

1 **Preproteins couple the intrinsic dynamics of SecA to its ATPase cycle to**
2 **translocate via a catch and release mechanism**

3

4 Srinath Krishnamurthy¹, Marios-Frantzeskos Sardis¹, Nikolaos Eleftheriadis¹, Katerina
5 E. Chatzi¹, Jochem H. Smit¹, Konstantina Karathanou², Giorgos Gouridis^{1,3,4}, Athina
6 G. Portalioi¹, Ana-Nicoleta Bondar^{2,5,6}, Spyridoula Karamanou¹ and Anastassios
7 Economou^{1,7,8}

8

9 ¹ KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and
10 Immunology, 3000 Leuven, Belgium

11 ² Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics
12 Group, Arnimallee 14, D-14195 Berlin, Germany

13 ³ Molecular Microscopy Research Group, Zernike Institute for Advanced Materials,
14 University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

15 ⁴ Structural Biology Division, Institute of Molecular Biology and Biotechnology (IMBB-
16 FORTH), Nikolaou Plastira 100, Heraklion-Crete, Greece

17 ⁵ University of Bucharest, Faculty of Physics, Atomistilor 405, Măgurele 077125,
18 Romania

19 ⁶ Forschungszentrum Jülich, Institute of Computational Biomedicine, IAS-5/INM-9,
20 Wilhelm-Johnen Straße, 5428 Jülich, Germany

21

22 ⁷ For correspondence: e-mail: tassos.economou@kuleuven.be,

23 ⁸ Lead Contact

24

25

26 **Running title:** Preprotein-coupled translocase dynamics

27 **Characters with spaces:** 52,450

28 **Keywords:** translocase; protein secretion; SecA; SecYEG channel, HDX-MS,
29 smFRET, Molecular Dynamics, signal peptide, secretory clients, intrinsic dynamics,
30 enzyme activation.

31 **Authors e-mail addresses:**

32 Srinath Krishnamurthy: srinath.krishnamurthy@kuleuven.be

33 Marios-Frantzeskos Sardis: sardism@gmail.com

34 Nikolaos Eleftheriadis: nikolaos.eleftheriadis@kuleuven.be

35 Katerina E. Chatzi: kat.chatzi@gmail.com

36 Jochem H. Smit: jochem.smit@kuleuven.be

37 Konstantina Karathanou: kkarathanou@zedat.fu-berlin.de

38 Giorgos Gouridis: g.gouridis@imbb.forth.gr

39 Athina G. Portaliou: athina.portalou@kuleuven.be

40 Ana-Nicoleta Bondar: nbondar@zedat.fu-berlin.de

41 Spyridoula Karamanou: lily.karamanou@kuleuven.be

42 Anastassios Economou: tassos.economou@kuleuven.be

43 **Summary**

44 **Protein machines undergo conformational motions to interact with and**
45 **manipulate polymeric substrates. The Sec translocase promiscuously**
46 **recognizes, becomes activated and secretes >500 non-folded preprotein clients**
47 **across bacterial cytoplasmic membranes. Here, we reveal that the intrinsic**
48 **dynamics of the translocase ATPase, SecA, and of preproteins combine to**
49 **achieve translocation. SecA possesses an intrinsically dynamic preprotein**
50 **clamp attached to an equally dynamic ATPase motor. Alternating motor**
51 **conformations are finely controlled by the γ -phosphate of ATP, while ADP**
52 **causes motor stalling, independently of clamp motions. Functional preproteins**
53 **physically bridge these independent dynamics. Their signal peptide promotes**
54 **clamp closing; their mature domain overcomes the rate limiting ADP release.**
55 **While repeated ATP cycles shift the motor between unique states, multiple**
56 **conformationally frustrated prongs in the clamp repeatedly ‘catch and release’**
57 **trapped preprotein segments until translocation completion. This universal**
58 **mechanism allows any preprotein to promiscuously recognize the translocase,**
59 **usurp its intrinsic dynamics and become secreted.**

60

61 **Word count: 149**

62

63

64 **Introduction**

65 Protein machines chemically modify, reshape, disaggregate and transport
66 nucleic acids and polypeptides (Avellaneda et al., 2017; Flechsig and Mikhailov, 2019;
67 Kurakin, 2006). In doing so, they convert between auto-inhibited and active states that
68 commonly depend on intrinsic structural dynamics (Nussinov et al., 2018). A
69 fascinating paradigm of such a machine is the bacterial Sec translocase, involved in
70 secretion of client proteins (preproteins) across the inner membrane. Its SecA ATPase
71 subunit, a four domain Superfamily 2 DEAD box helicase, interacts with non-folded
72 signal peptide-bearing clients, nucleotides, lipids, chaperones and the trimeric
73 SecYEG channel (De Geyter et al., 2020; Rapoport et al., 2017; Tsirigotaki et al.,
74 2017a). The coordination of these sub-reactions achieves translocase activation by
75 exploiting a multi-tiered intrinsic dynamics nexus (Corey et al., 2019; Gouridis et al.,
76 2013; Krishnamurthy et al., 2021; Sardis and Economou, 2010). The latter is built on
77 an extensive Hydrogen-bonded (H-bond) network and requires minor energetic input
78 from ligands (Krishnamurthy et al., 2021). While partner subunits and nucleotides
79 regulate and prime the dynamics landscape of the Sec translocase, activation is
80 ultimately only driven by the secretory clients. Loosely conserved client sequence
81 features allow the translocase to bind, get activated by and ultimately translocate ~500
82 different clients across the bacterial inner membrane, at the expense of energy
83 (Tsirigotaki et al., 2017a). This occurs via a poorly understood universal activation
84 mechanism that is preprotein sequence-agnostic.

85 Protein intrinsic dynamics are multi-leveled (Henzler-Wildman et al., 2007; Yang
86 et al., 2014): quaternary motions of subunits, tertiary motions within a single chain,
87 rigid body motions of large structural domains and local motions in small numbers of
88 residues (Krishnamurthy et al., 2021). How intrinsic dynamics couple allostery to

89 function remains unclear (Bhabha et al., 2015; Loutchko and Flechsig, 2020; Zhang et
90 al., 2019) and characterizing it mechanistically is all the more challenging in multi-
91 liganded, multi-partner enzymes such as the Sec translocase, that operate in an
92 apparent hierarchical manner.

93 Cytoplasmic SecA is dimeric, ADP-bound and quiescent (SecA₂; Fig. 1A.I) and
94 chaperones preprotein clients (Sianidis et al., 2001). Its helicase motor (comprising
95 Nucleotide Binding Domains 1/2) is fused to an ATPase suppressing C-domain and a
96 Preprotein Binding Domain (PBD) (Fig. S1A) that is rooted via a Stem in NBD1. The
97 PBD intrinsically rotates from a distal inactive “Wide-Open” position towards NBD2
98 (“Closed” positions) in a crab-claw motion (Ernst et al., 2018; Krishnamurthy et al.,
99 2021; Sardis and Economou, 2010; Vandenberk et al., 2019), to clamp mature
100 domains (Bauer and Rapoport, 2009). Binding to the SecYEG channel (Fig. 1A.II,
101 “primed”) enhances the local dynamics of SecA primarily in the helicase motor and
102 attached Scaffold and Stem [Fig. S1A; (Krishnamurthy et al., 2021)]. Asymmetric
103 binding of SecA₂ to the channel increases clamp dynamics and interconversion
104 between open and closed states in the channel-bound protomer referred to as “active”
105 (Krishnamurthy et al., 2021). This “primed” translocase has 10-fold higher affinity for
106 preproteins (Gouridis et al., 2009; Gouridis et al., 2013; Hartl et al., 1990) yet, does not
107 substantially turn ATP over (Fak et al., 2004; Keramisanou et al., 2006; Krishnamurthy
108 et al., 2021; Sianidis et al., 2001). The translocase becomes fully activated only after
109 non-folded preproteins bind to it as bivalent ligands with discrete binding sites on SecA
110 for their signal peptides (in the PBD bulb) and mature domains (on and around the
111 PBD Stem) [Fig. S1B; (Chatzi et al., 2017; Gelis et al., 2007; Sardis et al., 2017)].
112 Signal peptides promote a low activation energy conformation (Fig. 1A.III, “triggered”)
113 that fully activates the ATPase activity of the translocase, presumably overcoming the

114 stable ADP state (Fig. 1A.IV, “activated”), and leading to segmental translocation (Fig.
115 1A.V, “processive translocation”).

116 We previously developed and use here an integrated, multi-pronged approach
117 to determine the intrinsic dynamics of SecA and probed how these underlie the
118 conversion from a quiescent to a primed SecY-bound state (Karathanou and Bondar,
119 2019; Krishnamurthy et al., 2021; Vandenberk et al., 2019). We probed ‘global’
120 dynamics/H-bond networks with atomistic molecular dynamics (MD) simulations and
121 graph analysis, PBD clamp motions by single molecule Förster resonance energy
122 transfer (smFRET) and ‘local’ dynamics by hydrogen deuterium exchange mass
123 spectrometry (HDX-MS). smFRET and HDX-MS experiments are carried out with
124 inverted membrane vesicles, in translocation-permitting conditions identical to the
125 ones used for biochemical dissection (Krishnamurthy et al., 2021) and not in the
126 presence of detergents to avoid monomerizing SecA and altering translocase
127 dynamics (Ahdash et al., 2019; Or et al., 2002).

128 We now reveal that preproteins achieve their translocation by physically bridging
129 the otherwise largely uncoupled intrinsic dynamics of the SecA helicase motor and
130 those of the preprotein clamp. Signal peptide and mature domain binding on their
131 respective binding sites on the primed translocase [Fig. S1B; (Sardis et al., 2017)] drive
132 specific events: the signal peptide promotes closing of the clamp. This results in
133 enhanced dynamics in the ATPase motor and at the mature domain binding site
134 around the Stem. These local changes facilitate mature domain-driven ADP release.
135 A fresh nucleotide cycle initiates as ATP binds the *apo* motor. Each stage of the
136 hydrolysis cycle leads to distinct states of the ATPase motor that rely on sensing of the
137 γ -phosphate. Importantly, these cyclic changes also affect four frustrated prongs that

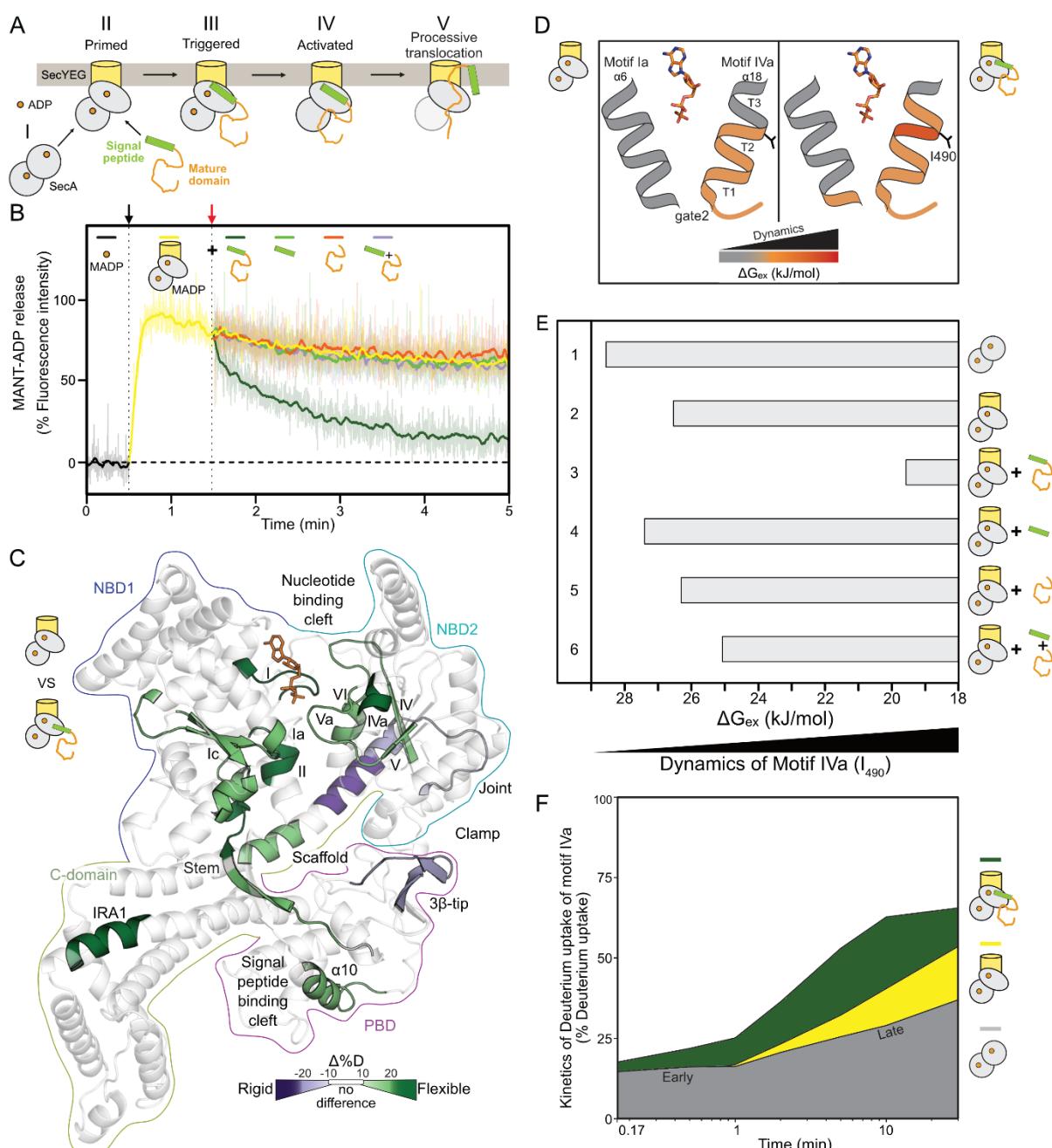
138 line the preprotein clamp. Dynamics changes lead to specific transient binding on
139 multiple islands along the client chain resulting in 'catch and release' cycles that
140 coincide with active translocation. Thus, through multi-site binding, the elongated client
141 acts as an external temporary physical bridge that couples clamp motions to intrinsic
142 ATPase motor states that are directly regulated by the ATPase cycle. Upon completion
143 of translocation, the client-less machine can no longer overcome the ADP state and
144 becomes quiescent.

145

146 **Results**

147 **Preprotein-stimulated ADP release from the helicase motor**

148 Preproteins stimulate ATP turnovers at the translocase. To do so, they must
149 first de-stabilize the robust SecA:ADP state. To test this we used fluorescent MANT-
150 ADP and monitored its binding to/release from the SecYEG:SecA₂ translocase, in the
151 presence or absence of preprotein (Fig. 1B). The fluorescence intensity of MANT-ADP
152 increases upon binding to the helicase motor of SecA at 37°C (Fig 1B; x axis, black
153 arrow) (Galletto et al., 2005; Karamanou et al., 2005; Krishnamurthy et al., 2021) and
154 remains high through the time course of the experiment (Fig. 1B, yellow line) indicating
155 tight ADP binding. Upon addition of preprotein [proPhoA₁₋₁₂₂; (Chatzi et al., 2017)], at
156 the indicated time point (Fig. 1B, x axis, orange arrow), the fluorescence intensity drops
157 (green line), indicative of MANT-ADP release.


158 ADP could not be released from SecA₂ in solution (Fig. S1C, top) nor at non-
159 physiological temperature (10°C; bottom). Signal peptide (Fig. 1B, green) or mature
160 domain (orange) added alone, or combined *in trans* (purple), at concentrations several
161 times over their K_d, failed to cause measurable ADP release. Therefore, this reaction
162 is on pathway since only functional preproteins induce ADP release to activate
163 translocase only at physiological conditions.

164

165 **Preprotein-enhanced helicase motor dynamics underlie ADP release**

166 Next, we studied whether preprotein-stimulated ADP release and initiation of the
167 translocation reaction correlate with changes in the local intrinsic dynamics of
168 SecYEG:SecA₂:ADP. For this we used HDX-MS and calculated the per residue Gibbs
169 free energy of exchange (ΔG_{ex}) (Krishnamurthy et al., 2021; Smit et al., 2021a). ΔG_{ex}

170 values correlate well with protein intrinsic dynamics and map at residue level flexible
171 (Fig. S1D; low ΔG values; red/orange) or rigid (high ΔG values; transparent grey)
172 protein regions. To quantify the effect of preprotein binding on the dynamics of the
173 translocase we compared the D-uptake between the SecYEG:SecA₂:ADP:preprotein
174 (Fig. S1D, right) to SecYEG:SecA₂:ADP as a reference state [left; (Krishnamurthy et
175 al., 2021)]. The resulting ΔD -uptake structural map highlighted that preprotein binding
176 has two main effects. It significantly increased dynamics (Fig. 1C; green hues) at the

Figure 1: Preproteins induce ADP release by allosterically enhancing the dynamics of the ATPase motor

A. Cytoplasmic SecA is an ADP-bound quiescent dimer (I), that binds asymmetrically to the SecYEG channel through the active protomer (II, grey oval). The preprotein is targeted to the translocase through binding of signal peptide and mature domain that act together as a bivalent ligand. Signal peptide binding on the translocase leads to triggering (III). Preprotein binding activates the translocase (IV) for processive ATP hydrolysis cycles that result in preprotein translocation (V).

B. ADP release assay. The fluorescence intensity of MANT-ADP increases upon binding to channel-primed translocase (1 μ M; black arrow at 30 s). The reaction was chased (red arrow; at 90 s) with the indicated ligand. Data were recorded for 5 min. The drop in fluorescence intensity corresponds to the release of MANT-ADP from the nucleotide binding pocket of SecA. Ligands were added at saturating concentrations (see methods). Data are independently normalized using the fluorescence intensity of free MANT-ADP (at 30 s) as 0 %, and the intensity of translocase-bound MANT-ADP (at 45 s) as 100 %. Raw fluorescence traces (transparent lines; $n=3-4$) are presented along with smoothed data (solid lines, LOWESS smoothing). Preprotein: proPhoA₁₋₁₂₂, mature domain: PhoA₂₃₋₁₂₂ (Chatzi et al., 2017).

C. Effect of proPhoA₁₋₁₂₂ binding on the local dynamics of SecA₂:ADP:SecYEG, by HDX-MS (only one protomer shown for simplicity). D-uptake differences between SecA₂:ADP:SecYEG (top pictogram: “reference”) and SecA₂:ADP:SecYEG:preprotein (bottom pictogram: “test”) are mapped onto the closed clamp structure of SecA derived from MD simulations with the helicase motor and its gate2 (motifs Ia and IVa) in the open state for better visualization (Krishnamurthy et al., 2021). Decreased/increased dynamics: purple/green respectively; no difference: transparent grey. Domain contours are coloured, ADP: orange sticks.

D. ΔG_{ex} values representing protein dynamics (covering a range of ± 10 kJ/mol) were calculated by PyHDX from HDX-MS data (Smit et al., 2021a) and were mapped onto a cartoon of the gate2 in its closed state with its two helices comprising helicase motifs Ia (α 6) and IVa (α 18). Dynamics of SecA₂:ADP:SecYEG in preprotein free (left) and bound (right) state are shown. α 18 consists of 3 turns. I₄₉₀ (located between turns 2 and 3) reports on motif IVa dynamics. ADP: orange sticks. See also Fig. S1D.

E. ΔG_{ex} values (from D) for residue I₄₉₀ (motif IVa) were determined under the indicated conditions. Decreased ΔG_{ex} values correspond to increased dynamics of I₄₉₀.

F. D-uptake kinetic plots of a motif IVa peptide (aa488-501), shown as a percentage of the full deuteration control (Table S1), for SecA₂:ADP (grey), SecA₂:ADP:SecYEG [yellow; (Krishnamurthy et al., 2021)] and SecA₂:ADP:SecYEG:preprotein (green) are shown. Quiescent SecA₂:ADP showed biphasic D-uptake kinetics, with a slow initial phase and a fast second one. Data points refer to labeling

177 motor [at helicase motifs (roman numerals) and parallel β -sheets; (Fig. S1E)], the
178 mature domain binding site (IRA1 and Stem) and near the signal peptide binding cleft
179 (PBD _{α 10}; S1A and D) of SecA. (Keramisanou et al., 2006). In parallel, it decreased
180 dynamics (purple hues) in the Joint/beginning of the Scaffold and the 3 β -tip_{PBD}. As the
181 effects seen within the helicase motor occur far from the identified preprotein binding
182 sites (Fig. S1B), they are likely allosteric. They are also physiological responses as
183 preprotein binds (Gouridis 2009) but did not significantly alter SecA₂ dynamics in
184 solution (Table S1).

185 In the nucleotide cleft motifs I, II and V_{R509} directly bind the phosphate groups of
186 ATP [(Papanikolau et al., 2007); Fig. S1E, left] and motifs IV and V are important

187 parallel β -strands of the NBD2 core. At the nucleotide cleft periphery, motifs Ia and IVa
188 form the lateral gate2 with defined closed/open states affecting NBD1 and 2
189 association (Fig. S1E, right)(Papanikolau et al., 2007) and likely regulate access to the
190 nucleotide cleft (see below). Gate2 together with gate1 at the bottom of the nucleotide
191 cleft (Fig. S1E, left), control the onset of ATP hydrolysis (Karamanou et al., 2007).
192 Increased dynamics at these motifs proves that upon preprotein binding, nucleotide
193 contacts in the helicase motor are weakened, presumably underlying ADP release
194 (Fig. 1B).

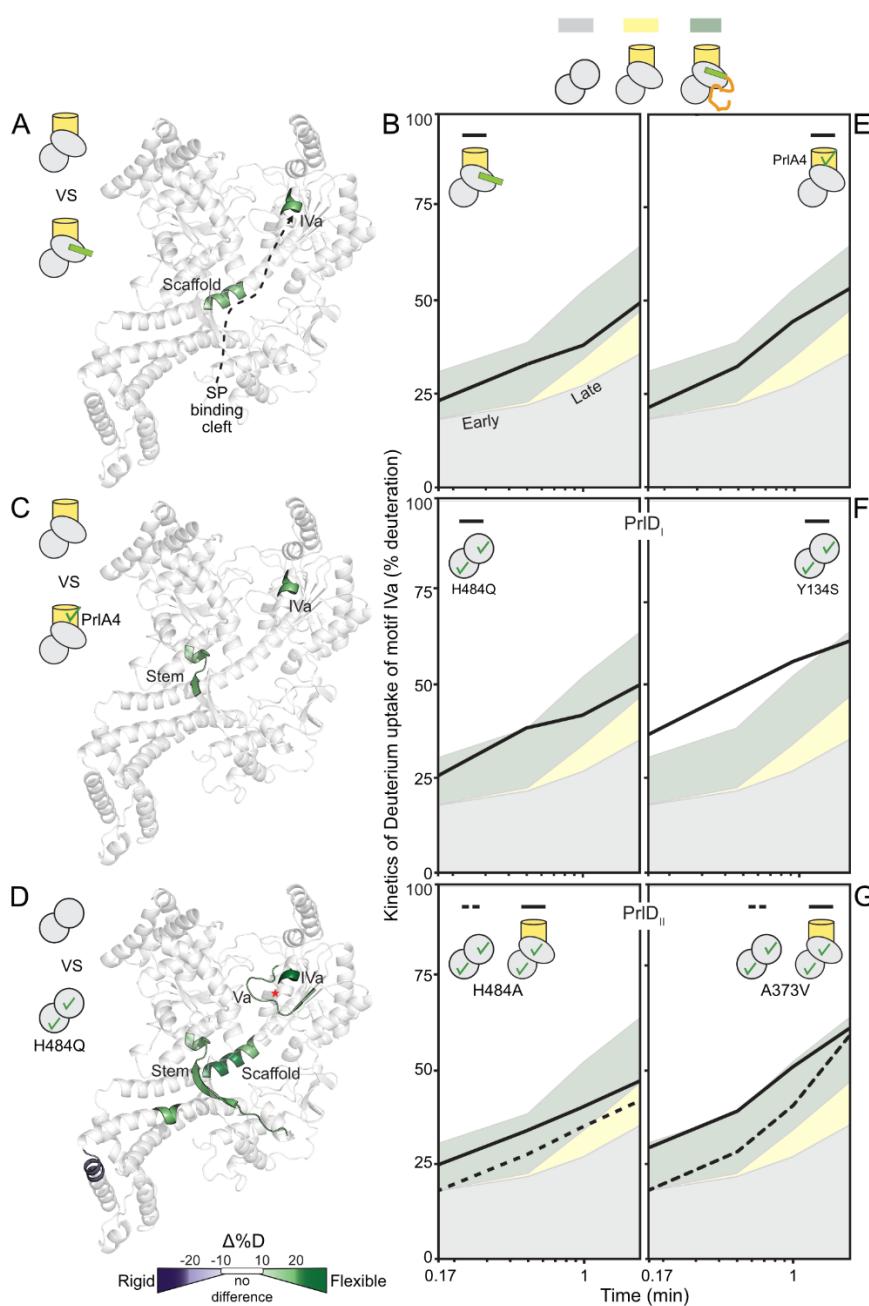
195 In conclusion, binding of functional preprotein to the PBD (Chatzi et al., 2017;
196 Gelis et al., 2007) causes long range allosteric effects that affect the dynamics of the
197 motor at several helicase motifs internally and at the peripheral gate2 (Fig. 1D-F),
198 drives ADP release (Fig. 1B) and thus allows initiation of the ATPase cycle.

199

200 **Motif IVa of gate2 senses ligands through its intrinsic dynamics**

201 Gate2 is particularly intriguing. Motif IVa has elevated basal dynamics and is
202 sensitive to multiple interactants (Krishnamurthy et al., 2021), is located between the
203 ADP-binding motif Va and the motifs IV and Vb on β -strands of the NBD2 core (Fig.
204 S1E). It comprises a flexible linker followed by a 3-turn helix with a constantly dynamic
205 first half (Fig. 1D, left, orange; S1D, left) followed by a conditionally dynamic second
206 half (turns 2-3). Preprotein binding increased dynamics specifically at turns 2 and 3,
207 around residue I₄₉₀ (Fig. 1D and S1D, right) and this provided us with a powerful assay
208 to quantify dynamics changes in motif IVa (Fig. 1E). Channel binding marginally
209 increases its dynamics compared to the SecA₂:ADP state (i.e. ΔG_{ex} decreases; Fig.
210 1E, compare lane 2 to 1; $\Delta\Delta G_{ex}$ = ~2 kJ/mol), while preprotein binding to the holo-

211 translocase significantly enhances them (lane 3; $\Delta\Delta G_{\text{ex}} = \sim 6 \text{ kJ/mol}$). Addition of signal
212 peptide (lane 4) or mature domain (lane 5) alone, or together *in trans* (lane 6), failed to
213 recapitulate the preprotein effect on motif IVa flexibility.


214 Motif IVa shows complex dynamics taking up D with biphasic kinetics (Fig. 1F,
215 grey), suggestive of distinct modulation of its energy landscape in two differentially
216 flexible conformational steps. Channel binding selectively increased only the second
217 'late' phase dynamics (yellow), while preprotein added on top, increased both phases
218 (green), suggesting a major reorganization of the conformational landscape of motif
219 IVa. Neither step is sufficient alone; both are necessary for complete activation of the
220 translocase and preprotein could be replaced neither by signal peptide (Fig. S1F.I) nor
221 by mature domain (II) added alone, or together *in trans* (III).

222 We concluded that motif IVa of gate2 uses its intrinsic dynamics to sense ligands.

223

224 **ADP-antagonized, signal peptide-regulated Motif IVa dynamics**

225 We next sought to discern the contribution of each preprotein moiety to activating
226 the transloase, first probing the effect of the signal peptide. The proPhoA signal peptide
227 had marginal effects on the dynamics of the helicase motor of SecYEG:SecA₂:ADP
228 (Fig. 1E; S1F.I; Table S1). We presumed this to be due to bound ADP antagonizing
229 subtle dynamics effects and tested the effect of signal peptide binding on the *apo*
230 SecYEG:SecA₂. This time we observed a remarkable increase in extremely localized
231 dynamics at turn 2 of motif IVa and the middle of the Scaffold (Fig. 2A). Time-
232 dependent dynamics of Motif IVa revealed that signal peptide binding increased the
233 dynamics of the early but not the late (channel-dependent) phase (Fig. 2B, compare
234 line to shaded yellow) and the effect was less than that of the preprotein (compare line

Figure 2: Signal peptides trigger the translocase by enhancing gate2 dynamics

A. Long range signal peptide effect shown schematically (dashed arrow) on the local dynamics of channel-primed SecA₂. Regions showing differential D-uptake in SecYEG:SecA₂:signal peptide compared to SecYEG:SecA₂ are mapped onto the structure of a single SecA protomer, as indicated. Only increased dynamics were observed (green).

B., E., F. and G. D-uptake kinetic plots of a motif IVa peptide (aa488-501, as in Fig.1E) under the indicated conditions are compared with the kinetics of the same peptide from SecA₂ (grey), SecYEG:SecA₂ (yellow) and SecYEG:SecA₂:preprotein (green) in the absence of ADP (see also Fig. S2A, left). Minor differences were seen between the ADP bound (Fig.1E) and free (Fig. S2A) states. Selected data points (10 s, 30 s, 1 m, 2 m labeling times) focus on the kinetic regime with maximum differences; SD values (<2%) have been removed. $n = 3$.

B. D-uptake kinetics of motif IVa peptide in SecYEG:SecA₂:signal peptide state (green line).

C.-D. Local dynamics of SecY_{PrlA4}EG:SecA₂ (test) compared to those of SecYEG:SecA₂ (control) (**C**); of SecA(H484Q)₂ (test) compared to those of SecA₂ (control) (**D**); as in B. Red asterisk: H484Q.

E.-G. D-uptake kinetics of motif IVa peptide (as in B) in SecA₂:SecY_{PrlA4}EG translocase (**E**) or the indicated PrID_{typeI} (**F**) and PrID_{typeII} (**G**) mutants in solution.

to shaded green; Fig. S2A). This was corroborated by quantification monitoring of I₄₉₀ (Fig. S2B).

Therefore, the signal peptide caused measurable but minor (compared to those of the preprotein) rearrangements on the conformational landscape of SecA, primarily at motif IVa of the peripheral gate2. This may be

252 essential for ‘triggering’ (Fig. 1A.III)(Gouridis et al., 2009).

253

254 **Signal peptide-induced translocase triggering occurs via motif IVa dynamics**

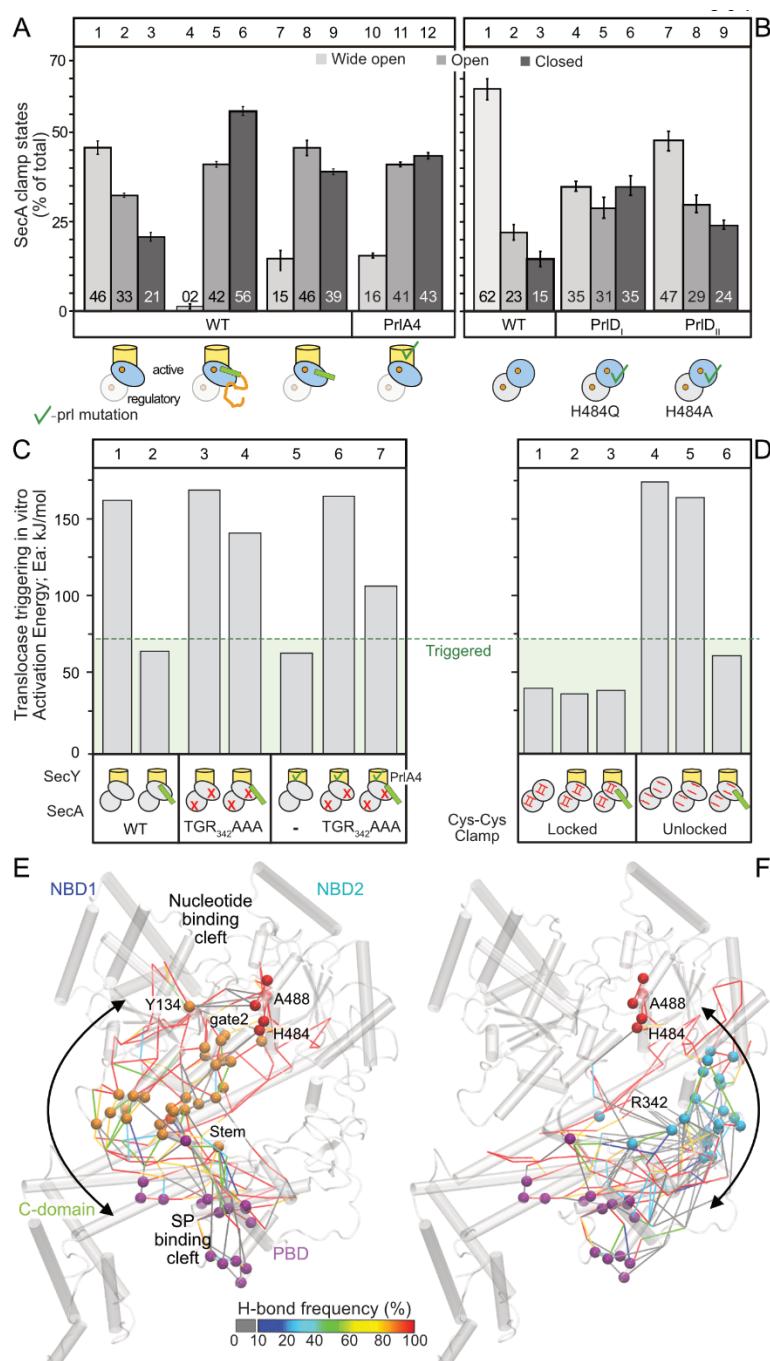
255 To better understand how signal peptides control translocase dynamics via motif
256 IVa we used Prl (protein localization) mutants in SecA (PrlD) or SecY (PrlA). These
257 gain-of-function mutants are informative because they can secrete clients devoid of
258 signal peptides (Fig. S2C) (Flower et al., 1994; Huie and Silhavy, 1995), and therefore
259 are structural mimics of the signal peptide-induced states. They achieve this because
260 they exist constitutively in the triggered conformation [Fig. 1A.III; Fig. S2D, lanes 2-5;
261 (Gouridis et al., 2009)]. In fact, some of them are triggered even in the absence of the
262 channel (Fig. S2D, lanes 4 and 5; hereafter SecA_{PrlD}I).

263 Remarkably, three SecA_{PrlD} hotspot residues line both sides of gate2: H484 and
264 A488 in motif IVa, juxtapose Y134 of motif Ia [Fig. S2C; (Huie and Silhavy, 1995)].
265 Other hotspot residues lie in adjacent motifs, e.g. A507 in motif Va.

266 Minor side chain alterations in either Y134 or H484 mimic the binary effect of
267 channel plus signal peptide binding, in the absence of either. We dissected the two
268 ligand effects on H484, by screening mutant derivatives. SecA(H484A) also displays
269 a Prl phenotype (Fig. S2E, lane 6). However, unlike SecA(H484Q), its triggering
270 required prior channel binding (Fig. S2D, lanes 6-7; hereafter SecA_{PrlD}II).

271 We characterized the local dynamics of these mutants. Wild type SecA₂ bound
272 to SecYEG or to SecY_{PrlA4}EG exhibited similar dynamics (Krishnamurthy et al., 2021)
273 but the latter displayed additionally elevated dynamics in motif IVa and the Stem (Fig.
274 2C). Similarly, compared to SecA₂, SecA(H484Q)₂ exhibited elevated motif IVa, Stem
275 and Scaffold dynamics in the absence of channel or preprotein (Fig. 2D).

276 Remarkably, in time-dependent dynamics analysis of Motif IVa,
277 SecA₂:SecY_{PrlA4}EG (Fig. 2E) and the SecA_{PrlD1} mutants alone (Fig. 2F) all displayed
278 elevated early phase dynamics, similar to those driven by preprotein or signal peptide
279 in the wildtype (Fig. 2B). SecA_{PrlD2} mutants also displayed moderately elevated motif
280 IVa dynamics (Fig. 2G; dashed line) that were increased significantly after channel
281 addition (solid line) thus, explaining their channel-dependence for triggering.


282 Fine modulation of the complex dynamics at motif IVa of gate2 is an essential
283 aspect of signal peptide-mediated translocase triggering.

284

285 **Signal peptides promote closing of the preprotein clamp**

286 Signal peptide binding at PBD (Gelis et al., 2007), influences motif IVa dynamics,
287 over 4 nm away, and triggers the translocase. To explain how, we hypothesized that
288 signal peptides might influence PBD rotation around its Stem (Krishnamurthy et al.,
289 2021; Vandenberk et al., 2019). We probed such domain motions using smFRET.
290 Fluorophores on PBD and NBD2, that form the preprotein clamp (Fig. S3A), can
291 monitor these domains coming close or apart [Fig. S3B; yielding high/low FRET
292 respectively; (Krishnamurthy et al., 2021; Vandenberk et al., 2019)].

293 In SecA₂:SecYEG the PBD of the active protomer samples all three states, with
294 a preference for the Wide-open [Fig. 3A, lanes 1-3; S3B.IIa; (Krishnamurthy et al.,
295 2021)]. Preprotein binding led to clamp closing (i.e., Open plus Closed states) in 98%
296 of the active protomers (lanes 4-6), irrespective of ADP presence (Fig. S3B.III). Signal
297 peptides alone can replicate this in 85% of the active protomers (Fig. 3A, lanes 7-9).
298 SecA₂:SecY_{PrlA4}EG that is already triggered promotes clamp closing in the absence of
299 preprotein or signal peptide (lanes 10-12). Signal peptide-driven clamp closing (Fig.
300 3A, lanes 7-9) is not accompanied by any detectable secondary structure/flexibility

Figure 3: Clamp closing is a major conformational event towards translocase triggering

A-B. Distribution of the preprotein clamp states of Channel-bound SecA₂ states (**A**) and free SecA₂ states (**B**), determined by freely diffusing confocal smFRET as described (Krishnamurthy et al., 2021). His-SecA (50-100 pM), stochastically labelled at V280C_{PBD}/L464C_{NBD2} with Alexa 555 and Alexa 647 (blue circle) was allowed to dimerize with excess cold SecA (1 μM; grey circle) resulting to SecA₂ with a single fluorescent protomer. Gaussian distributions, fitted to FRET histograms and quantified, correlate to the wide-open, open and closed clamp states (Fig. S3A-B). Under channel-bound conditions, only data for the active, channel bound protomer (blue oval) are shown (Krishnamurthy et al., 2021). $n \geq 3$; mean (\pm SEM).

C. and D. Activation energy (E_a) for wild type SecA, SecA(TGR₃₄₂AAA) (**C**) and a double cysteine SecA derivative (**D**) under the indicated conditions. Oxidized/locked Closed, or reduced/unlocked Open clamp as indicated.

E. and F. H-bond pathways connecting motif IVa (red) to the signal peptide cleft (purple) through either the Stem (**E**; orange) or the PBD-NBD2 interface (**F**; cyan), derived from graph analysis of MD simulations of ecSecA₂VDA with an open gate2 (Krishnamurthy et al., 2021).

changes inside the PBD or the nucleotide cleft (Fig. 2A). This mainly rigid body motion seems rather uncoupled from stimulating nucleotide turnovers in the helicase motor (see below). In freely diffusing wild type SecA₂ the clamp equilibrium is maintained at the Wide-open state [Fig. 3B, lanes 1-3; (Krishnamurthy et al., 2021)] and signal peptides do not close it (Fig. S3B.I.).

In contrast, in diffusing, spontaneously triggered SecA_{PrtD}, clamp equilibria shift towards closed states in the absence of

320 channel and signal peptides (Fig. 3B, lanes 4-6) and less so in SecA_{PrIDII} mutants that
321 require the channel for triggering (lanes 7-9; Fig. S3B.IV.b-c; Fig. S3C).

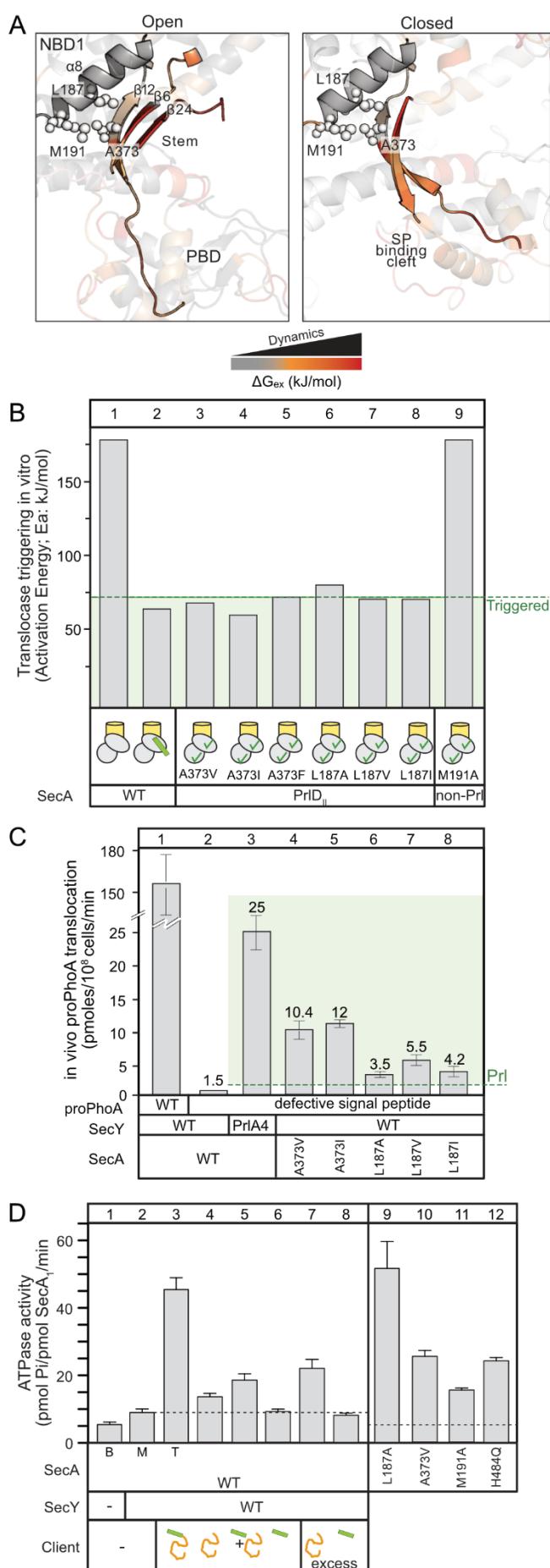
322 Our results raised the possibility that the direct physical interaction of NBD2 with
323 PBD that is promoted in the Closed state might be functionally important. To test this,
324 we mutated the highly conserved 3 β -tip of PBD that binds to NBD2 to close the clamp
325 [Fig. S3A; (Krishnamurthy et al., 2021)]. The generated SecA(TGR₃₄₂AAA) failed to
326 become triggered by signal peptide (Fig. 3C, lane 4) or SecY_{PrIA4} (lane 6) or their
327 combination (lane 7). SecA(TGR₃₄₂AAA) binds to channel/preproteins (Fig. S4A) yet,
328 fails to stimulate its ATPase or secrete *in vitro* or complement *in vivo* function (Fig.
329 S4B-D).

330 To further probe the importance of the closed clamp state we locked it closed
331 through engineered disulfides (Chatzi et al., 2017; Sardis et al., 2017) and tested the
332 functional consequences. The SecA_{locked} closed was permanently triggered,
333 independently of channel or preprotein (Fig. 3D, lanes 1-3), akin to SecA_{PrID} mutants
334 (Fig. S2C, lanes 4-5). Reduction of the disulfide reinstated a ‘channel plus preprotein’
335 requirement for triggering (Fig. 3D, lanes 4-6).

336 Signal peptide-driven clamp closing and increased motif IVa dynamics underlie
337 translocase triggering.

338

339 **The signal-peptide cleft cross-talks to motif IVa via two main H-bond pathways**
340 To determine how signal-peptide driven clamp closing might allow the signal peptide
341 binding cleft to cross-talk with motif IVa, we determined the H-bonding networks,
342 including water-mediated bridging, between the two allosterically connected sites. In
343 all simulations of ecSecA (monomeric or dimeric), motif IVa (Fig. 3E-F, red spheres;
344 Table S2) was interconnected within a local H-bond network that could extend to


345 involve most of SecA's residues (Krishnamurthy et al., 2021). Graph analysis
346 determined the most frequently visited/shortest possible H-bond pathways that could
347 be potentially altered along the reaction coordinate of SecA through which, the signal
348 peptide cleft in PBD (purple spheres) could communicate with motif IVa. Two main
349 routes were proposed by this analysis. One was via the NBD_{2Joint}/PBD_{Bulb} interface of
350 the closed clamp (Fig. 3F, cyan spheres) that was experimentally tested above. The
351 other was via the PBD_{Stem}/a8 interface which binds mature domains and interconnects
352 to the second half of gate2 (Y134; Fig. 3E, orange spheres). This second route was
353 tested below.

354

355 **The signal-peptide cleft cross-talks to motif IVa through the Stem/α8 interface**

356 The Stem/α8 interface that binds mature domains (Chatzi et al., 2017),
357 undergoes significant conformational changes during the transition from the Open to
358 the Closed state [Fig. 4A; S3A; (Krishnamurthy et al., 2021)]. These might alter the
359 local hydrophobic interactions between the Stem β strands and α8, as this interface is
360 pried open. The Stem/α8 interface extends to a three strand β-sheet with the highly
361 dynamic β6_{Stem} and β24_{C-tail} and involves L187_{α8} that packs against A373 of β12_{Stem}
362 (Fig. 4A).

363 To strengthen or weaken hydrophobic packing at the Stem/α8 interface we
364 substituted A373_{Stem} with large hydrophobic residues (V, I and F) and L187_{α8} with V, I
365 or A. All derivatives displayed Prl phenotypes *in vitro* (of Type II)(Fig. 4B, lanes 3-8)
366 and *in vivo* (Fig. 4C, lanes 6-8) with L187A the weakest one. A373V was previously
367 known as the only Prl outside the nucleotide binding cleft (Flower et al., 1994; Huie
368 and Silhavy, 1995). In contrast, mutating M191 to A, located one turn after L187 at the

end of α 8 and of the Stem/ α 8 interface (Fig. 4A), did not yield a Prl phenotype (Fig. 4B, lane 9). All mutant derivatives were functional *in vivo* (Fig. S4E).

We concluded that through this route signal peptides alter hydrophobic packing at the mature domain binding patch on the Stem/ α 8 interface.

Binding of mature domains drives ADP release and ATP turnover

Fig. 4 Mature domain-driven ADP release and ATP turnovers

A. Structure and residues at the Stem/ α 8 region including β 24_{C-tail}. ΔG_{ex} values are shown for the SecYEG:SecA₂:preprotein state in the Open (middle; ecSecA_{2VDA}) and Closed (right; ecSecA_{2VDA}-MD model; (Krishnamurthy et al., 2021)) clamp conformation. Structures are aligned based on NBD1.

B. Activation energy (E_a) for the indicated Stem mutants with SecA_{PrlD_{II}} phenotype in channel-primed states, compared to wild type translocase (as in Fig. 3B).

C. *In vivo* translocation of proPhoA or of a defective signal peptide derivative [pro(L8Q)PhoA] by the indicated translocases. Secreted phosphatase units were converted to protein mass, as described (Gouridis et al., 2010). $n=6$; mean values (\pm SEM).

D. The ATPase activity of freely diffusing (basal; B; 0.4 μ M SecA or the indicated derivatives), SecYEG-bound (membrane; M; 1 μ M SecY) and translocating SecA (T; SecY plus 9 μ M proPhoACys⁺) was determined as described (Gouridis et al., 2010). Signal peptide (30 μ M; excess: 60 μ M), mature domain (PhoAcys⁻; 20 μ M; excess: 40 μ M). $n=3-6$; mean values (\pm SEM).

380 Preprotein mature domains bind to the Stem/α8 interface [(Chatzi et al., 2017);
381 Fig. S1B, orange surface] and when covalently associated to signal peptide, stimulate
382 ADP release (Fig. 1B) and multiple ATP turnovers on the translocase (Fig. 4D, lane 3;
383 (Karamanou et al., 2007). Even mature domains alone (lane 4) or together with signal
384 peptides added *in trans* (lane 5) or alone in excess (lane 7) drive some measurable
385 ATPase stimulation (1.5, 2 and 3-fold, respectively), while signal peptide alone (lane
386 6), even in excess (lane 8), does not.

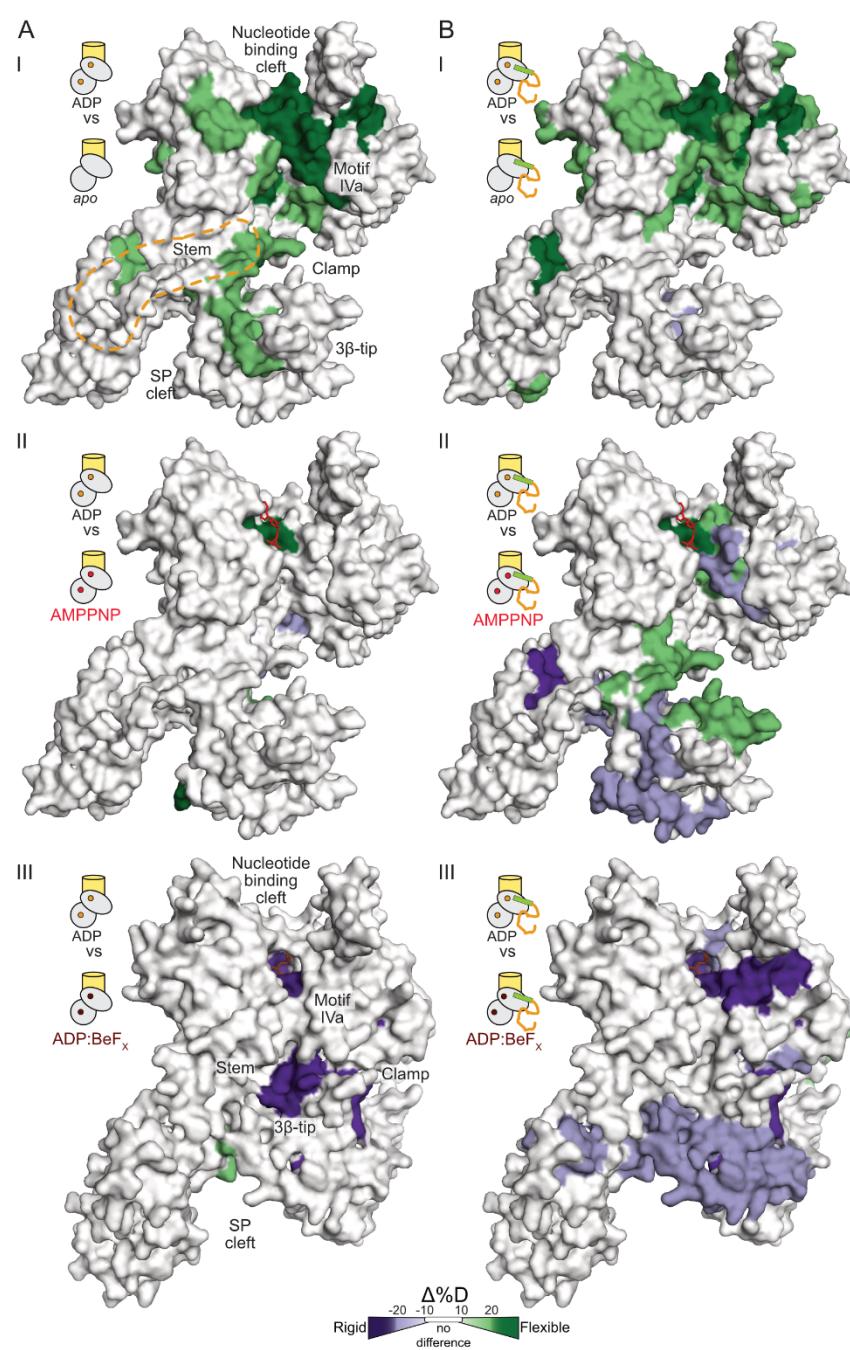
387 Mature domains cause minor increased flexibility in the local dynamics of the
388 helicase motor of SecYEG:SecA₂:ADP that is not improved with the simultaneous
389 addition of signal peptides *in trans* (Fig. S4F-G). This explains their inability for full
390 ATPase stimulation when the two moieties are not covalently connected.

391 Based on the above, we hypothesized that signal-peptide induced effects could
392 positively contribute through conformationally optimizing the Stem/α8 interface for
393 mature domains to bind and stimulate ATP turnovers. To directly test the possible role
394 of this region in regulating ATP turnover, we screened the Stem/α8 interface for mutant
395 derivatives that exhibit high basal ATPase activity mimicking the mature domain-bound
396 state. Prl mutants (L187A and A373V located at Stem/α8; Fig. 4B) displayed elevated
397 ATPase activity compared to free SecA₂ (Fig. 4D, lanes 9-10). In contrast, mutant
398 derivatives of residues in the back face of α8 did not and had compromised function
399 (Fig. S4H-J).

400 Clearly, the signal peptide conformational effect on Stem/α8 and the ATPase
401 activity of the motor are tightly coupled. We disentangled the two effects by
402 characterizing the mature domain binding site residue (M191; Fig. 4A). Freely diffusing
403 SecA(M191A) displays ~3-fold elevated basal ATPase (Fig. 4D, lane 11), that was
404 hyper-stimulated ATPase under translocation conditions (Fig. S4K), but neither

405 displayed a Prl phenotype (Fig. 4B, lane 9), nor showed measurable changes in the
406 dynamics of motif IVa (Table S1). Residues like M191 at the Stem/α8 interface appear
407 critical in allowing mature domains to control the ADP release cycle of the helicase
408 motor.

409 Our results show that signal peptides and mature domains have functionally inter-
410 connected but divergent roles in activating the translocase, that converge at the
411 Stem/α8 interface. This interface is a conformational hub that couples the rate limiting
412 ADP release cycle (Fak et al., 2004; Sianidis et al., 2001) and the motif IVa dynamics
413 in the helicase motor to conformational cues sent by the signal peptide upon closing
414 the clamp and promoting mature domain binding. Only legitimate secretory clients that
415 satisfy all these relationships or Prl mimics, induce the ATPase activity of the
416 translocase (Robson et al., 2009).


417

418 **Nucleotides finely control the intrinsic dynamics of SecA**

419 Co-ordinated docking of signal peptides and mature domains causes loss of ADP
420 from the SecA helicase motor, allowing initiation of a fresh ATPase cycle. We
421 hypothesized that a core role of the nucleotide cycle may be to modulate the intrinsic
422 dynamics of SecYEG:SecA₂. To examine this, we used nucleotide analogs that
423 represent different stages of the ATPase cycle (Fig. S5A). Nucleotides bind in a
424 positively charged cleft between NBD1 and 2 (Fig. S5B) and make contacts with
425 residues from both domains, mostly with NBD1; β and γ-phosphates also with NBD2
426 (Krishnamurthy et al., 2021; Papanikolau et al., 2007). Signal peptides and mature
427 domains on the other hand, bind on negatively charged surfaces that line the clamp
428 and signal peptide binding cleft (Fig. S5B). Using HDX-MS we monitored the dynamics
429 of the quiescent ADP state (Krishnamurthy et al., 2021), pre-formed at 2mM (10⁴-fold

430 excess over K_d) to overcome the ADP release reaction, the apoprotein (i.e. cleft
431 emptied due to preprotein binding; Fig. 1B), the ATP-bound but not yet hydrolyzed
432 state (mimicked by the non-hydrolyzable analogue AMP-PNP) and the ATP hydrolysis
433 transition state intermediate [mimicked by ADP:BeFx (Zimmer et al., 2008)]. We
434 compared the dynamics of the SecYEG:SecA₂:ADP (Fig. 5 and Fig. S5C; reference
435 state, top pictogram) to all other nucleotide states (test states, bottom pictograms).

436 SecA₂:ADP in solution is auto-inhibited, until primed by channel binding

(Krishnamurthy et al., 2021). This primed translocase is conformationally

Figure 5. Nucleotide states and preproteins drive distinct translocase conformational motions

A. and **B.** The local dynamics of the SecYEG:SecA₂ translocase at the indicated nucleotide state was compared to those of the SecYEG:SecA₂:ADP one ('reference'), in the absence (**A**) or presence of preprotein (**B**). Regions showing differential D-uptake in (I) apo, (II) AMPPNP-bound and (III) ADP:BeFx-bound states ("test") were colored mapped on a SecA protomer visualized by surface representation. PatchA is indicated in A.I by orange dashed line. Apo (I) and the AMPPNP bound (II) states are mapped on the open clamp PDB: 2VDA structure; the ADP:BeFx bound state (III) is shown on the closed-flipped clamp PDB: 3DIN structure. ADP: orange circle, AMPPNP: red circle, ADP:BeFx: brown circle

441 stabilized, binds preproteins with high affinity but does not exhibit elevated ATPase
442 activity until preproteins bind and cause ADP release (Fig. 1B). Emptying the cleft of
443 ADP causes widespread elevated dynamics in the helicase motor and more localized
444 ones in the Stem, Scaffold, IRA1 and PBD [Fig. 5A.I; (Krishnamurthy et al., 2021)].
445 SecYEG:SecA₂:AMPPNP showed minor differences in dynamics compared to
446 SecYEG:SecA₂:ADP (Fig. 5A.II; S5C.II). ADP:BeF_x caused additional stabilization at
447 the motor (motifs I, IVa, V/Va) and the PBD clamp region (Stem, α 13 and the 3 β -tip_{PBD}
448 that binds NBD2) (Fig. 5A.III). Motif Va contains the R509 arginine finger, crucial in γ -
449 phosphate recognition and regulation of motor conformational states (Keramisanou et
450 al., 2006). These results are also consistent with the crystal structure of
451 SecYEG:SecA:ADP:BeF_x [Fig. S6A; (Zimmer et al., 2008)]. In this “closed-flipped”
452 state the PBD_{bulb} and NBD2 home into each other and the PBD_{3 β -tip} also flips towards
453 NBD2_{motifIVa}, salt-bridging the essential R342 with E487 (Fig. S6B-C Movie S1).
454 Conversion to the ADP state, reverses rigidification through minor local changes (Fig.
455 S6D.VIII). Importantly, some of these intra-protomeric changes, such as the enhanced
456 ADP-driven dynamics, extend to enhancing the dynamics of the SecA dimerization
457 interface (Fig. S5C.I), suggesting preparatory steps towards dimer dissociation
458 (Gouridis et al., 2013).

459 The effects described above are only specific to SecA that has been primed by
460 binding to SecY. Soluble SecA₂:ADP:BeF_x only shows weak contacts (Table S1) in the
461 helicase motor with overall higher dynamics than SecA₂:ADP (Fig. S6D.IV; conversion
462 from ADP:BeF_x to ADP results in decreased dynamics in the ADP state).

463 The Q motif that tightly binds the immutable adenine ring (Fig. S1E), showed
464 negligible dynamics in the presence of nucleotide (Krishnamurthy et al., 2021). This
465 presumably explains the similar high affinities of ATP derivatives for the helicase

466 motor. It is the mutable γ -phosphate ends of nucleotides like AMPPNP and ADP:BeF_x
467 that bind to NBD2 and stabilize different motor conformations, while ADP does not
468 (Fig. S1E; S5A). Thus, missing the γ -phosphate contacts, weakens the NBD2-ADP
469 association, allowing higher mobility of the nucleotide inside the pocket and increased
470 Motif I dynamics (Fig. S6D.VIII). These data can explain how, despite their minor
471 chemical differences, nucleotides display major differences in stabilizing unique
472 conformational states of SecA by exploiting its intrinsic dynamics.

473 Therefore, nucleotides exploit the intrinsic dynamics of SecA by promoting
474 multiple but minor local structural dynamics changes, largely driven by interactions of
475 their γ -phosphate end with NBD2. None of the nucleotide effects described above alter
476 the domain motions of the PBD clamp significantly (Fig. S6E).

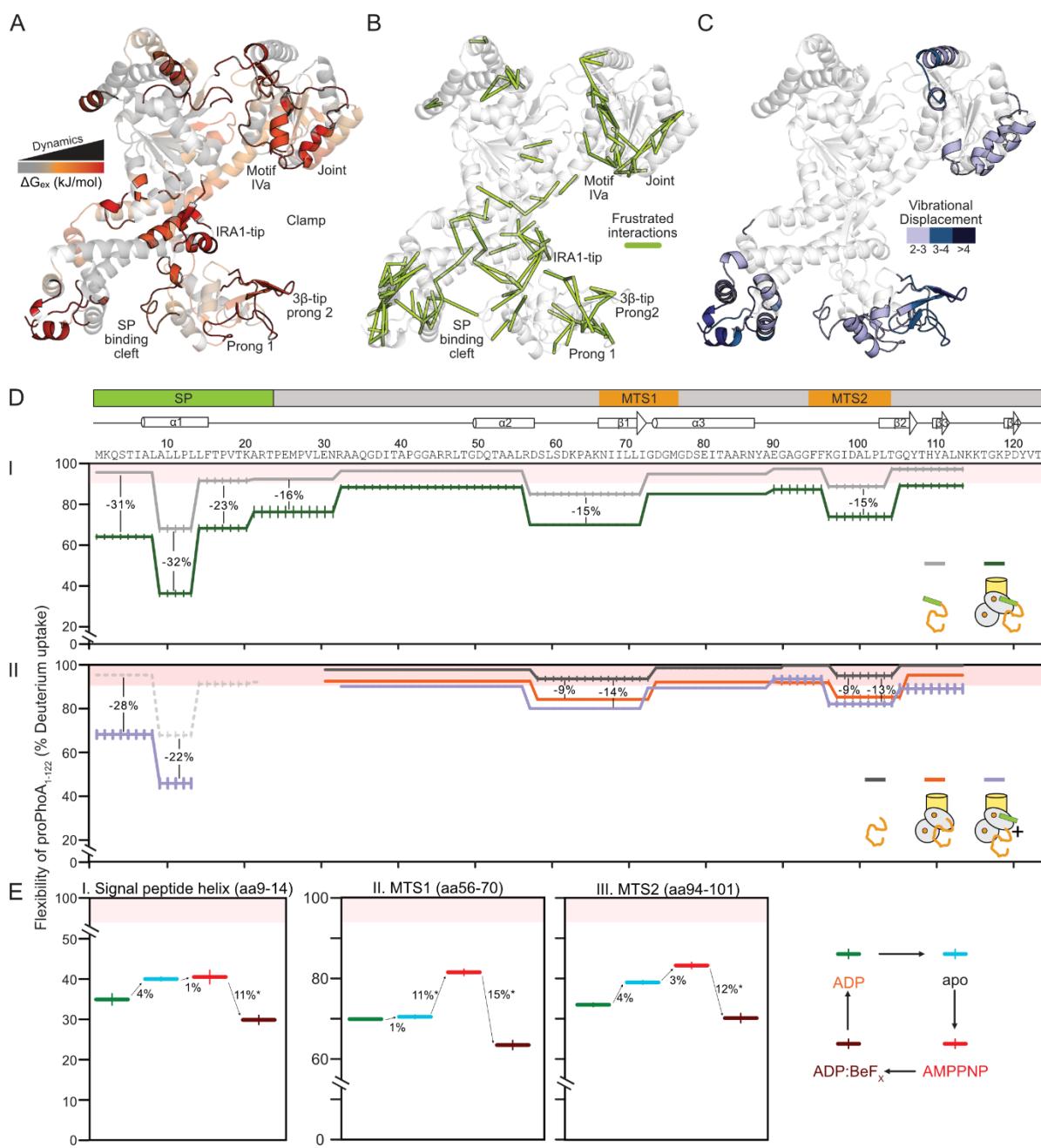
477

478 **Preproteins regulate nucleotide-controlled dynamics in channel-bound SecA**

479 Next, we probed how preproteins might exploit the intrinsic, nucleotide regulated
480 conformational dynamics of the primed translocase leading to active translocation. For
481 this, we followed translocase dynamics of SecYEG:SecA₂:different nucleotide (as in
482 Fig. 5A) but in the presence of the proPhoA₁₋₁₂₂ secretory client (15 μ M; >50 fold over
483 K_d ; Fig. 5B, Fig. S5D).

484 Preprotein-driven ADP release from the translocase (Fig. 1B), led to increased
485 dynamics in the helicase motor of the resulting translocase apoprotein (Fig 5B.I, Fig.
486 S6C), similar to those seen without the preprotein (Fig. 5A.I). AMPPNP binding to the
487 preprotein-bound translocase, caused significant differences compared to those of
488 ADP binding (Fig. 5B.II): enhanced dynamics in the helicase motifs of the nucleotide
489 binding cleft (I, Ic, III and VI; Fig. S1E) and inside of the clamp (3 β -tip and β 24 of the
490 C-tail; Fig. 4A) and decreased dynamics at the signal peptide binding cleft (Stem, α 10,

491 α 13). Contrasting dynamics on either side of the PBD suggest that ATP binding has
492 divergent effects on the signal peptide and mature domain segments of the client.
493 ADP:BeFx reduced dynamics in all of the helicase motifs of NBD2 without affecting
494 NBD1 and rigidified wide areas of the clamp (Stem, α 13 and 3 β -tip, Joint, Scaffold;
495 Fig. 5B.III). While these local dynamics changes are coincident with closing of the
496 preprotein clamp, the latter occurs independently of nucleotide and is driven by signal
497 peptide binding (Fig. S3B.III). The important mechanistic implication of these
498 observations is that preprotein clients physically couple the otherwise unconnected
499 nucleotide-regulated helicase motor dynamics to clamp motions.


500 Our results provided insights into conformational processes that are nucleotide
501 or/and preprotein-driven (Fig. 5). Nucleotides intimately regulate the dynamics of the
502 helicase motor, with minor effects on any preprotein binding region. In the presence of
503 preproteins not only the nucleotide effects at the motor persist, but the dynamics of the
504 preprotein binding sites now become modulated by the nucleotide state. Clearly,
505 preprotein binding on multiple SecA locations (Chatzi *et al.*, 2017; Sardis *et al.*, 2017)
506 requires concerted motions of various translocase regions to achieve translocation.

507

508 **Locally frustrated regions in the SecA clamp allow client promiscuity**

509 One of the intriguing aspects of the translocase is that it handles hundreds of
510 non-folded clients with dissimilar sequences that are all expected to bind to the same
511 preprotein binding sites on SecA. Such promiscuity is a fundamental universal feature
512 of chaperones. In the absence of conserved linear features, non-folded clients are
513 thought to be recognized through their frustrated regions (He and Hiller, 2019; He *et*
514 *al.*, 2016) by frustrated local structural elements in chaperones [(Hiller, 2019; Morgado
515 *et al.*, 2017) Srinivasu *et al.*, submitted]. Frustrated structural elements sample multiple

516 degenerate conformations, that allow chaperones to mold its binding interfaces in order
517 to recognize and bind a wide range of clients. As frustrated regions commonly display
518 elevated dynamics [(Hiller, 2019; Morgado et al., 2017)(Srinivasu et al., submitted)],
519 reminiscent of those seen around the translocase clamp, we hypothesized that SecA
520 may use similar mechanisms. To test this, we compared the dynamic islands
521 determined experimentally by HDX-MS [Fig. 6A; regions with low ΔG_{ex} values;
522 orange/red regions)(Krishnamurthy et al., 2021)] to frustrated regions predicted from

Figure 6. Translocase binds and regulates islands of preprotein dynamics

A. ΔG_{ex} values were calculated for free SecA₂ and mapped onto the open clamp structure (PDB ID:2VDA). Highly flexible regions (i.e. $\Delta G_{\text{ex}} = 11-16 \text{ kJ/mol}$) are indicated with red hues.

B. SecA regions of frustration (green) derived from the Frustratometer server (Parra et al., 2016) using PDB ID:2VDA as input.

C. Total displacement of normal modes 7-12 (unweighted sum) derived from PDB ID: 2VDA are mapped in blue shades onto the SecA structure. See detailed analysis in Fig. S7C.

D. HDX-MS-derived flexibility map of proPhoA₁₋₁₂₂ (I) and PhoA₂₃₋₁₂₂ (II) shows the absolute dynamics (in % D-uptake) of the preprotein at residue level (from N to C terminal), in the indicated states. Higher % D-uptake values correlate with increased flexibility, residues showing >90% flexibility values are considered hyper-flexible. I. The flexibility of free (grey) and SecYEG:SecA_s:ADP bound proPhoA₁₋₁₂₂ (green) are compared. II. The flexibility of free (black) and SecYEG:SecA₂:ADP bound PhoA₂₃₋₁₂₂ (orange) are compared. The effect of the addition of signal peptide in trans on the dynamics of SecYEG:SecA₂:ADP:PhoA₂₃₋₁₂₂ is shown in purple. As a control, the flexibility of the signal peptide as part of free proPhoA₁₋₁₂₂ (as in I; dashed grey) is shown. Differences greater than 10% are considered significant. Residues are aligned with known secondary structural features of native PhoA. The position of signal peptide and MTS (mature domain targeting signals) 1 and 2 are shown. $n = 3$, SD values are represented as vertical lines. SD values <1 % fall within the width of the line and hence are omitted.

E. Flexibility map of three selected regions of proPhoA₁₋₁₂₂ bound to channel-primed translocase in the presence of various nucleotides. The nucleotide cycle (right pictogram) follows the translocase from ADP bound state (green; ground state), followed by ADP release to apo state (light blue), ATP binding state (mimicked by AMPPNP; red) and ATP hydrolysis transition state (mimicked by ADP:BeF_x; brown). The flexibility of (I) signal peptide, (II) MTS1 and (III) MTS2 of the proPhoA₁₋₁₂₂ is monitored as the translocase is going through the nucleotide cycle, with differences in % D-uptake between nucleotide states quantified.

523 the ecSecA₂VDA structure using the tool frustratometer (Parra et al., 2016)(Fig. 6B).

524 Interestingly, most frustrated inter-residue contacts (Fig. 6B; green lines) and the

525 experimentally determined dynamic islands (e.g. the Joint and motif IVa in NBD2;

526 prong 1, 3 β -tip (prong 2) of PBD and the tip of IRA1) closely overlapped. Clamp closing

527 due to signal peptide binding (Fig. 3A, lanes 7-12) would allow the 3 β -tip, prong 2 and

528 Joint interact to form a contiguous region of frustration (Fig. S7A.II) that could trap

529 preproteins by forming local favourable interactions with the client. In the closed-flipped

530 state of the ATP hydrolysis transition state (ADP:BeF_x)[Fig. S7B; (Zimmer et al., 2008)]

531 two parallel regions of frustration become evident that together with the closed clamp

532 could enclose/can interact with the preprotein chain as it enters the channel.

533 We additionally probed the inherent dynamics of SecA using an orthogonal

534 biophysical tool, Normal Mode Analysis (NMA) (on PDB: 2VDA). NMA provides a

535 mathematical description of atomic vibrational motions and protein flexibility (Bahar et

536 al., 2010; Kovacs et al., 2004). In this method, C α atoms (modeled as point masses)

537 are considered to be connected by springs that represent interatomic force fields. The
538 resulting model generates a set of “normal modes”, where all C α atoms are oscillating
539 with the same frequency. The lowest frequency normal modes contribute the most to
540 domain dynamics within a protein and the associated C α displacement can be
541 calculated [Fig. S7C; (Hinsen, 1998; Tiwari et al., 2014)]. Motif IVa and the Joint in
542 NBD2, 3 β -tip in PBD and the signal peptide binding cleft are regions that show
543 maximum displacement during vibrational motions (Fig. 6C; shades of blue) and
544 practically coincide with the experimentally determined dynamic islands and the
545 frustrated regions.

546 Taken together, our data suggest that altered dynamics in these regions is a
547 direct ramification of nucleotide/client mediated modulation and that non-folded clients
548 would recognize them promiscuously forming local less frustrated interactions to
549 achieve the coupling of the dynamics of these regions to the ATPase cycle.

550

551 **Signal peptide-driven closing of the clamp allosterically enhances mature**
552 **domain binding**

553 The data above revealed a nucleotide-regulated structural dynamics framework
554 in SecA that provides for multi-valent localized, transient interactions with the non-
555 folded clients. To decipher how these dynamics are translated into translocation steps
556 for the translocating client, we developed an HDX-MS-based assay to directly monitor
557 the dynamics of the proPhoA₁₋₁₂₂ client (Fig. S7D). ProPhoA₁₋₁₂₂, contains the three
558 necessary and sufficient elements for high-affinity binding to the translocase and
559 secretion: a signal peptide and the first two mature domain targeting signals of
560 ProPhoA (MTS1 and 2; Fig. 6D, top; (Chatzi et al., 2017)] and allowed translocation to
561 be dissected away from folding processes (Tsirigotaki et al., 2018).

562 proPhoA₁₋₁₂₂ was diluted from chaotrope into deuterated buffer, pepsinized, its
563 peptides analyzed by mass spectrometry and their % D uptake was determined. 90-
564 100 % D-uptake values signify extensive dynamics/lack of stable secondary structure
565 [Fig. 6D.I, pink area; (Tsirigotaki et al., 2017b)]; segments of folded proteins with
566 ordered secondary structure typically exhibit 20-40% D-uptake values.

567 proPhoA₁₋₁₂₂ alone, in solution, at 37°C, displays high % D uptake values (Fig.
568 6D.I, grey), consistent with a protein remaining extensively non-folded under these
569 conditions. Three islands of proPhoA₁₋₁₂₂ sequence show slightly lower % D uptake
570 values suggestive of some stabilization of the backbone amides. This is likely due to
571 hydrogen-bonding upon transient acquisition of local secondary structure and indeed
572 these regions overlap, wholly or partly, with secondary structural elements in the
573 natively folded PhoA (Fig. 6D, top, 2ndary structure map). These sequences include:
574 a. the helical hydrophobic core of the signal peptide (aa 9-13) and its downstream
575 region (~17 residues), including the early mature region “rheostat” that controls PhoA
576 folding (Sardis et al., 2017); b. the hydrophobic core of MTS1 (aa 68-72) and its
577 upstream more polar stretch (aa 56-68). c. the hydrophobic core of MTS2 (aa 94-102).

578 Dilution of proPhoA₁₋₁₂₂ from chaotrope into solution containing SecYEG:SecA₂,
579 at 37°C, reduced % D uptake significantly in all of the wider signal peptide region (aa
580 1-33; including the positively charged N-region and the downstream rheostat but more
581 prominently in the signal peptide helix) but also substantially in the MTS1 and 2 islands
582 (Fig. 6D.I, green line). This is indicative of direct SecA binding on these segments and
583 was also seen on peptide arrays (Chatzi et al., 2017). Rigidification likely reflects more
584 stable H-bonding either within the secondary structure elements (e.g. signal peptide
585 α-helix; α2 in MTS1) or externally with SecA. In contrast, the linkers connecting these

586 three regions remain highly unstructured (>85 % D uptake). Monitoring these islands
587 of differential localized highly dynamic translocase binding observed on the client chain
588 is a unique power of this HDX-MS assay.

589 Covalent connection between signal peptide and mature domain was important
590 for optimal binding to SecA. Mature domain alone bound to SecYEG:SecA₂ more
591 weakly than did the preprotein (Fig. 6D.II, compare black to orange and to Fig. 6D.I).
592 This binding was further stabilized by addition of signal peptide *in trans* (Fig. 6D.II,
593 purple line) or use of SecY_{PrlA4}:SecA₂ (Fig. S7E, purple), but never reaching the extent
594 of binding seen with preprotein.

595 These data provided a direct explanation for the importance of the covalent
596 connection in the preprotein moieties seen above in achieving maximal translocase
597 interaction (Fig. 1B; 1E; S2B; 4D). They also suggested that SecA and the three client
598 islands inter-communicate allosterically.

599

600 **The nucleotide cycle selectively alters SecA interaction with the signal peptide
601 and mature domain islands**

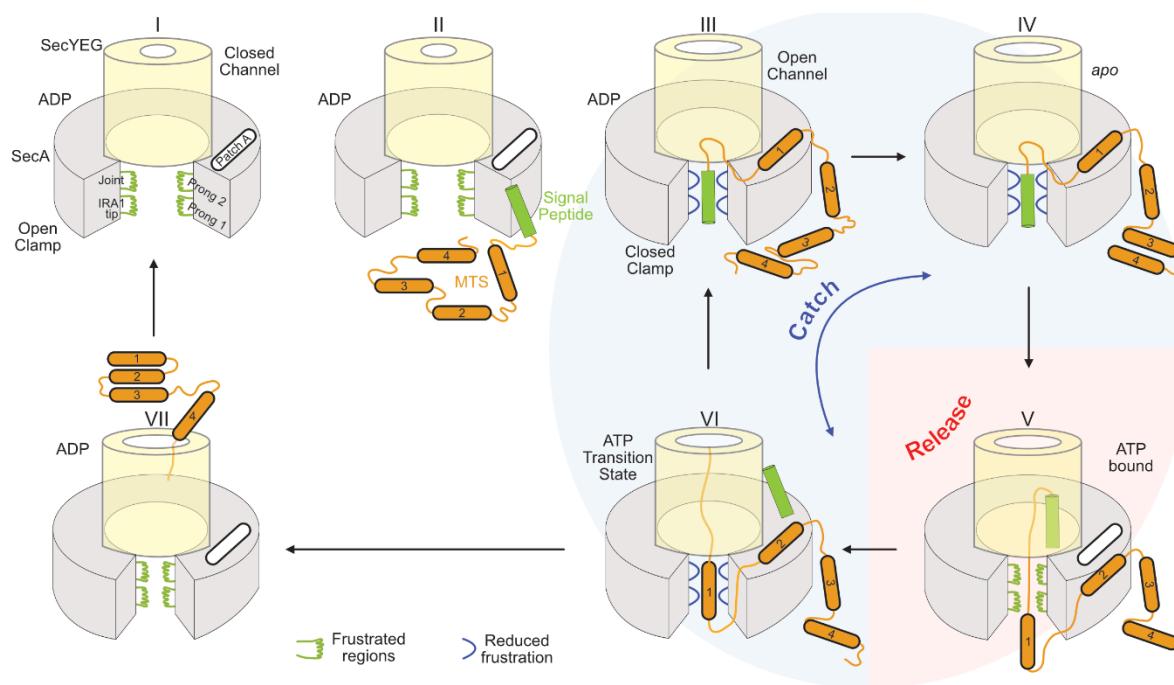
602 To dissect preprotein dynamics during the ATPase cycle of the translocase we
603 monitored the preprotein interaction with each of the four unique
604 translocase:nucleotide/analogue conformations (Fig. 6E, right), specifically focusing
605 on the dynamics of the three main islands that bind SecA: the hydrophobic helix of the
606 signal peptide, MTS1 and 2 (Fig. 6E.I-III).

607 The signal peptide shows slightly tighter binding when transitioning from the ADP-
608 bound to the apoprotein to the AMPPNP-bound translocase but becomes significantly
609 rigidified on the ADP:BeFx-bound translocase (Fig. 6E.I, red to brown). MTS1
610 dynamics are unchanged when transitioning from the ADP-bound to the apo

611 translocase but become significantly increased in the AMPPNP state (Fig. 6E.II, blue
612 to red) and significantly decreased in the ADP:BeF_X state (red to brown). For MTS2,
613 as the ATPase cycle progresses from ADP-bound to apo to AMPPNP state, its
614 dynamics increase incrementally (Fig. 6E.III, green to blue to red) but, they decrease
615 significantly in the ADP:BeF_X state (red to brown).

616 Taken together, these results showed that in the ADP and apo stages of the
617 translocation ATPase cycle, the SecA subunit binds potentially all three elements of
618 the client. Upon ATP binding SecA loosens its grip on the mature part of the chain, as
619 evidenced by the overall increased dynamics in the AMPPNP state that are coincident
620 with enhanced dynamics in SecA itself (Fig. 5B.II). The decreased dynamics of the
621 signal peptide throughout the ATPase cycle (Fig. 6E.I) are consistent with the client
622 remaining largely tethered to the translocase via its signal peptide while mature domain
623 parts associate/dissociate more dynamically (Burmann *et al.*, 2013). Specifically,
624 during the ATP hydrolysis transition (ADP:BeF_X) state, all three regions of the client
625 that bind SecA become more rigidified (Fig. 6E.I-III), likely reflecting their being tightly
626 caught in the ADP:BeF_X-driven rigidified closed-flipped clamp (Fig. 5B.III). When ATP
627 is hydrolyzed to ADP, as the translocase becomes more dynamic (Fig. 5B.IV), the
628 grasp on the client chain relaxes modestly (Fig. 6E, brown to green).

629 In this recreated ATP hydrolysis cycle, each step of specific translocase
630 conformations has a specific consequence on “catching and releasing” the three
631 islands of the preprotein chain.


632 **Discussion**

633 The gradual activation of the Sec translocase involves several interactions,
634 including holo-enzyme assembly, nucleotide and client binding, dimer to monomer
635 transitions that are orchestrated in hierarchical steps. Nonetheless, these steps can
636 also occur in independent sub-reactions; e.g. clients can bind either onto quiescent-
637 cytoplasmic or channel-primed SecA. How the Sec translocase and all complex
638 nanomachines achieve hierarchical activation triggered promiscuously by hundreds of
639 client interactions remains elusive. We reveal here a sophisticated two-part
640 mechanism whereby, first various interactions triggered by clients work in concert to
641 activate conformational switches within the translocase, and second those events lead
642 to dynamics changes that ensure the translocation of the client.

643 Considerable evolutionary effort has prevented acquisition of a readily activated
644 state in SecA₂, favoring quiescence instead; e.g. by biased sampling of the wide-open
645 clamp state (Krishnamurthy et al., 2021). Translocase activation relies on regulating
646 pre-existing intrinsic dynamics of subunits that exist in a conformational ensemble
647 (Ahdash et al., 2019; Allen et al., 2016; Corey et al., 2019; Gouridis et al., 2009). A full
648 compendium of pre-existing conformations, arise from thermal atomic vibrations (Fig.
649 6C; S7C)(Bahar et al., 2010; Chen and Komives, 2021; Dobbins et al., 2008; Smit et
650 al., 2021a; Smit et al., 2021b) and can be differentially sampled with minor energetic
651 demands (Henzler-Wildman and Kern, 2007). Attesting to this, point mutations can
652 recapitulate the effects of secretory preprotein binding to the translocase; e.g. trigger
653 the translocase, stimulate its ATPase activity, drive monomerization (Gouridis et al.,
654 2009; Gouridis et al., 2013; Karamanou et al., 2007). Prl mutations amongst them
655 (Bieker et al., 1990; Bost and Belin, 1997; Schatz and Beckwith, 1990), shift the

656 conformational landscape equilibrium of the holo-enzyme (Gouridis et al., 2009). For
657 example, Prl mutations at gate2 of SecA or affecting the latter from a distance, mimic
658 both the signal peptide/mature domain effects and facilitate ADP release (Fig. 2C).

659 At its core SecA can be seen as bearing two distinct modules, an ATPase
660 hardwired onto a preprotein clamp (Fig. 7.I, grey) that assembles onto the SecY
661 channel (yellow). Both the ATPase and the preprotein clamp display distinct local and
662 domain dynamics, each finely controlled by different ligands (nucleotide or signal
663 peptides), but these dynamics processes are largely uncoupled from each other. Only
664 the arrival of non-folded, clients that bind to multiple patches on SecA couple these

Figure 7. Dynamic regions on the translocase and model for preprotein translocation.

Model of preprotein translocation by the Sec translocase. The primed translocase is in an open SecA clamp/closed channel state with frustrated client binding regions (green) (I). Preprotein binds onto the primed translocase (II). Signal peptide binding induces clamp closing and channel opening while MTS binding at PatchA (III) causes ADP release (IV). Binding is primarily through frustrated regions and hydrophobic interactions (PatchA). Client binding causes reduction in frustration (blue). ATP binding causes release of the chain and transport of the signal peptide into the channel (V), while MTS1 moves into the clamp and MTS2 binds to PatchA (VI). Processive ATP hydrolysis results in a series of 'catch and release' cycles, whereby MTSs serve as binding junctures on the translocase causing ADP release. The translocating chain occupies the channel and keeps it open during open/closed clamp states. Once the last MTS exits the channel, ADP cannot be released the translocase reverts back to a primed but dormant state (VII), awaiting the next client

665 dynamics modules by providing a physical bridge between the ATPase and the clamp
666 and by modulating them (Fig. 7.II). This coupling is controlled by dynamic switches (i.e.
667 gate2 and Stem) that regulate the transduction of conformational signals downstream
668 to effectuate the enzymatic activation, with the initiating step being ADP release (Fig.
669 7.III-IV), followed by the arrival of fresh ATP (Fig. 7.V). ATP cycle steps inside the
670 motor have immediate ramifications on the conformational status of frustrated prongs
671 in the clamp. These changes take the prongs through catch and release rounds of the
672 client chain, at 2-3 distinct locations, thus biasing its forward motion (Fig. 7.III-VI).

673 Despite overall similarities between all polypeptides, only secretory preproteins are
674 legitimate clients of the translocase in the cell. Their two moieties alone, signal
675 peptides and mature domains, alter distinctly but only partially the conformational
676 switches, thereby yielding inadequate functional effects (Fig. 3-4). Thus, isolated signal
677 peptides shift the clamp towards closed states (Fig. 3A, lanes 10-12), partially elevate
678 dynamics in gate2 (Fig. 2A-B) and loosen the channel (Fig. 7.II-III) (Duong and
679 Wickner, 1999; Fessl et al., 2018; Gouridis et al., 2009; Knyazev et al., 2014). Mature
680 domains alone increase local dynamics in the motor (Fig. S4G) and drive inefficient
681 ADP release (Fig. 4D). However, only the synergy between the two covalently
682 connected moieties, can efficiently couple the sub-reactions required to increase motor
683 dynamics that facilitate efficient ADP release (Fig. 1B-C; C.II-III), a key rate limiting
684 step (Fak et al., 2004; Robson et al., 2009; Sianidis et al., 2001). This mechanism
685 ensures that random cytoplasmic proteins are not secreted.

686 ATP binding to the motor initiates translocation (Fig. 7.V). As the translocase
687 cycles through nucleotide states, it manipulates the dynamics of its clients. In the ATP-
688 bound state, the translocase retains signal peptide binding, releasing mature domain

689 segments (Fig. 6E, red). In the transition state, it ‘catches’ both signal peptide and MTS
690 regions tightly (Fig. 5B.III; 6B; 6E). Upon conversion to the ADP-bound state, a
691 succeeding region of the bound client will induce ADP release (Fig. 1B). A new round
692 of the nucleotide cycle starts. For as long as there are available succeeding mature
693 domain segments to bind to the translocase and drive ADP release, the ATP hydrolysis
694 cycle is repeated (Fig. 7.III-VI). In the absence of such segments, SecA remains in the
695 quiescent ADP state, diffuses to the cytoplasmic pool and dimerizes (Gouridis et al.,
696 2013). Preprotein translocation is achieved through such repetitive client-catch/release
697 cycles regulated by nucleotide turnovers (Fig. 7). This mechanism is generic for both
698 initiation and subsequent processive translocation steps (Fig. 1A.V). Only that in later
699 stages of translocation, after signal peptide removal, they are simply replaced by
700 internal hydrophobic MTS sequences (Chatzi et al., 2017)(Fig. 7.VI).

701 Our observations on the remarkable sensitivity of SecA dynamics to respond to
702 even the slightest chemical change in the nucleotide invite a major rethink of the
703 anticipated role of ATP hydrolysis in translocation. Rather than driving major
704 deterministic strokes, a main role of nucleotides is revealed here to be the subtle step-
705 wise regulation of the intrinsic dynamics of SecA (Fig. 5), by affecting intrinsically
706 dynamic residues that line the nucleotide cleft (Keramisanou et al., 2006).
707 Conformational cycles are regulated by the limited and transient interaction of the γ -
708 phosphate of ATP and its transition states with NBD2 (Keramisanou et al., 2006;
709 Papanikolau et al., 2007; Sianidis et al., 2001) and “locked” in its absence
710 (Krishnamurthy et al., 2021), awaiting fresh client binding (Fig. 1B; Fig. 7.VI to I).

711 An under-appreciated property of secretory clients that enables them to modulate
712 translocase properties, is their own elevated intrinsic dynamics. Mere reduction of

713 these dynamics, in an otherwise binding-competent client, abrogated secretion (Sardis
714 et al., 2017). We now reveal for the first-time islands in a secretory chain whose
715 dynamics are differentially regulated in response to transient nucleotide states of the
716 translocase (Fig. 6E). These segments encompass the signal peptide, MTSs and the
717 region extending from the signal peptide C-region to the early mature domain [rheostat;
718 (Sardis et al., 2017); Fig. 6D.I; 7.II]. Their detection was possible only because of the
719 power of HDX-MS to analyze large membrane protein complexes in near-physiological
720 conditions (Kochert et al., 2018) and derive medium resolution structural information
721 on non-folded clients in translocating conditions (Tsirigotaki et al., 2017b), in the
722 absence of detergents.

723 How does SecA promiscuously recognize/translocate its clients? Chaperones
724 have been proposed to recognize frustrated regions in clients (He and Hiller, 2019;
725 Hiller, 2019). Yet, frustrated regions also exist on chaperones; e.g. trigger factor
726 (Ferreiro et al., 2014; Morgado et al., 2017) and identified here in SecA (Fig. 6B). The
727 latter exhibits weak cytoplasmic/ATP-independent and strong membrane-
728 associated/ATP-regulated holdase activity (Gouridis et al., 2009). Frustrated regions,
729 of both clients and chaperones, can sample a wide conformational and sequence
730 space until they interact tightly (Ferreiro et al., 2014; He and Hiller, 2018). Thus, a
731 chaperone can promiscuously interact with hundreds of clients without a need for rigid
732 lock and key recognition. Such a mechanism is optimally suited to dealing with non-
733 folded clients. In the case of SecA, the three highly dynamic, locally frustrated prongs
734 on either side of the clamp and the tip of IRA1 (Fig. 6A-B; Fig. 7.I-III), the
735 electronegative environment of the clamp (Fig. S5B) and the adjustability of its width
736 due to PBD and NBD2 rigid body motions, enhance plasticity and possible interactions

737 with non-folded clients, potentially enabling accommodation of even partially locally
738 folded structures (Tsirigotaki et al., 2018). Client-translocase interactions reduce
739 dynamics both in the frustrated prongs of SecA (Fig. 5B.III; Fig. 7, green) and the
740 transiently structured/frustrated elements of the client (Fig. 6D). A powerful aspect of
741 this mechanism is that interaction with the client can be of high affinity yet transient,
742 quickly returning to a looser “release” state. We hypothesize that the combination of
743 multiple frustrated prongs and multiple recognition patches on the client, form an
744 optimal basis of SecA processivity, that would have otherwise been impeded by
745 tighter/extensive recognition solutions of an unfolded polymer.

746 SecA acts as a mechanical device that biases vectorial forward motion. This is not
747 common among soluble chaperones. Presumably, local interactions of frustrated
748 clamp regions are sufficient to stall backward sliding of the exported chain yet loose
749 enough to allow forward motion of untethered segments through the channel. This
750 ‘catch and release’ mechanism is an important feature of the translocation process.
751 Release cycles allow chain segments to enter the channel; catch cycles would bind a
752 downstream segment and prevent back-slippage (Fig. 7.V and VI). This mechanism is
753 compatible either with a “brake” preventing backsliding (Vandenberk et al., 2019) and
754 allowing Brownian “ratchet” motion of the unbound parts (Allen et al., 2016; Allen et
755 al., 2020) or as part of a power stroke, if catching actively carries along chain segments
756 further into the channel (Catipovic et al., 2019). This mechanism is also compatible
757 with a continuum ratchet model, where the SecA motor moves stochastically along a
758 periodic potential, coupled to the ATP cycling, providing the required time correlation
759 necessary for net vectorial motion (Magnasco, 1993). All these models would

760 presumably include MTSSs (Chatzi et al., 2017) and possibly other “catch” signals (Fig.
761 6D-E).

762 We focused here on a short preprotein that cannot fold extensively. This allowed
763 us to dissect translocase binding away from the interference of folding propensities
764 (Tsirigotaki et al., 2018). It is anticipated that the same fundamental mechanisms apply
765 in steps of longer mature domain translocation. The mere presence of the mature chain
766 trapped inside the channel effectively forces the channel to maintain a “loose” state
767 (Fig. 7.V), even in the later stages of translocation after the signal peptide has been
768 cleaved/ejected (Schiebel et al., 1991). Chaperones bind to fast folding clients and
769 regulate their conformational collapse (He et al., 2016; Kellner et al., 2014). Secretory
770 proteins on the other hand are highly flexible with long-lived folding intermediates
771 (Tsirigotaki et al., 2018). Nevertheless, for clients that fold rapidly or have domains that
772 might fold while their N-terminus is being translocated, translocase dynamics may
773 serve to counter inherent folding forces in the client (Arkowitz et al., 1993; Gupta et al.,
774 2020) alone, or in concert with other chaperones (De Geyter et al., 2020; Fekkes et
775 al., 1997).

776 **Experimental Procedures**

777 **Materials**

778 For buffers, strains, plasmids and primers see Supplementary Table S3, S4, S5
779 and S6 respectively. TCEP ([Tris(2-carboxyethyl)phosphine] was from Carl Roth,
780 formic acid-MS grade from Sigma Aldrich, LC-MS grade acetonitrile LC-MS grade from
781 Merck. D₂O (99.9%) was obtained from Euroisotop; Alexa555 and Alexa647 -
782 maleimide from Thermo Fisher Scientific. All other chemicals and buffers were ACS
783 grade from Merck or Carl Roth. proPhoA signal peptide, obtained from GenScript as
784 lyophilized powder, was dissolved in DMSO (Merck) to a final concentration of 45 mM.
785 Protein concentration was determined using either Bradford assay (Biorad) or/and
786 Nanodrop™ spectrophotometry (Thermo Scientific) following manufacturer's
787 instructions. MANT-ADP was from Invitrogen/Thermo Fisher Scientific.

788

789 **Molecular cloning**

790 Site directed mutagenesis was performed using QuickChange site directed
791 Mutagenesis protocol (Stratagene Agilent) using indicated vector templates and
792 primers. Molecular cloning and sample handling was as previously described
793 (Krishnamurthy et al., 2021)

794

795 **Protein purification**

796 SecA and derivatives were overexpressed in T7 Express lysY/I^q [derivative of
797 BL21 (DE3)] cells and purified as described (Papanikolau et al., 2007). All proteins
798 were assessed for purity and quality using gel filtration chromatography and SDS-
799 PAGE. The His-tagged derivatives of SecA-D2, proPhoA₁₋₁₂₂ and PhoA₂₃₋₁₂₂ were

800 purified as previously described (Chatzi et al., 2017; Vandenberk et al., 2019). His-
801 SecD2 were stored as described (Krishnamurthy et al., 2021), while proPhoA₁₋₁₂₂ and
802 PhoA₂₃₋₁₂₂ were stored in buffer A (Chatzi et al., 2017).

803 SecYEG-IMVs and derivatives were prepared as in (Lill et al., 1989; Lill et al.,
804 1990) and concentration was determined as described (Gouridis et al., 2013). All
805 biochemicals were tested for functional activity in ATPase and *in vitro* preprotein
806 translocation assays.

807

808 **MANT-ADP release assays**

809 MANT-ADP release assays were carried out as described in (Krishnamurthy et
810 al., 2021). SecYEG:SecA₂ (0.5 μ M) were added to MANT-ADP (1 μ M; 30 s) to initiate
811 MANT-ADP binding onto the translocase. Client proteins were added (chase; 90 s) at
812 the following final concentrations: proPhoA₁₋₁₂₂ – 15 μ M; PhoA₂₃₋₁₂₂ – 20 μ M; signal
813 peptide – 30 μ M.

814

815 **Dynamics of the Sec translocase by HDX-MS**

816 HDX-MS experiments were carried out as previously described (Krishnamurthy
817 et al., 2021). SecA, all their derivatives were diluted into buffer B to a final concentration
818 of ~100 μ M prior to HDX-MS analysis. To monitor SecA:proPhoA₁₋₁₂₂ interactions in
819 solution, proPhoA₁₋₁₂₂ (in Buffer A) was diluted in buffer B to a final concentration of
820 250 μ M (0.2 M Urea), immediately added to SecA at 4 μ M: 35 μ M ratio (SecA:
821 proPhoA₁₋₁₂₂) and incubated for 2 minutes prior to D exchange. Complexes of the
822 channel with SecA and its derivatives were generated and analyzed as described
823 (Krishnamurthy et al., 2021). To monitor how signal peptides (SP) activate the
824 translocase, the synthetic proPhoA SP (Genescript; 45mM in 100 % DMSO) was

825 diluted 30-fold into Buffer B (to obtain 1.5 mM SP in 3 % DMSO), added to
826 preincubated SecA:SecYEG at a final molar ratio of 4 μ M: 6 μ M: 30 μ M
827 (SecA:SecYEG:SP) and the reaction was incubated for a further 1 minute.

828 SecYEG:SecA:client interactions: To monitor the dynamics of SecA as part of
829 SecYEG:SecA:client complexes, the client (proPhoA₁₋₁₂₂ and PhoA₂₃₋₁₂₂) were added
830 in excess to preincubated SecYEG:SecA to maintain a final molar ratio of 4 μ M: 6 μ M:
831 20 μ M. In SecYEG:SecA: signal peptide + mature domain complexes, proPhoA signal
832 peptide was added to preincubated SecYEG:SecA:PhoA₂₃₋₁₂₂ (as described above) to
833 a final concentration of 30 μ M. Indicated concentrations are in the final D-exchange
834 reaction. D-exchange labeling was carried out in D₂O buffer C at 30 °C for 7 timepoints
835 (10 s, 30 s, 1 min, 2 min, 5 min, 10 min, 30 min) in 3 technical replicates (Table S1).
836 Reaction was quenched in buffer D and HDX-MS data acquisition and analysis was
837 performed as described (Krishnamurthy et al., 2021). All mutant proteins were handled
838 similar to the wild type ones and reactions were maintained at similar molar ratios.

839

840 **Dynamics of client proteins by HDX-MS**

841 To monitor dynamics of free proPhoA₁₋₁₂₂ and PhoA₂₃₋₁₂₂, proteins were diluted from 6
842 M urea into buffer B to a final concentration of 50 μ M, and subsequently diluted 10-fold
843 into D₂O buffer E. D-labeling was carried out for a short 10 s pulse at 4 °C.

844 To monitor dynamics of client proteins when bound to the Sec translocase (see Fig.
845 S7A for experimental schematic), to ensure all available client proteins are bound to
846 translocase, the concentration of client proteins was maintained sub stoichiometric to
847 the translocase. Prior to D-exchange, the complete SecYEG:SecA;preprotein complex
848 is generated by incubating SecA₂ (20 μ M) with SecYEG (40 μ M) for 5 min on ice. Client
849 proteins were added to a final concentration of 15 μ M and incubated for 5 min on ice.

850 The complex was incubated for 20 s at 37 °C (this step was omitted for low temperature
851 experiments). D-exchange reaction was initiated by diluting the complex 10-fold in D₂O
852 buffer C. Labeling was carried out for 10 s at 4 °C. Reaction was quenched using buffer
853 D, proteins were proteolyzed and injected into a HDX sample manager (Waters,
854 Milford) for UPLC based peptide separation as described (Krishnamurthy et al., 2021).
855 To unambiguously detect the low abundance peptides from the client proteins, data
856 acquisition was carried out in UDMS^E data acquisition mode. Data acquisition
857 parameters were as described (Cryar et al., 2017). Peptide analysis and quantification
858 was as described (Krishnamurthy et al., 2021).

859

860 **Determination of ΔG_{ex} values**

861 ΔG_{ex} values were determined using PyHDX software (v0.4.0-rc1) (Smit et al.,
862 2021a). D-uptake data from triplicate experiments, for all timepoints were input along
863 with 100% deuteration control. Input parameters were set to the following parameters:
864 temperature - 303 K; ph – 8; stop loss – 0.01; stop patience – 100; learning rate – 10;
865 momentum – 0.5; epochs – 100000; regularizer 1 – 0.01, regularizer 2 – 0.01.

866

867 **Single-molecule fluorescence microscopy and PIE**

868 Protein purification, fluorescent labeling, sample preparation and data analysis,
869 quantification and statistical analysis for single molecule PIE based FRET experiments
870 were carried out as previously described (Krishnamurthy et al., 2021). Confocal
871 scanning analysis mode was applied to follow the conformational dynamics of SecA in
872 solution at 20°C. To follow the effect of signal peptide to clamp dynamics of the
873 translocase, signal peptide was added to monomeric, dimeric or channel-primed SecA
874 [generate as described (Krishnamurthy et al., 2021)] to a final concentration of 37 μM.

875 proPhoA₁₋₁₂₂ was added to a final concentration of 10 μ M. All mutant derivatives were
876 handled similar to wild-type proteins.

877

878 **H-bonding graph analysis**

879 To determine H-bond paths and long-distance conformational couplings between
880 the signal peptide binding cleft and gate2, we used algorithms based on graph theory
881 and centrality measures as described (Karathanou and Bondar, 2019; Krishnamurthy
882 et al., 2021). Briefly, residues were considered H-bonded if the distance between the
883 hydrogen and acceptor heavy atom, d_{HA} , is ≤ 2.5 \AA . H bonds were calculated between
884 protein sidechains, and between backbone groups and protein sidechains. Data are
885 visualized as H-bond networks with unique lines (coloured according to H-bond
886 frequency) between $\text{C}\alpha$ atoms of residue pairs that H-bond. H-bond frequency is the
887 percentage of analysed trajectory segment during which two residues are H-bonded.

888

889 **Normal Mode Analysis**

890 Normal modes describe protein vibrational movements, were calculated using
891 the WebNM@ web server (Tiwari et al., 2014) with PDB ID: 2VDA as the input
892 structural model of SecA. Per-residue displacement and normal mode flexibility were
893 derived from normal mode eigenvalues as described (Dobbins et al., 2008; Smit et al.,
894 2021a). Total vibrational displacement of each residue undergoing fluctuations under
895 low frequency normal modes (modes 7-12) are calculated and plotted. Residues that
896 undergo displacement greater than 2 are highlighted in shades of blue.

897

898 **Miscellaneous**

899 Pymol (<https://pymol.org/>) was used for structural analysis and visualization. SecA
900 activation energy determination, *in vivo* proPhoA and PhoA translocation, *in vitro*
901 proPhoA translocation, SecA ATPase activity, *in vivo* SecA complementation, affinity
902 determination of SecA and/or proPhoA for the translocase, were as described (Chatzi
903 et al., 2011; Gouridis et al., 2009; Gouridis et al., 2010; Gouridis et al., 2013). H-bond
904 networks between the signal peptide cleft and motif IVa were determined as described
905 (Krishnamurthy et al., 2021). ADP:BeF_x was generated by adding ADP:BeCl₂:NaF in
906 a 1:1:5 ratio and incubated at 4 °C for 30 min to obtain a final concentration of 50 mM.

907

908 **Acknowledgements**

909 We are grateful to: T. Cordes for sharing software for smFRET data analysis. Our
910 research was funded by grants (to AE): MeNaGe (RUN #RUN/16/001; KU Leuven);
911 ProFlow (FWO/F.R.S.-FNRS "Excellence of Science - EOS" programme grant
912 #30550343); DIP-BiD (#AKUL/15/40 - G0H2116N; Hercules/FWO); CARBS
913 (#G0C6814N; FWO); Profound (WoG Research Training Network, FWO, Protein
914 folding/non-folding and dynamics; #W002421N) and (to AE and SK): FOscil
915 (ZKD4582-C16/18/008; KU Leuven) and (to A-NB): by the Excellence Initiative of the
916 German Federal and State Governments via the Freie Universität Berlin, and by
917 allocations of computing time from the North-German Supercomputing Alliance,
918 HLRN. SKr was a FWO [PEGASUS]² MSC fellow; NE was a MSCA SoE FWO fellow;
919 JHS is a PDM/KU Leuven fellow; GG was a Rega Foundation postdoctoral program
920 fellow. This project has received funding from the Research Foundation – Flanders
921 (FWO) and the European Union's Horizon 2020 research and innovation programme
922 under the Marie Skłodowska-Curie grant agreements No 665501 and 195872.

923

924 **Competing interests**

925 The authors declare they have no competing financial interests or other conflicts of
926 interest.

927

928 **Author contributions**

929 SKr purified proteins and membranes, did biochemical and fluorescence assays,
930 designed and performed HDX-MS work and data analysis. MFS and KEC purified
931 proteins, performed molecular biology, *in vivo* and *in vitro* biochemical and biophysical
932 assays. NE purified and labelled proteins and performed smFRET experiments and

933 data analysis. JHS developed PyHDX software and analysed HDX-MS data, adapted
934 FRET burst analysis for Microtime200 output data and performed NMA analysis. KK
935 performed MD simulations and graph analysis of H-bond networks. GG performed
936 biochemical, molecular biology and biophysical assays, analysed data and advised on
937 smFRET. AGP performed molecular cloning and mutagenesis. ANB set up and
938 supervised the MD simulations and graph analysis. SK designed and supervised
939 molecular biology experiments, purified proteins, performed biochemical and
940 biophysical assays and data analysis. AE did structure and data analysis and designed
941 experiments. SK and AE wrote the first draft and finalized it with contributions from
942 SK, ANB, JHS and NE. All authors reviewed and approved the final manuscript. AE
943 and SK conceived and managed the project.

944

945 **References**

946 Ahdash, Z., Pyle, E., Allen, W.J., Corey, R.A., Collinson, I., and Politis, A. (2019). HDX-
947 MS reveals nucleotide-dependent, anti-correlated opening and closure of SecA and
948 SecY channels of the bacterial translocon. *Elife* 8, e47402.

949 Allen, W.J., Corey, R.A., Oatley, P., Sessions, R.B., Baldwin, S.A., Radford, S.E.,
950 Tuma, R., and Collinson, I. (2016). Two-way communication between SecY and SecA
951 suggests a Brownian ratchet mechanism for protein translocation. *Elife* 5, e15598.

952 Allen, W.J., Watkins, D.W., Dillingham, M.S., and Collinson, I. (2020). Refined
953 measurement of SecA-driven protein secretion reveals that translocation is indirectly
954 coupled to ATP turnover. *Proceedings of the National Academy of Sciences of the
955 United States of America* 117, 31808-31816.

956 Arkowitz, R.A., Joly, J.C., and Wickner, W. (1993). Translocation Can Drive the
957 Unfolding of a Preprotein Domain. *Embo Journal* 12, 243-253.

958 Avellaneda, M.J., Koers, E.J., Naqvi, M.M., and Tans, S.J. (2017). The chaperone
959 toolbox at the single-molecule level: From clamping to confining. *Protein Sci* 26, 1291-
960 1302.

961 Bahar, I., Lezon, T.R., Bakan, A., and Shrivastava, I.H. (2010). Normal mode analysis
962 of biomolecular structures: functional mechanisms of membrane proteins. *Chemical
963 reviews* 110, 1463-1497.

964 Bauer, B.W., and Rapoport, T.A. (2009). Mapping polypeptide interactions of the SecA
965 ATPase during translocation. *Proceedings of the National Academy of Sciences of the
966 United States of America* 106, 20800-20805.

967 Bhabha, G., Biel, J.T., and Fraser, J.S. (2015). Keep on moving: discovering and
968 perturbing the conformational dynamics of enzymes. *Accounts of chemical research*
969 48, 423-430.

970 Bieker, K.L., Phillips, G.J., and Silhavy, T.J. (1990). The sec and prl genes of
971 *Escherichia coli*. *Journal of bioenergetics and biomembranes* 22, 291-310.

972 Bost, S., and Belin, D. (1997). prl mutations in the *Escherichia coli* secG gene. *The
973 Journal of biological chemistry* 272, 4087-4093.

974 Burmann, B.M., Wang, C., and Hiller, S. (2013). Conformation and dynamics of the
975 periplasmic membrane-protein-chaperone complexes OmpX-Skp and tOmpA-Skp.
976 *Nat Struct Mol Biol* 20, 1265-1272.

977 Catipovic, M.A., Bauer, B.W., Loparo, J.J., and Rapoport, T.A. (2019). Protein
978 translocation by the SecA ATPase occurs by a power-stroke mechanism. *The EMBO
979 journal* 38.

980 Chatzi, K.E., Sardis, M.F., Tsirigotaki, A., Koukaki, M., Sostaric, N., Konijnenberg, A.,
981 Sobott, F., Kalodimos, C.G., Karamanou, S., and Economou, A. (2017). Preprotein
982 mature domains contain translocase targeting signals that are essential for secretion.
983 *The Journal of cell biology* 216, 1357-1369.

984 Chatzi, K.I., Gouridis, G., Orfanoudaki, G., Koukaki, M., Tsamardinos, I., Karamanou,
985 S., and Economou, A. (2011). The signal peptides and the early mature domain
986 cooperate for efficient secretion. *Febs Journal* 278, 14-14.

987 Chen, W., and Komives, E.A. (2021). Open, engage, bind, translocate: The multi-level
988 dynamics of bacterial protein translocation. *Structure (London, England : 1993)* 29,
989 781-782.

990 Corey, R.A., Ahdash, Z., Shah, A., Pyle, E., Allen, W.J., Fessl, T., Lovett, J.E., Politis,
991 A., and Collinson, I. (2019). ATP-induced asymmetric pre-protein folding as a driver of
992 protein translocation through the Sec machinery. *Elife* 8, e41803.

993 Cryar, A., Groves, K., and Quaglia, M. (2017). Online Hydrogen-Deuterium Exchange
994 Traveling Wave Ion Mobility Mass Spectrometry (HDX-IM-MS): a Systematic
995 Evaluation. *Journal of the American Society for Mass Spectrometry* **28**, 1192-1202.

996 De Geyter, J., Portaliou, A.G., Srinivasu, B., Krishnamurthy, S., Economou, A., and
997 Karamanou, S. (2020). Trigger factor is a bona fide secretory pathway chaperone that
998 interacts with SecB and the translocase. *EMBO Rep* **21**, e49054.

999 Dobbins, S.E., Lesk, V.I., and Sternberg, M.J. (2008). Insights into protein flexibility:
1000 The relationship between normal modes and conformational change upon protein-
1001 protein docking. *Proceedings of the National Academy of Sciences of the United States
1002 of America* **105**, 10390-10395.

1003 Duong, F., and Wickner, W. (1999). The PrlA and PrlG phenotypes are caused by a
1004 loosened association among the translocase SecYEG subunits. *The EMBO journal* **18**,
1005 3263-3270.

1006 Ernst, I., Haase, M., Ernst, S., Yuan, S., Kuhn, A., and Leptihn, S. (2018). Large
1007 conformational changes of a highly dynamic pre-protein binding domain in SecA.
1008 *Commun Biol* **1**, 130.

1009 Fak, J.J., Itkin, A., Ciobanu, D.D., Lin, E.C., Song, X.J., Chou, Y.T., Giersch, L.M.,
1010 and Hunt, J.F. (2004). Nucleotide exchange from the high-affinity ATP-binding site in
1011 SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs
1012 through a specialized conformational state. *Biochemistry* **43**, 7307-7327.

1013 Fekkes, P., van der Does, C., and Driesssen, A.J. (1997). The molecular chaperone
1014 SecB is released from the carboxy-terminus of SecA during initiation of precursor
1015 protein translocation. *The EMBO journal* **16**, 6105-6113.

1016 Ferreiro, D.U., Komives, E.A., and Wolynes, P.G. (2014). Frustration in biomolecules.
1017 *Q Rev Biophys* **47**, 285-363.

1018 Fessl, T., Watkins, D., Oatley, P., Allen, W.J., Corey, R.A., Horne, J., Baldwin, S.A.,
1019 Radford, S.E., Collinson, I., and Tuma, R. (2018). Dynamic action of the Sec machinery
1020 during initiation, protein translocation and termination. *Elife* **7**.

1021 Flechsig, H., and Mikhailov, A.S. (2019). Simple mechanics of protein machines.
1022 *Journal of the Royal Society, Interface* **16**, 20190244.

1023 Flower, A.M., Doebele, R.C., and Silhavy, T.J. (1994). PrlA and PrlG suppressors
1024 reduce the requirement for signal sequence recognition. *Journal of bacteriology* **176**,
1025 5607-5614.

1026 Galletto, R., Jezewska, M.J., Maillard, R., and Bujalowski, W. (2005). The nucleotide-
1027 binding site of the *Escherichia coli* DnaC protein: molecular topography of DnaC
1028 protein-nucleotide cofactor complexes. *Cell Biochem Biophys* **43**, 331-353.

1029 Gelis, I., Bonvin, A.M., Keramisanou, D., Koukaki, M., Gouridis, G., Karamanou, S.,
1030 Economou, A., and Kalodimos, C.G. (2007). Structural basis for signal-sequence
1031 recognition by the translocase motor SecA as determined by NMR. *Cell* **131**, 756-769.

1032 Gouridis, G., Karamanou, S., Gelis, I., Kalodimos, C.G., and Economou, A. (2009).
1033 Signal peptides are allosteric activators of the protein translocase. *Nature* **462**, 363-
1034 367.

1035 Gouridis, G., Karamanou, S., Koukaki, M., and Economou, A. (2010). In vitro assays
1036 to analyze translocation of the model secretory preprotein alkaline phosphatase.
1037 *Methods in molecular biology* **619**, 157-172.

1038 Gouridis, G., Karamanou, S., Sardis, M.F., Scharer, M.A., Capitani, G., and
1039 Economou, A. (2013). Quaternary dynamics of the SecA motor drive translocase
1040 catalysis. *Mol Cell* **52**, 655-666.

1041 Gupta, R., Toptygin, D., and Kaiser, C.M. (2020). The SecA motor generates
1042 mechanical force during protein translocation. *Nat Commun* **11**, 3802.

1043 Hartl, F.U., Lecker, S., Schiebel, E., Hendrick, J.P., and Wickner, W. (1990). The
1044 binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the *E.*
1045 *coli* plasma membrane. *Cell* **63**, 269-279.

1046 He, L., and Hiller, S. (2018). Common Patterns in Chaperone Interactions with a Native
1047 Client Protein. *Angew Chem Int Ed Engl* **57**, 5921-5924.

1048 He, L., and Hiller, S. (2019). Frustrated Interfaces Facilitate Dynamic Interactions
1049 between Native Client Proteins and Holdase Chaperones. *Chembiochem* **20**, 2803-
1050 2806.

1051 He, L., Sharpe, T., Mazur, A., and Hiller, S. (2016). A molecular mechanism of
1052 chaperone-client recognition. *Sci Adv* **2**, e1601625.

1053 Henzler-Wildman, K., and Kern, D. (2007). Dynamic personalities of proteins. *Nature*
1054 **450**, 964-972.

1055 Henzler-Wildman, K.A., Lei, M., Thai, V., Kerns, S.J., Karplus, M., and Kern, D. (2007).
1056 A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. *Nature*
1057 **450**, 913-916.

1058 Hiller, S. (2019). Chaperone-Bound Clients: The Importance of Being Dynamic. *Trends*
1059 in biochemical sciences **44**, 517-527.

1060 Hinsen, K. (1998). Analysis of domain motions by approximate normal mode
1061 calculations. *Proteins* **33**, 417-429.

1062 Huie, J.L., and Silhavy, T.J. (1995). Suppression of signal sequence defects and azide
1063 resistance in *Escherichia coli* commonly result from the same mutations in secA.
1064 *Journal of bacteriology* **177**, 3518-3526.

1065 Karamanou, S., Gouridis, G., Papanikou, E., Sianidis, G., Gelis, I., Keramisanou, D.,
1066 Vrontou, E., Kalodimos, C.G., and Economou, A. (2007). Preprotein-controlled
1067 catalysis in the helicase motor of SecA. *Embo Journal* **26**, 2904-2914.

1068 Karamanou, S., Sianidis, G., Gouridis, G., Pozidis, C., Papanikolau, Y., Papanikou, E.,
1069 and Economou, A. (2005). *Escherichia coli* SecA truncated at its termini is functional
1070 and dimeric. *FEBS letters* **579**, 1267-1271.

1071 Karathanou, K., and Bondar, A.N. (2019). Using Graphs of Dynamic Hydrogen-Bond
1072 Networks To Dissect Conformational Coupling in a Protein Motor. *J Chem Inf Model*
1073 **59**, 1882-1896.

1074 Kellner, R., Hofmann, H., Barducci, A., Wunderlich, B., Nettels, D., and Schuler, B.
1075 (2014). Single-molecule spectroscopy reveals chaperone-mediated expansion of
1076 substrate protein. *Proceedings of the National Academy of Sciences of the United*
1077 *States of America* **111**, 13355-13360.

1078 Keramisanou, D., Biris, N., Gelis, I., Sianidis, G., Karamanou, S., Economou, A., and
1079 Kalodimos, C.G. (2006). Disorder-order folding transitions underlie catalysis in the
1080 helicase motor of SecA. *Nat Struct Mol Biol* **13**, 594-602.

1081 Knyazev, D.G., Winter, L., Bauer, B.W., Siligan, C., and Pohl, P. (2014). Ion
1082 conductivity of the bacterial translocation channel SecYEG engaged in translocation.
1083 *The Journal of biological chemistry* **289**, 24611-24616.

1084 Kochert, B.A., Iacob, R.E., Wales, T.E., Makriyannis, A., and Engen, J.R. (2018).
1085 Hydrogen-Deuterium Exchange Mass Spectrometry to Study Protein Complexes.
1086 *Methods in molecular biology* **1764**, 153-171.

1087 Kovacs, J.A., Chacon, P., and Abagyan, R. (2004). Predictions of protein flexibility:
1088 first-order measures. *Proteins* **56**, 661-668.

1089 Krishnamurthy, S., Eleftheriadis, N., Karathanou, K., Smit, J.H., Portaliou, A.G., Chatzi,
1090 K.E., Karamanou, S., Bondar, A.N., Gouridis, G., and Economou, A. (2021). A nexus
1091 of intrinsic dynamics underlies translocase priming. *Structure* (London, England :
1092 1993).

1093 Kurakin, A. (2006). Self-organization versus watchmaker: molecular motors and
1094 protein translocation. *Biosystems* 84, 15-23.

1095 Lill, R., Cunningham, K., Brundage, L.A., Ito, K., Oliver, D., and Wickner, W. (1989).
1096 SecA protein hydrolyzes ATP and is an essential component of the protein
1097 translocation ATPase of *Escherichia coli*. *The EMBO journal* 8, 961-966.

1098 Lill, R., Dowhan, W., and Wickner, W. (1990). The ATPase activity of SecA is regulated
1099 by acidic phospholipids, SecY, and the leader and mature domains of precursor
1100 proteins. *Cell* 60, 271-280.

1101 Loutchko, D., and Flechsig, H. (2020). Allosteric communication in molecular machines
1102 via information exchange: what can be learned from dynamical modeling. *Biophysical
1103 reviews*.

1104 Magnasco, M.O. (1993). Forced thermal ratchets. *Phys Rev Lett* 71, 1477-1481.

1105 Morgado, L., Burmann, B.M., Sharpe, T., Mazur, A., and Hiller, S. (2017). The dynamic
1106 dimer structure of the chaperone Trigger Factor. *Nat Commun* 8, 1992.

1107 Nussinov, R., Zhang, M., Tsai, C.J., Liao, T.J., Fushman, D., and Jang, H. (2018).
1108 Autoinhibition in Ras effectors Raf, PI3Kalpha, and RASSF5: a comprehensive review
1109 underscoring the challenges in pharmacological intervention. *Biophysical reviews* 10,
1110 1263-1282.

1111 Or, E., Navon, A., and Rapoport, T. (2002). Dissociation of the dimeric SecA ATPase
1112 during protein translocation across the bacterial membrane. *The EMBO journal* 21,
1113 4470-4479.

1114 Papanikolau, Y., Papadovasilaki, M., Ravelli, R.B., McCarthy, A.A., Cusack, S.,
1115 Economou, A., and Petratos, K. (2007). Structure of dimeric SecA, the *Escherichia coli*
1116 preprotein translocase motor. *Journal of molecular biology* 366, 1545-1557.

1117 Parra, R.G., Schafer, N.P., Radusky, L.G., Tsai, M.Y., Guzovsky, A.B., Wolynes, P.G.,
1118 and Ferreiro, D.U. (2016). Protein Frustratometer 2: a tool to localize energetic
1119 frustration in protein molecules, now with electrostatics. *Nucleic Acids Res* 44, W356-
1120 360.

1121 Rapoport, T.A., Li, L., and Park, E. (2017). Structural and Mechanistic Insights into
1122 Protein Translocation. *Annu Rev Cell Dev Biol* 33, 369-390.

1123 Robson, A., Gold, V.A., Hodson, S., Clarke, A.R., and Collinson, I. (2009). Energy
1124 transduction in protein transport and the ATP hydrolytic cycle of SecA. *Proceedings of
1125 the National Academy of Sciences of the United States of America* 106, 5111-5116.

1126 Sardis, M.F., and Economou, A. (2010). SecA: a tale of two protomers. *Molecular
1127 microbiology* 76, 1070-1081.

1128 Sardis, M.F., Tsirigotaki, A., Chatzi, K.E., Portaliou, A.G., Gouridis, G., Karamanou, S.,
1129 and Economou, A. (2017). Preprotein Conformational Dynamics Drive Bivalent
1130 Translocase Docking and Secretion. *Structure* (London, England : 1993) 25, 1056-
1131 1067.e1056.

1132 Schatz, P.J., and Beckwith, J. (1990). Genetic analysis of protein export in *Escherichia
1133 coli*. *Annu Rev Genet* 24, 215-248.

1134 Schiebel, E., Driessens, A.J., Hartl, F.U., and Wickner, W. (1991). Delta mu H+ and
1135 ATP function at different steps of the catalytic cycle of preprotein translocase. *Cell* 64,
1136 927-939.

1137 Sianidis, G., Karamanou, S., Vrontou, E., Boulias, K., Repanas, K., Kyrpides, N.,
1138 Politou, A.S., and Economou, A. (2001). Cross-talk between catalytic and regulatory
1139 elements in a DEAD motor domain is essential for SecA function. *The EMBO journal*
1140 20, 961-970.

1141 Smit, J.H., Krishnamurthy, S., Srinivasu, B.Y., Parakra, R., Karamanou, S., and
1142 Economou, A. (2021a). Probing universal protein dynamics using residue-level Gibbs
1143 free energy. *bioRxiv*, 2020.2009.2030.320887.

1144 Smit, J.H., Roussel, G., and Economou, A. (2021b). Dynamics ante portas.
1145 *Proceedings of the National Academy of Sciences of the United States of America* 118.

1146 Tiwari, S.P., Fuglebakk, E., Hollup, S.M., Skjaerven, L., Cagnolini, T., Grindhaug,
1147 S.H., Tekle, K.M., and Reuter, N. (2014). WEBnm@ v2.0: Web server and services for
1148 comparing protein flexibility. *BMC Bioinformatics* 15, 427.

1149 Tsirigotaki, A., Chatzi, K.E., Koukaki, M., De Geyter, J., Portaliou, A.G., Orfanoudaki,
1150 G., Sardis, M.F., Trelle, M.B., Jorgensen, T.J.D., Karamanou, S., *et al.* (2018). Long-
1151 Lived Folding Intermediates Predominate the Targeting-Competent Secretome.
1152 *Structure* (London, England : 1993) 26, 695-707 e695.

1153 Tsirigotaki, A., De Geyter, J., Sostaric, N., Economou, A., and Karamanou, S. (2017a).
1154 Protein export through the bacterial Sec pathway. *Nature reviews Microbiology* 15, 21-
1155 36.

1156 Tsirigotaki, A., Papanastasiou, M., Trelle, M.B., Jorgensen, T.J., and Economou, A.
1157 (2017b). Analysis of Translocation-Competent Secretory Proteins by HDX-MS.
1158 *Methods in enzymology* 586, 57-83.

1159 Vandenberk, N., Karamanou, S., Portaliou, A.G., Zorzini, V., Hofkens, J., Hendrix, J.,
1160 and Economou, A. (2019). The Preprotein Binding Domain of SecA Displays Intrinsic
1161 Rotational Dynamics. *Structure* (London, England : 1993) 27, 90-101 e106.

1162 Yang, L.Q., Sang, P., Tao, Y., Fu, Y.X., Zhang, K.Q., Xie, Y.H., and Liu, S.Q. (2014).
1163 Protein dynamics and motions in relation to their functions: several case studies and
1164 the underlying mechanisms. *J Biomol Struct Dyn* 32, 372-393.

1165 Zhang, Y., Doruker, P., Kaynak, B., Zhang, S., Krieger, J., Li, H., and Bahar, I. (2019).
1166 Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior. *Curr Opin
1167 Struct Biol* 62, 14-21.

1168 Zimmer, J., Nam, Y., and Rapoport, T.A. (2008). Structure of a complex of the ATPase
1169 SecA and the protein-translocation channel. *Nature* 455, 936-943.

1170