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ABSTRACT: 

Maize enriched in provitamin A carotenoids could be key in combatting vitamin A deficiency in 

human populations relying on maize as a food staple. Consumer studies indicate that orange 

maize may be regarded as novel and preferred. This study identifies genes of relevance for grain 

carotenoid concentrations and kernel color, through simultaneous dissection of these traits in 10 

families of the U.S. maize nested association mapping population that have yellow to orange 

grain. Quantitative trait loci (QTL) were identified via joint-linkage analysis, with phenotypic 

variation explained for individual kernel color QTL ranging from 2.4 to 17.5%. These QTL were 

cross-analyzed with significant marker-trait associations in a genome-wide association study that 

utilized ~27 million variants. Nine genes were identified: four encoding activities upstream of 

the core carotenoid pathway, one at the pathway branchpoint, three within the α- or β-pathway 

branches, and one encoding a carotenoid cleavage dioxygenase. Of these, three exhibited 

significant pleiotropy between kernel color and one or more carotenoid traits. Kernel color 

exhibited moderate positive correlations with β-branch and total carotenoids and negligible 

correlations with α-branch carotenoids. These findings can be leveraged to simultaneously 

achieve desirable kernel color phenotypes and increase concentrations of provitamin A and other 

priority carotenoids. 
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INTRODUCTION: 

Kernel color and grain carotenoid profiles are valuable traits that directly impact consumer 

preference and crop nutritional quality in maize (Zea mays ssp. mays L.). Maize is a cereal crop 

ranking globally among the most important sources of daily calories, and is estimated to provide 

38% of the food supply in Africa (Prasanna et al. 2020; Chandler et al. 2013); as such, maize has 

been a key crop for biofortification efforts. Some carotenoid compounds are pigments, and 

overall abundance of maize grain carotenoids has been found to exhibit weak positive 

correlations with kernel color in 228 diverse inbreds (R2 = 0.119; Harjes et al. 2008). However, 

genetic and phenotypic relationships of several priority carotenoid traits in maize grain and 

kernel color have not yet been dissected in tandem. Achieving a greater understanding of these 

relationships through simultaneous examination of these traits in the same experimental 

framework (i.e., populations and environments) could expedite efforts to select for deep orange 

kernel color and improved carotenoid profiles in tandem, for the development of multi-value 

added products. 

As humans are unable to endogenously synthesize vitamin A, dietary intake of 

provitamin A is crucial for proper immune system development and healthy vision 

(Tanumihardjo et al. 2016). Three carotenoid compounds have provitamin A activity. β-carotene 

provides two units of retinol (active vitamin A) upon oxidative cleavage in human and animal 

systems. β-cryptoxanthin provides one unit of retinol but recent evidence has suggested its 

greater bioavailability compared to β-carotene (Prasanna et al. 2020), such that the two 

compounds are now considered equivalent in breeding efforts. Finally, α-carotene provides one 

unit of retinol. In the case of young children going through pre-adolescent development, 

sufficient vitamin A intake is especially important; deficiency can result in impaired immunity 

and stunted growth, blindness, and ultimately death (Underwood and Arthur 1996). Over 95% of 

deaths in children due to vitamin A deficiency occur in sub-Saharan Africa or south Asia 

(Stevens et al. 2015). Furthermore, non-fatal vitamin A deficiencies contribute to permanent 

corneal scarring and/or night blindness, resulting in lifelong effects (Stevens et al. 2015). 

Alleviating vitamin A deficiency in both children and adults must continue to be a high-priority 

target for improving the human condition worldwide. 

The improvement of crop nutritional quality through plant breeding and/or agronomic 

strategies, termed biofortification, could serve as a viable complement or alternative to other 
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approaches to address nutritional deficiencies in certain subregional contexts (Welch and 

Graham 1999). The success of approaches such as crop and dietary diversification, processing-

stage fortification, or supplementation (Mora 2003; Ross 2002; West 2000; West et al. 2002) can 

be limited by requirements for crop growth or by difficulties arising in transportation and 

infrastructure, among other factors (Graham et al. 2001; Gadaga et al. 2009). Biofortification of 

maize with provitamin A has been found to be a cost-effective and sustainable approach (Bouis 

and Welch 2010), and extensive natural variation has been observed for grain carotenoid traits 

among diverse maize accessions (Owens et al. 2014), which can be leveraged in breeding efforts. 

Carotenoids are primarily localized in the endosperm of maize grain and are 

biosynthesized in the plastids. The methyl-D-erythritol-4-phosphate (MEP) pathway produces 

isopentenyl pyrophosphate (IPP), a precursor from which carotenoids and other plastidic 

isoprenoid compounds are derived (Cordoba et al. 2011). Flux through the core carotenoid 

biosynthetic pathway commences with the biosynthesis of phytoene from geranylgeranyl 

diphosphate (GGDP), a step catalyzed by phytoene synthase (Yuan et al. 2015). Subsequent 

desaturations convert the backbone of phytoene into a light-absorbing chromophore composed of 

repeating conjugated double bonds (Bartley and Scolnik 1995), and sequential desaturation and 

isomerization reactions produce all-trans lycopene; all-trans is the predominant isomer among 

lycopene and most other carotenoids. The addition of a β- and ε-ring or, alternatively, two β-

rings to each terminal carbon of lycopene yield α- and β-carotene, respectively, and further 

hydroxylation will generate xanthophylls such as lutein or zeaxanthin (Khoo et al. 2011; Yuan et 

al. 2011). 

Two carotenoid biosynthetic genes in particular have been utilized in maize provitamin A 

biofortification efforts thus far: lycopene epsilon cyclase (lcyE), which adds the ε-ring to 

lycopene and represents a key branchpoint of the carotenoid pathway, and beta carotene 

hydroxylase 1 (crtRB1), which converts β-carotene to β-cryptoxanthin and then zeaxanthin 

(Pixley et al. 2013; Prasanna et al. 2020). Using these genes of interest, researchers affiliated 

with the International Maize and Wheat Improvement Center (CIMMYT), the International 

Institute of Tropical Agriculture (IITA), HarvestPlus, and partners have developed maize 

varieties that accumulate higher levels of provitamin A carotenoids in the grain and are 

regionally adapted to different growing conditions and endemic stressors (Pixley et al. 2013; 

Menkir et al. 2017; Prasanna et al. 2020). Lutein and zeaxanthin, while not having provitamin A 
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activity, are also priority carotenoids for human health given their important—including 

protective—roles as major constituents of the macular pigment of the eye (Beatty et al. 1999, 

Krinsky et al. 2003, Bernstein and Arunkumar 2021). Increased dietary intake of these 

compounds has been associated with lower risk of age-related macular degeneration (AMD; 

Abdel-Aal et al. 2013, Bernstein and Arunkumar 2021). AMD is of global significance as a 

common cause of vision loss and blindness in adults. A total of 170 million adults were 

estimated to be affected in 2014, with projected increases in prevalence by 2040 (Wong et al. 

2014). 

While biofortification of maize with provitamin A and other priority carotenoids (such as 

lutein and zeaxanthin) is a promising opportunity to address deficiency and reduce global disease 

burdens, it has also been critical to consider consumer preference with regards to kernel color. In 

parts of eastern and southern Africa, white maize is preferred for human consumption, whereas 

yellow maize is dispreferred, including due to historical issues associated with long storage 

periods for shipments of yellow maize (De Groote and Kimenju 2008; Pillay et al. 2011; 

Tschirley and Santos 1994; Muzhingi et al. 2008). One solution, given this dispreference for 

yellow kernel color, is to develop orange-grained maize varieties. Stevens and Winter-Nelson 

(2008) found that consumers surveyed in Mozambique did not have an aversion to orange 

biofortified maize, and on average rated its aroma more favorably than the alternative white 

maize. This study suggested that consumer preference for the orange biofortified maize may 

have been due to educational presentations in which the surveyors explained the maize’s 

nutritional benefits, and that consumers may be attracted to the product for its ability to alleviate 

vitamin A deficiency. 

The relationship between kernel color and grain carotenoid concentrations is not 

sufficiently consistent for orange kernel color to be selected upon for the improvement of 

concentrations of provitamin A and other priority carotenoids (Pfeiffer and McClafferty 2007; 

Harjes et al. 2008). This is due in part to the identity and spectral properties of the carotenoids 

that accumulate in maize endosperm and certain aspects of their relative abundance—namely, 

lutein and zeaxanthin tend to be the most abundant carotenoids in maize grain (Owens et al. 

2014) and are themselves pigmented, which could tend to mask impacts of other carotenoid 

compounds on kernel color. However, the nature and extent of relationships between the overall 

abundance vs. relative abundance (i.e., composition) of several carotenoid compounds with 
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kernel color has not yet been dissected in the same quantitative genetics-enabling experimental 

framework, and will be tested herein. Additionally, genes previously identified for quantitative 

components of kernel color in 1,651 diverse maize inbreds (Owens et al. 2019) have been 

implicated in both overall carotenoid abundance and composition in other experimental 

frameworks (Owens et al. 2014, Diepenbrock et al. 2021), which could complicate the 

achievement of maximized tandem gains for provitamin A (among other priority) carotenoids 

and kernel color. This study aims to simultaneously dissect the genetic basis of—and genetic and 

phenotypic relationships among—eight grain carotenoid traits in tandem with visually scored 

kernel color, in 10 families of the U.S. maize nested association mapping (NAM) panel having 

yellow to orange grain color, to identify and characterize potential targets for the accelerated 

development of orange, carotenoid-dense maize. 

 

MATERIALS AND METHODS: 

Plant Materials and Trait Quantification 

The 10 families analyzed in this study are part of the 25-family U.S. maize nested association 

mapping (NAM) panel, which has been previously described (Yu et al. 2008; Buckler et al. 

2009; McMullen et al. 2009). The experimental design for field evaluations of the NAM panel, 

conducted in the summers of 2009 and 2010 at the Purdue University Agronomy Center for 

Research and Education (West Lafayette, IN) using standard agronomic practices, was as 

described in Chandler et al. (2013). Briefly, the 2009 environment used two fields to grow the 

entire single replicate of the U.S. maize NAM panel, whereas the 2010 environment used one 

field to grow the entire single replicate. A sets design was used in each environment, in which 

each family was planted in a population block (or set). The set for each NAM family was planted 

in an augmented incomplete block �-lattice design with block size 10 x 20, with B73 and the 

alternate parent of that family used as the checks within each block. The 281-line Goodman-

Buckler maize diversity panel was additionally planted in each environment, in an augmented 

incomplete block �-lattice design with block size 14 x 20 and with B73 and Mo17 as the checks 

within each block. For the analyses described herein, we utilized data that was collected on 

samples from population blocks corresponding to the 10 families of the U.S. maize NAM 

population that are of interest in this study, with B73 as the common parent and the following as 

alternate parents: B97, CML228, CML52, Hp301, Ki11, Ki3, NC350, NC358, Oh7B, and 
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Tx303. Chandler et al. (2013) had identified these 10 families to be segregating for yellow to 

orange kernel color. A single-row plot containing approximately 10 plants of a single inbred 

(with plot length of 3.05 m) was the individual experimental unit for this study. Self-pollination 

was conducted by hand for at least four plants per plot. Kernel samples from these self-pollinated 

ears were harvested, dried to 15% moisture, shelled, and bulked to form a representative sample 

(per plot) for kernel color and carotenoid phenotyping. 

Ordinal scores for kernel color, on a scale of 1 (yellow) to 12 (deep orange), were as 

evaluated for these 10 families in Chandler et al. (2013). Briefly, ordinal scores were assessed on 

a bulk sample of 100+ kernels per plot with the embryo facing down. Within a single bulk 

sample, kernels were grouped by color (if multiple kernel colors were present), and each group 

was then assigned a score. Most bulk samples were uniform in color. For those with multiple 

color groups, the score recorded for that bulk sample (representing a single plot) was the average 

of the score assigned to each group. Each bulked sample was scored once, by the same person. 

Bulked samples in which kernels were discolored due to fungal and/or other opportunistic 

pathogens did not receive a color score. For bulked samples in which the pericarp was pigmented 

due to anthocyanins, or if kernel color was otherwise difficult to score without ambiguity, the 

pericarp of the kernels was removed prior to scoring. Carotenoid phenotypes (μg g−1 seed) were 

a subset of those analyzed in Diepenbrock et al. (2021), which were collected via high-

performance liquid chromatography (HPLC) as described in that study, on ~50 ground seeds per 

plot from the same field experiment. 20 μL of seed extract was injected for each sample, with 1 

mg of β-apo-8′-carotenal used as an internal standard. External standards were used in five-point 

curves for quantification of carotenoid compounds at 450 nm, with a lutein curve used for lutein, 

zeinoxanthin, and α-carotene; a β-carotene curve for β-carotene and β-cryptoxanthin; and a 

zeaxanthin curve for zeaxanthin. Relative phytofluene levels (at 350 nm) were also estimated 

from the β-carotene curve. 

 

Best linear unbiased estimators 

Using the phenotypic data from the 10 families, best linear unbiased estimators (BLUEs) were 

generated from the Chandler et al. (2013) kernel color phenotypes and Diepenbrock et al. (2021) 

carotenoid phenotypes using a process similar to that taken in Diepenbrock et al. (2021). Briefly, 

family, RIL within family, year, and field within year were fitted as random effects as a baseline 
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model. The best random structure was then determined using the Bayesian Information Criterion 

(BIC; Schwarz 1978), to determine which of zero to five additional terms were optimally 

included in the final model. The additional terms tested were HPLC auto-sampler plate, set 

within field within year, block within set within field within year, family within year, and RIL 

within family within year. The best residual structure was again determined using BIC, 

conditional upon the best random structure. The residual structures tested included identity by 

year; autoregressive for range and identity for row, by field-in-year; identity for range and 

autoregressive for row, by field-in-year; and autoregressive (first-order, AR1 × AR1) for range 

and row, by field-in-year. Field-in-year was a new factor that combined the field used and the 

year, to enable fitting of a separate error structure for each of the three fields used in this 

experiment. The final model using the optimal random and residual structures was then fit, and 

outlying observations (for a given RIL or check genotype, trait, and field-in-year combination) 

were identified via difference in fits (DFFITs; Neter et al. 1996; Belsley et al. 2005) and were set 

to NA for that specific trait if exceeding a conservative threshold previously found to be 

appropriate for this experimental design (Hung et al. 2012). The final model was then fit again 

with RIL and RIL within family now specified as sparse fixed effects rather than random effects, 

for the generation of BLUEs. The BLUEs then underwent Box-Cox transformation using the 

optimal convenient lambda identified for each trait (Table S1). Untransformed and transformed 

BLUEs are reported in Table S2. The final model for each trait was also then fit with all terms 

specified as random effects except for the grand mean, to produce variance components to be 

used in the estimation of heritabilities on a line-mean basis. These heritabilities were estimated 

across the 10 families in this study (Hung et al. 2012), and the delta method was used to 

determine standard errors (Holland et al. 2003). 

 

Joint-linkage analysis 

Joint-linkage (JL) analysis was conducted in TASSEL5 as described in Diepenbrock et al. 

(2021), using a 0.1 cM consensus genetic linkage map consisting of 14,772 markers. This map 

was generated by imputing SNP markers at 0.1 cM intervals, anchored on genotyping-by-

sequencing data for the ~4,900 RILs of the U.S. maize NAM population. The JL analysis was 

performed on transformed BLUEs of each trait, with the family term forced into the model first 

as a predictor variable. Each of the 14,772 markers nested within family were then tested for 
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potential inclusion in the model as a predictor variable via joint stepwise regression. Entry 

thresholds were determined for each trait by conducting 1,000 permutations and selecting the P-

value (from a partial F-test) corresponding to a Type I error rate of α = 0.05. Exit thresholds were 

set to equal twice the entry threshold, so that entry and exit of a given marker could not take 

place in the same step. One pair of multicollinear SNPs (defined as magnitude of Pearson’s 

correlation of SNP genotype state scores being greater than 0.8) was identified for lutein. The 

SNP having the lower sum of squares was removed from the JL model, and the model was fit 

again with re-scan in the vicinity of the remaining peak markers in the model. Namely, if another 

marker in the respective support interval now exhibited a larger sum of squares than the 

originally identified peak marker, it would be included in the model instead and the support 

interval re-calculated, until a local maximum in the sum of squares was identified. Once the final 

model was fit, the allelic effect estimates were calculated, nested within family, as described in 

Diepenbrock et al. (2017). Specifically, the final JL models were fitted using the lm() function 

from the lme4 package (Bates et al. 2015; R Core Team 2018) (Table S3). Phenotypic variation 

explained (PVE) was then calculated as in Li. et al. (2011) but with slight modifications as 

previously described in Diepenbrock et al. (2017) to account for segregation distortion across the 

10 families examined herein. Only those individual-trait JL-QTL intervals for which the left and 

right support interval bounds uplifted continuously (among adjacent markers) and to the same 

chromosome from RefGen_v2 to RefGen_v4 were considered in results reporting and 

downstream analyses (Table S4), with the additional intervals for which the left and/or right 

bound did not uplift in that manner reported in Table S5. 

 

Genome-wide association study 

First, 1,000 permutations were generated, using the residuals generated for each trait during 

joint-linkage analysis. From the permutation results, a significance threshold was identified for 

each trait corresponding to a GWAS false discovery rate of 0.05. The GWAS was run in 

TASSEL 4 using custom scripts (available in GitHub at time of publication). This method 

utilized a bootstrap resampling method in which 100 iterations of GWAS were conducted, with 

80% of the RILs sampled with replacement in a given iteration. The markers tested in GWAS 

were the ~26.9 million SNPs and short indels (up to 15 bp in length) of the HapMap v1 and v2 

projects (Gore et al. 2009; Chia et al. 2012) that were upliftable from RefGen_v2 to RefGen_v4 
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coordinates. Uplifted coordinates were as determined in Diepenbrock et al. (2021), by clipping 

50 markers flanking either side of a given marker (101 nucleotides in total) and aligning these to 

the AGP_v4 genome using Vmatch (v2.3.0; Kurtz 2019), with the following options: -d -p -

complete -h1. From the alignment results, only the highest scoring and unique alignment for each 

marker was retained, and those markers not having a high-confidence and unique alignment were 

not included in the input data set for permutations and GWAS. The upliftable markers, which are 

available for the NAM founders, were then projected onto the NAM RILs in the 10 families 

under analysis in this study, using the 0.1 cM genetic linkage map, prior to permutations and 

GWAS. The resample model inclusion probability (RMIP; Valdar et al. 2009) was reported for 

each marker exhibiting a significant marker-trait association for one or more traits in GWAS, 

conveying in what proportion of the 100 iterations that marker was included in the final model. 

 

Pleiotropy 

Pleiotropy was examined by fitting the final JL-QTL model for each trait using transformed 

BLUEs for every other trait, and then correlating the allelic effect estimates between the original 

trait and the other trait for every peak marker. Significance was tested with a Type I error rate of 

α = 0.05 using FDR-corrected P-values that were generated via the Benjamini-Hochberg method. 

These correlations were examined both within a single JL-QTL interval and at the genome-wide 

level, and were visualized using the network package in R (Butts et al. 2008; Butts et al. 2015). 

 

Linkage disequilibrium 

Linkage disequilibrium (LD) was examined within the same HapMap v1 and v2 input data set 

used for GWAS. Specifically, LD was examined for markers exhibiting one or more significant 

associations in GWAS (hereafter, GWAS variants) as in Diepenbrock et al. (2021), by 

calculating pairwise correlations between GWAS variants and markers within 250 kb of each 

variant. A null distribution was generated by calculating the same pairwise correlations for 

50,000 randomly selected variants with markers within 250 kb of the respective randomly 

selected variant. 

 

Modeling of relationships between grain carotenoid traits and kernel color 

Linear Model:  
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Linear models were produced using the lm() function from the lme4 package in R (Bates et al. 

2015; R Core Team 2018). Each linear model was constructed as reported in Table S6. Family 

was treated as a categorical variable (factor). All values for traits, including both the response 

(kernel color) and predictors (carotenoid traits), were transformed BLUEs. The assumptions for 

linear regressions were checked using the plot() function in base R. The output table comparing 

models was produced using the compare_performance() function in the ‘performance’ package 

(Lüdecke et al. 2021).  

 
Random Forest: 

Random Forest models were produced using SciKit-Learn in Python version 3.8.5 (Pedregosa et 

al., 2011; Van Rossum & Drake Jr, 1995). The transformed BLUEs were split using 

train_test_split from sklearn.model_selection, such that 30% of the data was used for testing, and 

70% was used for training performance. Both a linear model (LinearRegression from 

sklearn.linear_model) and random forest model (RandomForestRegressor from 

sklearn.ensemble) were fit to the split training data. The random forest used 1,000 decision trees. 

Accuracy of the models was calculated by using r2_score (corresponding to R2) from 

sklearn.metrics. Baseline Error is defined as the absolute value of the predicted kernel color 

transformed BLUE minus the known test value of the kernel color transformed BLUE. Percent 

Accuracy is defined as 100 times the Baseline Error, divided by the test-set values of kernel 

color, subtracted from 100%. To add certainty that results were not affected by the randomness 

of the train-test-split, and to enhance reproducibility of results, the process was repeated 30 times 

using 30 different random seeds, for both the random forest and linear models. The model 

metrics were averaged over these 30 runs before being reported in Table S7. Variable 

Importance was extracted from the random forest model, and plotted using pyplot from 

matplotplib (Hunter, 2007). Feature importance was calculated over all 1000 of the decision 

trees, based on the average decrease in accumulated impurity, using the “feature_importances_” 

aspect of the random forest output. 

 

Data availability 

Data and scripts will be made publicly available at time of publication as supplemental material, 

as hosted on the journal website and on GitHub, respectively. 
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RESULTS: 

The carotenoid and kernel color traits analyzed in this study exhibited natural variation in the 10 

families examined herein, with moderate to high line-mean heritabilities (Table 1). A total of 67 

individual-trait JL-QTL support intervals were identified for these nine traits (Table 2). 

Physically overlapping intervals were combined into a single common support interval, resulting 

in 29 unique common support intervals. A total of 192 significant marker-trait associations 

(having a resampling model inclusion probability (RMIP) ≥ 5) were detected in GWAS that were 

contained within one of these common support intervals, with nine markers detected for multiple 

traits (Table S8). It was determined from the examination of linkage disequilibrium in the 10 

families (Figure S1) that 250 kb on either side of a GWAS variant was a reasonable search space 

for gene identification. Nine genes were identified in this study, in accordance with the following 

criteria: residing within the search space for at least one of the 192 marker-trait associations; also 

residing within individual-trait JL-QTL intervals for one or more of the same traits; and having a 

priori evidence of involvement in biosynthesis of isopentenyl pyrophosphate (IPP) or 

biosynthesis and/or retention of carotenoids based on prior studies in plant systems (Table S9). 

 

Table 1. Summary statistics for untransformed Best Linear Unbiased Estimators (BLUEs) 

and estimates of line-mean heritability for carotenoid and kernel color traits, in the 10 U.S. 

maize NAM families examined in this study. 
 

 

 

Table 2. Summary of joint-linkage analysis and GWAS results for carotenoid and kernel 

color traits in the 10 U.S. maize NAM families examined in this study. 
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Three genes encoding activities in the MEP pathway, which provides substrate for 

carotenoid biosynthesis, were identified in this study (Figure 1, Table 3). Specifically, two 

homologs were identified that encode 1-deoxy-D-xylulose 5-phosphate synthase (DXS), which 

catalyzes the first and committed step of the MEP pathway. dxs2 was identified with PVEs of 1.0 

to 5.2% for eight of the nine traits analyzed herein, including 2.4% for kernel color (Table 3). 

dxs3 was identified with PVEs of 2.2 to 3.3% for zeinoxanthin, β-cryptoxanthin, and zeaxanthin 

(Table 3). mecs1 encodes methylerythritol cyclodiphosphate synthase (MECS), which catalyzes 

the fifth step in the MEP pathway. mecs1 was identified with PVEs of 0.8 to 3.6% for five traits 

(Table 3). 

 

Figure 1. A simplified depiction of the carotenoid biosynthesis pathway, showing each 

carotenoid compound analyzed herein and its structure, annotated with the corresponding 

genes identified. Genes of interest are followed by the PVE for that gene at the corresponding 

trait. Gene names, listed in blue, represent the gene of interest relative to its placement in the 

pathway. Gene abbreviations are as follows: 1-deoxy-D-xylulose 5-phosphate synthase (dxs2 and

dxs3); 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (mecs1); zeaxanthin epoxidase 

(zep1); phytoene synthase (psy1); lycopene epsilon-cyclase (lcyE); Cytochrome P450 

superfamily protein (lut1); β-carotene 3-hydroxylase (crtRB5); White cap1/carotenoid cleavage 

dioxygenase1 (wc1/ccd1). 
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nd 
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Table 3. Percent phenotypic variation explained for each carotenoid and kernel color trait 

by JL-QTL resolved to each of the nine identified genes. PVEs are color-coded by the 

significance of the PVE, with a darker blue corresponding to a higher PVE. Trait abbreviations: 

phytofluene (PHYF), α-carotene (ACAR), β-carotene (BCAR), zeinoxanthin (ZEI), β-

cryptoxanthin (BCRY), lutein (LUT), zeaxanthin (ZEA), total carotenoids (TOTCAR), kernel 

color (KCOL). 

 

Common 
Support 
Interval 

ID 

RefGen_v4 ID Annotated Gene Function 

Percent phenotypic variation explained for each trait 

PHYF ACAR BCAR ZEI BCRY LUT ZEA 
TOT 
CAR 

15 Zm00001d019060 deoxy xylulose synthase 2 (dxs2) 5.2 2.5 2.9 3.1 1.9 1.0   3.9 

23 Zm00001d045383 deoxy xylulose synthase 3 (dxs3)       2.2 3.3   2.3   

 

KCOL 

2.4 
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10 Zm00001d051458 
methyl eryrthritol 
cyclodiphosphate synthase (mecs1) 3.6 2.3       0.9 0.8 1.8 

  

14 Zm00001d036345 phytoene synthase 1 (psy1) 12.2       4.7 5.4 7.3 21.4 12.5 

21 Zm00001d011210 lycopene epsilon cyclase (lcyE)   25.1 15.3 44.0 29.7 53.2 29.0   17.5 

3 Zm00001d029822 epsilon ring hydroxylase (lut1)       4.5   2.7       

26 Zm00001d048469 
beta carotene hydroxylase 5 
(crtRB5) 

        1.6   1.8   
  

6 
Zm00001d003512/ 
Zm00001d003513† 

zeaxanthin epoxidase 1 (zep1) 1.7       2.2   20.3 7.1 
  

24 Zm00001d048373 
Whitecap 1 (wc1) [carotenoid 
cleavage dioxygenase 1 (ccd1)] 

          5.6   6.9 
  

 

As the committed step in carotenoid biosynthesis, phytoene synthase (psy1) catalyzes the 

synthesis of phytoene from the condensation of two 20-carbon geranylgeranyl diphosphate 

(GGDP) molecules. A null allele at psy1 conditions negligible carotenoid levels in the maize 

endosperm (Buckner et al. 1996; Li et al. 2008). In this study, psy1 was identified for five traits: 

β-cryptoxanthin (4.7% PVE), lutein (5.4%), zeaxanthin (7.3%), total carotenoids (21.4%), and 

kernel color (12.5%) (Figure 1, Table 3). The branchpoint in the carotenoid pathway occurs with 

cyclization of the ε-ring of lycopene by lycopene epsilon cyclase (lcyE), which is the committed 

step in α-carotene biosynthesis (Cunningham et al. 1996; Bai et al. 2009; Cazzonelli and Pogson 

2010). lcyE had the largest PVEs (15.3% to 53.2%) observed for seven of the nine traits analyzed 

in this study, and affected kernel color (with PVE of 17.5%) but not total carotenoids. 

Within the α-branch of the carotenoid pathway, lut1 encodes CYP97C, an ε-ring 

hydroxylase that catalyzes the conversion of α-carotene to zeinoxanthin and further 

hydroxylation of zeinoxanthin to yield lutein (Tian et al. 2004; Quinlan et al. 2012; Owens et al. 

2014; Diepenbrock et al. 2021). lut1 was identified in this study for zeinoxanthin and lutein, with 

PVEs of 4.5% and 2.7%, respectively (Figure 1, Table 3). Within the β-branch of the carotenoid 

pathway, β-carotene hydroxylase (CRTRB) preferentially converts β-carotene to β-cryptoxanthin 

and then zeaxanthin (Diepenbrock et al. 2021). crtRB5 (also known as hyd5) was identified with 

PVEs of 1.6% for β-cryptoxanthin and 1.8% for zeaxanthin. Zeaxanthin epoxidase (encoded by 

zep1) converts zeaxanthin to violaxanthin, with antheraxanthin as an intermediate. zep1 was 

identified with PVEs of 20.3% for zeaxanthin, 2.2% for β-cryptoxanthin, and 1.7% for 

phytofluene. Finally, the Whitecap locus represents a macrotransposon insertion containing some 

number of tandem copies of ccd1, which encodes a carotenoid cleavage deoxygenase (Tan et al. 

2017). The whitecap1 locus (QTL24) was identified with PVEs of 5.5% for lutein and 6.9% for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.01.458275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458275
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

total carotenoids, respectively. Overall, three of the identified genes were detected for kernel 

color: lcyE (17.5% PVE), psy1 (12.5%), and dxs2 (2.4%). 

Pairwise correlations between untransformed BLUEs for each trait were generally 

moderately to strongly positive for compounds within the same pathway branch, and near-zero to 

negative across branches (Pearson’s r; Figure 2). Kernel color and total carotenoids exhibited a 

correlation of 0.69. Both kernel color and total carotenoids clustered with higher concentrations 

of β-branch carotenoids, with kernel color (and total carotenoids) specifically showing 

correlations of 0.76 (and 0.71) with zeaxanthin, 0.66 (and 0.54) with β-cryptoxanthin, and 0.53 

(and 0.46) with β-carotene. While lutein and total carotenoids exhibited a positive correlation of 

0.49, the correlation between lutein and kernel color was negligible at 0.03. Zeinoxanthin, α-

carotene, and phytofluene showed only small correlations with total carotenoids, and negligible 

correlations with kernel color. 

 

Figure 2. Heat map depicting correlations between untransformed BLUEs for carotenoid and 

kernel color traits in the 10 U.S. maize NAM families examined in this study. Trait 

abbreviations: phytofluene (PHYF), α-carotene (ACAR), lutein (LUT), zeinoxanthin (ZEI), total 

carotenoids (TOTCAR), β-carotene (BCAR), kernel color (KCOL), β-cryptoxanthin (BCRY), 

zeaxanthin (ZEA). 
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In examinations of pleiotropy within each common support interval, significant positive 

and/or negative pleiotropy (α = 0.05) was observed for kernel color and carotenoid traits at 

certain of the identified genes (Figure 3). dxs2 exhibited positive pleiotropy for kernel color and 

each of β-cryptoxanthin, lutein, zeinoxanthin, and total carotenoids. psy1 exhibited positive 

pleiotropy for all pairwise combinations of kernel color, zeaxanthin, and total carotenoids. lcyE 

exhibited positive pleiotropy between kernel color and each of β-carotene, β-cryptoxanthin, and 

zeaxanthin, and negative pleiotropy between kernel color and each of α-carotene, zeinoxanthin, 

and lutein. lcyE also exhibited negative pleiotropy for compounds across pathway branches, and 
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for each of β-carotene and β-cryptoxanthin with zeaxanthin, which is produced downstream of 

these two compounds within the β-branch (Figure S2). 

 

Figure 3. Significant pleiotropy (α = 0.05) observed for JL-QTL resolved to individual 

genes, between kernel color and one or more carotenoid traits in this study. Blue lines 

indicate positive pleiotropy, whereas red lines indicate negative pleiotropy. Trait names are as 

written, unless abbreviated as follows: zeinoxanthin (zeino), total carotenoids (total_carot), 

kernel color (traitKC), β-cryptoxanthin (b_cryp). 

 

In modeling of kernel color as the response variable with grain carotenoid traits as 

predictors, the top-performing linear model was a full model that included all eight carotenoid 

traits analyzed in this study and a family term (the latter as a categorical variable) (R² = 0.727; 

Table S6). Models that included this family term, which contains a unique identifier (or factor 

level) for each of the 10 families included in this study, consistently performed better than those 

with the same grain carotenoid traits as predictors that omitted the family term (Table S6). The 

second-best performing model contained only lutein, zeaxanthin, total carotenoids, and the 

family term (R² = 0.723; Table S6). The random forest performed almost identically to a linear 

model fit to the same training and prediction sets (R² = 0.713 and 0.719, respectively, averaged 
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across 30 iterations; Figure S3, Table S7). The feature with highest importance in the random 

forest model was zeaxanthin (0.58), followed by total carotenoids (0.12) and the other two β-

branch carotenoids (each at 0.05). Together, these results suggest that zeaxanthin and total 

carotenoids are among the top predictors of kernel color. 

 

DISCUSSION: 

This study identified QTL and marker-trait associations for eight carotenoid traits and visually 

scored kernel color in 10 families of the U.S. maize NAM populations, and resolved nine of 

these QTL to individual genes. While most of the identified genes have been previously noted as 

key players in carotenoid accumulation and/or kernel color (Chandler et al. 2013; Owens et al. 

2014; Owens et al. 2019; Diepenbrock et al. 2021), noteworthy patterns of relevance to breeding 

efforts for carotenoids and/or kernel color, particularly in yellow to orange-grain maize 

populations, emerge from this examination of both trait sets in the same quantitative genetics-

enabling experimental framework. 

Within the precursor pathway, DXS has been found to be a rate-limiting activity through 

genetic engineering and overexpression studies in Arabidopsis and E. coli (Harker and Bramley 

1999; Estevez et al. 2001). While dxs2 has appeared to be the major controller in maize—with 

PVEs of 3.5 to 11.3% for dxs2 and 1.2 to 4.1% for dxs3 in the 25 NAM families (Diepenbrock et 

al. 2021)—these ranges were more similar in the present study: 1.0 to 5.2% for dxs2 and 2.2 to 

3.3% for dxs3. This could be related to dxs2 having been found to be nearly fixed among yellow 

inbreds as examined in Fang et al. (2020). Nonetheless, the identification of dxs2 and dxs3 for 

carotenoid traits in both the 10 and 25 U.S. maize NAM families, and for kernel color in the 10 

families as well, suggests that examination of and selection at dxs2 and/or dxs3 could bring about 

further gains. mecs1 (encoding 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, or 

MECS) was also identified in this study for five carotenoid traits. MECS catalyzes the fifth step 

in the MEP pathway, which provides precursors for biosynthesis of carotenoids, tocochromanols 

(vitamin E-related compounds, including tocopherols), and other plastidic isoprenoids. Markers 

proximal to mecs2—another homolog encoding MECS in maize—were significantly associated 

with maize grain tocopherol traits in a pathway-level analysis (i.e., only testing variants proximal 

to a priori candidate genes, rather than genome-wide variants, in association analyses) (Lipka et 

al. 2013). Markers proximal to a gene encoding this enzymatic step were also significantly 
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associated with grain zeaxanthin concentrations in a GWAS and pathway-level analysis in 

sorghum (Cruet-Burgos et al. 2020). In sum, these results indicate that DXS and MECS, 

potentially among other control points in the MEP pathway, could be of relevance in nutritional 

breeding efforts. 

Phytoene synthase 1 (psy1) encodes the first and committed step of carotenoid 

biosynthesis, and is a major controller of natural variation in grain endosperm carotenoid levels 

(Zhu et al. 2008; Fu et al. 2013; Diepenbrock et al. 2021). In this study, psy1 had the largest PVE 

for total carotenoids and the second-largest PVE for kernel color, zeaxanthin, lutein, and β-

cryptoxanthin. This finding suggests that psy1 will continue to be an important target for 

selection, even among populations with yellow to orange grain (i.e., already possessing a 

functional allele of psy1). lcyE, which encodes an enzyme acting at the main branchpoint of the 

carotenoid pathway, is a major point of genetic control for levels of compounds residing in the α- 

or β-pathway branches (Harjes et al. 2008). lcyE exhibited the largest PVEs observed for seven 

of the nine traits, including kernel color. lcyE was notably not detected for TOTCAR. In 

combination with pleiotropy results (Figure 3), this suggests that its effect on kernel color could 

largely be related to its effect on flux of substrate into the two pathway branches. Within the α-

branch, lut1 was identified for zeinoxanthin (an intermediate in the reactions catalyzed by the 

encoded enzyme) and lutein (the product of that enzyme), which is consistent with previous 

findings (Diepenbrock et al. 2021; Owens et al. 2014). lut1 was also found to exhibit negative 

pleiotropy between zeinoxanthin and lutein (Figure S2). lut1 was the identified gene that was 

most specific to α-branch compounds, without significantly affecting β-branch carotenoids, total 

carotenoids, or kernel color. Within the β-branch, crtRB5 (encoding β-carotene hydroxylase) was 

identified for β-cryptoxanthin and zeaxanthin. While crtRB1 has been the homolog more 

frequently identified and characterized in previous studies, and with larger effect (Yan et al. 

2010; Owens et al. 2014; Suwarno et al. 2015; Diepenbrock et al. 2021), crtRB1 was not 

identified herein, which could be due to the populations and allele frequencies involved in this 

study. Further studies will need to examine the role of crtRB1 with regards to the relationship 

between kernel color and grain carotenoid traits. Finally, zep1 was identified in the present study 

for three traits, explaining the greatest phenotypic variation for zeaxanthin (20.3% PVE). 

Examination of allele and haplotype frequencies and allele mining for the nine genes identified 
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in this study will be an important next step in simultaneously optimizing kernel color and 

carotenoid traits in breeding populations. 

The overall PVE ranking for kernel color in this study was lcyE (17.5%), psy1 (12.5%), 

and dxs2 (2.4%) (Table 3, Figure 1). Of these, dxs2 exhibited several positive and no negative 

pleiotropic relationships for the traits in this study (Figure 3). psy1 exhibited a smaller number of 

positive pleiotropic relationships, and one instance of negative pleiotropy between β-

cryptoxanthin and zeaxanthin. lcyE was found to exhibit negative pleiotropy between kernel 

color and α-branch carotenoids (and positive between kernel color and β-branch carotenoids). 

Thus, if directing flux towards the β-branch of the carotenoid pathway is desirable, selecting on 

lcyE for kernel color could be advantageous. Alternatively, if increased concentrations of certain 

α-branch compounds, such as lutein, are also desired, it appears that dxs2 and psy1 could be used 

to improve kernel color (and lutein) without imposing such tradeoffs. In that case, the allele to be 

selected upon at lcyE could then be determined based primarily on the balance of α- and β-

branch compounds that is optimal for human nutrition in the desired use case. Notably, negative 

pleiotropy was also observed within the β-branch for lcyE, which was not observed in the 25 

NAM families (Diepenbrock et al. 2021). It will be important to monitor whether selection at 

lcyE within yellow- to orange-grain breeding populations results in tradeoffs among β-branch 

compounds—namely given that lcyE has been one of two genes targeted in marker-assisted 

selection, and given the large PVEs exhibited by lcyE for β-branch carotenoids (among other 

priority traits). Such tradeoffs could potentially be mitigated through selection at other genes 

exhibiting large PVEs for β-branch carotenoids (Table 3). 

The three genes identified for kernel color in the present study—lcyE, psy1, and dxs2—

were also identified in Owens et al. (2019). That study examined quantitative components of 

kernel color (as specified in the three-dimensional CIELAB color system, which uses pairs of 

color opponents) in 1,651 inbreds of the Ames national maize collection via handheld 

colorimeter, and identified lcyE for hue angle (representative of perceived color), psy1 for a* 

(greenness to redness), and dxs2 for both a* and hue angle. The fourth gene identified at the 

genome-wide level in Owens et al. (2019), for a*, was zep1, which was identified for three traits 

herein but not for kernel color. While there were GWAS variants for kernel color for which zep1 

was in the ±250 kb search space (Table S8), an individual-trait JL-QTL interval was not 

identified for kernel color in the vicinity of zep1 in RefGen_v4 coordinates (Table S5). Intervals 
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were identified for kernel color in RefGen_v2 coordinates that contained zep1 (PVE 3.0%) as 

well as dxs3 (PVE 4.3%; Table 3), but one support interval bound for each of these intervals 

uplifted to a contig rather than to the same chromosome (Table S5), such that those intervals 

were not included in downstream analyses. Future studies involving these two genes could likely 

still benefit from continued monitoring of potential impacts on kernel color. 

The Chandler et al. (2013) study that initially identified QTL for the visually scored 

kernel color trait examined herein, using 1,104 genetic markers and without having grain 

carotenoid data in the 10 families, also identified lcyE (PVE of 38.3%) and psy1 (20.7%) as well 

as zep1 (6.6%) and wc1/ccd1 (8.7%). A JL-QTL support interval was detected in the present 

study for kernel color (PVE 2.9%) which contained the ccd1-r progenitor locus. However, there 

were not significant marker-trait associations for kernel color within that interval (rather, on 

either side), such that the interval was not resolved to the gene level. The macrotransposon 

insertion site containing a tandem number of copies of ccd1, located 1.9 Mb upstream of the 

ccd1-r progenitor site (Tan et al. 2017), was identified in this study with moderate PVEs for 

lutein and total carotenoids. Given the multiple evident signals and somewhat dispersed nature 

thereof, further examination of Whitecap and the ccd1-r progenitor region is merited in breeding 

populations, including those having yellow to orange grain. Colorimetric examinations of kernel 

color could additionally be helpful in future efforts, for purposes of distinguishing the effects of 

genomics-assisted breeding efforts for orange, carotenoid-dense maize on multiple quantitative 

components of kernel color—namely a* and hue angle, for which genetic associations were 

detected in Owens et al. (2019), as well as other traits quantified in the CIELAB color system, 

such as chroma (i.e., color saturation or intensity). An examination of zeaxanthin-biofortified 

sweet corn found hue angle to decrease from 90° (noted as yellow) to 75° (noted as yellow-

orange) with increasing concentrations of β-branch carotenoids (O’Hare et al. 2015). 

Pigment color is a signature feature of different carotenoids, and is directly mediated by 

desaturation reactions occurring throughout the biosynthetic pathway (Bartley and Scolnik 1995; 

Khoo et al. 2011; Meléndez-Martinez et al. 2007). Namely, increasing the number of conjugated 

double bonds affects the chromophore comprising the carotenoid backbone and determines the 

exact wavelengths of light that it is able to absorb and emit (Bartley and Scolnik 1995; 

Meléndez-Martínez et al. 2007; Saini et al. 2015). Generally, carotenoids that carry more 

conjugated double bonds (such as lycopene) maximally absorb longer wavelengths of light and 
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are deeper in hue than other carotenoids such as phytoene and phytofluene, which have only 

three and five conjugated double bonds, respectively, and are effectively colorless. Indeed, 

zeaxanthin contains 11 conjugated double bonds and appears as a deeper orange color relative to 

lutein, which has 10 conjugated double bonds and emits a more yellow color (Bartley and 

Scolnik 1995; Khoo et al. 2011; Meléndez-Martínez et al. 2007). This trend is consistent for the 

other β- and α-branch compounds examined herein: β-carotene and β-cryptoxanthin have a 

carbon backbone of 11 conjugated double bonds and appear more yellow-orange in hue 

compared to α-carotene and zeinoxanthin, which contain only 10 conjugated double bonds and 

are paler yellow carotenoids (Khoo et al. 2011; Meléndez-Martínez et al. 2007). 

It is thus not surprising that kernel color was more strongly correlated with β-branch 

carotenoids in these populations with yellow to orange grain. The results of this study indicate 

that zeaxanthin was the primary driver of this relationship, given its feature importance in the 

random forest model (0.58, compared to 0.05 for each of the other two β-branch compounds 

analyzed herein: β-carotene and β-cryptoxanthin; Figure S1), and its higher abundance compared 

to—and positive correlations with—these two compounds. Negligible correlations between 

kernel color and α-branch carotenoids were less expected. At least weak correlations could have 

been feasible, given the abundance of lutein in grain of diverse maize accessions (Owens et al. 

2014) and its moderate positive correlation (r = 0.49) with total carotenoids as observed in the 

present study. Stronger relationships between kernel color and α-branch carotenoids than those 

observed in this study could likely be expected if white-endosperm lines were to be included in 

the populations under examination. 

The random forest model performing almost identically to the linear model for prediction 

of kernel color via grain carotenoid traits suggests a linear relationship between carotenoid traits 

and kernel color in the populations examined herein. Zeaxanthin and total carotenoids were 

identified as top predictors of kernel color both in the best-performing linear models and in the 

random forest feature importance analyses. Sweet corn lines with higher zeaxanthin (and more 

generally, β-branch carotenoid) levels were also found to have a deeper orange perceived kernel 

color (in the form of hue angle; O’Hare et al. 2015). Together, these results suggest that breeding 

for zeaxanthin would also be a viable method to breed for orange kernel color in maize. This 

tandem improvement is aligned with breeding priorities to increase concentrations of zeaxanthin 

and lutein alongside provitamin A, as priority carotenoids for human health. 
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Finally, kernel hardness (or vitreousness, rather than opacity) is an important agronomic 

and processing trait, and is also a relevant consideration with regards to carotenoids and kernel 

color. A non-functional allele of crtRB1—a gene not identified herein—was recently found to 

confer kernel opacity (Wang et al. 2020). dxs2 and seed carotenoid deficient 1 (which encodes 

the enzymatic step downstream of that encoded by mecs1, identified herein) were detected as 

modifiers in that background, as they conferred altered endosperm color and kernel vitreousness 

(Wang et al. 2020). zep1, also identified herein, was additionally detected in that study as a 

candidate modifier for kernel vitreousness in that background. Notably, kernel hardness (which 

corresponds to greater transmission of light) has also been found to affect perceived kernel color 

(Saenz et al. 2020; Saenz et al. 2021). Linear models predicting kernel color from grain 

carotenoid traits were found to have R2 of 0.65 to 0.66 without a family term, and 0.71 to 0.73 

with a family term. These results indicate that grain carotenoid traits are moderately predictive of 

kernel color. Kernel hardness and other physical/structural properties may explain some of the 

remaining ~30% of phenotypic variation for kernel color. Examination of ground kernels (or 

flour) in future studies would partially remove this potential confound arising from 

physical/structural relationships and could be of relevance to additional use cases for maize 

grain. When improving grain carotenoid traits and whole-grain kernel color in tandem, including 

through selection at one or more of the genes identified in this study, it would be helpful to 

monitor kernel hardness, both to ensure maintenance of this important trait and to further 

improve our understanding of relationships between the abundance/composition of grain 

carotenoid traits and final perceived kernel color, in breeding populations and developed maize 

varieties.  

 

CONCLUSION: 

This study simultaneously investigated the genetic basis of grain carotenoid traits and visually 

scored kernel color, in the same experimental framework (field environments and populations). 

Nine genes were identified for these traits, which encode activities in the precursor and core 

carotenoid pathways as well as carotenoid degradation. The genetic and phenotypic relationships 

dissected herein provide additional refinement—including key genes, relevant synergies and 

tradeoffs, and other potential look-out points—for breeding of orange, carotenoid-dense maize, 

including from germplasm pools having yellow to orange grain. 
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