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Abstract

A plethora of experimental studies have shown that long-term synaptic plasticity can
be expressed pre- or postsynaptically depending on a range of factors such as
developmental stage, synapse type, and activity patterns. The functional consequences
of this diversity are not clear, although it is understood that whereas postsynaptic
expression of plasticity predominantly affects synaptic response amplitude,
presynaptic expression alters both synaptic response amplitude and short-term
dynamics. In most models of neuronal learning, long-term synaptic plasticity is
implemented as changes in connective weights. The consideration of long-term
plasticity as a fixed change in amplitude corresponds more closely to post- than to
presynaptic expression, which means theoretical outcomes based on this choice of
implementation may have a postsynaptic bias. To explore the functional implications
of the diversity of expression of long-term synaptic plasticity, we adapted a model of
long-term plasticity, more specifically spike-timing-dependent plasticity (STDP), such
that it was expressed either independently pre- or postsynaptically, or in a mixture of
both ways. We compared pair-based standard STDP models and a biologically tuned
triplet STDP model, and investigated the outcomes in a minimal setting, using two
different learning schemes: in the first, inputs were triggered at different latencies, and
in the second a subset of inputs were temporally correlated. We found that
presynaptic changes adjusted the speed of learning, while postsynaptic expression was
more efficient at regulating spike timing and frequency. When combining both
expression loci, postsynaptic changes amplified the response range, while presynaptic
plasticity allowed control over postsynaptic firing rates, potentially providing a form of
activity homeostasis. Our findings highlight how the seemingly innocuous choice of
implementing synaptic plasticity by single weight modification may unwittingly
introduce a postsynaptic bias in modelling outcomes. We conclude that pre- and
postsynaptically expressed plasticity are not interchangeable, but enable
complimentary functions.
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Author summary

Differences between functional properties of pre- or postsynaptically expressed
long-term plasticity have not yet been explored in much detail. In this paper, we used
minimalist models of STDP with different expression loci, in search of fundamental
functional consequences. Biologically, presynaptic expression acts mostly on
neurotransmitter release, thereby altering short-term synaptic dynamics, whereas
postsynaptic expression affects mainly synaptic gain. We compared models where
plasticity was expressed only presynaptically or postsynaptically, or in both ways. We
found that postsynaptic plasticity had a bigger impact over response times, while both
pre- and postsynaptic plasticity were similarly capable of detecting correlated inputs.
A model with biologically tuned expression of plasticity also completed these tasks over
a range of frequencies. Also, postsynaptic spiking frequency was not directly affected
by presynaptic plasticity of short-term plasticity alone, however in combination with a
postsynaptic component, it helped restrain positive feedback, contributing to activity
homeostasis. In conclusion, expression locus may determine affinity for distinct coding
schemes while also contributing to keep activity within bounds. Our findings highlight
the importance of carefully implementing expression of plasticity in biological
modelling, since the locus of expression may affect functional outcomes in simulations.

Introduction

Learning and memory in the brain, as well as refinement of neuronal circuits and the
development of receptive fields, are widely attributed to long-term synaptic

plasticity [1]. While this notion is not yet formally experimentally proven [2], it has in
recent years received strong experimental support in several brain regions, in particular
the amygdala [3] and the cerebellum [4]. The notion that synaptic plasticity underlies
memory is typically attributed to Hebb [5], but it is in actuality an idea that extends
considerably farther back in time, e.g. to Ramon y Cajal and William James [6].

After the discovery by Bliss and Lgmo [7] of the electrophysiological counterpart of
Hebb’s postulate, now known as long-term potentiation (LTP), much effort has been
focused on establishing the induction and expression mechanisms of long-term
plasticity. In the 1990s, this led to a heated debate on the precise locus of expression
of LTP, with some arguing for postsynaptic expression, whereas others were in favour
of a presynaptic locus of LTP [8](Fig. 1A). Beginning in the early 2000’s, this
controversy was gradually resolved by the realisation that plasticity depends critically
on several factors, notably animal age, induction protocol, and precise brain
region [9-11]. Indeed, this resolution has now been developed to the point that it is
currently widely accepted that specific interneuron types have dramatically different
forms of long-term plasticity [12,13], meaning that long-term plasticity in fact depends
on the particular synapse type [14]. In retrospect, it is probably not all that surprising
that LTP in different circuits is expressed either pre- or postsynaptically, or both,
given the diversity of computational functions of different synapses [15]. Nevertheless,
the precise functional benefits of having LTP be expressed on one side of the synapse
or the other have remained quite poorly explored, with only a handful of classical
theoretical papers addressing this point [16-21].

Going back several decades, a multitude of highly influential computer models of
neocortical learning and development have been proposed, some of them focusing on
aspects such as the dependence of induction on firing rates [22-24], while others have
emphasised the role of the relative millisecond timing of spikes in connected
cells [25-27], and some yet have included both [28]. Trrespective of whether timing,
rate, or other factors are used to determine the outcome of plasticity in theoretical
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models, it has virtually always been the case that — with a few notable

exceptions [18,19,21] — the expression of plasticity itself has been regarded as a simple
change in the magnitude of synaptic inputs between neurons of the network. As a
minimal description this is of course a perfectly reasonable approach, as it is a
parsimonious assumption that induction of long-term plasticity manifests itself in the
alteration of connectivity weights.

However, the expression of plasticity is not always well modelled by this sole
change of instantaneous magnitude. This is because presynaptically expressed
plasticity leads to changes in synaptic dynamics, whereas postsynaptic expression does
not (Fig.1B). For instance, during high-frequency bursting, as the readily releasable
pool of vesicles in a synaptic bouton runs out, leading to short-term depression of
synaptic efficacy [29], while at other synapse types short-term facilitation
dominates [30]. Such short-term plasticity is important from a functional point of view
because it acts as a filter of the information that is transmitted by a synapse [31-33].
Short-term depressing connections are more likely to elicit postsynaptic spikes due to
brief non-sustained epochs of activity, whereas facilitating synapses require that
presynaptic activity be sustained for some period of time to elicit postsynaptic spikes.
In other words, short-term facilitating connections act as high-pass filtering burst
detectors [34,35], while short-term depression provides low-pass filtering inputs more
suitable for correlation detection and automatic gain-control [36-38]. As a corollary, it
follows that presynaptic expression of plasticity may change the computational
properties of a given synaptic connection. In this case, increasing the probability of
release by the induction of LTP led to more prominent short-term depression due to
depletion of the readily-releasable pool depletion, and as a consequence to a bias
towards correlation detection at the expense of burst detection [39,40].
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Fig 1. The postsynaptic response to the same stimulus after plasticity
depends on the locus of expression. (A) Representation of pre- (red) and
postsynaptic (blue) sides of a synapse, with probability of vesicle release p, and
quantal amplitude ¢, i.e. the amplitude of postsynaptic response to a single vesicle.
(B) Example of the difference between pre- and postsynaptic expression at inputs onto
a cell. The identical initial response is illustrated in grey, while the potentiated
responses are coloured red or blue. The amplitude of the first response after learning
was set to be the same after pre- (red) and postsynaptic (blue) potentiation. With
postsynaptic potentiation, the gain was increased by the same amount for all
responses in the high-frequency burst. With presynaptic potentiation, however, the
efficacy of the response train was redistributed toward its beginning, enhancing the
first response but not the last.

Experimentally, it is long known that the induction of neocortical long-term
plasticity may alter short-term depression [16,41]. Although the functional
consequences of short-term plasticity itself are as outlined above quite well
described [39,42], the theoretical implications of changes in short-term plasticity due
to the induction of long-term plasticity are not well described. Yet, a majority of
theoretical studies of long-term plasticity assumes that synaptic amplitude but not
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synaptic dynamics are altered by synaptic learning rules. One of the motivations of
our present study is the observation that this seemingly innocuous assumption may
not be neutral, but may in effect introduce a bias, because changing synaptic weight in
theoretical models of long-term plasticity is equivalent to assuming that synaptic
plasticity is solely postsynaptically expressed. This begs the question: What are the
functional implications of pre- versus postsynaptically expressed long-term plasticity?
Providing answers to this central issue is important for understanding brain
functioning, as well as for knowing when weight-only changes in computer modelling is
warranted, and when it is not.

Here, we use computational modelling to explore and describe the consequences of
expressing plasticity pre- or postsynaptically in a single neuron under two simple
paradigms (Fig. 2). One paradigm explores the postsynaptic response in relation to a
repeated time-locked stimulus [26, 43, 44], while the other investigates the neuron’s
ability to detect a correlated stimulus [45-47]. Initially, we compare and contrast
relatively artificial scenarios, for which the locus of expression is either solely
presynaptic, solely postsynaptic, or equally divided between both sides. We then move
on to investigating the functional impact in a biologically realistic model with separate
pre- and postsynaptic components that were tuned to experimental data from
connections between neocortical layer-5 pyramidal cells [19]. We report that
presynaptically expressed plasticity adjust the speed of learning, while postsynaptic
expression is more efficient at regulating spike timing and frequency. We conclude that
pre- and postsynaptically expressed plasticity enable different complimentary
functions and are not equivalent.

Results

Postsynaptically expressed plasticity is readily implemented as a simple change in
synaptic gain, by adjusting the quantal amplitude, q. The impact of postsynaptic
expression is therefore relatively unambiguous, since it scales all postsynaptic
responses the same way. For example, in the case of repeated measures of presynaptic
stimulation, the standard deviation and the mean of synaptic responses scale the same,
so the coefficient of variation remains the same [48], which means synaptic noise levels
remain the same after postsynaptically expressed plasticity.

Presynaptic plasticity, however, has at least two different distinct types of impact
on a synapse. First, in the reliability of transmission due to stochastic vesicle release.
Assuming release is binomially distributed, increasing the probability of release, p,
increases the mean of synaptic responses while keeping the standard deviation roughly
the same, which means the coefficient of variation is decreased after presynaptic
LTP [48]. Second, increasing the probability of release depletes the pool o readily
releasable pool of vesicles more rapidly. Therefore, synaptic short-term dynamics are
necessarily changed by presynaptically expressed long-term plasticity, resulting in
functional differences.

To limit the scope of the study, we focus on early forms of plasticity for which we
have detailed experimental data [19]. We thus do not consider the possibility that the
number of release sites, n, may change, as it does in late, protein-synthesis dependent
forms of plasticity [49].

To distinguish between the two distinct types of impact of presynaptic plasticity,
we model them separately. We start with presynaptic expression modelled as direct
changes in the probability of vesicle release and compare that to postsynaptic
expression. Subsequent to that, we model presynaptic expression as changes in
short-term plasticity and compare that postsynaptic expression. This way, we aim to
systematically tease apart any different contributions of the two distinct impacts of

July 8, 2021

4/22

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

92

93

o4

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112


https://doi.org/10.1101/2021.09.01.458493
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.01.458493; this version posted September 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

A Latency Paradigm B Correlation Paradigm
°
Early 1 ms latency % )
S Postsynaptic s \ Postsynaptic

'.é " S neuron 2 g neuron
T — 5y 5 —b
§= — 58
& / =

Late 4atency

before
T TR

uncorr

before | JOTR s P
N )G after
after [T T TR =TT
) B daaand. ail o Shadodadisal 14

0 40 80 120 0 250 500 750 1000 O 750
Time (ms) Time (ms) Time (ms) Time (ms)

Fig 2. Two different STDP learning paradigms were explored. (A) Inputs
arriving with a gradient of early to late timings resulted in reduced latency of the
postsynaptic spiking response after STDP, as previously described [26]. In each trial,
the postsynaptic neuron repeatedly received a brief volley of stimuli, between which
short-term plasticity variables were allowed to return to their initial resting values.
Bottom, left: Each presynaptic spike (raster dots) arrived with a different delay in the
volley. Bottom, right: After a period of learning, the postsynaptic spiking response
(blue) was shortened and started earlier. The learning task is thus to reduce the
latency and to shorten the duration of the postsynaptic spiking response [26]. (B)
Correlated inputs were selectively potentiated by STDP, as previously described [45]:
The postsynaptic neuron received persistent stimulation, with half of the inputs
having correlated activity, while the rest were uncorrelated. Bottom, left: Raster plot
illustrating the correlated (corr) and uncorrelated (uncorr) input spiking. Bottom,
right: After learning, the postsynaptic spiking (blue raster at top) was more correlated
with the correlated inputs (pink histograms) than with the uncorrelated inputs (red
histograms), indicating that the former drove postsynaptic activity. The learning task

input #
input #

is thus to select for inputs that are correlated at the expense of those that are not [45].

In both paradigms, STDP is modelled with the same parameters, to permit
comparison (e.g. timing window 7 = 20 ms, see Methods).

presynaptically expressed plasticity.

Presynaptic expression modelled as changes in stochastic release

For the first set of simulations, we considered the probability of release (p;) and the
quantal amplitude (g;), i.e. pre- and postsynaptic quantities, respectively. In each
simulation, plasticity was expressed exclusively presynaptically, exclusively
postsynaptically, or equally divided between both sides at connections onto a
single-compartment point neuron (see Methods). Here, changes in p; were explored in
terms of their impact on stochastic release.

In the latency paradigm, in which a volley of stimuli arrives at the postsynaptic
neuron with varying delays (Fig. 2A), plasticity resulted in the shortening of the time
to respond — the latency — of the postsynaptic neuron, as well as a temporal
sharpening of the response, with fewer spikes and shorter inter-spike intervals [26]. The
average latency reduction (Fig. 3A, B), as well as the overall distribution of synaptic
weights, decrease of postsynaptic activity duration and increase of postsynaptic firing
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Fig 3. Presynaptically expressed plasticity typically promoted faster
learning. (A-F) Simulations in the latency paradigm (see Fig. 2A). (A) Example
traces of the postsynaptic membrane potential before (grey) and after (black)
plasticity. Initial latency of response is marked by a green dashed line. (B)
STDP-mediated learning shortened postsynaptic latency to spike, as previously
shown [26]. The graphs here and below are colour-coded: only presynaptic plasticity
(red), only postsynaptic plasticity (blue), or both pre- and postsynaptic plasticity
(black) are implemented. Note how learning with presynaptic plasticity appears faster.
Inset: presynaptic plasticity was faster than postsynaptic plasticity alone (t-test,
p-value = 0.008). (C) Synaptic weight distribution after 150 trials, normalized and
sorted by the fixed presynaptic delay. (D, E) Postsynaptic response duration (i.e, the
interval between first and last spike in each trial) and the burst frequency did not
differ across different expression loci. (F) Time evolution of average synaptic weight
among early and late presynaptic inputs (i.e., input cells that spiked in the first or the
second half of the stimulus) show how post-only expression (blue) is relatively slower.
(G-I) Simulations in the correlation paradigm (see Fig. 2B). (G) Potentiation and
depression of the average synaptic weight among correlated inputs was relatively faster
in the presynaptic case. (H) However, for inputs with a very high correlation (¢>0.9),
learning was faster with postsynaptic expression. This indicated that which form of
plasticity led to faster learning depended on the details of the input firing patterns.
(I) We explored this finding further in simulations where all inputs were correlated,
but half expressed plasticity presynaptically, and the other postsynaptically. The map
shows which side potentiated faster, indicating that postsynaptic expression (blue)
won out for a relatively small parameter space where input firing frequency was low
and and correlations quite high.

frequency (Figs. 3C, D, E) did not differ appreciably with the locus of plasticity. In
comparison to the purely postsynaptic case, simulations with presynaptic plasticity
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presented a smaller variance of the latency shift (Fig. 3B). Potentiation also developed
faster with presynaptic expression (Fig. 3F). This can be framed as a consequence of
potentiation requiring glutamate release [50], so that in a more reliable synapse, with
a high p value, there is a greater propensity for potentiation. Conversely, depression
was slower with presynaptically expressed plasticity, again because lowered probability
of release effectively also led to less plasticity (Fig. 3F).

Next, we explored the correlation paradigm, in which plasticity selectively
potentiates correlated inputs (Fig. 2A,B) ( [45]). Here, all plasticity implementations
detected the input correlations. However, presynaptically expressed plasticity
generally promoted faster learning, e.g. synaptic weights evolved more rapidly (Fig.
3G), similar to what we found above for the latency paradigm. However, there were
exceptions to this general observation — postsynaptic plasticity was faster for strongly
correlated input firing at certain input frequencies (Fig. 3H).

We wanted to explore this exception in more detail. One implication of the
presynaptic side potentiating faster than the postsynaptic side is that, in a scenario in
which there is competition due to e.g. limited resources, inputs with presynaptic
plasticity would be expected to overcome inputs with postsynaptic plasticity. To
explore this possibility, we ran simulations where all of inputs were correlated, but half
of them expressed plasticity only presynaptically, and the other half only
postsynaptically. Because of normalization, these two input populations competed, so
that one potentiated at the expense of the oher, which depressed. With this approach,
we systematically explored the correlation-frequency space. We found that
postsynaptic expression won for very highly correlated inputs for sufficiently low input
frequencies (Fig. 3I), a scenario that corresponds to fewer inputs spiking
synchronously.

Presynaptic expression modelled as changes in short-term
plasticity

We next explored the effects of altering short-term dynamics (see Methods). This adds
another aspect of presynaptically expressed plasticity, since short-term plasticity takes
into account the history of presynaptic activity. In this scenario, presynaptic changes
redistribute synaptic resources used over a limited time period, instead of bringing
about an average increase or decrease [16,41]. Even if the amplitude of an individual
EPSP were affected equally by pre- and by postsynaptically expressed plasticity, the
total input from a burst would still differ dramatically depending on the site of
expression (Fig. 1B).

In the simulations with the timed input configuration, results differed considerably
depending on the specific locus of plasticity in the latency configuration. Postsynaptic
expression alone provided the largest latency reduction, and also achieved it faster
than the other plasticity implementations (Fig. 4A, B). The results of presynaptic
expression were also more subtle compared to the mixed setting with both pre- and
postsynaptic expression, for which results may vary between extremes according to the
ratio of pre- and postsynaptic expression. Effects of postsynaptic plasticity over
response duration and intraburst frequency (Figs. 4C and 4D) were also more marked,
as expected from a higher integrated input (Fig. 1B). The simulations with both sides
changing appeared closer to either the presynaptic case (duration, Fig. 4C) or the
postsynaptic case (frequency, Fig. 4D). Here, changes in p had a relatively greater
influence on response duration, while changes in ¢ had greater impact on the response
frequency. Nevertheless, synaptic efficacy was still potentiated faster and depressed
slower in the presynaptic case (Fig. 4E). This was similar to the above stochastic
release implementation of presynaptically expressed plasticity, although it was less

July 8, 2021

7/22

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178


https://doi.org/10.1101/2021.09.01.458493
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.01.458493; this version posted September 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

pronounced. This means that even if the rate of learning was effectively faster,

presynaptic expression affected latency less rapidly than postsynaptic expression did

(Fig. 4F).
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Fig 4. Altering short-term plasticity was less efficient at reducing

postsynaptic latency. (A-E) Simulations in the latency paradigm (see Fig. 2A) are

colour-coded: red denotes presynaptic plasticity alone, blue postsynaptic plasticity
alone, and black combined pre- and postsynaptic plasticity. (A) Example traces of
postsynaptic activity before (grey) and after plasticity (coloured). Initial response

latency is illustrated by the vertical dashed line. (B) Latency reduction was both
faster and more marked for postsynaptic (blue) than for presynaptic (red) or

combined (black) plasticity. Inset: The slope of latency reduction was steeper when

postsynaptic expression was involved (t-tests: between p and q, p-value < 10~5;
between p and both, p-value = 0.0008, between g and both p-value = 0.003) (C)
Combined and presynaptic plasticity reduced response duration more than with

postsynaptic expression alone. (D) Burst frequency was similarly increased with all
three forms of plasticity, although rate change was faster with postsynaptic plasticity.

(E) Time course of average synaptic weights for early (left) and late (right) inputs. (F,

G) Simulations in the correlation paradigm (see Fig. 2B) (F) Time course of average
synaptic weights for correlated (left, ”corr”) and uncorrelated (right, ”unc”) inputs
were largely indistinguishable. (G) As with Fig. 3I, the map of competition between
input populations with pre- or postsynaptically expressed plasticity indicated a less

marked differentiation.

On the other hand, under STP modulation, plasticity rates in the correlated inputs

paradigm evolved differently compared to the above stochastic release implementation

(Fig. 4G), even though the overall effect on the covariance between pre- and
postsynaptic activity was similar (not shown). I the simulations where long-term
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plasticity affected short-term plasticity, the rate of change was slightly faster with
postsynaptic than with presynaptic plasticity. It thus appears that computational
advantages could be tailored to a functional task at hand by recruiting pre- or
postsynaptic plasticity differentially.

Comparisons with a biologically tuned model

The above minimalist toy models had the advantage that they provided full control of
several key parameters. However, the relevance of the findings for the intact brain
were unclear. To address this shortcoming, we explored the biological plausibility in a
model [19] (see Methods) that was fitted to long-term synaptic plasticity data
obtained from connections between rodent visual cortex layer-5 pyramidal

neurons [41,51,52]. We could thus to some extent verify whether the results obtained
with the minimal models hold in a more complex, data-driven context. We want to
clarify upfront that in this model, LTP is expressed both pre- and postsynaptically,
whereas LTD is solely postsynaptically expressed. This asymmetry may seem odd, but
it is derived from experimental data, and we have previously found that this
arrangement provides certain computational advantages [19].

We first explored the latency paradigm (Fig. 2A). To avoid disrupting the
parameter tuning, instead of normalising the total synaptic change on each side, we
kept the data-derived ratios and blocked either pre- or postsynaptic changes. Even so,
we found that both pre- and postsynaptic plasticity components independently led to
the shortening of postsynaptic latency (Fig. 5A-C). As with the above simplistic
modelling scenarios, postsynaptic changes appeared to affect spike timing more. Thus,
when both pre- and postsynaptic plasticity were active, the presence of postsynaptic

potentiation further reduced the latency compared to presynaptic plasticity alone (Fig.

5B).

Following the experimental results [41,52], postsynaptic plasticity in the tuned
model lacked the capacity to depress. As a consequence, postsynaptic plasticity led to
inflated postsynaptic frequency and duration when implemented alone (Fig. 5D, E).
However, the inclusion of presynaptic LTD was enough to to produce a temporally
sharpened response of shorter duration. With postsynaptic plasticity, the dynamics
developed faster (Fig. 5F), as result of a positive-feedback loop due to increased
postsynaptic firing frequency (compare Fig. 5A).

In the correlation paradigm (Fig. 2A), groups of correlated and uncorrelated inputs
clustered (Fig. 6A) without the need for added competition through weight
normalization [46,53]. This only occurred when both pre- and postsynaptic plasticity
components were implemented, and was not achieved through other models with
physiologically compatible parameters [47].

To better understand the robustness of this property, we quantified the capacity of
separation between correlated and uncorrelated populations with a linear separator. It
was trained to classify inputs as correlated or uncorrelated according to the average
and variance of p values (Fig. 6C). The presynaptic frequency range for optimal
separation was between 50 and 80 Hz (Fig. 6C). At the other end of the range, it was
bounded by the STDP correlation time scale of 7 = 20 ms (see Methods), meaning
interspike intervals longer than 20 ms could not represent the minimal interval of
correlation. At the upper end of the range, the high presynaptic frequency yielded
overall potentiation that included uncorrelated inputs, limiting the separation from
the more potentiated correlated population (see appendix).

In the same way as in the latency paradigm (Fig. 5D), postsynaptic potentiation
increased postsynaptic firing rate (Fig. 6B). However, presynaptic plasticity alone
produced no such effect. In combination with postsynaptic plasticity, presynaptic
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Latency paradigm
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Fig 5. A biologically tuned model verified key findings obtained with
minimalist models. (A) Sample traces of postynaptic activity before (grey) and
after only presynaptic (red), only postsynaptic (blue), or both pre- and postsynaptic
learning (black). The initial response latency is indicated by the green dashed line.
(B) The postsynaptic response latency was shortened by learning, although both
faster and more efficiently with postsynaptic learning. (C) Distribution of pre- (p) and
postsynaptic efficacies (q) after 200 learning trials. (D, E) Changes in duration and
burst frequency of postsynaptic activity mirrored those obtained with the stochastic
minimalist models (Fig. 4C, D). (F) Average synaptic weight of early (left) and late
(right) presynaptic inputs evolved in distinct manners, however (compare e.g. Fig. 4).

plasticity provided a degree of output control, as its introduction helped to maintain a
lower postsynaptic firing frequency even as ¢ saturated (Fig. 6B).

Discussion

In recent years, it has become clear that diversity in LTP expression is both ubiquitous
and considerable, depending on factors such as animal age, induction protocol, and
precise brain region [9-11,15]. In this work, we explored possible functional properties
of either pre- or postsynaptic locus of plasticity expression, and found that even in a
single neuron scenario overall dynamics may be affected by it. This is an important
feature to be considered, as many theoretical studies have focused on induction but
not many in the expression of plasticity. Plasticity has in the typical phenomenological
model been implemented by default as a straightforward change in synaptic
weight [26,54,55], although there are a few notable exceptions [16-18,56,57]. In other
words, in the absence of better information, a standard assumption has been that that
locus of expression does not matter appreciably for the modelling scenario at hand.
Our findings challenge this standard assumption, highlighting how it may introduce a
bias. For example, over-representation of postsynaptic expression may exaggerate the
capacity to learn spike timing (e.g., Figs. 4B, 5B).

We investigated two different learning paradigms, one with differently timed inputs,
in which postsynaptic latency to spike was used as a measure of learning (Fig. 24),
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Correlation paradigm
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Fig 6. The biologically tuned model clustered inputs with correlated and
uncorrelated activity. (A) Normalized averages for presynaptic (p), postsynaptic
(¢) and combined pre- and postsynaptic (W) plasticity of correlated (corr) and
uncorrelated (unc) inputs show that meaningful learning and segregation of inputs
occurred when both pre- and postsynaptic learning mechanisms were engaged. (B)
The postsynaptic spiking frequency increased when postsynaptic plasticity was
engaged (blue and black), but not with presynaptic-only learning (red). (C) The
separation between correlated and uncorrelated inputs was optimal for presynaptic
frequencies in the range 50 and 80 Hz.

and another under constant stimulation, where a subset of inputs were correlated and
potentiated together (Fig. 2B). We first worked with simplified conceptual STDP
models and later with a more realistic, biologically tuned model in which pre- and
postsynaptic components were tuned to connections between neocortical layer 5
pyramidal cells [19].

Pre- and postsynaptic expression favour different coding schemes

Our study showed that the locus of expression of plasticity determined affinity for
different coding schemes. Presynaptic plasticity expressed as the regulation of release
probability alone did not result in any differences over average postsynaptic activity
measurements compared to postsynaptic expression. However, in the presence of
short-term plasticity, presynaptic expression of long-term plasticity had a smaller
impact on the spike latency in comparison to postsynaptic expression (e.g., Fig. 4B).
This was because, as synaptic response amplitude grew, fewer inputs were needed to
evoke a postsynaptic spike. With presynaptic expression, however, the spike still
depended on the sum of a larger number of inputs. However, weight changes
developed faster with presynaptic plasticity, thereby increasing the speed of learning.
This effect, however, was not present in the correlation paradigm, where both pre- and
postsynaptically expressed cases performed similarly.

Presynaptically expressed plasticity alone was not ideally suited for rate coding,
because it did not impact the average summed input effectively. As a consequence,
postsynaptic firing frequency remained relatively unchanged after presynaptically
expressed plasticity (e.g., Figs. 4D, 5D, 6B). Presynaptic plasticity thus appeared to
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act as a limiter or a form of homeostasis for postsynaptic activity, in agreement with
previously published interpretations [40]. The flip-side of this stabilizing feature of
changes in short-term plasticity [58] is in other words the loss of ability to rate code
well. An important cautionary take-home message from this observation is that the
default implementation of plasticity as purely postsynaptic may thus lead to an
erroneous overestimation of the impact on postsynaptic firing rates.

It is also interesting to think about the role of presynaptic plasticity if it is not very
useful in the context of usual ’coding’ frameworks. Frequently the effect of
unreliability of single synapses is considered to be simply of noise or energy
economy [59]. However, one can in fact consider this unreliability as a representation
of uncertainty over a synaptic weight compared to its optimal value [60,61]. It would
then be plausible to consider pre-synaptic plasticity as an uncertainty tuning over the
posterior distribution in a probabilistic inference framework [62].

A biologically tuned model corroborated the toy model predictions

The same basic properties were observed in the biologically tuned model with
simultaneous pre- and postsynaptic plasticity. Learning was dramatically affected by
postsynaptic plasticity, while the presynaptic side appeared to act more on the rate of
learning and on weight dynamics. It is possible that these results could be modified
according to the ratio of pre- versus postsynaptic forms of plasticity, to optimize for
the computational task at hand. It is noteworthy that the biologically tuned model
was also capable of separating groups of correlated and uncorrelated inputs without
the need for a hard competitive mechanism.

Experimental tests of model predictions

Since it is possible to specifically block pre- or postsynaptic STDP
pharmacologically [41,52], several of our findings related to the locus of expression of
plasticity are possible to directly test experimentally. For example, at connections
between neocortical layer-5 pyramidal cells, it is possible to block nitric oxide
signalling to abolish pre- but not postsynaptic expression of LTP [52]. It is also
possible to use GluN2B-specific blockers such as ifenprodil or Ro25-6581 to block
presynaptic NMDA receptors necessary for presynaptically expressed LTD without
affecting postsynaptic NMDA receptors that are needed for LTP [41,63]. As a proxy
for learning rate, one could explore in vitro how blockade of different forms of
plasticity expression impacts the number of pairings required for plasticity, or
alternatively how the magnitude of plasticity is affected for a given number of
pairings [52,55]. In vivo, the impact on cortical receptive fields could similarly be
explored. For example, we predict that receptive field discriminability is poorer when
presynaptic LTP is abolished by nitric oxide signalling blockade [19].

Conclusions

Here, we have challenged the standard assumption that modelling synaptic plasticity
as a weight change is neutral and unbiased. We found that even in a simple
feed-forward scenario, the locus of expression may have considerable impact on
learning outcome. We expect that these effect will only be greater in recurrent
networks, where presynaptic plasticity at loops and re-entrant pathways will
exacerbate the effects of changes in synaptic dynamics due to alterations of the
accumulated difference. This additional level of complexity may in particular
complicate very large recurrent network models [64, 65].
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As our collective understanding of the expression of long-term plasticity has
improved, it has become clear that the long-held notion that plasticity is expressed
predominantly postsynaptically is erroneous [9-11]. Since presynaptic expression is
still relatively poorly studied, our understanding of long-term presynaptic plasticity in
health and disease needs to be generally improved [66]. Specifically, our study
highlights the need for more detailed modelling of the role of the site of expression.It is
clear that it has implications on the relevant form of information coding, be it spike-,
rate-based, or probabilistic. In modelling long-term plasticity, correctly implementing
changes in weight is thus a matter of gravity.

Methods

Neuron model

All of the simulations consisted of one postsynaptic neuron receiving a number of
presynaptic Poisson inputs. In the first section, we used a simple leaky
integrate-and-fire model defined by

av
o = By = V() — g (0B~ VD), 1)
in which the membrane potential V' decayed exponentially with a time constant of
Ty = 20ms to the resting value of E, = —74 mV, and the threshold for an action

potential was Vi, = —54 mV. After each spike it was reset at Vo = —60 mV with a
refractory period of 1 ms.

Inputs were accounted as conductance-based excitatory contributions with reversal
potential £, = 0 mV, amplitude g;, summed after the I** spike of presynaptic neuron
j, that decayed exponentially with a time constant of 7, = 5ms:

dge Ge l
E St —th) . 2
lt ) - QJ(S(t t]) ( )

In the the last section, we used the adaptive exponential integrate-and-fire

model [67] to reduce unrealistic bursting and to comply with the biological tuning [19]:

awv 1
dat 6[9L(EL -V) +9LAT€( =) -9V —2], (3)

V-vp

dz
TWE:CZ(V—EL)—Z . (4)
The corresponding parameters for a pyramidal neuron were C = 281 pF, g;, = 30
nS, Er, = —70.6 mV, Ap =2mV, ¢ = 4nS, 7y = 144ms. Spiking threshold was
Vr = —50.4 mV, and after each spike V' was reset to the resting potential F;, while z
increased by the quantity b = 0.0805 nA (as in [67]).

Stimulation paradigms

The postsynaptic neuron received either one of two stimulus configurations. The first
one was based on [26] and is referred to as the Latency Peduction (Fig. 2A). In every
375-ms-long trial, the postsynaptic cell received a volley of Poisson inputs that arrived
with a specific delay, normally distributed around a time reference, for each specific
presynaptic neuron. Each input lasted for 25 ms with a spiking frequency of 100 Hz.
We measured the time to spike of the first postsynaptic spike in response to a bout of
stimuli using the mean of the presynaptic delay distribution as a reference point. For
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clarity, in the Results, curves that represent latency shift, intraburst frequency or burst
duration were smoothed using a moving average filter with a window of three points.

The second type of stimulation paradigm was based on [45] and is referred to as
the Correlation Paradigm (Fig. 2B). This configuration consisted of continuous
Poisson inputs with fixed frequency. However, half of the inputs had correlated
fluctuations of activity, with a time window of 7., = 20 ms, while the other half was
uncorrelated. Correlations were implemente as in [68].

Additive STDP model

For the majority of the simulations we opted to implement STDP with the simple
additive model proposed by Song and Abbott [26]:

dW;;
TSTDPFJ = ZZF(tf - té)
E o1

Lt >t
Ft; —t;) {7 170 (5)
Cdep, ti <1tj .

Each increment to the synaptic weights W;; (since there was only one postsynaptic
cell, we consider W; = W;; throughout this paper) was computed after a pair of pre-
and postsynaptic spikes, and the parameters were set to Tsrpp = 20ms, cpor = 0.005,
and cqep = —0.00525. We separated the synaptic weight W, as a product between pre-
and postsynaptic counterparts, probability of release P; = (0, 1] and quantal
amplitude g; = (0, ¢maz] respectively, so that W; = ¢; P;. The probability of release
was simulated in two different ways, one equivalent to regulating the probability of
stochastic interactions and the other via short-term plasticity.

When the weight convergence rates were compared, we had to ensure that
AW =W/ — W’ per time step was the same for all simulations. Therefore, we
normalised the changes so that if only ¢ was changed:

AW = Pi(q) — ¢*) = P'Aq (6)
and if only P was changed,
AW = ¢'AP . (7)

The initial value of all simulations was the same for P and ¢, so in these cases
AP = Agq = A. This amount was equally divided between P and g when both were
changed simultaneously:

AWPe = plgf — Pigi = (P! + APP9)(¢' + AgP?Y) — Py’
(P'+AP9)(g' + AP0 — Plg’ (8)
so that
I — .
APt = —2 (P +q') = V(PT+q)? +4PTA] . 9)

The largest possible change for P or ¢ separately was A, = 1 — ¢*. To keep the
same range of W for changing P and ¢ simultaneously, we limited the maximal values
P and q in this case at ¢™** = P™** = /.
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Biologically tuned STDP model

We compared the results of the straightforward additive model to a slightly more
complex STDP model that acts separately over pre- and postsynaptic factors [19].
Parameters were fitted to experimental data from connections between pyramidal cells
from layer 5 of V1 [41,51,52]. The equations for pre- and postsynaptic changes
followed:

Aqy = ey (Dy—(t — OV (1) . (10)

APy = —d_y(Hy+ (VX5 (1) + dypy (¢ — Dy ()X (1) (1)
where X;(t) = Y, 6(t — t!) is increased at each spike from the presynaptic neuron j
and Y (t) = >, 6(t — tF) at each spike from the postsynaptic neuron i. € is to
emphasise that AW was calculated before ;1 and y_ were updated, upon the arrival
of a new spike. y, and y_ are postsynaptic traces,

dy+ Yt

S Y 12
dt Ty, tr (12)
dy— Y

- _ Y 13
dt Ty_ + ’ (13)

with decay times 7,, and 7,_ respectively, and z;, was a presynaptic trace with decay
time 75 :

dzjy i+
=—4+X, . 14
dt Tm+ + J ( )
The parameter values were taken from [19]: d_ = 0.1771, 7, = 32.7ms,

dy = 0.15480, ¢y = 0.0618, 7,, = 230.2ms and 7., = 66.6ms. To avoid manipulation
of the fitting, weight changes were not normalised in this case.

In the last section, we used a linear least squares separator to classify presynaptic
inputs according to synaptic weight average and variance.

Presynaptic factor

Presynaptic control of the probability of release per stimulus was implemented either
as a Markovian process or as short-term plasticity. In the former case, probability (P;)
of stochastic neurotransmitter vesicle release followed a binomial distribution. Based
on the findings reported by [69], each presynaptic neuron had N = 5 release sites that
functioned independently. In the second we considered a dynamic modulation of the
EPSPs through STP. The probability P; was decomposed into the product of
instantaneous probability of release p;(t) and availability of local resources r;(t),
resulting in the following synaptic efficacy:

W;(t) = q;p;(t)r;(t) - (15)

In the latter case, the dynamics of p;(t) and r;(t) followed the model proposed by
Tsodyks and Markram [70]:

drj(t) _ 1—r;(t)

dt - —p;i(t)r; () X;() , (16)
dpzi-t(t) _ P —ij(t) + Pl —p; ()] X;(t) . (17)
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Depression and facilitation time constants, 7p = 200 ms and 77 = 50 ms
respectively, were chosen as representative values for connections between pyramidal
neurons [71]. The resulting short-term plasticity could be either depressing, if
P; > Pg, or facilitating, if P; < Pc. For the values of 7p and 7 used, Pc ~ 0.3.

Supporting information

S1 Appendix — Rate Model

Using a simple firing rate model with linear response, we were able to illustrate how
synaptic plasticity could separate correlated and uncorrelated inputs without
competition between the two populations. Considering a neuron receiving independent
Poisson inputs with fixed firing rate (pooled into a single average input I(¢)), we found
that the system tends to a specific non-zero average value for P, denoted Px* below.
We converted the biophysically tuned model (egs. 10 and 11) to a firing rate
representation with time-averaged values:

<dg>=ctr,, 1, IV, (18)

<dP >=vilt, (dy7p I —d_T1, V) . (19)

Postsynaptic output v was then considered as a simple firing rate model with linear
relation to average input I, weighted by average synaptic efficacy (eq. 15):

v=a+ Bqrpl . (20)

To determine o and J values that corresponded to the simulated neurons (for fixed
values of ¢ and P), we fitted to data from simulations without plasticity. Since I was
fixed, we could also consider stationary values for r(t) and p(t), 7 and p, from eqs. 16
and 17:

1+PITF

. 21
" T 14 Plre + PIrp(1 + I1s) 1)
_ P(1+ITF)
S 22
=PI (22)

We thus have < dg > (P, ¢,I) and < dP > (P,q,I) in the LTP equations 18 and 19:

Vot BqIP(1+ ITp) ‘ (23)
1+ Plrp + PItp(1 4+ ITr)

We plotted dP x dq as a vector field (Fig. TA), which shows how P tended to the
specific value Px, which corresponds to the average value of P for uncorrelated inputs.
Integrate-and-fire simulation averages also converged to this point (black line, Fig.
7A). This is in contrast to correlated inputs, which potentiated more (Fig. 6). The
value Px was relatively stable with frequency, but saturated at a limited frequency
value(Fig. 7B), effectivley limiting the range of possible separation between the
correlated and the uncorrelated populations.

Data availability statement

All files will be available on GitHub.
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Fig 7. Plasticity separated correlated and uncorrelated inputs up to a
limiting frequency. (A) Vector field (p x ¢q) representing the rate model for
uncorrelated synaptic inputs only. The black line shows corresponding
integrate-and-fire simulation averages for uncorrelated inputs (compare Fig. 6A). Note
how both models converge to the same fixed point, indicated with the label Px. (B)
The point of convergence P* was relatively stable with respect to presynaptic
frequency up to a limiting frequency of around 85 Hz, where it saturated. Since
correlated inputs tended to saturate, this shows an effective upper frequency limit to
the clustering of correlated and uncorrelated inputs.
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