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Abstract

Background.:

Several human B-cell subpopulations are recognized in the peripheral blood, which play
distinct roles in the humoral immune response. These cells undergo developmental and
maturational changes involving VDJ recombination, somatic hypermutation and class switch
recombination, altogether shaping their immunoglobulin heavy chain (IgH) repertoire.
Methods:

Here, we sequenced the IgH repertoire of naive, marginal zone, switched and plasma cells
from 10 healthy adults along with matched unsorted and in silico separated CD19" bulk B
cells. We used advanced bioinformatic analysis and machine learning to thoroughly examine
and compare these repertoires.

Results:

We show that sorted B cell subpopulations are characterised by distinct repertoire
characteristics on both the individual sequence and the repertoire level. Sorted subpopulations
shared similar repertoire characteristics with their corresponding in silico separated subsets.
Furthermore, certain IgH repertoire characteristics correlated with the position of the constant
region on the IgH locus.

Conclusion:

Overall, this study provides unprecedented insight over mechanisms of B cell repertoire
control in peripherally circulating B cell subpopulations.
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Introduction

B-cell development starts in the bone marrow where immature B cells must assemble and
express on their surface a functional but non-self-reactive B cell antigen receptor (BCR).! The
generation of the heavy and light chain of the BCR is mediated by the random and imprecise
process of V(D)J recombination.? Further development of B cells occurs in the periphery in
response to stimulation with the process of somatic hypermutation (SHM) through which point
mutations are introduced in the genes coding for the V(D)J part of the immunoglobulin heavy
(IgH) and light chain.?> Subsequently, B cells with a mutated BCR providing increased antigen
affinity are selected and show increased survival and proliferation capacity.*

Furthermore, class-switch recombination (CSR) modifies the IgH constant region resulting in
the generation of B cells with nine different immunoglobulin isotypes or isotype subclasses,
namely IgD, IgM, IgG1-4, IgA1/2 and IgE.> This process involves the replacement of the
proximal heavy chain constant gene by a more distal gene. Class switching is an essential
mechanism during humoral immune responses as the constant region of an antibody determines
its effector function.® Both direct switching and sequential switching upon a second round of
antigen exposure have been reported.””

Through developmental mechanisms and further differentiation in the periphery, several
phenotypically distinct circulating B cell subpopulations are generated.!” They include naive,
marginal zone (MZ), switched memory B cells and plasma cells (PC), which are mainly
characterized by their differential expression of surface markers and by playing distinct roles
in the adaptive immune response.'! High-throughput sequencing of the IgH repertoire (AIRR-
seq) has made it possible to improve our understanding of the different components of the
adaptive immune system in health and disease, and following vaccine challenge.'?>"'¢ Previous
studies using both high- and low-throughput sequencing techniques have already reported
important differences between B-cell subpopulations affecting their IgH repertoire
composition, VDJ gene usage, mutations and clonality.!'72°

Recent AIRR-seq workflows allow coverage of a sufficient part of the I[gH constant region in
addition to the VDJ region, making it possible to assign antibody classes and subclasses on an
individual sequence level. It is common practice to use unsorted bulk B cells from peripheral
blood as a starting material and use the constant region information combined with the degree
of SHM to group transcripts in silico into different B cell populations.?’*? Using isotype-
resolved IgH sequencing of bulk B cells, isotype subclasses have been found to show
differences in their repertoire characteristics.>>** However, it remains unknown how the IgH
repertoire of bioinformatically separated transcripts originating from bulk-sequenced B cells
compares to the repertoire of their corresponding circulating B cell subpopulations. It is also
unknown how IgH sequences with the same constant region originating from different cell types
compare.

Here, we used an established AIRR-seq workflow that captures the diversity of the variable IgH
genes together with the isotype subclass usage to study in detail the repertoire of CD19" bulk
B cells as well as flow cytometry sorted naive, MZ, switched and plasma cells from 10 healthy
adults. We applied advanced statistical methods and machine learning algorithms to combine
several repertoire metrics and characterize the different B cell subpopulations. We show that
transcripts from physically sorted B cell subpopulations share similar characteristics with their
corresponding subsets in the bulk that were grouped in silico using isotype subclass information
and number of mutations. We further demonstrate that sequences with the same isotype
subclass originating from different cell types are closely related, suggesting the presence of
isotype-specific rather than cell-type specific signatures in the IgH repertoire. We finally
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82  correlate these signatures to the isotype subclass positioning on the locus and find that

83  downstream subclasses exhibit enhanced signs of maturity, overall providing new insights into

84  the selection and the peripheral differentiation of distinct B cell subpopulations.

85

86  Results

87

88  Physically sorted B cell subpopulations and their corresponding subsets in the bulk share

89  similar repertoire characteristics

90 We compared IgH repertoire characteristics between the following B cell subpopulations:

91  Bnaive, Bmz, Brc Mp, Brc ag, and Bswiched and their corresponding subsets that we obtained in

92 silico from Bpuik: Bbulk_naive, Boulk_MD, and Buouik_switched. We 1dentified three separate clusters: one

93  made of predominantly Bmz, Bouk mp and Bpc wmp; another with only Braive and Bouik_naive; and a

94 third cluster with predominantly Bouik_switched, Brc_ac and Bswitched (Figure 14) by combining all

95  repertoire characteristics in a PCA and applying k-means clustering. To test whether this

96 clustering pattern was driven by VJ gene usage, CDR3 physiochemical properties or the general

97  repertoire metrics, we analysed these variables separately. Using V family and J gene usage,

98  there was a clear separation between naive and memory cells mostly driven by differences in

99  V1/3 and J4/6 usage (Supplementary figure I). However, no separation between Bmz/Bpc mp/
100 Bpouk mp and Bswitched/Brc AG/Bbulk_switched Was observed (Figure 1B). The CDR3 physiochemical
101  properties alone created similar clusters as when combined together with the other metrics
102 (Figure 1C). This separation was mostly driven by a lower basic and a higher aromatic content
103 in addition to a higher gravy index and a lower polarity in Bnaive/Bobuik_naive compared to memory
104  subpopulations (Supplementary figure 2). Global repertoire metrics also created a clear
105  separation between Bnaive/Bbulk naive, Bswitched/Brc_AG/Bbulk_switched and Bmz/Bpc_mp/Bbuik mp
106  subpopulations mostly driven by higher mutation counts, NP length and selection pressure in
107  the CDR and lower junction length and diversity in Bswitched compared to Bnaive (Supplementary
108  figure 3).
109  In summary, we found that V family and J gene usage, the physiochemical properties of the
110  CDR3, and global repertoire metrics similarly distinguish between B cell subpopulations: Bhaive,
111 Bwmz/Brc Mp and Bswitched/Brc Ac were divergent but shared properties with their relative
112 corresponding subsets in the bulk.
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Figure 1: Different repertoire characteristics similarly separate between B cells
subpopulations. PCA (left) and composition of the clusters formed using k-means clustering
with k=3 (right) applied on A) all repertoire characteristics, B) V family and J gene usage, C)
physiochemical properties of CDR3 junction, D) global repertoire metrics. The percentage of
all variation in the data that is explained by PC1 and PC2 is shown on the x and y axis
respectively between brackets. In the PCA plots, areas are the convex hulls of the subsets and
the largest point of one color represents the center of that hull.
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121 Accurate prediction of cell type based on repertoire features on a single-cell level

122 We constructed a sequence classifier that predicts the cell type of a sequence using sequence
123 attributes and different repertoire metrics. Since we subsampled our data making our datasets
124 perfectly balanced, we used only accuracy as a performance metric. Logistic regression,
125  decision tree and random forest classifiers all performed satisfactorily (Figure 24). However,
126  logistic regression performed poorly on correctly classifying Bswitched and Bpc ac, for which
127  accuracy was almost equal to chance. The performance of all three classifiers was highest in
128  distinguishing between Bnaive and other cell types.

129 The random forest classifier was the most successful compared to the other two and the most
130 accurate in predicting the cell type of a sequence. We assessed the relevance of specific
131  predictors in properly classifying cell types by calculating feature importance scores for each
132 cell pair (Figure 2B). The number of mutations was the highest scoring feature for all cell pairs
133 except for distinguishing between Bswitched and Bpc ac and between Bmz and Bpc mp for which
134 CDR3 amino acid characteristics had higher scores. Within the CDR3 physiochemical
135  properties, average bulkiness, average polarity and the gravy hydrophobicity index were the
136  most differentiating between cell types whereas the basic and acidic content of the CDR3 chain
137  seemed to be less important. R/S ratio in CDR and FWR and the junction length appeared to
138  have similar scores and were more important in cases where Braive Were not one of the two cell
139 types. V family and J gene appeared to have low importance in distinguishing between all cell
140  pairs.

141

142
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144 Figure 2: Classification accuracies and feature scores on a single-sequence level. A)

145  Heatmap showing pairwise classification accuracy results using logistic regression, decision
146  tree and random forest classifier. B) Random forest feature scores by cell pair.

147

148  Within class switched subsets, sequences with same constant region from different cell
149  types show similar features.

150  When comparing class-switched transcripts originating from Byuik_switched, Bswitched, and Bpc_aa,
151  1isotype subclasses were similarly distributed: IgAl was the dominant subclass in IgA
152 transcripts whereas IgA2 was less frequently used. All cells showed a dominant use of IgG1
153  and IgG2 with little [gG3 and negligible IgG4 (Figure 34). Usage of [gA1 in Bpc_aG was similar
154  to Bswitched and Bpuik_switched (p=0.28 and p=0.25, Kruskal-Wallis). [gG3 usage was significantly
155  lower in Bpc ag compared to Bouik_switched and Bswitched (p=0.01, p=0.01, Kruskal-Wallis) while
156  IgG1 usage tended to be lower (p=0.13 and p=0.11, Kruskal-Wallis) and IgG2 usage higher in
157  Bpc ac compared to the other two B cell subpopulations (p=0.11 and p=0.11, Kruskal-Wallis).
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158  When combining repertoire characteristics by isotype subclass and cell type for class-switched
159  transcripts resulting from Buuk_switched, Bswitched and Bpc_ac, we found that samples with the same
160  constant region originating from different cell types overlapped. (Figure 3B) We identified two
161  clusters: one mainly composed of IgG1 and IgG3 samples from all cell types and another with
162 IgAl,IgA2 and IgG2 samples by applying k-means clustering with k=2 (Figure 3C). By further
163  dividing the data and with increasing k, we observed that newly formed clusters were mainly
164  composed of distinct isotype subclasses, while the cell type itself was not a defining factor for
165  cluster formation. Interestingly, we couldn’t see a clear separation between 1gG2 and IgA2
166  samples with increasing number of clusters.
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170  Figure 3: Analysis of isotype subclasses in IgG and IgA transcripts. A) Isotype subclass
171  distribution by cell type. Error bars represent the standard error of the mean. B) PCA on all
172 repertoire properties combined by cell type and isotype subclass. Areas are the convex hulls of
173 a group and the largest point of one color represents the center of that hull. C) Composition of
174 the clusters formed by applying the k-means clustering algorithm on all data with increasing k
175  from k=2 to k=5

176

177 B cell repertoire metrics correlate with constant region positioning on the IgH locus.

178  The IgH locus contains 9 constant genes: the genes encoding for IgM and IgD are the closest
179  to the V-D-J recombination sites while those for IgG3, IgG1 and IgAT1 are further downstream
180  but still close to IgM/IgD whereas more distant on the locus are the genes that encode for 1gG2,
181  IgG4, IgE and IgA2 (Figure 44). We determined and compared B cell repertoire metrics
182  between different subclasses in Bpc and Bswitched and compared those to Bnaive and Bumz. Bhaive
183  showed the lowest number of mutations and R/S ratio and longest CDR3 junction. Memory
184  subsets had a high number of mutations, with Bmz and Bpc mp having fewer mutations than
185  class switched transcripts (Figure 4B). IgM-distal subclasses 1gG2 and IgA2 in both Bswitched
186  and Bpc ac showed the highest R/S ratio indicating high selection pressure (Figure 4C). All
187  antigen-experienced subsets had a lower junction length compared to Braive except for IgM-
188  proximal transcripts 1gG3 and IgG1 (Figure 4E). The proportion of IGHV4-34, the gene
189  associated with self-reactivity?, was lower in memory subsets compared to Bnaive €xcept for
190  IgG3 from Bgwitched for which the proportion of IGHV4-34 was similar to naive subsets (Figure
191  4F). Within IgG and IgA sequences, genomic distance from IgM correlated with a higher R/S
192 ratio, shorter junction and lower usage of IGHV4-34. Bpc had a significantly lower diversity
193 compared to all other cell types (Figure 4G). Interestingly, transcripts from Bswitched Showed a
194  similar diversity to Bnaive Wwhereas Bmz were less diverse. Within Bpc ag, [gM-distal subclasses
195  showed a lower diversity.

196  IGHYV family and IGHJ gene usage also showed a discrepancy between different subsets: IGHV
197  family usage in IgM-proximal subclasses 1gG3 and IgG1 was similar to Byaive. Bmz and IgM-
198  distal subclasses were enriched in IGHJ4 at the expense of IGHJ6 compared to naive cells and
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IgG1-3 B-cell subsets (Supplementary figure 4). To reduce the dimensionality of all data points
into a single one-dimensional axis, we performed LDA fitted on the relative gene frequencies
(Figure 4H). This showed a clear distinction between Bhaive, [gG1-3 and Bmz, [gG2 and IgA1-
2. An LDA fitted on the physiochemical properties of the CDR3 junction also showed a clear
distinction between naive and memory subsets, with IgG3 and IgG1 being closest to Bnaive and
IgG2 and IgA2 overlapping and furthest away (Figure 41).

In summary, we found that different B cell repertoire metrics correlate with the positioning of
their respective subclass genes on the IgH locus, namely with the increasing genomic distance
from IgM, with the proximal IgH subclasses being more similar to naive.
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211  Figure 4: Analysis of repertoire metrics by isotype subclass and cell type. A) Overview of
212 the IgH constant region locus. Comparison of A) mutation counts, B) R/S ratio, C) selection
213 pressure, D) junction length, F) proportion of IGHV4-34 and G) diversity between different B
214 cell subpopulations. LDA fitted on H) V family and J gene usage and I) CDR3 amino acid
215  physiochemical properties.
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216  Discussion

217

218  Here, we used AIRR-seq to characterize similarities and differences in the IgH repertoire of
219  bulk B cells and different sorted naive and memory B cell populations. This allowed for an in-
220  depth understanding of the mechanisms underlying B-cell responses. We report differences in
221 'V family and J gene usage, CDR3 physiochemical properties and global repertoire
222 characteristics that similarly distinguish between naive, IgM/IgD memory and class switched
223 subsets both at the repertoire and at the sequence level. Furthermore, we show differences in
224 the repertoire characteristics at the isotype subclass level unrelated to cell type that correlate
225  with the position of the constant gene on the IgH locus. This study provides powerful insight
226  on biological mechanisms underlying the B cell response as well as novel understanding of
227  AIRR-seq methodologies to be taken into account in future studies.

228

229  Previous work involving human naive and antigen-experienced B cell repertoires have shown
230  naive B cells to have shorter junctions and higher usage of IGHJ6 and IGHV3, and lower usage
231  of IGHJ4 and IGHV1 compared with IgM memory and switched B cells.**=7 Differences in
232 gene usage and CDR3 properties between IgM memory and switched B cells have also been
233 reported.?’ IgM memory and switched B cells have been found to use more negatively charged
234 residues and to have less hydrophobic junctions compared with naive B cells.'®?° Here, we
235  focused on a more detailed examination of the repertoires by combining multiple characteristics
236  using dimensionality reduction methods. Results of a previous study revealed that combining
237 only a few repertoire characteristics is sufficient to discriminate between B cell
238  subpopulations.'® In addition, an LDA combining V gene family proportions has been found to
239  successfully distinguish between IgM and IgG repertoires.*® We extend these findings by
240  showing that using V family and J gene usage, CDR3 physiochemical properties or global
241  repertoire characteristics similarly allow to separate between naive and memory
242 subpopulations. This suggests that distinct B cell subpopulations derive from different
243 developmental mechanisms and are subject to selective processes that lead to similar variable
244 gene identity. This can also reflect that different types of B cells are stimulated by different
245  types of antigens and therefore have distinctive junction compositions and properties.

246

247  Previous research has demonstrated that same B cell subpopulations from different donors are
248  more similar in their repertoire characteristics than different B cell subpopulations within an
249  individual 3*#° This has led to the understanding that differences between naive and memory
250  cells are conserved across unrelated individuals. Our findings are in agreement with these
251  observations, and we extend on those by showing that the main defining factor in repertoire
252 similarity is the constant region type, namely the isotype subclass, and that differences between
253  subclasses are conserved across both cell type and individual. This finding suggests the
254  existence of an isotype-based mechanism for repertoire control that is constant across cell types
255  and individuals.

256

257  In addition to the comparative analysis of the different peripheral B cell subsets, our study
258  represents, to our knowledge, the first comparison of bulk B cell sequencing with sorted B cell
259  subpopulations. We showed that sequencing unsorted B cells from peripheral blood and
260  combining the constant region information with the degree of SHM to bioinformatically group
261  transcripts yields accurate results comparable to physical sorting, especially when analysing
262  global repertoire characteristics. We acknowledge that this might be limiting in tasks sensitive
263  to potential biases from different RNA levels per cell such as identifying antigen-specific
264  sequences from plasma cells.

265
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266  Recent IgH repertoire studies have moved towards using machine learning and artificial
267 intelligence in contrast to traditional statistical approaches for goals including vaccine design,
268  immunodiagnostics and antibody discovery.*'=* Previous work has focused on representing
269  repertoires as sequence or subsequence-based features, i.e. overlapping amino acid k-mers and
270  their Atchley biophysiochemical properties.*!*> Here, we report a simple pairwise classifier
271  thatsuccessfully predicts the cell type of a sequence based on only the commonly used sequence
272 attributes such as number of mutations and junction length. Random forest and decision tree
273  classifiers outperformed the logistic regression algorithm suggesting a non-linear separation
274  between cell types. A common concern when applying machine learning is the possibility of
275  over-fitting. To prevent this, we trained the algorithm on 80% of the data and tested its
276  performance on the remaining unseen 20%. We also subsampled every pair of classes to equal
277  number of sequences in order to balance the dataset. The model presented here is applied only
278  within an individual and is thereby confined by repertoire signals that might be individual-
279  specific. More work improving the generalisability of the model across individuals would be
280  revolutionizing in terms of its potential practical applications. Unsurprisingly, the number of
281  mutations was the most important feature in distinguishing between cell types. These results
282  along with previous work are promising and suggest that increasing the predictive potential of
283  machine learning methods could help in finding sequence characteristics that distinguish
284  between groups, such as disease state and healthy.

285

286  Studies indicate that both direct and sequential CSR to IgM distal isotype subclasses can
287  occur.*>4¢ Several studies have provided evidence for sequential CSR. IgM was found to
288  commonly switch to proximal subclasses (IgG1, IgA1, and IgG2), but direct switches from IgM
289  to more downstream subclasses (IgG4, IgE, or IgA2) were rare.” It has also been reported that
290  adeficiency in IgG3, the most IgM-proximal subclass, frequently results in a decrease in other
291  IgG subclasses.*” Although it is challenging to determine whether sequential CSR occurs during
292  aprimary response, by re-entry into the germinal center, or during a secondary response to the
293  same antigen, we and others have shown that [gM-distal subclasses accumulate with age, likely
294  due to secondary encounter with antigen.?>*® Studies comparing the mean mutation number
295  between isotype subclasses have shown contradicting results: in one study, mutations varied in
296  relation to the constant region position on the IgH locus, with the closest to [gM (IgG3) having
297  the lowest mutations,?® while in another study, no such difference was observed.?* We didn’t
298  find a difference in number of mutations among IgG subclasses. Our findings rather suggest
299  that mutation is more efficient in more downstream subclasses as we found that these exhibit
300  higher R/S ratios and selection pressure in the CDR, consistent with previous studies.*’
301  Generally, IgM distal subclasses showed signs of maturity (shorter junctions, lower IGHV4-34
302  usage) while transcripts from IgM proximal subclasses were more similar to those of naive B
303  cells. These results suggest that sequential CSR subjects B cells to selective forces leading to
304 more mature variable gene properties without necessarily accumulating more mutations.

305

306 In summary, in this study we took an extensive look at the IgH repertoire of different flow
307 cytometry sorted as well as bioinformatically grouped cell types and isotype subclasses of
308  healthy individuals. Using advanced bioinformatic tools, statistical analysis and machine
309 learning, this analysis provides deep insight into the different mechanisms of B cell
310  development and boosts our understanding of the B cell system components in health.

311

312

12


https://doi.org/10.1101/2021.09.01.458522
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.01.458522; this version posted September 5, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

313  Material and methods

314

315 1. Sample collection and cell sorting

316  Buffy coat samples were obtained from 10 anonymous healthy adults, hence no approval from
317  the local ethics committee was necessary. B cells were first isolated by magnetic cell sorting
318  using the human CD19 MicroBeads (Miltenyi Biotec, San Diego, CA) and the AutoMACS
319  magnetic cell separator. From 9 out of the 10 samples, 3x10%bulk CD19" B cells (Bbuix) were
320 lysed and stored at -80C. The remaining cells were sorted by flow cytometry into 4
321  subpopulations using cell surface markers characteristic for naive (Bnaive), marginal zone (Bmz),
322 plasma cells (Bpc), and switched memory B cells (Bswitched). Cells were then lysed and stored at
323  -80C. Surface markers, demographics, number of cells and purity of each sample are outlined
324 in supplementary table 1.

325

326 2. RNA extraction and library preparation

327  RNA extraction was performed on the lysate using the RNeasy Mini Kit (Qiagen, Hilden,
328  Germany). Libraries were prepared as previously described.?? Briefly, two reverse transcription
329  (RT) reactions were carried out for each RNA sample resulting from Bpuik or Bpc: one with
330  equal concentrations of IgM and IgD specific primers and another with IgA, 1gG, and IgE
331  specific primers. Only one RT reaction with IgM and IgD specific primers was performed on
332 Bumaive and Bmz samples; similarly, we applied one RT reaction with IgA, IgG and IgE primers
333 on samples obtained from Bgwitched. IgH ¢cDNA rearrangements were then amplified in a two-
334 round multiplex PCR using a mix of IGHV region forward primers and Illumina adapter
335  primers, followed by gel extraction for purification and size selection. The final concentration
336  of PCR products was measured using Qubit prior to library preparation and combined with a
337  total of 12 equally concentrated samples. Final libraries barcoded with individual 17 and 15
338  adapters were sequenced in each run on the [llumina MiSeq platform (2x300bp protocol).

339

340 3. Data preprocessing

341  Preprocessing of raw sequences was carried out using the Immcantation toolkit and as per
342 Ghraichy et al 2020.2%25:26 Briefly, samples were demultiplexed based on their Illumina tags. A
343 quality filter was applied, paired reads were joined and then collapsed according to their unique
344  molecular identifier (UMI). Identical reads with different UMI were further collapsed resulting
345  ina dataset of unique sequences. VDJ gene assignment was carried out using IgBlast.?” Isotype
346  subclass annotation was carried out by mapping constant regions to germline sequences using
347  stampy.?® The number and type of V gene mutations was determined as the number of
348 mismatches with the germline sequence using the R package shazam.?® The R package
349  alakazam was also used to calculate the physicochemical properties of the CDR3 amino acid
350  sequences.?® Selection pressure was calculated using BASELINe and the statistical framework
351  used to test for selection was CDR_R/(CDR_R + CDR_S)%.

352

353 4. Insilico grouping of sequences

354  For Bouik samples, we used the constant region information combined with the mutation counts
355  to classify individual sequences into different subsets: IgD and IgM sequences with up to 2 nt
356  mutations across the entire V gene were considered “unmutated” (Bpuik naive) to account for
357 remaining PCR and sequencing bias. The remaining mutated IgD and IgM sequences were
358  labelled as IgD/IgM memory (Bvuik mp). All class-switched sequences were defined as antigen-
359  experienced regardless of their V gene mutation count (Bouik switched). We split the sequences
360 originating from Bpc into two categories: IgM/IgD Bpc (Brc mp) and switched 1gG/IgA PCs
361  (Brc_ac) according to the constant region of the sequences.

362

363
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364 5. Summarising repertoire characteristics

365 'V family and J gene usage was calculated in proportions for each individual and cell type. We
366  summarised the mean of the following CDR3 physiochemical characteristics: hydrophobicity,
367  bulkiness, polarity, normalized aliphatic index, normalized net charge, acidic side chain residue
368  content, basic side chain residue content, aromatic side chain content by individual and cell
369  type.

370  Mean junction length, number of mutations, and numbers of non-template (N) and palindromic
371 (P) nucleotide added at the junction were calculated by individual and cell type. Selection
372  pressure was summarised separately in complementarity-determining region (CDR) and
373  framework region (FWR). Diversity was calculated as the proportion of unique junctions out
374  of total transcripts. The preceding characteristics are referred to as global repertoire metrics.
375

376 6. Dimensionality reduction and clustering

377  Principal component analysis (PCA) and k-means clustering were applied to the different
378  repertoire characteristics to explore and find associations in the data. They were applied using
379  the internal R functions prcomp() and kmeans().*° Linear discriminant analysis (LDA) was
380  performed using the R function Ida() from the package MASS?'.

381

382 7. Sequence classifier

383  We constructed the sequence classifier using the sklearn package in python?. Because we have
384  the constant region information and to avoid error accumulation, we performed a pairwise
385  classification thereby transforming the multiclass problem into a binary classification. Within
386  every participant and for every pair of cells, we subsampled to the lower sequence number to
387 avoid bias and dataset imbalance. We used the number of mutations, the physiochemical
388  properties, and the junction length as numerical input features. The V gene family and J gene
389  were one-hot encoded. In the case where the naive cells were not one of the two classes, the
390 replacement/silent (R/S) mutation ratios in CDR and FWR were included as features. We split
391  the data into training and testing set using the default test size of 0.2. We used logistic
392 regression, decision tree, and random forest classifiers for prediction. The accuracy was
393  recorded to judge the overall performance of the models. For every pair of classes, the mean
394  accuracy of the 10 samples was calculated.

395

396 8. Data Availability

397 Raw data used in this study are available at the NCBI Sequencing Read Archive
398  (www.ncbi.nlm.nih.gov/sra) under BioProject number PRINA748239 including metadata
399  meeting MiIAIRR standards (32). The processed dataset is available in Zenodo
400  (https://doi.org/10.5281/zenodo.3585046) along with the protocol describing the exact
401  processing steps with the software tools and version numbers.

402

403
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531  Supplementary material

532

533 Supplementary table 1:
Participant ID Cells Age Sex B cell number | Purity
Co_C.081.1 BC | MZB 50 M 250000 93.6
Co C.081.1 BC | Naive 50 M 250000 96.7
Co_C.080.1 BC | MZB NA M 250000 NA
Co C.080.1 BC | Naive NA M 250000 NA
Co C.082.1 BC | Naive 40 M 250000 97.6
Co_C.083.1 BC | MZB 18 M 250000 82.9
Co C.083.1 BC | Naive 18 M 250000 98.2
Co_C.084.1 BC | MZB 36 F 250000 86.4
Co C.084.1 BC | Naive 36 F 250000 96.7
Co _C.081.1 BC | Swt 50 M 250000 98.8
Co_C.080.1 BC | Swt NA 250000 NA
Co_C.080.1 BC | PC NA 55000 NA
Co _C.081.1 BC | PC 50 M 1.00E+05 45.8
Co_C.082.1 BC | MZB 40 M 250000 81.5
Co_C.082.1 BC | Swt 40 M 250000 98.7
Co _C.082.1 BC | PC 40 M 19000 67.8
Co_C.083.1 BC | Swt 18 M 250000 99.2
Co _C.083.1 BC | PC 18 M 21000 32.8
Co_C.081.1 BC | CD19 50 M 5.00E+05 NA
Co_C.084.1 BC | Swt 36 F 250000 98.2
Co _C.084.1 BC | PC 36 F 15000 30.3
Co_C.084.1 BC | CD19 36 F 5.00E+05 NA
Co_C.085.1 BC | CD19 41 M 5.00E+05 NA
Co _C.085.1 BC | PC 41 M 21000 322
Co_C.085.1 BC | Swt 41 M 250000 97.5
Co C.085.1 BC | Naive 41 M 250000 98.9
Co_C.085.1 BC | MZB 41 M 250000 92.1
Co BC7 BC Naive 49 F 250000 93.6
Co BC8 BC MZB 59 F 250000 90.5
Co BC8 BC Naive 59 F 250000 95.2
Co BC9 BC MZB 44 F 250000 91.8
Co BC9 BC Naive 44 F 250000 99.2
Co BC10 BC MZB 51 F 250000 94.2
Co BC10 BC Naive 51 F 250000 96.2
Co BC7 BC CD19 49 F 5.00E+05 NA
Co BC7 BC Swt 49 F 250000 95.6
Co BC7 BC PC 49 F 14000 37
Co BC8 BC CD19 59 F 5.00E+05 NA
Co BC8 BC Swt 59 F 250000 973
Co BC8 BC PC 59 F 24000 68.2
Co BC9 BC CD19 44 F 5.00E+05 NA
Co BC9 BC Swt 44 F 250000 94.5
Co BC9 BC PC 44 F 22000 82.8
Co BC10 BC CD19 51 F 5.00E+05 NA
Co BC10 BC Swt 51 F 250000 99.1
Co BC10 BC PC 51 F 19000 60
Co_C.082.1 BC | CD19 40 M 5.00E+05 NA
Co BC7 BC MZB 49 F 250000 86.7
Co_C.083.1 BC | CD19 18 M 5.00E+05 NA
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536  Supplementary figure 1 A) V family and B) J gene usage by B cell subpopulation. Bar plots
537  indicate the proportion of sequences with a certain gene. Error bars represent the standard

538  error of the mean.
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541  Supplementary figure 2 : Comparison of CDR3 amino acid physiochemical properties in
542  different B cell subpopulations.
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544  Supplementary figure 3 : Comparison of global repertoire metrlcs in dlfferent B cell
545  subpopulations.
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548  Supplementary figure 4: A) V family and B) J gene usage in different B cell subpopulations
549  and isotype subclasses. Bar plots indicate the proportion of sequences with a certain gene. Error
550  bars represent the standard error of the mean.
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