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Abstract

A plethora of experimental studies have shown that long-term synaptic plasticity can
be expressed pre- or postsynaptically depending on a range of factors such as
developmental stage, synapse type, and activity patterns. The functional consequences
of this diversity are not clear, although it is understood that whereas postsynaptic
expression of plasticity predominantly affects synaptic response amplitude,
presynaptic expression alters both synaptic response amplitude and short-term
dynamics. In most models of neuronal learning, long-term synaptic plasticity is
implemented as changes in connective weights. The consideration of long-term
plasticity as a fixed change in amplitude corresponds more closely to post- than to
presynaptic expression, which means theoretical outcomes based on this choice of
implementation may have a postsynaptic bias. To explore the functional implications
of the diversity of expression of long-term synaptic plasticity, we adapted a model of
long-term plasticity, more specifically spike-timing-dependent plasticity (STDP), such
that it was expressed either independently pre- or postsynaptically, or in a mixture of
both ways. We compared pair-based standard STDP models and a biologically tuned
triplet STDP model, and investigated the outcomes in a minimal setting, using two
different learning schemes: in the first, inputs were triggered at different latencies, and
in the second a subset of inputs were temporally correlated. We found that
presynaptic changes adjusted the speed of learning, while postsynaptic expression was
more efficient at regulating spike timing and frequency. When combining both
expression loci, postsynaptic changes amplified the response range, while presynaptic
plasticity allowed control over postsynaptic firing rates, potentially providing a form of
activity homeostasis. Our findings highlight how the seemingly innocuous choice of
implementing synaptic plasticity by single weight modification may unwittingly
introduce a postsynaptic bias in modelling outcomes. We conclude that pre- and
postsynaptically expressed plasticity are not interchangeable, but enable
complimentary functions.
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Author summary

Differences between functional properties of pre- or postsynaptically expressed
long-term plasticity have not yet been explored in much detail. In this paper, we used
minimalist models of STDP with different expression loci, in search of fundamental
functional consequences. Biologically, presynaptic expression acts mostly on
neurotransmitter release, thereby altering short-term synaptic dynamics, whereas
postsynaptic expression affects mainly synaptic gain. We compared models where
plasticity was expressed only presynaptically or postsynaptically, or in both ways. We
found that postsynaptic plasticity had a bigger impact over response times, while both
pre- and postsynaptic plasticity were similarly capable of detecting correlated inputs.
A model with biologically tuned expression of plasticity also completed these tasks over
a range of frequencies. Also, postsynaptic spiking frequency was not directly affected
by presynaptic plasticity of short-term plasticity alone, however in combination with a
postsynaptic component, it helped restrain positive feedback, contributing to activity
homeostasis. In conclusion, expression locus may determine affinity for distinct coding
schemes while also contributing to keep activity within bounds. Our findings highlight
the importance of carefully implementing expression of plasticity in biological
modelling, since the locus of expression may affect functional outcomes in simulations.

Introduction 1

Learning and memory in the brain, as well as refinement of neuronal circuits and the 2

development of receptive fields, are widely attributed to long-term synaptic 3

plasticity [1]. While this notion is not yet formally experimentally proven [2], it has in 4

recent years received strong experimental support in several brain regions, in particular 5

the amygdala [3] and the cerebellum [4]. The notion that synaptic plasticity underlies 6

memory is typically attributed to Hebb [5], but it is in actuality an idea that extends 7

considerably farther back in time, e.g. to Ramon y Cajal and William James [6]. 8

After the discovery by Bliss and Lømo [7] of the electrophysiological counterpart of 9

Hebb’s postulate, now known as long-term potentiation (LTP), much effort has been 10

focused on establishing the induction and expression mechanisms of long-term 11

plasticity. In the 1990s, this led to a heated debate on the precise locus of expression 12

of LTP, with some arguing for postsynaptic expression, whereas others were in favour 13

of a presynaptic locus of LTP [8](Fig. 1A). Beginning in the early 2000’s, this 14

controversy was gradually resolved by the realisation that plasticity depends critically 15

on several factors, notably animal age, induction protocol, and precise brain 16

region [9–11]. Indeed, this resolution has now been developed to the point that it is 17

currently widely accepted that specific interneuron types have dramatically different 18

forms of long-term plasticity [12,13], meaning that long-term plasticity in fact depends 19

on the particular synapse type [14]. In retrospect, it is probably not all that surprising 20

that LTP in different circuits is expressed either pre- or postsynaptically, or both, 21

given the diversity of computational functions of different synapses [15]. Nevertheless, 22

the precise functional benefits of having LTP be expressed on one side of the synapse 23

or the other have remained quite poorly explored, with only a handful of classical 24

theoretical papers addressing this point [16–21]. 25

Going back several decades, a multitude of highly influential computer models of 26

neocortical learning and development have been proposed, some of them focusing on 27

aspects such as the dependence of induction on firing rates [22–24], while others have 28

emphasised the role of the relative millisecond timing of spikes in connected 29

cells [25–27], and some yet have included both [28]. Irrespective of whether timing, 30

rate, or other factors are used to determine the outcome of plasticity in theoretical 31
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models, it has virtually always been the case that – with a few notable 32

exceptions [18,19,21] – the expression of plasticity itself has been regarded as a simple 33

change in the magnitude of synaptic inputs between neurons of the network. As a 34

minimal description this is of course a perfectly reasonable approach, as it is a 35

parsimonious assumption that induction of long-term plasticity manifests itself in the 36

alteration of connectivity weights. 37

However, the expression of plasticity is not always well modelled by this sole 38

change of instantaneous magnitude. This is because presynaptically expressed 39

plasticity leads to changes in synaptic dynamics, whereas postsynaptic expression does 40

not (Fig.1B). For instance, during high-frequency bursting, as the readily releasable 41

pool of vesicles in a synaptic bouton runs out, leading to short-term depression of 42

synaptic efficacy [29], while at other synapse types short-term facilitation 43

dominates [30]. Such short-term plasticity is important from a functional point of view 44

because it acts as a filter of the information that is transmitted by a synapse [31–33]. 45

Short-term depressing connections are more likely to elicit postsynaptic spikes due to 46

brief non-sustained epochs of activity, whereas facilitating synapses require that 47

presynaptic activity be sustained for some period of time to elicit postsynaptic spikes. 48

In other words, short-term facilitating connections act as high-pass filtering burst 49

detectors [34, 35], while short-term depression provides low-pass filtering inputs more 50

suitable for correlation detection and automatic gain-control [36–38]. As a corollary, it 51

follows that presynaptic expression of plasticity may change the computational 52

properties of a given synaptic connection. In this case, increasing the probability of 53

release by the induction of LTP led to more prominent short-term depression due to 54

depletion of the readily-releasable pool depletion, and as a consequence to a bias 55

towards correlation detection at the expense of burst detection [39,40]. 56

Fig 1. The postsynaptic response to the same stimulus after plasticity
depends on the locus of expression. (A) Representation of pre- (red) and
postsynaptic (blue) sides of a synapse, with probability of vesicle release p, and
quantal amplitude q, i.e. the amplitude of postsynaptic response to a single vesicle.
(B) Example of the difference between pre- and postsynaptic expression at inputs onto
a cell. The identical initial response is illustrated in grey, while the potentiated
responses are coloured red or blue. The amplitude of the first response after learning
was set to be the same after pre- (red) and postsynaptic (blue) potentiation. With
postsynaptic potentiation, the gain was increased by the same amount for all
responses in the high-frequency burst. With presynaptic potentiation, however, the
efficacy of the response train was redistributed toward its beginning, enhancing the
first response but not the last.

Experimentally, it is long known that the induction of neocortical long-term 57

plasticity may alter short-term depression [16,41]. Although the functional 58

consequences of short-term plasticity itself are as outlined above quite well 59

described [39,42], the theoretical implications of changes in short-term plasticity due 60

to the induction of long-term plasticity are not well described. Yet, a majority of 61

theoretical studies of long-term plasticity assumes that synaptic amplitude but not 62
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synaptic dynamics are altered by synaptic learning rules. One of the motivations of 63

our present study is the observation that this seemingly innocuous assumption may 64

not be neutral, but may in effect introduce a bias, because changing synaptic weight in 65

theoretical models of long-term plasticity is equivalent to assuming that synaptic 66

plasticity is solely postsynaptically expressed. This begs the question: What are the 67

functional implications of pre- versus postsynaptically expressed long-term plasticity? 68

Providing answers to this central issue is important for understanding brain 69

functioning, as well as for knowing when weight-only changes in computer modelling is 70

warranted, and when it is not. 71

Here, we use computational modelling to explore and describe the consequences of 72

expressing plasticity pre- or postsynaptically in a single neuron under two simple 73

paradigms (Fig. 2). One paradigm explores the postsynaptic response in relation to a 74

repeated time-locked stimulus [26,43,44], while the other investigates the neuron’s 75

ability to detect a correlated stimulus [45–47]. Initially, we compare and contrast 76

relatively artificial scenarios, for which the locus of expression is either solely 77

presynaptic, solely postsynaptic, or equally divided between both sides. We then move 78

on to investigating the functional impact in a biologically realistic model with separate 79

pre- and postsynaptic components that were tuned to experimental data from 80

connections between neocortical layer-5 pyramidal cells [19]. We report that 81

presynaptically expressed plasticity adjust the speed of learning, while postsynaptic 82

expression is more efficient at regulating spike timing and frequency. We conclude that 83

pre- and postsynaptically expressed plasticity enable different complimentary 84

functions and are not equivalent. 85

Results 86

Postsynaptically expressed plasticity is readily implemented as a simple change in 87

synaptic gain, by adjusting the quantal amplitude, q. The impact of postsynaptic 88

expression is therefore relatively unambiguous, since it scales all postsynaptic 89

responses the same way. For example, in the case of repeated measures of presynaptic 90

stimulation, the standard deviation and the mean of synaptic responses scale the same, 91

so the coefficient of variation remains the same [48], which means synaptic noise levels 92

remain the same after postsynaptically expressed plasticity. 93

Presynaptic plasticity, however, has at least two different distinct types of impact 94

on a synapse. First, in the reliability of transmission due to stochastic vesicle release. 95

Assuming release is binomially distributed, increasing the probability of release, p, 96

increases the mean of synaptic responses while keeping the standard deviation roughly 97

the same, which means the coefficient of variation is decreased after presynaptic 98

LTP [48]. Second, increasing the probability of release depletes the pool o readily 99

releasable pool of vesicles more rapidly. Therefore, synaptic short-term dynamics are 100

necessarily changed by presynaptically expressed long-term plasticity, resulting in 101

functional differences. 102

To limit the scope of the study, we focus on early forms of plasticity for which we 103

have detailed experimental data [19]. We thus do not consider the possibility that the 104

number of release sites, n, may change, as it does in late, protein-synthesis dependent 105

forms of plasticity [49]. 106

To distinguish between the two distinct types of impact of presynaptic plasticity, 107

we model them separately. We start with presynaptic expression modelled as direct 108

changes in the probability of vesicle release and compare that to postsynaptic 109

expression. Subsequent to that, we model presynaptic expression as changes in 110

short-term plasticity and compare that postsynaptic expression. This way, we aim to 111

systematically tease apart any different contributions of the two distinct impacts of 112
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Fig 2. Two different STDP learning paradigms were explored. (A) Inputs
arriving with a gradient of early to late timings resulted in reduced latency of the
postsynaptic spiking response after STDP, as previously described [26]. In each trial,
the postsynaptic neuron repeatedly received a brief volley of stimuli, between which
short-term plasticity variables were allowed to return to their initial resting values.
Bottom, left: Each presynaptic spike (raster dots) arrived with a different delay in the
volley. Bottom, right: After a period of learning, the postsynaptic spiking response
(blue) was shortened and started earlier. The learning task is thus to reduce the
latency and to shorten the duration of the postsynaptic spiking response [26]. (B)
Correlated inputs were selectively potentiated by STDP, as previously described [45]:
The postsynaptic neuron received persistent stimulation, with half of the inputs
having correlated activity, while the rest were uncorrelated. Bottom, left: Raster plot
illustrating the correlated (corr) and uncorrelated (uncorr) input spiking. Bottom,
right: After learning, the postsynaptic spiking (blue raster at top) was more correlated
with the correlated inputs (pink histograms) than with the uncorrelated inputs (red
histograms), indicating that the former drove postsynaptic activity. The learning task
is thus to select for inputs that are correlated at the expense of those that are not [45].
In both paradigms, STDP is modelled with the same parameters, to permit
comparison (e.g. timing window τ = 20 ms, see Methods).

presynaptically expressed plasticity. 113

Presynaptic expression modelled as changes in stochastic release 114

For the first set of simulations, we considered the probability of release (pj) and the 115

quantal amplitude (qj), i.e. pre- and postsynaptic quantities, respectively. In each 116

simulation, plasticity was expressed exclusively presynaptically, exclusively 117

postsynaptically, or equally divided between both sides at connections onto a 118

single-compartment point neuron (see Methods). Here, changes in pj were explored in 119

terms of their impact on stochastic release. 120

In the latency paradigm, in which a volley of stimuli arrives at the postsynaptic 121

neuron with varying delays (Fig. 2A), plasticity resulted in the shortening of the time 122

to respond — the latency — of the postsynaptic neuron, as well as a temporal 123

sharpening of the response, with fewer spikes and shorter inter-spike intervals [26]. The 124

average latency reduction (Fig. 3A, B), as well as the overall distribution of synaptic 125

weights, decrease of postsynaptic activity duration and increase of postsynaptic firing 126

July 8, 2021 5/22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.09.01.458493doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458493
http://creativecommons.org/licenses/by/4.0/


Fig 3. Presynaptically expressed plasticity typically promoted faster
learning. (A-F) Simulations in the latency paradigm (see Fig. 2A). (A) Example
traces of the postsynaptic membrane potential before (grey) and after (black)
plasticity. Initial latency of response is marked by a green dashed line. (B)
STDP-mediated learning shortened postsynaptic latency to spike, as previously
shown [26]. The graphs here and below are colour-coded: only presynaptic plasticity
(red), only postsynaptic plasticity (blue), or both pre- and postsynaptic plasticity
(black) are implemented. Note how learning with presynaptic plasticity appears faster.
Inset: presynaptic plasticity was faster than postsynaptic plasticity alone (t-test,
p-value = 0.008). (C) Synaptic weight distribution after 150 trials, normalized and
sorted by the fixed presynaptic delay. (D, E) Postsynaptic response duration (i.e, the
interval between first and last spike in each trial) and the burst frequency did not
differ across different expression loci. (F) Time evolution of average synaptic weight
among early and late presynaptic inputs (i.e., input cells that spiked in the first or the
second half of the stimulus) show how post-only expression (blue) is relatively slower.
(G-I) Simulations in the correlation paradigm (see Fig. 2B). (G) Potentiation and
depression of the average synaptic weight among correlated inputs was relatively faster
in the presynaptic case. (H) However, for inputs with a very high correlation (c>0.9),
learning was faster with postsynaptic expression. This indicated that which form of
plasticity led to faster learning depended on the details of the input firing patterns.
(I) We explored this finding further in simulations where all inputs were correlated,
but half expressed plasticity presynaptically, and the other postsynaptically. The map
shows which side potentiated faster, indicating that postsynaptic expression (blue)
won out for a relatively small parameter space where input firing frequency was low
and and correlations quite high.

frequency (Figs. 3C, D, E) did not differ appreciably with the locus of plasticity. In 127

comparison to the purely postsynaptic case, simulations with presynaptic plasticity 128
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presented a smaller variance of the latency shift (Fig. 3B). Potentiation also developed 129

faster with presynaptic expression (Fig. 3F). This can be framed as a consequence of 130

potentiation requiring glutamate release [50], so that in a more reliable synapse, with 131

a high p value, there is a greater propensity for potentiation. Conversely, depression 132

was slower with presynaptically expressed plasticity, again because lowered probability 133

of release effectively also led to less plasticity (Fig. 3F). 134

Next, we explored the correlation paradigm, in which plasticity selectively 135

potentiates correlated inputs (Fig. 2A,B) ( [45]). Here, all plasticity implementations 136

detected the input correlations. However, presynaptically expressed plasticity 137

generally promoted faster learning, e.g. synaptic weights evolved more rapidly (Fig. 138

3G), similar to what we found above for the latency paradigm. However, there were 139

exceptions to this general observation — postsynaptic plasticity was faster for strongly 140

correlated input firing at certain input frequencies (Fig. 3H). 141

We wanted to explore this exception in more detail. One implication of the 142

presynaptic side potentiating faster than the postsynaptic side is that, in a scenario in 143

which there is competition due to e.g. limited resources, inputs with presynaptic 144

plasticity would be expected to overcome inputs with postsynaptic plasticity. To 145

explore this possibility, we ran simulations where all of inputs were correlated, but half 146

of them expressed plasticity only presynaptically, and the other half only 147

postsynaptically. Because of normalization, these two input populations competed, so 148

that one potentiated at the expense of the oher, which depressed. With this approach, 149

we systematically explored the correlation-frequency space. We found that 150

postsynaptic expression won for very highly correlated inputs for sufficiently low input 151

frequencies (Fig. 3I), a scenario that corresponds to fewer inputs spiking 152

synchronously. 153

Presynaptic expression modelled as changes in short-term 154

plasticity 155

We next explored the effects of altering short-term dynamics (see Methods). This adds 156

another aspect of presynaptically expressed plasticity, since short-term plasticity takes 157

into account the history of presynaptic activity. In this scenario, presynaptic changes 158

redistribute synaptic resources used over a limited time period, instead of bringing 159

about an average increase or decrease [16,41]. Even if the amplitude of an individual 160

EPSP were affected equally by pre- and by postsynaptically expressed plasticity, the 161

total input from a burst would still differ dramatically depending on the site of 162

expression (Fig. 1B). 163

In the simulations with the timed input configuration, results differed considerably 164

depending on the specific locus of plasticity in the latency configuration. Postsynaptic 165

expression alone provided the largest latency reduction, and also achieved it faster 166

than the other plasticity implementations (Fig. 4A, B). The results of presynaptic 167

expression were also more subtle compared to the mixed setting with both pre- and 168

postsynaptic expression, for which results may vary between extremes according to the 169

ratio of pre- and postsynaptic expression. Effects of postsynaptic plasticity over 170

response duration and intraburst frequency (Figs. 4C and 4D) were also more marked, 171

as expected from a higher integrated input (Fig. 1B). The simulations with both sides 172

changing appeared closer to either the presynaptic case (duration, Fig. 4C) or the 173

postsynaptic case (frequency, Fig. 4D). Here, changes in p had a relatively greater 174

influence on response duration, while changes in q had greater impact on the response 175

frequency. Nevertheless, synaptic efficacy was still potentiated faster and depressed 176

slower in the presynaptic case (Fig. 4E). This was similar to the above stochastic 177

release implementation of presynaptically expressed plasticity, although it was less 178
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pronounced. This means that even if the rate of learning was effectively faster, 179

presynaptic expression affected latency less rapidly than postsynaptic expression did 180

(Fig. 4F). 181

Fig 4. Altering short-term plasticity was less efficient at reducing
postsynaptic latency. (A-E) Simulations in the latency paradigm (see Fig. 2A) are
colour-coded: red denotes presynaptic plasticity alone, blue postsynaptic plasticity
alone, and black combined pre- and postsynaptic plasticity. (A) Example traces of
postsynaptic activity before (grey) and after plasticity (coloured). Initial response
latency is illustrated by the vertical dashed line. (B) Latency reduction was both
faster and more marked for postsynaptic (blue) than for presynaptic (red) or
combined (black) plasticity. Inset: The slope of latency reduction was steeper when
postsynaptic expression was involved (t-tests: between p and q, p-value < 10−6;
between p and both, p-value = 0.0008, between q and both p-value = 0.003) (C)
Combined and presynaptic plasticity reduced response duration more than with
postsynaptic expression alone. (D) Burst frequency was similarly increased with all
three forms of plasticity, although rate change was faster with postsynaptic plasticity.
(E) Time course of average synaptic weights for early (left) and late (right) inputs. (F,
G) Simulations in the correlation paradigm (see Fig. 2B) (F) Time course of average
synaptic weights for correlated (left, ”corr”) and uncorrelated (right, ”unc”) inputs
were largely indistinguishable. (G) As with Fig. 3I, the map of competition between
input populations with pre- or postsynaptically expressed plasticity indicated a less
marked differentiation.

On the other hand, under STP modulation, plasticity rates in the correlated inputs 182

paradigm evolved differently compared to the above stochastic release implementation 183

(Fig. 4G), even though the overall effect on the covariance between pre- and 184

postsynaptic activity was similar (not shown). I the simulations where long-term 185
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plasticity affected short-term plasticity, the rate of change was slightly faster with 186

postsynaptic than with presynaptic plasticity. It thus appears that computational 187

advantages could be tailored to a functional task at hand by recruiting pre- or 188

postsynaptic plasticity differentially. 189

Comparisons with a biologically tuned model 190

The above minimalist toy models had the advantage that they provided full control of 191

several key parameters. However, the relevance of the findings for the intact brain 192

were unclear. To address this shortcoming, we explored the biological plausibility in a 193

model [19] (see Methods) that was fitted to long-term synaptic plasticity data 194

obtained from connections between rodent visual cortex layer-5 pyramidal 195

neurons [41,51,52]. We could thus to some extent verify whether the results obtained 196

with the minimal models hold in a more complex, data-driven context. We want to 197

clarify upfront that in this model, LTP is expressed both pre- and postsynaptically, 198

whereas LTD is solely postsynaptically expressed. This asymmetry may seem odd, but 199

it is derived from experimental data, and we have previously found that this 200

arrangement provides certain computational advantages [19]. 201

We first explored the latency paradigm (Fig. 2A). To avoid disrupting the 202

parameter tuning, instead of normalising the total synaptic change on each side, we 203

kept the data-derived ratios and blocked either pre- or postsynaptic changes. Even so, 204

we found that both pre- and postsynaptic plasticity components independently led to 205

the shortening of postsynaptic latency (Fig. 5A-C). As with the above simplistic 206

modelling scenarios, postsynaptic changes appeared to affect spike timing more. Thus, 207

when both pre- and postsynaptic plasticity were active, the presence of postsynaptic 208

potentiation further reduced the latency compared to presynaptic plasticity alone (Fig. 209

5B). 210

Following the experimental results [41, 52], postsynaptic plasticity in the tuned 211

model lacked the capacity to depress. As a consequence, postsynaptic plasticity led to 212

inflated postsynaptic frequency and duration when implemented alone (Fig. 5D, E). 213

However, the inclusion of presynaptic LTD was enough to to produce a temporally 214

sharpened response of shorter duration. With postsynaptic plasticity, the dynamics 215

developed faster (Fig. 5F), as result of a positive-feedback loop due to increased 216

postsynaptic firing frequency (compare Fig. 5A). 217

In the correlation paradigm (Fig. 2A), groups of correlated and uncorrelated inputs 218

clustered (Fig. 6A) without the need for added competition through weight 219

normalization [46,53]. This only occurred when both pre- and postsynaptic plasticity 220

components were implemented, and was not achieved through other models with 221

physiologically compatible parameters [47]. 222

To better understand the robustness of this property, we quantified the capacity of 223

separation between correlated and uncorrelated populations with a linear separator. It 224

was trained to classify inputs as correlated or uncorrelated according to the average 225

and variance of p values (Fig. 6C). The presynaptic frequency range for optimal 226

separation was between 50 and 80 Hz (Fig. 6C). At the other end of the range, it was 227

bounded by the STDP correlation time scale of τ = 20 ms (see Methods), meaning 228

interspike intervals longer than 20 ms could not represent the minimal interval of 229

correlation. At the upper end of the range, the high presynaptic frequency yielded 230

overall potentiation that included uncorrelated inputs, limiting the separation from 231

the more potentiated correlated population (see appendix). 232

In the same way as in the latency paradigm (Fig. 5D), postsynaptic potentiation 233

increased postsynaptic firing rate (Fig. 6B). However, presynaptic plasticity alone 234

produced no such effect. In combination with postsynaptic plasticity, presynaptic 235
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Fig 5. A biologically tuned model verified key findings obtained with
minimalist models. (A) Sample traces of postynaptic activity before (grey) and
after only presynaptic (red), only postsynaptic (blue), or both pre- and postsynaptic
learning (black). The initial response latency is indicated by the green dashed line.
(B) The postsynaptic response latency was shortened by learning, although both
faster and more efficiently with postsynaptic learning. (C) Distribution of pre- (p) and
postsynaptic efficacies (q) after 200 learning trials. (D, E) Changes in duration and
burst frequency of postsynaptic activity mirrored those obtained with the stochastic
minimalist models (Fig. 4C, D). (F) Average synaptic weight of early (left) and late
(right) presynaptic inputs evolved in distinct manners, however (compare e.g. Fig. 4).

plasticity provided a degree of output control, as its introduction helped to maintain a 236

lower postsynaptic firing frequency even as q saturated (Fig. 6B). 237

Discussion 238

In recent years, it has become clear that diversity in LTP expression is both ubiquitous 239

and considerable, depending on factors such as animal age, induction protocol, and 240

precise brain region [9–11,15]. In this work, we explored possible functional properties 241

of either pre- or postsynaptic locus of plasticity expression, and found that even in a 242

single neuron scenario overall dynamics may be affected by it. This is an important 243

feature to be considered, as many theoretical studies have focused on induction but 244

not many in the expression of plasticity. Plasticity has in the typical phenomenological 245

model been implemented by default as a straightforward change in synaptic 246

weight [26,54,55], although there are a few notable exceptions [16–18,56,57]. In other 247

words, in the absence of better information, a standard assumption has been that that 248

locus of expression does not matter appreciably for the modelling scenario at hand. 249

Our findings challenge this standard assumption, highlighting how it may introduce a 250

bias. For example, over-representation of postsynaptic expression may exaggerate the 251

capacity to learn spike timing (e.g., Figs. 4B, 5B). 252

We investigated two different learning paradigms, one with differently timed inputs, 253

in which postsynaptic latency to spike was used as a measure of learning (Fig. 2A), 254
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Fig 6. The biologically tuned model clustered inputs with correlated and
uncorrelated activity. (A) Normalized averages for presynaptic (p), postsynaptic
(q) and combined pre- and postsynaptic (W ) plasticity of correlated (corr) and
uncorrelated (unc) inputs show that meaningful learning and segregation of inputs
occurred when both pre- and postsynaptic learning mechanisms were engaged. (B)
The postsynaptic spiking frequency increased when postsynaptic plasticity was
engaged (blue and black), but not with presynaptic-only learning (red). (C) The
separation between correlated and uncorrelated inputs was optimal for presynaptic
frequencies in the range 50 and 80 Hz.

and another under constant stimulation, where a subset of inputs were correlated and 255

potentiated together (Fig. 2B). We first worked with simplified conceptual STDP 256

models and later with a more realistic, biologically tuned model in which pre- and 257

postsynaptic components were tuned to connections between neocortical layer 5 258

pyramidal cells [19]. 259

Pre- and postsynaptic expression favour different coding schemes 260

Our study showed that the locus of expression of plasticity determined affinity for 261

different coding schemes. Presynaptic plasticity expressed as the regulation of release 262

probability alone did not result in any differences over average postsynaptic activity 263

measurements compared to postsynaptic expression. However, in the presence of 264

short-term plasticity, presynaptic expression of long-term plasticity had a smaller 265

impact on the spike latency in comparison to postsynaptic expression (e.g., Fig. 4B). 266

This was because, as synaptic response amplitude grew, fewer inputs were needed to 267

evoke a postsynaptic spike. With presynaptic expression, however, the spike still 268

depended on the sum of a larger number of inputs. However, weight changes 269

developed faster with presynaptic plasticity, thereby increasing the speed of learning. 270

This effect, however, was not present in the correlation paradigm, where both pre- and 271

postsynaptically expressed cases performed similarly. 272

Presynaptically expressed plasticity alone was not ideally suited for rate coding, 273

because it did not impact the average summed input effectively. As a consequence, 274

postsynaptic firing frequency remained relatively unchanged after presynaptically 275

expressed plasticity (e.g., Figs. 4D, 5D, 6B). Presynaptic plasticity thus appeared to 276
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act as a limiter or a form of homeostasis for postsynaptic activity, in agreement with 277

previously published interpretations [40]. The flip-side of this stabilizing feature of 278

changes in short-term plasticity [58] is in other words the loss of ability to rate code 279

well. An important cautionary take-home message from this observation is that the 280

default implementation of plasticity as purely postsynaptic may thus lead to an 281

erroneous overestimation of the impact on postsynaptic firing rates. 282

It is also interesting to think about the role of presynaptic plasticity if it is not very 283

useful in the context of usual ’coding’ frameworks. Frequently the effect of 284

unreliability of single synapses is considered to be simply of noise or energy 285

economy [59]. However, one can in fact consider this unreliability as a representation 286

of uncertainty over a synaptic weight compared to its optimal value [60,61]. It would 287

then be plausible to consider pre-synaptic plasticity as an uncertainty tuning over the 288

posterior distribution in a probabilistic inference framework [62]. 289

A biologically tuned model corroborated the toy model predictions 290

The same basic properties were observed in the biologically tuned model with 291

simultaneous pre- and postsynaptic plasticity. Learning was dramatically affected by 292

postsynaptic plasticity, while the presynaptic side appeared to act more on the rate of 293

learning and on weight dynamics. It is possible that these results could be modified 294

according to the ratio of pre- versus postsynaptic forms of plasticity, to optimize for 295

the computational task at hand. It is noteworthy that the biologically tuned model 296

was also capable of separating groups of correlated and uncorrelated inputs without 297

the need for a hard competitive mechanism. 298

Experimental tests of model predictions 299

Since it is possible to specifically block pre- or postsynaptic STDP 300

pharmacologically [41,52], several of our findings related to the locus of expression of 301

plasticity are possible to directly test experimentally. For example, at connections 302

between neocortical layer-5 pyramidal cells, it is possible to block nitric oxide 303

signalling to abolish pre- but not postsynaptic expression of LTP [52]. It is also 304

possible to use GluN2B-specific blockers such as ifenprodil or Ro25-6581 to block 305

presynaptic NMDA receptors necessary for presynaptically expressed LTD without 306

affecting postsynaptic NMDA receptors that are needed for LTP [41,63]. As a proxy 307

for learning rate, one could explore in vitro how blockade of different forms of 308

plasticity expression impacts the number of pairings required for plasticity, or 309

alternatively how the magnitude of plasticity is affected for a given number of 310

pairings [52,55]. In vivo, the impact on cortical receptive fields could similarly be 311

explored. For example, we predict that receptive field discriminability is poorer when 312

presynaptic LTP is abolished by nitric oxide signalling blockade [19]. 313

Conclusions 314

Here, we have challenged the standard assumption that modelling synaptic plasticity 315

as a weight change is neutral and unbiased. We found that even in a simple 316

feed-forward scenario, the locus of expression may have considerable impact on 317

learning outcome. We expect that these effect will only be greater in recurrent 318

networks, where presynaptic plasticity at loops and re-entrant pathways will 319

exacerbate the effects of changes in synaptic dynamics due to alterations of the 320

accumulated difference. This additional level of complexity may in particular 321

complicate very large recurrent network models [64, 65]. 322

July 8, 2021 12/22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.09.01.458493doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458493
http://creativecommons.org/licenses/by/4.0/


As our collective understanding of the expression of long-term plasticity has 323

improved, it has become clear that the long-held notion that plasticity is expressed 324

predominantly postsynaptically is erroneous [9–11]. Since presynaptic expression is 325

still relatively poorly studied, our understanding of long-term presynaptic plasticity in 326

health and disease needs to be generally improved [66]. Specifically, our study 327

highlights the need for more detailed modelling of the role of the site of expression.It is 328

clear that it has implications on the relevant form of information coding, be it spike-, 329

rate-based, or probabilistic. In modelling long-term plasticity, correctly implementing 330

changes in weight is thus a matter of gravity. 331

Methods 332

Neuron model 333

All of the simulations consisted of one postsynaptic neuron receiving a number of 334

presynaptic Poisson inputs. In the first section, we used a simple leaky 335

integrate-and-fire model defined by 336

τV
dV

dt
= Ev − V (t)− ge(t)(Ee − V (t)), (1)

in which the membrane potential V decayed exponentially with a time constant of 337

τV = 20ms to the resting value of Ev = −74 mV, and the threshold for an action 338

potential was Vth = −54 mV. After each spike it was reset at V0 = −60 mV with a 339

refractory period of 1 ms. 340

Inputs were accounted as conductance-based excitatory contributions with reversal 341

potential Ee = 0 mV, amplitude qj , summed after the lth spike of presynaptic neuron 342

j, that decayed exponentially with a time constant of τg = 5ms: 343

dge

dt
= −

ge

τg
+
∑

j,l

qjδ(t− tlj) . (2)

In the the last section, we used the adaptive exponential integrate-and-fire 344

model [67] to reduce unrealistic bursting and to comply with the biological tuning [19]: 345

dV

dt
=

1

C
[gL(EL − V ) + gL∆T e

(

V −VT

∆T

)

− geV − z] , (3)

τW
dz

dt
= cz(V − EL)− z . (4)

The corresponding parameters for a pyramidal neuron were C = 281 pF, gL = 30 346

nS, EL = −70.6 mV, ∆T = 2mV, c = 4nS, τW = 144ms. Spiking threshold was 347

VT = −50.4 mV, and after each spike V was reset to the resting potential EL while z 348

increased by the quantity b = 0.0805 nA (as in [67]). 349

Stimulation paradigms 350

The postsynaptic neuron received either one of two stimulus configurations. The first 351

one was based on [26] and is referred to as the Latency Peduction (Fig. 2A). In every 352

375-ms-long trial, the postsynaptic cell received a volley of Poisson inputs that arrived 353

with a specific delay, normally distributed around a time reference, for each specific 354

presynaptic neuron. Each input lasted for 25 ms with a spiking frequency of 100 Hz. 355

We measured the time to spike of the first postsynaptic spike in response to a bout of 356

stimuli using the mean of the presynaptic delay distribution as a reference point. For 357
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clarity, in the Results, curves that represent latency shift, intraburst frequency or burst 358

duration were smoothed using a moving average filter with a window of three points. 359

The second type of stimulation paradigm was based on [45] and is referred to as 360

the Correlation Paradigm (Fig. 2B). This configuration consisted of continuous 361

Poisson inputs with fixed frequency. However, half of the inputs had correlated 362

fluctuations of activity, with a time window of τcorr = 20 ms, while the other half was 363

uncorrelated. Correlations were implemente as in [68]. 364

Additive STDP model 365

For the majority of the simulations we opted to implement STDP with the simple 366

additive model proposed by Song and Abbott [26]: 367

τ
STDP

dWij

dt
=

∑

k

∑

l

F (tki − tlj)

F (ti − tj)

{

cpot, ti > tj

cdep, ti < tj .
(5)

Each increment to the synaptic weights Wij (since there was only one postsynaptic 368

cell, we consider Wj = Wij throughout this paper) was computed after a pair of pre- 369

and postsynaptic spikes, and the parameters were set to τSTDP = 20ms, cpot = 0.005, 370

and cdep = −0.00525. We separated the synaptic weight Wj as a product between pre- 371

and postsynaptic counterparts, probability of release Pj = (0, 1] and quantal 372

amplitude qj = (0, qmax] respectively, so that Wj = qjPj . The probability of release 373

was simulated in two different ways, one equivalent to regulating the probability of 374

stochastic interactions and the other via short-term plasticity. 375

When the weight convergence rates were compared, we had to ensure that 376

∆W = W f
−W i per time step was the same for all simulations. Therefore, we 377

normalised the changes so that if only q was changed: 378

∆W q = P i(qf − qi) = P i∆q , (6)

and if only P was changed, 379

∆WP = qi∆P . (7)

The initial value of all simulations was the same for P and q, so in these cases 380

∆P = ∆q ≡ ∆. This amount was equally divided between P and q when both were 381

changed simultaneously: 382

∆WPq = P fqf − P iqi = (P i +∆PPq)(qi +∆qPq)− P iqi

= (P i +∆Pq)(qi +∆Pq)− P iqi , (8)

so that 383

∆Pq = −

1

2

[

(P i + qi)−
√

(P i + qi)2 + 4P i∆
]

. (9)

The largest possible change for P or q separately was ∆tot = 1− qi. To keep the 384

same range of W for changing P and q simultaneously, we limited the maximal values 385

P and q in this case at qmax = Pmax =
√

qi. 386
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Biologically tuned STDP model 387

We compared the results of the straightforward additive model to a slightly more 388

complex STDP model that acts separately over pre- and postsynaptic factors [19]. 389

Parameters were fitted to experimental data from connections between pyramidal cells 390

from layer 5 of V1 [41,51,52]. The equations for pre- and postsynaptic changes 391

followed: 392

∆qj = c+xj+(t)y−(t− ǫ)Y (t) , (10)

∆Pj = −d
−
y
−
(t)y+(t)Xj(t) + d+xj+(t− ǫ)y+(t)Xj(t) . (11)

where Xj(t) =
∑

l δ(t− tlj) is increased at each spike from the presynaptic neuron j 393

and Y (t) =
∑

k δ(t− tki ) at each spike from the postsynaptic neuron i. ǫ is to 394

emphasise that ∆W was calculated before xj+ and y
−

were updated, upon the arrival 395

of a new spike. y+ and y
−

are postsynaptic traces, 396

dy+

dt
= −

y+

τy+

+ Y , (12)

dy
−

dt
= −

y
−

τy
−

+ Y , (13)

with decay times τy+
and τy

−

respectively, and xj+ was a presynaptic trace with decay 397

time τx+
: 398

dxj+

dt
= −

xj+

τx+

+Xj . (14)

The parameter values were taken from [19]: d
−
= 0.1771, τy

−

= 32.7ms, 399

d+ = 0.15480, c+ = 0.0618, τy+
= 230.2ms and τx+

= 66.6ms. To avoid manipulation 400

of the fitting, weight changes were not normalised in this case. 401

In the last section, we used a linear least squares separator to classify presynaptic 402

inputs according to synaptic weight average and variance. 403

Presynaptic factor 404

Presynaptic control of the probability of release per stimulus was implemented either 405

as a Markovian process or as short-term plasticity. In the former case, probability (Pj) 406

of stochastic neurotransmitter vesicle release followed a binomial distribution. Based 407

on the findings reported by [69], each presynaptic neuron had N = 5 release sites that 408

functioned independently. In the second we considered a dynamic modulation of the 409

EPSPs through STP. The probability Pj was decomposed into the product of 410

instantaneous probability of release pj(t) and availability of local resources rj(t), 411

resulting in the following synaptic efficacy: 412

Wj(t) = qjpj(t)rj(t) . (15)

In the latter case, the dynamics of pj(t) and rj(t) followed the model proposed by 413

Tsodyks and Markram [70]: 414

drj(t)

dt
=

1− rj(t)

τD
− pj(t)rj(t)Xj(t) , (16)

dpj(t)

dt
=

Pj − pj(t)

τF
+ Pj [1− pj(t)]Xj(t) . (17)
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Depression and facilitation time constants, τD = 200 ms and τF = 50 ms 415

respectively, were chosen as representative values for connections between pyramidal 416

neurons [71]. The resulting short-term plasticity could be either depressing, if 417

Pj > PC , or facilitating, if Pj < PC . For the values of τD and τF used, PC ≈ 0.3. 418

Supporting information 419

S1 Appendix — Rate Model 420

Using a simple firing rate model with linear response, we were able to illustrate how 421

synaptic plasticity could separate correlated and uncorrelated inputs without 422

competition between the two populations. Considering a neuron receiving independent 423

Poisson inputs with fixed firing rate (pooled into a single average input I(t)), we found 424

that the system tends to a specific non-zero average value for P , denoted P∗ below. 425

We converted the biophysically tuned model (eqs. 10 and 11) to a firing rate 426

representation with time-averaged values: 427

< dq >= c+τx+
τy

−

Iν2 , (18)

< dP >= νIτy+
(d+τx+

I − d
−
τy

−

ν) . (19)

Postsynaptic output ν was then considered as a simple firing rate model with linear 428

relation to average input I, weighted by average synaptic efficacy (eq. 15): 429

ν = α+ βqrpI . (20)

To determine α and β values that corresponded to the simulated neurons (for fixed 430

values of q and P ), we fitted to data from simulations without plasticity. Since I was 431

fixed, we could also consider stationary values for r(t) and p(t), r̄ and p̄, from eqs. 16 432

and 17: 433

r̄ =
1 + PIτF

1 + PIτF + PIτD(1 + IτF )
, (21)

p̄ =
P (1 + IτF )

1 + PIτF
. (22)

We thus have < dq > (P, q, I) and < dP > (P, q, I) in the LTP equations 18 and 19: 434

ν ≈ α+
βqIP (1 + IτF )

1 + PIτF + PIτD(1 + IτF )
. (23)

We plotted dP × dq as a vector field (Fig. 7A), which shows how P tended to the 435

specific value P∗, which corresponds to the average value of P for uncorrelated inputs. 436

Integrate-and-fire simulation averages also converged to this point (black line, Fig. 437

7A). This is in contrast to correlated inputs, which potentiated more (Fig. 6). The 438

value P∗ was relatively stable with frequency, but saturated at a limited frequency 439

value(Fig. 7B), effectivley limiting the range of possible separation between the 440

correlated and the uncorrelated populations. 441

Data availability statement 442

All files will be available on GitHub. 443
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Fig 7. Plasticity separated correlated and uncorrelated inputs up to a
limiting frequency. (A) Vector field (p x q) representing the rate model for
uncorrelated synaptic inputs only. The black line shows corresponding
integrate-and-fire simulation averages for uncorrelated inputs (compare Fig. 6A). Note
how both models converge to the same fixed point, indicated with the label P∗. (B)
The point of convergence P∗ was relatively stable with respect to presynaptic
frequency up to a limiting frequency of around 85 Hz, where it saturated. Since
correlated inputs tended to saturate, this shows an effective upper frequency limit to
the clustering of correlated and uncorrelated inputs.

Acknowledgements 444

We thank Alanna Watt and Mark van Rossum for suggestions, help, and useful 445

discussions. 446

Author contributions 447

Conceptualization: Beatriz E.P. Mizusaki, Rui P. Costa, P. Jesper Sjöström. 448
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1. Maheux J, Froemke RC, Sjöström PJ. Functional plasticity at dendritic 474

synapses. In: Stuart G, Sprustron N, Häusser M, editors. Dendrites. Oxford 475
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50. Sjöström PJ, Rancz EA, Roth A, Häusser M. Dendritic Excitability and 594

Synaptic Plasticity. Physiological Reviews. 2008;88:769–840. 595
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