2016). "VSEARCH: a versatile open source tool for metagenomics." PeerJ 4: e2584.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sanger, F., A. R. Coulson, T. Friedmann, G. M. Air, B. G. Barrell, N. L. Brown, J. C. Fiddes, C. A. Hutchison, P. M. Slocombe and M. Smith (1978). "The nucleotide sequence of bacteriophage φ X174." Journal of Molecular Biology 125(2): 225-246.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sanz-Martín, J. M., J. R. Pacheco-Arjona, V. Bello-Rico, W. A. Vargas, M. Monod, J. M. Díaz-Mínguez, M. R. Thon and S. A. Sukno (2016). "A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus *Colletotrichum graminicola*." Molecular Plant Pathology 17(7): 1048-1062.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Savojardo, C., P. L. Martelli, P. Fariselli and R. Casadio (2018). "DeepSig: deep learning improves signal peptide detection in proteins." Bioinformatics 34(10): 1690-1696.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schmidt, S. M., H. Kuhn, C. Micali, C. Liller, M. Kwaaitaal and R. Panstruga (2014). "Interaction of a *B lumenaria graminis* f. sp. *hordei* effector candidate with a barley ARF-GAP suggests that host vesicle trafficking is a fungal pathogenicity target." Molecular plant pathology 15(6): 535-549.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sharpee, W., Y. Oh, M. Yi, W. Franck, A. Eyre, L. H. Okagaki, B. Valent and R. A. Dean (2017). "Identification and characterization of suppressors of plant cell death (SPD) effectors from *Magnaporthe oryzae*." Molecular plant pathology 18(6): 850-863.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shaw, M. W., S. J. Bearchell, B. D. L. Fitt and B. A. Fraaije (2008). "Long-term relationships between environment and abundance in wheat of *Phaeosphaeria nodorum* and *Mycosphaerella graminicola*." New Phytologist 177(1): 229-238.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shi, G., T. L. Friesen, J. Saini, S. S. Xu, J. B. Rasmussen and J. D. Faris (2015). "The wheat *Snn7* gene confers susceptibility on recognition of the *Parastagonospora nodorum* necrotrophic effector *SnTox7*." The Plant Genome 8(2): plantgenome2015.2002.0007.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Solomon, P. S., R. G. T. Lowe, K.-C. Tan, O. D. C. Waters and R. P. Oliver (2006). "Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat." Molecular Plant Pathology 7(3): 147-156.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sommerhalder, R. J., B. A. McDonald and J. Zhan (2006). "The frequencies and spatial distribution of mating types in *Stagonospora nodorum* are consistent with recurring sexual reproduction." Phytopathology 96(3): 234-239.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sperschneider, J., A.-M. Catanzariti, K. DeBoer, B. Petre, D. M. Gardiner, K. B. Singh, P. N. Dodds and J. M. Taylor (2017). "LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell." Scientific reports 7(1): 1-14.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sperschneider, J., P. N. Dodds, D. M. Gardiner, K. B. Singh and J. M. Taylor (2018). "Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0." *Molecular plant pathology* 19(9): 2094-2110.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sperschneider, J., P. N. Dodds, K. B. Singh and J. M. Taylor (2018). "ApoplastP: prediction of effectors and plant proteins in the apoplast using machine learning." *New Phytologist* 217(4): 1764-1778.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sperschneider, J., D. M. Gardiner, P. N. Dodds, F. Tini, L. Covarelli, K. B. Singh, J. M. Manners and J. M. Taylor (2016). "EffectorP: predicting fungal effector proteins from secretomes using machine learning." *New Phytologist* 210(2): 743-761.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sperschneider, J., D. M. Gardiner, L. F. Thatcher, R. Lyons, K. B. Singh, J. M. Manners and J. M. Taylor (2015). "Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity." *Genome Biology and Evolution* 7(6): 1613-1627.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Standage, D. S. and V. P. Brendel (2012). "ParsEval: parallel comparison and analysis of gene structure annotations." *BMC Bioinformatics* 13(1): 187.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Stanke, M., M. Diekhans, R. Baertsch and D. Haussler (2008). "Using native and syntetically mapped cDNA alignments to improve de novo gene finding." *Bioinformatics* 24(5): 637-644.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Steinbiss, S., U. Willhöft, G. Gremme and S. Kurtz (2009). "Fine-grained annotation and classification of de novo predicted LTR retrotransposons." *Nucleic Acids Research* 37(21): 7002-7013.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Steinegger, M. and J. Söding (2017). "MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets." *Nature Biotechnology* 35(11): 1026-1028.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Stergiopoulos, I., Y. A Kourmpetis, J. C. Slot, F. T. Bakker, P. J. De Wit and A Rokas (2012). "In silico characterization and molecular evolutionary analysis of a novel superfamily of fungal effector proteins." *Molecular Biology and Evolution* 29(11): 3371-3384.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Stukenbrock, E. H., S. Banke and B. A. McDonald (2006). "Global migration patterns in the fungal wheat pathogen *Phaeosphaeria nodorum*." *Mol Ecol* 15(10): 2895-2904.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Syme, R. A., K.-C. Tan, J. K. Hane, K. Dodhia, T. Stoll, M. Hastie, E. Furuki, S. R. Ellwood, A. H. Williams, Y.-F. Tan, A. C. Testa, J. J. Gorman and R. P. Oliver (2016). "Comprehensive Annotation of the *Parastagonospora nodorum* Reference Genome Using Next-Generation Genomics, Transcriptomics and Proteogenomics." *PLOS ONE* 11(2): e0147221.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Syme, R. A., K.-C. Tan, K. Rybak, T. L. Friesen, B. A. McDonald, R. P. Oliver and J. K. Hane (2018). "Pan-*Parastagonospora* Comparative Genome Analysis-Effector Prediction and Genome Evolution." *Genome Biology and Evolution* 10(9): 2443-2457.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tan, K.-C., R. P. Oliver, P. S. Solomon and C. S. Moffat (2010). "Proteinaceous necrotrophic effectors in fungal virulence." *Functional Plant Biology* 37(10): 907-912.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tan, K.-C., O. D. Waters, K. Rybak, E. Antoni, E. Furuki and R. P. Oliver (2014). "Sensitivity to three *Parastagonospora nodorum* necrotrophic effectors in current Australian wheat cultivars and the presence of further fungal effectors." *Crop and Pasture Science* 65(2): 150-158.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Team, R. C. (2013). "R: A language and environment for statistical computing."

Testa, A. C., J. K. Hane, S. R. Ellwood and R. P. Oliver (2015). "CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts." *BMC Genomics* 16(1): 170.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Testa, A. C., R. P. Oliver and J. K. Hane (2016). "OcculterCut: a comprehensive survey of AT-rich regions in fungal genomes." *Genome biology and evolution* 8(6): 2044-2064.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Thioulouse, J., D. Chessel, S. Dole and J.-M. Olivier (1997). "ADE-4: a multivariate analysis and graphical display software." *Statistics and computing* 7(1): 75-83.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Thrall, P. H., L. G. Barrett, P. N. Dodds and J. J. Burdon (2016). "Epidemiological and Evolutionary Outcomes in Gene-for-Gene and Matching Allele Models." *Frontiers in Plant Science* 6.

Trainor, G., C. Zaicou-Kunesch, J. Curry, B. Shackley and D. Nicol (2018). *2019 Wheat variety sowing guide for Western Australia, Department of Primary Industries and Regional Development*.

Urban, M., A. Cuzick, J. Seager, V. Wood, K. Rutherford, S. Y. Venkatesh, N. De Silva, M. C. Martinez, H. Pedro and A. D. Yates (2020). "PHI-base: the pathogen–host interactions database." *Nucleic acids research* 48(D1): D613-D620.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt and S. Contributors (2020). "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python." *Nature Methods* 17: 261-272.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Veeshouwers, V. G. A. A and R. P. Oliver (2014). "Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens." *Molecular Plant-Microbe Interactions* 27(3): 196-206.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Voigt, C. A, W. Schäfer and S. Salomon (2005). "A secreted lipase of *Fusarium graminearum* is a virulence factor required for infection of cereals." *The Plant Journal* 42(3): 364-375.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang, Y., J. Wu, S. G. Kim, K. Tsuda, R. Gupta, S.-Y. Park, S. T. Kim and K. Y. Kang (2016). "Magnaporthe oryzae-Secreted Protein MSP1 Induces Cell Death and Elicits Defense Responses in Rice." *Molecular Plant-Microbe Interactions* 29(4): 299-312.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Waterhouse, R. M., M. Seppey, F. A. Simão, M. Manni, P. Ioannidis, G. Klioutchnikov, E. V. Kriventseva and E. M. Zdobnov (2018). "BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics." *Molecular Biology and Evolution* 35(3): 543-548.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*, Springer-Verlag New York.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wood, D. E., J. Lu and B. Langmead (2019). "Improved metagenomic analysis with Kraken 2." *Genome Biology* 20(1): 257.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wood, D. E. and S. L. Salzberg (2014). "Kraken: ultrafast metagenomic sequence classification using exact alignments." *Genome Biology* 15(3): R46.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wright, E. S. (2015). "DECIPHER: harnessing local sequence context to improve protein multiple sequence alignment." *BMC Bioinformatics* 16(1): 322.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wu, T. D. and C. K. Watanabe (2005). "GMAP: a genomic mapping and alignment program for mRNA and EST sequences." *Bioinformatics* 21(9): 1859-1875.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xin, Z and J. Chen (2012). "A high throughput DNA extraction method with high yield and quality." *Plant Methods* 8(1): 26.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu, G., X. Zhong, Y. Shi, Z. Liu, N. Jiang, J. Liu, B. Ding, Z. Li, H. Kang and Y. Ning (2020). "A fungal effector targets a heat shock–dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity." *Science advances* 6(48): eabb7719.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu, Y., Y. Zhang, J. Zhu, Y. Sun, B. Guo, F. Liu, J. Huang, H. Wang, S. Dong and Y. Wang (2021). "Phytophthora sojae apoplastic effector AEP1 mediates sugar uptake by mutarotation of extracellular aldose and is recognized as a MAMP." *Plant Physiology*.

Yin, Y., X. Mao, J. Yang, X. Chen, F. Mao and Y. Xu (2012). "dbCAN: a web resource for automated carbohydrate-active enzyme annotation." *Nucleic acids research* 40(W1): W445-W451.

Yoshino, K., H. Irieda, F. Sugimoto, H. Yoshioka, T. Okuno and Y. Takano (2012). "Cell Death of Nicotiana benthamiana Is Induced by Secreted Protein NIS1 of *Colletotrichum orbiculare* and Is Suppressed by a Homologue of CgDN3." *Molecular Plant-Microbe Interactions* 25(5): 625-636.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yu, G., D. K. Smith, H. Zhu, Y. Guan and T. T. Y. Lam (2017). "ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data." *Methods in Ecology and Evolution* 8(1): 28-36.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, Y., K. Xu, D. Yu, Z. Liu, C. Peng, X. Li, J. Zhang, Y. Dong, Y. Zhang, P. Tian, T. Guo and C. Li (2019). "The Highly Conserved Barley Powdery Mildew Effector BEC1019 Confers Susceptibility to Biotrophic and Necrotrophic Pathogens in Wheat." International Journal of Molecular Sciences 20(18): 4376.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, Z., T. L. Friesen, S. S. Xu, G. Shi, Z. Liu, J. B. Rasmussen and J. D. Faris (2011). "Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum." The Plant Journal 65(1): 27-38.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)