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ABSTRACT 
 
A longstanding challenge in human microbiome research is achieving the taxonomic and 
functional resolution needed to generate testable hypotheses about the gut microbiome’s impact 
on health and disease. More recently, this challenge has extended to a need for in-depth 
understanding of the pharmacokinetics and pharmacodynamics of clinical microbiome-based 
interventions. Whole genome metagenomic sequencing provides high taxonomic resolution and 
information on metagenome functional capacity, but the required deep sequencing is costly. For 
this reason, short-read sequencing of the bacterial 16S ribosomal RNA (rRNA) gene is the 
standard for microbiota profiling, despite its poor taxonomic resolution. The recent falling costs 
and improved fidelity of long-read sequencing warrant an evaluation of this approach for clinical 
microbiome analysis. We used samples from participants enrolled in a Phase 1b clinical trial of 
a novel live biotherapeutic product to perform a comparative analysis of short-read and long-
read amplicon and metagenomic sequencing approaches to assess their value for generating 
informative and actionable clinical microbiome data. Comparison of ubiquitous short-read 16S 
rRNA amplicon profiling to long-read profiling of the 16S-ITS-23S rRNA amplicon showed that 
only the latter provided strain-level community resolution and insight into novel taxa. Across all 
methods, overall community taxonomic profiles were comparable and relationships between 
samples were conserved, highlighting the accuracy of modern microbiome analysis pipelines. 
All methods identified an active ingredient strain in treated study participants, though detection 
confidence was higher for long-read methods. Read coverage from both metagenomic methods 
provided evidence of active ingredient strain replication in some treated participants. Compared 
to short-read metagenomics, approximately twice the proportion of long reads were assigned 
functional annotations (63% vs. 34%). Finally, similar bacterial metagenome-assembled 
genomes (MAGs) were recovered across short-read and long-read metagenomic methods, 
although MAGs recovered from long reads were more complete. Overall, despite higher costs, 
long-read microbiome characterization provides added scientific value for clinical microbiome 
research in the form of higher taxonomic and functional resolution and improved recovery of 
microbial genomes compared to traditional short-read methodologies.  
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Data Summary 
 
All supporting data, code and protocols have been provided within the article or as 
supplementary data files. Two supplementary figures and four supplementary tables are 
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available with the online version of this article. Sequencing data are accessible in the National 
Center for Biotechnology Information (NCBI) database under BioProject accession number 
PRJNA754443. The R code and additional data files used for analysis and figure generation are 
accessible in a GitHub repository (https://github.com/jeanette-
gehrig/Gehrig_et_al_sequencing_comparison).  
 
Abbreviations 
 
SRA, short-read amplicon sequencing; LRA, long-read amplicon sequencing; SRM, short-read 
metagenomic sequencing; LRM, long-read metagenomic sequencing; LBP, live biotherapeutic 
product; CCS, circular consensus sequencing; HiFi, high fidelity; NGS, next-generation 
sequencing; MAG, metagenome-assembled genome 
 
Impact Statement 
 
Accurate sequencing and analysis are essential for informative microbiome profiling, which is 
critical for the development of novel microbiome-targeted therapeutics. Recent improvements in 
long-read sequencing technology provide a promising, but more costly, alternative to ubiquitous 
short-read sequencing. To our knowledge, a direct comparison of the informational value of 
short-read and HiFi long-read sequencing approaches has not been reported for clinical 
microbiome samples. Using samples from participants in a Phase 1b trial of a live biotherapeutic 
product, we compare microbiome profiles generated from short-read and long-read sequencing 
for both amplicon-based 16S ribosomal RNA profiling and metagenomic sequencing. Though 
overall taxonomic profiles were similar across methods, only long-read amplicon sequencing 
provided strain-level resolution, and long-read metagenomic sequencing resulted in a 
significantly greater proportion of functionally annotated genes. Detection of a live 
biotherapeutic active ingredient strain in treated participants was achieved with all methods, and 
both metagenomic methods provided evidence of active replication of this strain in some 
participants. Similar taxonomies were recovered through metagenomic assemblies of short and 
long reads, although assemblies were more complete with long reads. Overall, we show the 
utility of long-read microbiome sequencing in direct comparison to commonly used short-read 
methods for clinically relevant microbiome profiling. 
 
Introduction  
 
The human microbiota consists of trillions of microorganisms colonizing the skin and mucosal 
surfaces. Much of the diversity and biomass of the microbiota resides in the intestinal lumen, 
with over 50% of the solid fraction of stool consisting of bacterial cells (1). The human gut 
microbiota harbors a diverse array of genes, known as the microbiome, that far outnumber 
human genes and encode a multitude of enzymatic functions lacking in the human genome. The 
gut microbiome performs essential functions for the human host, including supporting growth 
and development during infancy and childhood (2), assisting the development and regulation of 
the immune system (3,4), protecting against pathogens (5), synthesizing vitamins (6), 
converting indigestible dietary components to usable energy sources (7), and regulating 
endocrine function and neurologic signaling (8). Perhaps not surprisingly, perturbations to this 
microbial community are implicated in a range of human diseases, from allergic and 
autoimmune diseases to cancer and neurologic diseases (9). 
 
Advances in microbiome science have paved the way for a new class of therapeutics that aim to 
modulate the structure and function of the microbiota to prevent or treat disease. Live 
biotherapeutic products (LBPs) are live organisms designed to treat, cure, or prevent disease in 
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humans (10). LBPs may contain a single microbe or a consortium of microbes. Unlike traditional 
therapeutics that exert their effects on a known target receptor or enzyme, LBPs may exert their 
effects indirectly through impacting the composition and function of the host microbiota (11). 
Additionally, it has become increasingly clear that the strain is the functional unit of the 
microbiota, with distinct strains of the same bacterial species frequently displaying unique 
functional or structural characteristics with important implications for host-microbe interactions 
(12,13). In this context, strain-level resolution is essential for taxonomic and functional profiling 
of the microbiota of healthy and diseased individuals to identify candidate drug substance 
strains as well as for generating high-resolution and actionable data on microbiome dynamics 
during a microbiome-directed intervention.  
 
Methods to profile the human microbiota have evolved dramatically over the past three 
decades, with the effort and cost required for DNA sequencing falling precipitously. However, 
metagenomic sequencing at the depth required to obtain comprehensive taxonomic and 
functional information from complex microbial communities remains relatively costly. As an 
economical alternative, amplicon-based 16S ribosomal RNA (16S rRNA) gene sequencing has 
dominated the microbiome field. Comparison of the 16S rRNA gene sequence allows for an 
approximation of relatedness among taxa (14). The 16S rRNA gene is approximately 1,500 
base pairs (bp) long and contains nine variable regions which can be primed and amplified at 
lengths compatible with short-read next-generation sequencing (NGS). Limited by read length, 
the choice of which variable region(s) to sequence has been a longstanding debate due to 
varying levels of amplification bias (15,16). Overall, short-read 16S rRNA gene sequencing 
generates community profiles with low taxonomic resolution that are difficult to interpret 
considering many bacterial genomes harbor multiple polymorphic copies of the 16S rRNA gene 
(17).  
 
“Third generation” long-read sequencing technology makes it possible to obtain full-length 16S 
rRNA gene sequences, eliminating bias in choosing a variable region while increasing 
taxonomic resolution. However, historically high error rates (>10%) per base of long-read 
sequencing limited its utility in microbiota profiling. Recently, circular consensus sequencing 
(CCS) has significantly reduced long-read sequencing errors by performing multiple passes of a 
circularized template molecule (18). CCS of the full-length bacterial 16S rRNA gene significantly 
improves taxonomic resolution in microbiota profiling, in many cases to the strain level. 
Sequencing a diverse (>250-member) mock community using CCS sequencing can generate 
greater than 90% accuracy in species-level classification with accurate measures of relative 
abundance (19). Long reads are not limited to the 16S rRNA gene; amplicons can be extended 
to include the internal transcribed spacer (ITS) region and the 23S gene to provide even greater 
taxonomic resolution (20). Regardless of the platform, 16S rRNA gene sequencing excludes 
non-bacterial and non-archaeal members of the microbiota, such as fungi, viruses, and 
eukaryotic cells, and does not provide direct information about the encoded functional 
capabilities of a microbiome (16). 
 
As the microbiome field has matured, there has been a necessary shift from descriptive 
observational studies to the mechanistic studies required to support the development of 
microbiome-targeted diagnostics and therapeutics (21). The application of metagenomic 
sequencing for translational applications of microbiome profiling has expanded, partly based on 
improved detection of microbial species and encoded microbiome function (22). While shallow 
shotgun sequencing (~0.5 million reads per sample) has been shown to capture the taxonomic 
and functional diversity of microbiome samples at a fraction of the cost, this approach does not 
provide sufficient coverage for de novo assembly of novel genes and genomes (23). De novo 
assembly is important for the characterization of microbial communities because reference 
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databases contain only a fraction of microbial diversity (24), a fact that has been highlighted by 
the recent additions of thousands of novel human gut microbiota strains through metagenomic 
assemblies (25,26). Even with deep short-read shotgun sequencing, de novo assembly remains 
a challenge due to the presence of repetitive regions within genomes, shared genomic regions 
across different microbes, and the complexity of microbial communities with unknown and 
uneven representation of both diverse and closely related strains (27). Long-read sequencing 
can surmount some of the difficulties in metagenomic assembly by spanning repetitive 
sequences and requiring less assembly; however, reliance on short-read data to overcome high 
error rates and low coverage has made this approach costly and complex (28). The recent 
development of CCS to produce HiFi reads (PacBio), which are 99% accurate over 10 kb in 
length (18), could increase the value and utility of long-read sequencing for microbiome 
profiling. 
 
The development and regulatory approval of microbiome-targeted therapeutics requires 
accurate approaches to obtain high resolution taxonomic and functional microbiome data. We 
applied four distinct sequencing methods to a subset of human microbiome samples collected 
from participants enrolled in an LBP clinical trial to evaluate their utility for generating actionable 
data for clinical microbiome applications. Using amplicon-based sequencing, we compare the 
ubiquitous short-read V3-V4 16S rRNA amplicon sequencing (SRA) to a recently developed 
long-read 16S-ITS-23S amplicon (LRA) sequencing approach. Using metagenomic profiling, we 
also compare short-read metagenomics (Illumina, SRM) and long-read metagenomics (PacBio 
HiFi, LRM) outputs of the same clinical microbiome sample set. As long-read sequencing incurs 
a greater per-sample sequencing cost, we evaluate sequencing method costs versus value of 
data obtained about the microbial community, focusing on the two core areas of microbiome 
sequence data value: taxonomic resolution and functional genomic capacity. We also determine 
whether introduced therapeutic bacterial strains can be detected during treatment using these 
distinct approaches. Finally, we compare the genome assemblies from the two metagenomic 
sequencing methods, assessing the number, completeness, and diversity of metagenome-
assembled genomes (MAGs). 
 
Methods 
 
Fecal sample collection and processing 
 
After obtaining informed consent, stool samples were collected from participants in Siolta 
Therapeutics’ Phase 1b clinical trial, STMC-103H-101, investigating the safety and tolerability of 
the LBP STMC-103H for the prevention of allergic disease. Participants were treated twice daily 
for 28 days with STMC-103H or placebo, with clinical visits which included fecal sample 
collection. Study subjects were provided with stool kits with collection containers (BioCollector, 
The Biocollective). Samples were collected within 24 hours of a scheduled visit, were frozen 
immediately after collection, and were maintained frozen (≤ -15°C) until processing.  
To homogenize fecal samples, each sample was weighed and placed in a Seward closure bag 
(Cat. No. BA6141/CLR), sterile water was added to the sample in a 1:4 ratio, and the bag was 
placed in a Stomacher 400 Circulator (Seward) and homogenized for 2 minutes at 230 rpm. 
One-gram aliquots were transferred into labeled cryovials and placed at -80°C prior to DNA 
extraction. 
 
SRA (V3-V4 16S rRNA) sequencing and analysis 
 
DNA extraction with cetyltrimethylammonium bromide (CTAB)  
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Fecal sample aliquots (200 mg) were added to ZR BashingBead Lysis Tubes (Zymo Research) 
with 1 ml CTAB Extraction Buffer (4% hexadecyltrimethylammonium bromide w/v, 100 mM 
phosphate buffer pH=7.5, 1M NaCl). Sample tubes were loaded into the OMNI Bead Ruptor 24 
Elite Bead Mill Homogenizer (OMNI International) and homogenized at 6 m/s for 1 minute and 
15 seconds for 4 cycles with 2 minutes dwell time between each cycle. The tubes were 
centrifuged at 12,000 x g for 10 minutes, and 600 μl of the homogenate supernatant was 
transferred to a sterile 1.5 ml tube. An equal volume (600 µl) phenol:chloroform:isoamyl alcohol 
(25:24:1, pH = 8) was mixed with each sample followed by a 5 minute rest and centrifugation at 
12,000 x g for 10 minutes. The aqueous supernatants were transferred to sterile 1.5 ml tubes, 
and the organic extraction was repeated. After the second centrifugation, 500 µl of aqueous 
supernatant was transferred to a sterile 1.5 ml tube. 600 µl chloroform was added to the 
homogenate, and each tube was vortexed and centrifuged at 12,000 x g for 10 minutes. About 
400 µl of the supernatant was transferred to sterile 1.5 ml tubes, and ⅔ volume of 100% 
isopropanol was added to each sample, and each sample was vortexed. The tubes were 
incubated at 4°C for 2 hours to precipitate the DNA. Samples were then centrifuged at 20,000 x 
g for 20 minutes to pellet the DNA. The supernatant was carefully decanted and the pellet in 
each tube was washed with cold 70% ethanol, mixing with a pipette tip to break up the pellet. 
Each tube was vortexed briefly, incubated for 5 minutes at room temperature, and centrifuged at 
12,000 x g for 10 minutes. The ethanol was decanted, and the ethanol wash step was repeated. 
After the second wash, the ethanol supernatant was decanted and remaining ethanol was 
removed with a pipette. The tubes with the DNA pellets were left with their caps open in a 
biosafety cabinet for 15 minutes to allow the remaining ethanol to evaporate. 150 µl TE buffer 
was then added to each tube, and the samples were vortexed and incubated at 37°C for 30 
minutes to solubilize the DNA. DNA concentrations were measured using the Qubit dsDNA 
Broad Range Assay Kit (ThermoFisher Scientific) on the Qubit 4 Fluorometer (ThermoFisher 
Scientific), and DNA quality was assessed using the 260/280 and 260/230 ratios measured 
using a NanoDrop Spectrophotometer. 
 
Library preparation and sequencing 
 
DNA samples were normalized to 10 ng/µl in TE buffer. Dual-indexed libraries were prepared 
following Illumina’s 16S Metagenomic Sequencing Library Preparation Protocol for the Illumina 
MiSeq System (Part # 15044223 Rev. B). Briefly, the variable V3 and V4 regions of the 16S 
rRNA gene were amplified using the following primers with Illumina overhang adapter 
sequences:16S Amplicon PCR Forward Primer = 5' 
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG  
16S Amplicon PCR Reverse Primer = 5' 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC 
 
PCR amplicons were purified using Omega Mag-Bind Total Pure NGS Beads (Omega Bio-tek, 
Cat. No. M1378), and each sample was uniquely indexed using Nextera XT Index Kit V2 
indexing primers (Illumina, Cat. No. FC-131-2001). Indexed libraries were purified with Omega 
Mag-Bind Total Pure NGS Beads, and libraries were quantified using the Qubit dsDNA High 
Sensitivity Kit (ThermoFisher Scientific, Cat. No. Q33231). Amplicon libraries were pooled 
equally by DNA concentration. The amplicon pooled library was prepared for sequencing with a 
5% PhiX spike-in and sequenced on a MiSeq using MiSeq Reagent Kit v3 600 cycle. 
 
Data analysis 
 
Demultiplexed fastq files were imported into QIIME 2 for sequence processing and analysis 
(29). Reads were quality filtered, merged, denoised, and chimeras removed using DADA2 (30) 
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in QIIME 2 (qiime dada2 denoise-paired; adjusted parameters: --p-max-ee-f 4, --p-max-ee-r 4, --
p-trim-left-f 17, --p-trim-left-r 21, --p-trunc-len-f 268, --p-trunc-len-r 214). The resulting table 
contained the number of reads in each sample assigned to amplicon sequence variants (ASVs). 
ASVs were assigned taxonomy using naive Bayes classifiers trained on Greengenes 13_8 99% 
OTUs (31) or SILVA version 132 99% OTUs (32) extracted for the target V3-V4 region. ASVs 
with fewer than 10 reads across all samples were filtered out.  
 
For detecting the active ingredient strain, DSM 33213, from Siolta’s STMC-103H LBP in 
samples, the number of reads in each sample assigned to DSM 33213’s 408-bp-long V3-V4 
ASV were counted and divided by the total number of reads per sample. 
 
LRA (16S-ITS-23S) sequencing and analysis 
 
DNA extraction 
 
To compare the impact of DNA extraction method on microbiome profiles, DNA was extracted 
from aliquots of each sample using the AllPrep PowerFecal DNA/RNA kit (Qiagen, Cat. No. 
80244), the CTAB buffer-based protocol, and the Shoreline Complete DNA extraction as part of 
the StrainID kit (Shoreline Biome). Each sample was prepared in duplicate using the StrainID 
kit, and 10 ng of DNA from each sample extracted using the AllPrep PowerFecal kit and CTAB 
buffer-based DNA extraction were added to the StrainID plate prior to amplification. In addition 
to fecal samples, both DNA (10 ng) and cells (108 and 109) from STMC-103H’s strains were 
included in the StrainID library preparation as references. 
 
Library preparation 
 
LRA library preparation and analysis were performed as previously described (20) and 
summarized below. 
 
Approximately 5 mg of fecal material or (10 µl isolate culture) was used as input into the 
StrainID kit. Fecal sample and isolate culture DNA were isolated per manufacturer’s 
instructions. Briefly, 50 µl of reconstituted lysis reagent was added to each sample. 
Subsequently, 50 µl of 0.4 M KOH solution was added and the samples were heated to 95°C for 
5 minutes to lyse the cells. The plate was spun briefly to pellet the fecal debris, and 50 µl of the 
supernatant was transferred to a clean plate. 50 µl of DNA Purification Beads were added, the 
DNA was allowed to bind, and the pellets were washed with 70% ethanol. DNA was eluted in 
TE, and 10 µl eluted DNA was transferred to the corresponding well in the PCR plate. At this 
point, 10 ng of DNA in 10 µl TE from replicates with DNA extracted using other methods was 
added to separate wells in the PCR plate. 2x PCR mix was added to all wells, and PCR was 
performed as per instructions to amplify and barcode each sample. Samples were pooled and 
purified with MinElute spin columns (Qiagen, Cat. No. 28004). 

DNA sequencing 

The amplicon library was created using the SMRTbell Express Template Prep Kit 2.0 (PacBio, 
Cat. No. 100-938-900) as per manufacturer’s instructions. The library was sequenced on the 
Sequel II System (PacBio). After sequencing, CCS fastq reads were generated from raw data 
using default settings for PacBio SMRTlink software. 

DADA2 installation and analysis  
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Detailed instructions in the Shoreline Biome ‘Expert User Guide’ for DADA2 is available from 
https://www.shorelinebiome.com/. Briefly, the following were downloaded and installed on a 
local computer: 

1. SBanalyzer version 3.0.14 for Windows /Centos7/Centos8: 
https://www.shorelinebiome.com/ 

2. R version 3.6.1: https://www.r-project.org/ 
3. R packages DADA2, Biostrings, ShortRead, ggplot2, reshape2, gridExtra, phyloseq, 

RColorBrewer, biomformat  
4. Python 3: https://www.python.org/downloads/ 

SBanalyzer 3.0 was used to demultiplex and classify CCS fastq reads from the Sequel II 
sequencing run. SBanalyzer 3.0 includes two StrainID pipelines, StrainID_PacBio_species and 
PacBio_demux_notrim. The demux_notrim pipeline demultiplexes reads and outputs 
demultiplexed fastq files with sequences that retain their primers and barcodes. The quality 
information and intact primer sequences are required by DADA2.  

Read demultiplexing and taxonomic identification 

The original multiplexed CCS fastq file was processed with SBanalyzer 3.0 to demultiplex and 
classify the reads with the StrainID_PacBio_species pipeline. This pipeline demultiplexes reads 
using barcode sequence pairs and trims primer and barcode sequences, leaving only the 
biological sequences. It then maps the trimmed, demultiplexed reads to a local copy of the 
Athena database and classifies each read. This pipeline outputs several files in minimal cleanup 
mode, two of which are used in subsequent steps of this procedure: a .taxonomy file associating 
each read ID with a taxonomy, and a .groups file associating each read ID with a sample. 

Denoising with DADA2 in R 

The untrimmed concatenated fastq files were processed using DADA2 in R. The reads were 
primer trimmed using removePrimers with max.mismatch=2 and allow.indels=TRUE, and reads 
lacking recognizable forward or reverse primers were discarded. Trimmed reads were then 
filtered using the fastqFilter command with minLen=1900, maxLen=3000, maxN=0 and 
maxEE=2. The trimmed and filtered reads were dereplicated using the derepFastq command, 
producing a derep-class object containing the unique nucleotide sequences. This dereplicated 
set of sequences was used to build an error model using the learnErrors command. 
Dereplicated sequences then went through ASV inference and error correction using the dada 
command with OMEGA_A=1e-40, OMEGA_C=1e-80, and pool=TRUE, producing a dada-class 
object containing ASV sequences and their associated frequencies. A sequence table 
containing the sequence and frequency of each ASV in its associated samples was built from 
the dada-class object using the makeSequenceTable command. The ASV sequences were 
finally extracted from the sequence table into fasta format for taxonomic identification with 
SBanalyzer and the sequence table was converted into rich BIOM format for import into QIIME 
2 using the commands make_biom and write_biom. 

Chimera quality control 

The sequence table was used to identify possible chimeric ASVs using the isBimeraDenovo 
command with minFoldParentOverAbundance=3.5. The total percentage of reads represented 
by potentially chimeric ASV’s was calculated in R. 

ASV taxonomic classification 
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ASV sequences were input in fasta format into SBanalyzer 3.0’s command line sbsearch utility 
to map them to the Athena database and assign taxonomy. For ASVs which were unclassified 
at the strain or species level, possibly originating from novel organisms, further analysis was 
applied to group sequences into putative species or strain classifications. ASVs which were 
unclassified by SBanalyzer 3.0 were instead classified using SBanalyzer 2.4, and the resulting 
classifications were appended to the output .taxonomy file. 

PICRUSt2 analysis for prediction of metagenome functions 

Reads were clustered and polished using a reimplementation of the NanoCLUST pipeline (33) 
to generate the representative sequences and associated per-sample abundances.  

The python script picrust2_pipeline.py from the PICRUSt2 distribution was applied (34). Since 
the 16S-ITS-23S sequences are much longer than the 16S sequences in the PICRUSt2 
database, a minimum alignment length threshold of 0.5 was used (default for --min_align is 0.8). 
There were 65 of 3060 sequences that did not meet that threshold and were filtered out. The 
flags --stratified and --per_sequence_contrib were used. 

SRM (short-read metagenomics) sequencing and analysis 
 
Library preparation and sequencing 
 
DNA was extracted using the CTAB method described in the DNA extraction with 
cetyltrimethylammonium bromide (CTAB) section above. Libraries were prepared based on a 
20X scaled-down Nextera XT DNA Library Prep Kit (Illumina, Cat. No. FC-131-1024) protocol 
(35) with some modifications. Briefly, DNA samples were diluted to 0.2 ng/µl in TE buffer. For 
Tagmentation, 1 µl of 0.2 ng/µl genomic DNA was added to 2 µl of Tagment DNA Buffer and 1 
µl Amplicon Tagment Mix. The Tagmentation reactions were mixed gently by pipetting, spun 
down, and incubated in a thermocycler for 5 minutes at 55ºC followed by a hold at 10ºC. Then 1 
µl of the Neutralize Tagment Buffer was added to each reaction, and the samples were 
incubated at room temperature for 5 minutes. For PCR-mediated adapter addition and library 
amplification, 13.8 µl KAPA HiFi HotStart ReadyMix 2X (KAPA Biosystems, Cat. No. KK2602) 
and 8.8 µl of paired i7 and i5 Nextera XT Index Kit V2 indexing primers (Illumina, Cat. No. FC-
131-2001) were added to each Tagmentation reaction, mixed by pipetting, spun down, and 
amplified on the thermocycler: 72ºC for 3 minutes; 98ºC for 5 minutes; 14 cycles of 98ºC for 10 
seconds, 63ºC for 30 seconds, and 72ºC for 30 seconds; followed by a final extension of 72ºC 
for 5 minutes. For purification, 22 µl of Omega Mag-Bind Total Pure NGS Beads (Omega Bio-
tek, Cat. No. M1378) were added to each reaction and mixed, the samples were incubated at 
room temperature for 5 minutes and then placed on a magnetic stand (Invitrogen DynaMag-96 
Side, Cat. No. 12331D) for 2 minutes, allowing the beads and bound DNA to separate out of the 
solution. With the samples still on the magnetic stand, the supernatant was removed, and the 
beads were washed twice with 70% ethanol. After the second wash, all residual ethanol was 
removed with a pipette and the samples air-dried for 10 minutes in a biosafety cabinet. Samples 
were then removed from the magnetic stand and the beads were resuspended in 30 µl TE 
buffer and pipetted up and down to mix. The samples were placed on the magnetic stand for 2 
minutes, and then the clear supernatant containing the pure DNA libraries were transferred to a 
clean PCR plate. Libraries were quantified using the Qubit 1x dsDNA High Sensitivity Kit 
(ThermoFisher Scientific, Cat. No. Q33231) and pooled equally by DNA concentration. The final 
pool was sequenced on one lane of a NovaSeq 6000 S4 150 bp PE flow cell (Illumina).  
 
Analysis 
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Nextera adapter sequences were trimmed from demultiplexed paired reads using bbduk 
(BBTools, sourceforge.net/projects/bbmap/) and reads 105 bp and longer were retained. Reads 
mapping to the human genome (GRCh38) were removed using bbsplit (BBTools, 
sourceforge.net/projects/bbmap/). Kraken2 was used to assign taxonomy to reads (36) and 
Bracken was used to estimate species abundance (37). HUMAnN2 was used for functional 
annotation, using the UniRef90 protein database (38). Clean reads were mapped to STMC-
103H genomes using bbmap (BBTools, sourceforge.net/projects/bbmap/), and the fraction of R1 
reads mapping to a genome was counted as the read fraction. 
 
Clean reads were assembled using metaSPAdes in paired-read mode with default settings (39). 
For metagenome assembly evaluation and MAG identification, the HiFi-MAG-Pipeline was used 
(https://github.com/PacificBiosciences/pb-metagenomics-tools). A brief overview of this 
workflow is described in the following section on LRM Sequencing and Analysis. The short-read 
analysis required several modifications. For each sample, a reads file consisting of the pre-
processed, interleaved R1 and R2 files was input for coverage calculations. The command used 
to map reads to contigs was changed to accommodate short reads: minimap2 -ax sr. The 
filtering parameters for the maximum number of contigs allowed in a bin was changed from 10 
to 500. 
  
LRM (long-read metagenomics) sequencing and analysis 
 
DNA extraction, library preparation, and sequencing 
 
DNA was extracted from aliquots of each sample using the AllPrep PowerFecal DNA/RNA kit 
(Qiagen, Cat. No. 80244). To ensure a larger DNA fragment size for long-read sequencing, 
samples were homogenized using the OMNI Bead Ruptor 24 Elite Bead Mill Homogenizer 
(OMNI International, SKU 19-040E) at 4 m/s for 30 seconds for 2 cycles with 5 minutes dwell 
time between cycles. DNA fragment lengths were measured on the TapeStation 4200 (Agilent, 
G2991AA) using the Genomic DNA ScreenTape assay (Agilent). 
 
DNA fragment lengths were approximately 8-10 kb, so DNA did not require shearing prior to 
library preparation. Sequencing libraries for each sample were created using the SMRTbell 
Express Template Prep Kit 2.0 (PacBio, Cat. No. 100-938-900) per manufacturer’s instructions. 
Libraries were sequenced with four samples per run on a Sequel II System (PacBio). One 
library failed sequencing due to a problem with its library preparation (treatment sample from 
Participant 6). After sequencing, CCS analyses were run using SMRTLink software v10 to 
produce HiFi reads for each sample. 
 
Analysis 
 
Taxonomic and functional profiling was performed using the PacBio pipeline (Taxonomic-
Functional-Profiling-Protein; https://github.com/PacificBiosciences/pb-metagenomics-tools). This 
pipeline uses DIAMOND (40) to align the HiFi reads to a protein database (e.g., NCBI nr). The 
resulting alignments are interpreted using MEGAN-LR (42,43), which uses a lowest common 
ancestor (LCA) algorithm and other long-read settings to assign taxonomic and functional 
annotations to the HiFi reads. The outputs include absolute and normalized taxonomic read 
counts using a taxonomy from NCBI or the Genome Taxonomy Database (44,45), and counts 
for functional annotations based on InterPro2GO, SEED, EC, and eggNOG (42). 
 
Metagenomic assemblies were performed for each HiFi read set using HiCanu (46), 
implemented in Canu v2.0 (47). To apply metagenomic settings, we used the following options: 
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-pacbio-hifi, genomeSize=100m, maxInputCoverage=1000, batOptions="-eg 0.0 -sb 0.001 -dg 0 
-db 3 -dr 0 -ca 2000 -cp 200". We note that to apply metagenomics settings for the recently 
upgraded HiCanu v2.1, the following options should be used instead: -pacbio-hifi, 
genomeSize=100m maxInputCoverage=1000, batMemory=200. To evaluate the assemblies 
and identify high-quality MAGs, the HiFi-MAG-Pipeline was used 
(https://github.com/PacificBiosciences/pb-metagenomics-tools). Briefly, this pipeline aligns HiFi 
reads to assembly contigs to obtain coverage estimates, which are used with MetaBat2 (48) to 
perform binning. Resulting bins are evaluated using CheckM (49), and quality thresholds are 
applied to retain high-quality MAGs (>70% completeness, <10% contamination, <10 contigs). 
The high-quality MAGs are then analyzed using the Genome Taxonomy Database Toolkit (50), 
which attempts to identify the closest reference genome and assign taxonomy for each MAG. 
 
Reference matching for metagenomic contigs 
 
For each sample, the reference genomes of the active ingredient strains from the LBP were 
mapped to the assembly contigs using minimap2 (51). Contigs belonging to the active 
ingredient strains were identified by creating scatterplots of the resulting alignment lengths and 
number of matched bases. In the scatterplot, perfectly matched contigs (to a strain) occurred on 
a line with a slope (m) of 1 and intercept (b) of 0, indicating the number of matched bases was 
equal to the alignment length (100% identity).  
 
Comparing taxonomic profiles of different sequencing methods 
 
For comparison of LRA to other methods, one replicate of each sample with the most reads that 
went through the entire StrainID protocol (i.e., not the replicates with DNA extracted with other 
methods) was chosen. The pcoa.plot function from the RAM package (version 1.2.0) in R was 
used to generate principal coordinates analysis (PCoA) plots of Bray Curtis distances between 
samples using the taxonomy relative abundance tables at the lowest available taxonomy level 
for each sequencing method. Pairwise Mantel tests were performed in R using the mantel.rtest 
from the ade4 package (version 1.7-16) with 9999 permutations. 
 
Number of unique taxa detected across methods 
 
For SRA, the number of unique taxa detected was determined by counting the number of 
unique ASVs present in each sample from the filtered ASV table (ASVs were filtered out if they 
had fewer than 10 reads across all samples). For LRA, the number of unique taxa per sample 
was determined by counting the taxa present at taxonomy level 8 (strain level) from the Athena 
database assignments. For SRM, taxa assigned by Kraken2 and normalized by Bracken that 
were present at greater than 0.04% abundance were counted. This was the threshold below 
which reads in a mock community were assigned to taxa not present in the mock community. 
For LRM, read counts were obtained for taxa using MEGAN-LR. The normalized counts of 
taxonomy assignments to the Genome Taxonomy Database (GTDB) were used.  
 
Taxonomic resolution 
 
For SRA, reads were considered to have species-level taxonomy if the Greengenes taxonomy 
classifier (or SILVA taxonomy classifier for SILVA analysis) assigned the ASV to a named 
species (i.e., not unknown or unclassified). For LRA, the replicate of each sample that 
underwent the entire StrainID protocol and had the greatest number of reads was chosen to 
assess taxonomic resolution. Reads assigned to taxonomy level 7 with a specific named 
species (i.e., not unclassified) were counted as having species-level resolution. Reads assigned 
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to taxonomy level 8 with a specific named strain (i.e., not unclassified) were counted as having 
strain-level resolution. The denominator was the total number of reads assigned to “Bacteria”. 
 
Differential abundance 
 
The R package MaAsLin 2 (Microbiome Multivariable Associations with Linear Models) (52) was 
used to identify differentially abundant bacterial families and differentially abundant functional 
pathways with time point as a fixed effect and participant as a random effect. For LRM, 
taxonomy assignments based on the Genome Taxonomy Database (GTDB) were used. Family 
and pathway abundances were normalized with total sum scaling and log transformed. 
 
Statistics 
 
Statistical analyses were performed in R (version 4.0.4) and Prism 9 (version 9.1.2), as detailed 
for each analysis. 
 
Results 
 
Summary of sequencing and bioinformatic approaches 
 
A summary of the four sequencing methods compared in this analysis is provided in Table 1. 
The commonly applied 515F and 803R V3-V4 primer pair was chosen for short-read amplicon 
(SRA) library preparation in this analysis because it was shown to be optimal for profiling 
bacterial communities (54) and maximizing phylogenetic coverage (55). Libraries were 
sequenced on a MiSeq with paired-end 300 bp reads. For long-read amplicon sequencing 
(LRA), the full-length 16S rRNA gene plus the ITS region and part of the 23S gene were 
amplified using the Complete StrainID Kit (Shoreline Biome) (Fig. 1A) and libraries were 
sequenced on the Sequel II System (PacBio) (Fig. 1B). Short-read metagenomic (SRM) 
libraries were sequenced on the NovaSeq 6000 using one lane of an S4 flow cell to generate 
paired-end 150 bp reads. Long-read metagenomic (LRM) libraries were sequenced on the 
Sequel II System. 
 
The DNA sequencing, library preparation, and data analysis differed among the four 
approaches compared in this analysis (summarized in Table S1, detailed in Methods). For 
example, for LRM, DNA must be extracted to generate high-molecular weight DNA from 
samples. Longer DNA fragments yield longer reads which may contain several full-length 
bacterial genes, and longer reads improve microbial genome assembly. For short-read 
sequencing, DNA can be extracted more vigorously to ensure DNA is captured from organisms 
with tough cell walls, such as fungi and gram-positive bacteria. For data analysis, pipelines are 
typically optimized for either short or long reads. For example, in this analysis, the assembler 
metaSPAdes is used to assemble genomes from short metagenomic reads and HiCanu is used 
to assemble genomes from long metagenomic reads. 
 
Total data output per sample was comparable across the two amplicon sequencing methods 
and the two metagenomic sequencing methods, with both metagenomic sequencing methods 
resulting in about 100 times the data of the amplicon sequencing methods (Fig. 1B). Notably, 
the per-sample costs of SRA and LRA are similar, while the per-sample cost of LRM is 
substantially higher than SRM (Table 1). This is due, in part, to the lack of high throughput 
metagenomic sequencing on the Sequel II System; this experiment included 4 samples per 
sequencing run (Fig. 1B). 
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Table 1. Summary of sequencing methods for microbiome profiling 
 

Method Sequencing 
Type 

Sequencing 
Platform 

Read 
lengths 

(bp) 

Number 
of reads 

per 
sample 

(M) 

Output 
Data 

processing 
required 

Cost 
per 

sample 

SRA (V3-V4) Amplicon Illumina 
MiSeq 

250 or 
300 0.03–0.2 

Taxonomic 
profiling 

(genus level) 
Low $ 

LRA (16S-ITS-
23S) Amplicon PacBio 

Sequel II ~2,500 0.01-0.03 

Taxonomic 
profiling 
(strain or 

species level) 

Low $ 

SRM (short-
read 

metagenomics) 
Metagenome 

Illumina 
NovaSeq 

6000 
150 20-100  

Taxonomic 
and functional 

profiling, 
genome 

assembly and 
binning 

High $$ 

LRM (long-read 
metagenomics) Metagenome PacBio 

Sequel II 
7,000 to 
>10,000 1-2.5 

Taxonomic 
and functional 

profiling, 
genome 

assembly and 
binning 

Moderate $$$ 

 
Sample and data summary 
 
The fecal samples analyzed for this comparison were collected from subjects at two timepoints: 
pre-treatment baseline and 4 weeks after treatment with STMC-103H. Twelve fecal samples 
from six clinical trial participants were sequenced using four methods: SRA, LRA, SRM, and 
LRM (Fig. 1B). The SRA libraries sequenced on the Illumina MiSeq resulted in an average of 
92,766 (± 42,804 SD) combined read pairs per sample after denoising (Fig. 1C, Methods). LRA 
libraries sequenced on the Sequel II resulted in an average of 21,852 (± 7307 SD) HiFi reads 
per sample (Fig. 1C). SRM libraries sequenced on the Illumina NovaSeq 6000 resulted in an 
average of 38.6 (± 7.8 SD) million 150 bp read pairs per sample; on average, 82.2% (± 13.2% 
SD) of the raw reads passed filtering criteria (Fig. 1D, Methods). LRM libraries sequenced on 
the Sequel II System produced an average of 1.0 million (± 0.25 SD) reads per sample, with 
average read lengths per sample ranging from 5 to 7.1 kb (Fig. 1E). 
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D.  

  
 

E.  

  
Fig. 1. Summary of sequencing methods and output data. (A) Comparison SRA and LRA amplicons. SRA consists of a portion 
of the 16S rRNA gene spanning variable regions 3 and 4, while LRA spans the entire 16S rRNA gene, the internal transcribed 
spacer (ITS) region, and part of the 23S rRNA gene. (B) Summary of the four sequencing methods compared in this analysis, 
including the sequencing platforms, read lengths, data outputs, and multiplexing capabilities. (C) Number of reads passing 
demultiplexing and filtering for SRA (paired reads are merged during denoising), and the number of HiFi reads passing 
demultiplexing and classification for LRA by sample replicate. For LRA, the DNA extraction method used for each replicate is 
denoted in parentheses in the legend. (D) The number of raw read pairs and the number of read pairs passing filtering for SRM. (E) 
The number of LRM reads and the average read length per sample. 
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Comparing taxonomic profiles across methods 
 
To determine if short-read and long-read approaches generated comparable taxonomic profiles 
at higher order taxonomies, all samples were combined and the relative abundances collapsed 
by phylum and family (Fig. 2A). Firmicutes was the dominant phylum across all methods 
(average abundances of 76%, 54%, 68%, and 81%, for SRA, LRA, SRM, and LRM, 
respectively) followed by Actinobacteria and Bacteroidetes. The overall proportions of phyla 
were similar across methods, with some notable differences. Unlike other methods, LRA 
resulted in a significant proportion of unknown phyla (24%). Most of the reads that mapped to 
“unknown phyla” (22.8%) were classified at the species level as “bacterium LF-3”. Since 
bacterium LF-3 is not classified into higher order taxonomies, the reads that mapped to this 
bacterium remained unclassified at all other levels. SRM resulted in a greater proportion of 
Actinobacteria compared to the other methods (23% for SRM compared to 8.5% for SRA, 9.3% 
for LRA, and 8.5% for LRM; one-way ANOVA p<0.0001). Accurate representation of 
Bifidobacteria depends on thorough mechanical lysis during DNA extraction (56), so the lower 
representation of Bifidobacteria in the LRA taxonomic profiles could be due in part to the lack of 
a mechanical lysis step in the Shoreline extraction protocol. Similarly, lower representation of 
Bifidobacteria in the LRM profiles could be due to the less vigorous bead beating during DNA 
extraction compared to the DNA extraction for short-read methods. 16S rRNA analysis based 
on the V3-V4 region and other regions has also been shown to underestimate the abundance of 
Bifidobacteria (57). SRA and SRM identified a significantly greater proportion of 
Verrucomicrobia (3.9% for SRA and 0.94% for SRM compared to 0.16% for LRA and 0.41% for 
LRM; one-way ANOVA p=0.0072). The Verrucomicrobia genus Akkermansia has been shown 
to be overrepresented in 16S rRNA analysis with the V3-V4 primers (57). SRA and SRM also 
identified the Archaea phylum Euryarchaeota (1.2% for SRA and 1.3% for SRM), which was not 
identified with LRA or LRM. However, this phylum was detected when LRM data was annotated 
using the NCBI database rather than the Genome Taxonomy Database (GTDB). Comparing 
relative abundances at the lower taxonomic level of family shows broad similarities and some 
clear differences. Lachnospiraceae was the dominant family across all methods except for LRA, 
which had a greater proportion of unknown families (Lachnospiraceae abundance 39% for SRA, 
4.3% for LRA, 46% for SRM, and 49% for LRM). It is possible that the same bacteria in samples 
that mapped to the unclassified bacterium LF-3 with LRA mapped to the Lachnospiraceae 
family with other methods. LRA also had a significantly greater proportion of the family 
Peptostreptococcaceae (12% for LRA compared to 0.33% for SRA, 1.5% for SRM, and 0.44% 
for LRM; one-way ANOVA p<0.0001). The families Ruminococcaceae, Bifidobacteriaceae, and 
Bacteroidaceae, which are abundant in the healthy human gut, were prominent across methods. 
Both amplicon methods resulted in a higher relative abundance of the family 
Erysipelotrichaceae (6.3% for SRA and 15% for LRA compared to 2.6% for SRM and 2.0% for 
LRM; one-way ANOVA p=0.0012).  
 
To compare sample taxonomic profiles across methods using the highest taxonomic resolution 
available to each method, we calculated Bray-Curtis distances (which factors presence/absence 
and relative abundance of taxa) between samples at the lowest taxonomic level for each 
method [species, strain, or amplicon sequence variant (ASV)], and compared the distances 
between samples across methods. Notably, principal coordinates analysis (PCoA) plots of Bray-
Curtis distances show that independent of the sequencing method, samples cluster by individual 
(Fig. 2B). Pairwise Mantel tests were performed between Bray-Curtis distance matrices from 
the four methods and all matrices were significantly positively correlated, suggesting that all four 
methods preserved relationships between the samples (Fig. 2B). Across LRA replicates, 
samples significantly clustered by participant (PERMANOVA p = 0.001) but not by DNA 
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extraction method (PERMANOVA p = 0.2) (Fig. 2C), showing that the DNA extraction methods 
used did not drastically impact the overall taxonomic profiles. 
 
Taxonomic resolution across methods 
 
Ideally, microbiota sequencing and analysis should distinguish different strains as unique taxa 
while minimizing artifacts from DNA library preparation and sequencing. Amplicon approaches 
detected more unique taxa per sample than metagenomics (Fig. 2D). LRA analysis identified 
the most unique taxa per sample, with an average of 263.7 (± 41.8 SD), while SRA analysis 
identified an average of 173.1 (± 43.1 SD) unique taxa per sample. For metagenomics, 105.4 (± 
22.7 SD) unique taxa at the species level were detected per sample for SRM and 64.1 (± 16.1 
SD) for LRM. Within microbiome sequencing methods, there were no significant correlations 
between the number of reads and the number of unique taxa detected, suggesting that 
sequencing depth was sufficient to capture community diversity with all methods analyzed (Fig. 
S1).  
 
There was no significant difference between the percent of reads assigned to species for SRA 
with Greengenes taxonomic assignment (46.2% ± 8.9% SD) and LRA (42.0% ± 16.8% SD) 
(Fig. 2E). However, the percent of species-level assignments was significantly greater with LRA 
compared to SRA with SILVA taxonomy assignments (6.3% ± 4.5% SD) (Fig. 2E). This 
highlights the substantial impact reference database selection can have on microbiota analyses. 
Only reads assigned a named species from the specified taxonomy database (Greengenes or 
SILVA for SRA, Athena for LRA) were considered to have species-level taxonomic 
assignments. LRA analysis, unlike SRA analysis, could provide strain-level resolution based on 
the added coverage of the 2.5 kb 16-ITS-23S region. For the 12 samples analyzed with LRA, 
13.4% (± 7.9% SD) of reads were assigned a specific strain designation (Fig. 2E). 
 
Both metagenomic approaches assigned reads to species-level taxonomy. SRM reads were 
assigned NCBI taxonomy with Kraken2 and Bracken, and LRM reads were assigned taxonomy 
with MEGAN-LR using GTDB (Methods). Like 16S rRNA amplicon sequencing, metagenomics 
sequencing can characterize Archaea. For example, the archaea species Methanobrevibacter 
smithii was detected with SRM and LRM in both samples from Participant 5. For LRM, this 
archaea species was not detected using taxonomic profiling with GTDB, but it was identified 
through taxonomic profiling with the NCBI database, and it was also recovered through genome 
assembly and binning. 
 
Consistent taxonomic changes across methods 
 
The clinical trial participants evaluated for this comparison displayed detectable changes in their 
gut microbiota from baseline to the end of STMC-103H treatment. For example, the relative 
abundance of genera (from LRM with GTDB taxonomy assignments) changed in Participant 3; 
for example, the abundance of Agathobacter increased while the abundance of 
Anaerobutyricum decreased (Fig. 2F). For each sequencing method, differential abundance 
analysis was performed to determine whether specific bacterial families changed in abundance 
from baseline across individuals (Methods). The most differentially abundant families with p-
values less than 0.2 for SRA, LRA, and SRM, and p-values less than 0.25 for LRM are shown in 
Table S2. Eight families increased or decreased from baseline to treatment across two or three 
methods. Of these eight families, six showed the same directionality across methods, including 
increases in Akkermansiaceae, Bacteroidaceae, Oscillospiraceae, Christensenellaceae, and 
Clostridiales Family XIII, and decreases in Streptococcaceae (Fig. 2G). 
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Fig. 2. Taxonomic comparisons across methods. (A) Taxonomic comparisons across methods at the phylum level (left) and the 
family level (right). Bar graphs show the relative abundance of each phylum or family across all samples. For the LRA analysis, all 
four replicates of each sample were included. All phyla and the 24 most abundant families across all methods are shown. (B) Bray-
Curtis distances between samples were calculated using the taxonomic profiles at the lowest taxonomic level available for each 
method (species, strain, ASV) and shown with PCoA. Samples are colored by participant, and samples from the same participant 
are connected by a straight line. Pairwise Mantel tests were performed between Bray-Curtis distance matrices, and significance 
based on simulated p-values for each comparison are shown with arrows indicating the two distance matrices compared (*P < 0.05; 
**P < 0.01; ***P < 0.001; ****P < 0.0001). For the LRA distance matrix, one representative replicate was chosen for each sample. 
(C) Bray-Curtis distances were calculated for all four LRA replicates of each sample that underwent different DNA extraction 
procedures (CTAB, AllPrep PowerFecal kit, or the Shoreline Complete DNA extraction). Distances between samples are shown on 
PCoA plots. On the plot on the left, samples are colored by participant and by sample time point, with ellipses for samples from the 
same participant. There was significant clustering by participant. In the plot on the right, samples are colored by DNA extraction 
method and by participant, with ellipses for DNA extraction method. There was no significant clustering by DNA extraction method. 
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(D) The number of unique taxa detected for each sample, including unknown taxa, at the lowest level of taxonomy for each method. 
(E) The fraction of reads for each sample assigned to the specified taxonomy level for SRA and LRA. Horizontal lines show the 
mean fraction of reads assigned to each taxonomy level for each method. (F) Comparison of levels of genera in Participant 3’s 
baseline and treatment samples. The z-score shown was computed by MEGAN-LR, where the z-score z(s, t) for any pair of sample 
(s) and taxon (t) is the z-score (x – μ/σ) of t(s) calculated using the list of all values t(s). (G) The heatmap shows the families that 
were significantly differentially abundant between baseline and treatment samples in at least one method (asterisks in heat map 
denote p < 0.2 for SRA, LRA, and SRM and p < 0.25 for LRM). The red asterisks indicate families that were differentially abundant 
in more than one method. The relative abundances of the Clostridiales Family XIII/Clostridia unclassified family are plotted in 
boxplots below the heatmap, showing the three methods in which the family was differentially abundant. 
 
Detection of active ingredient bacterial strain in clinical fecal samples 
 
An essential component of LBP development is the ability to track active ingredient strains after 
administration. While qPCR is commonly applied to detect and quantify strains in microbial 
diagnostics (58), microbiome sequencing can also provide insight into the fate of active 
ingredient strains. To confidently detect any target bacterial strain, it must be distinguished from 
closely related strains that may be present in a sample. The SRA ASV for the active ingredient 
strain DSM 33213 from the LBP STMC-103H was detected in 5 out of 6 participants after 4 
weeks of treatment with STMC-103H, but not in any pretreatment baseline samples (Fig. 3A), 
suggesting that the 408 bp ASV identified in the samples originated from the LBP intervention. 
LRA analysis of DSM 33213 revealed it contains a single copy of the 16S-ITS-23S region with 
one mutation in the ITS region that enables separation of this strain from 29 other genomes of 
the same species in NCBI (Fig. S2). DSM 33213’s 16S rRNA gene is identical to the 16S rRNA 
genes of 9 other NCBI genomes from the same species, so it would be impossible to distinguish 
from related strains based 16S rRNA sequencing alone. The active ingredient strain’s unique 
16S-ITS-23S ASV was detected in all treatment sample replicates from Participant 4, but not at 
baseline (Fig. 3A). The LRA ASV for DSM 33213 could not be confidently detected in other 
treatment samples, potentially due to the lower sequencing depth obtained for this approach. 
  
By mapping metagenomic reads to DSM 33213’s genome, DSM 33213 was detected in most 
samples from treated individuals (5 of 6 samples by SRM and 4 of 5 samples by LRM) (Fig. 
3A). Abundance trends for this active ingredient strain were consistent among analysis 
methods, and sequencing results were consistent with trends observed with strain-specific 
qPCR (Fig. 3A). Levels of DSM 33213 based on SRA and SRM significantly correlated with 
levels based on qPCR (Pearson r = 0.997, 0.94 and p < 0.0001, 0.01, respectively), and there 
was a trend towards a significant correlation between levels based on LRM and qPCR (Pearson 
r = 0.84, p = 0.07). 
 
Interestingly, in the two samples with the highest quantification of DSM 33213 (treatment 
samples from Participants 3 and 4), mapping of LRM reads to DSM 33213’s genome generated 
a coverage pattern suggesting active replication, with a trough and a peak coverage profile 
corresponding to the bi-directional origin of replication (59) (Fig. 3B). This pattern of coverage 
was also clear for DSM 33213-mapped short metagenomic reads from Participant 4’s treatment 
sample. The trough and peak pattern was less clear for Participant 3’s lower coverage sample. 
In addition to metagenomic read coverage showing active replication of DSM 33213 in these 
two participants, assembled contigs from these two treated samples aligned with DSM 33213’s 
genome (Fig. 3C). Notably, the baseline samples from these two participants did not have any 
significant alignments to DSM 33213. From the two treatment samples, the highest quality 
match from the SRM contigs was a 0.45 Mbp contig with nearly 100% of bases matching DSM 
33213’s genome, and the best match from the LRM contigs was a 1.6 Mbp alignment that 
mapped to DSM 33213 with 99.9% of bases matched. The top two LRM alignments belonged to 
a single 2.75 Mbp contig, which was itself a 98% complete metagenome-assembled genome 
(MAG) assigned to the same species as DSM 33213. This demonstrates that both SRM and 
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LRM can recover long contigs (and for LRM, near-complete genomes) from non-endogenous 
microbes introduced into complex microbiota, with higher mapping confidence achieved with 
LRM assemblies.  
 
Fig. 3 
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C.  

 
Fig. 3. Detecting an active ingredient strain in treated samples. (A) The fraction of SRA reads in each sample at baseline or 
during treatment assigned to the 408 bp DSM 33213 ASV (top row, left graph), or the fraction of SRM and LRM reads mapping to 
DSM 33213’s genome (top row, center two graphs), compared to orthogonally verified levels of DSM 33213 in samples based on 
strain-specific qPCR (top right). The bottom graph shows levels of DSM 33213’s LRA ASV in Participant 4’s samples at baseline 
and treatment. All four replicates of the sample, with DNA extracted using different methods, show DSM 33213’s ASV present in 
treatment but not baseline replicates. DSM 33213 cells and DNA were included in the library preparation and sequencing as positive 
controls and are shown in green. DSM 33213’s ASV was not detected in other participants’ treatment samples. (B) Genomic 
coverage plots of SRM (top) and LRM (bottom) reads from Participant 3 and 4’s treatment samples. (C) Contigs assembled from 
SRM and LRM baseline and treatment samples from Participants 3 and 4 mapped to DSM 33213’s genome. Plots show the number 
of matched bases versus the total length of the alignment between each contig and the DSM 33213 genome. Dotted lines have a 
slope of 1 to show the reference for a perfect alignment. 
 
Functional microbiome profiles across methods 
 
Beyond taxonomic annotation, metagenomic sequencing assesses the functional capabilities of 
a microbiome. This can provide insight into the mechanism of a microbiome’s impact on host 
health or the mechanism of action for a microbiome-targeted therapeutic. Although tools have 
been developed to predict microbial functional genes based on taxonomic profiles, their 
accuracy and utility are limited (60). These tools depend on databases with known sequenced 
microbial genomes, and dramatic differences have been observed in the genomic functions 
encoded between strains of the same species. Therefore, metagenomic sequencing remains an 
essential tool for directly evaluating the functional capacity of microbiome samples. We 
compared results from two metagenomic sequencing pipelines optimized for either short reads 
or long reads (Methods). Short and long reads have inherent differences and associated 
bioinformatic challenges. In this analysis, short reads were 150 bp while long reads were up to 
10 kb, short reads are paired while long reads are singletons, and short reads and long reads 
have different error profiles. For SRM, read-based functional annotation was performed with 
HUMAnN2, which provides gene family abundances using UniProt 90 and pathway abundances 
with MetaCyc (38). For LRM, reads were aligned to the NCBI nr protein database and analyzed 
using MEGAN-LR (43). MEGAN-LR provides annotations from multiple databases including 
InterPro2GO, SEED, EC, and eggNOG (42). 
 
To quantify the value of data from SRM and LRM pipelines, we compared the percent of 
samples’ reads with known functional annotations between the two pipelines. The percentage of 
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reads with known functional annotations was substantially higher with LRM, even if the 
comparison was limited to annotations from one database (SEED for LRM). For all samples, an 
average of 34.2% (± 1.4% SD) of reads had known functional annotations with SRM, while an 
average of 63.2% (± 2.4% SD) of reads had known functional annotations for LRM (Fig. 4A). 
When all MEGAN-LR databases were included, 86.6% (± 3.2% SD) of long reads had known 
functional annotations, with an average of 2 to 4 functional annotations per read, which likely 
represent complete genes. To minimize differences between annotation pipelines and 
databases, the short metagenomic reads were assembled into contigs and analyzed using the 
LRM pipeline (Methods). An average of 43.6% (± 3.7% SD) of contigs displayed functional 
annotations across all databases, suggesting that the lower percentage of functional hits from 
SRM data is likely due to the limitations of short reads and not the annotation pipeline. 
 
The microbiomes of healthy individuals are relatively stable over time, but can change in 
response to diet, antibiotics, or other perturbations (61). This is evident in both taxonomic and 
functional profiles. For example, changes in the abundance of some SEED-based categories 
can be identified between baseline and treatment samples within a single participant (Fig. 4B). 
To determine if treatment with STMC-103H impacted the functional profiles of participants’ 
microbiomes in similar ways, we performed differential abundance analysis between baseline 
and treatment samples with SRM (HUMAnN2 pathway abundances) and LRM (SEED 
categories). For both SRM and LRM analyses, there were pathways that significantly increased 
with treatment; however, the differentially abundant pathways differed between the two methods 
(Fig. 4C).  
 
Unlike metagenomic sequencing, marker gene-based profiling such as 16S rRNA amplicon 
sequencing does not provide direct information on the gene content and functional composition 
of a community. PICRUSt2 uses assigned taxonomy to predict the approximate functional 
potential of a community from marker gene sequencing profiles (34). We performed PICRUSt2 
analysis with LRA data to determine if the functional profiles estimated with PICRUSt2 were 
similar to functional profiles determined from LRM (Methods). There were significant positive 
Pearson correlations between samples’ Enzyme Commission (EC) profiles predicted by 
PICRUSt2 and EC profiles from LRM. However, there were also significant positive correlations 
between samples from different participants, suggesting overall conserved function in similar 
sample types across individuals. We systematically calculated correlations between each 
sample’s LRM-based EC profile and the PICRUSt2-based EC profiles from A) replicates of the 
same sample, B) the sample from the same participant at a different time point, and C) all other 
samples from other participants. Surprisingly, the correlation between a sample’s LRM-based 
EC profile and the PICRUSt2-based profile from the same sample was not always greater than 
the correlation between that sample’s LRM-based EC profile and the PICRUSt2-based profiles 
from samples from other participants. In some cases, the mean Pearson correlation was 
greatest between a sample’s LRM-based EC profile and PICRUSt2-based EC profiles of 
samples from other participants (Fig. 4D, left). Overall, there was no significant difference 
between the Pearson correlations of samples’ LRM-based EC profile and the PICRUSt2-based 
profiles from the same sample, from samples from the same participant, and from samples from 
other participants (one-way ANOVA, p=0.67) (Fig. 4D, right). This suggests that, for this 
sample set, PICRUSt2 does not accurately estimate metagenome function. 
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D.  

 
 
Fig. 4. Comparison of functional annotation across methods. (A) The percent of reads for each sample with assigned, known 
functional annotation for SRM and LRM. Short reads were assigned functional annotations by HUMAnN2 using the UniProt90 
database, and long reads were assigned functional annotations by MEGAN-LR using the SEED database. (B) Comparing the 
representation of SEED-based categories from LRM analysis in Participant 3’s baseline and treatment samples. (C) Significantly 
differentially abundant pathways comparing baseline and treatment samples based on SRM (top row) and LRM (bottom row). For 
SRM, pathways were annotated with MetaCyc, and for LRM, pathways were annotated with SEED. (D) Plots show the Pearson 
correlation between the specified sample’s LRM-based EC profile and the PICRUSt2-based EC profile based on LRA for the same 
sample, for the other sample from the same participant, or for all other samples. The first two plots show examples of Pearson 
correlations for specific samples, and the third plot shows the Pearson correlations for all samples. Horizontal lines represent the 
mean Pearson correlation for a given comparison. 
 
Diverse MAGs were recovered from metagenomic assemblies 
 
One of the major benefits of metagenomic sequencing is the potential to recover microbial 
genomes that may not exist in genome databases and that provide novel information on the 
structure and function of the microbiome. Reads from SRM and LRM were assembled into 
contigs using MetaSPAdes and HiCanu, respectively. Assemblies from LRM were substantially 
more complete than assemblies from SRM. The average N50 for SRM assemblies was just 
under 7 kb, whereas the average N50 for LRM assemblies was 146 kb (Table S3). There was 
an average of 70,000 contigs per assembly from SRM and 5,400 contigs per assembly from 
LRM. The average largest contig per sample was 0.44 Mbp for SRM assemblies and 4.5 Mbp 
for LRM assemblies (Fig. 5A). LRM assembly generated an average of over 22 circular contigs 
per sample, which represent complete bacterial genomes and plasmids (Table S3). There were 
no circular contigs generated from SRM assembly. Even though SRM assemblies were 
significantly more fragmented, SRM and LRM total assembly lengths were comparable for each 
sample (Fig. 5A). The two exceptions, where the total assembly length was significantly shorter 
for SRM, were the baseline samples from Participants 2 and 6. These two samples had the 
fewest number of short metagenomic reads (12.4 million and 23.6 million paired reads, 
respectively), highlighting the need for greater sequencing depth for SRM if metagenomic 
assembly is desired. The average GC content of SRM and LRM assemblies were similar 
(45.9% and 46.1%, respectively), suggesting that there were no drastic compositional 
differences between the two datasets. 
 
For both SRM and LRM, genome binning and evaluation was performed using PacBio’s HiFi-
MAG-Pipeline (Methods). Genome bins were filtered to generate high-quality metagenome 
assembled genomes (MAGs). The filtering criteria were relaxed for SRM to accept MAGs with 
500 or fewer contigs, instead of 10 contigs or fewer as specified in the original LRM pipeline. 
There were no SRM bins with fewer than 10 contigs. Using the relaxed filtering criteria for SRM, 
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each sample had an average of 17 MAGs for SRM and 18 high-quality MAGs for LRM. MAGs 
from LRM were substantially more complete and less fragmented than MAGs from SRM. For 
Participant 5’s baseline sample, there were 21 and 26 MAGs passing filtering from SRM and 
LRM, respectively (Fig. 5B). For this sample, there were only two SRM MAGs that were more 
than 98% complete, while there were 18 LRM MAGs that were more than 98% complete. 
Moreover, 6 LRM MAGs consisted of single contigs. There was only one SRM MAG with fewer 
than 20 contigs, while all the LRM high-quality MAGs by definition had fewer than 10 contigs. 
 
The MAGs recovered from SRM and LRM encompassed a diverse range of taxa, and there was 
a high degree of overlap between methods. For example, for Participant 5’s baseline sample, 
there were 13 MAGs across both sequencing methods assigned the same species-level GTDB 
taxonomy (Table S4). There were 62 and 53 unique genera recovered from all samples with 
SRM and LRM, respectively. The five genera with the highest number of MAGs across both 
methods were Ruminococcus (40 MAGs), Blautia (31), Faecalibacterium (23), Bifidobacterium 
(22), and Agathobacter (19). Figure 5C shows the top 20 genera with the greatest number of 
MAGs recovered from both methods. LRM recovered a greater number of Ruminococcus, 
Blautia, Faecalibacterium and Bifidobacterium MAGs, while SRM recovered a greater number of 
Agathobacter and Gemmiger MAGs. Overall, both methods recovered similar numbers and 
comparable diversity of MAGs, although the MAGs were significantly more complete with LRM. 
 
Fig. 5 
 
A.  

 
B.  

 

1_
bas

eli
ne

1_
tre

at
m

en
t

2_
bas

eli
ne

2_
tre

at
m

en
t

3_
bas

eli
ne

3_
tre

at
m

en
t

4_
bas

eli
ne

4_
tre

at
m

en
t

5_
bas

eli
ne

5_
tre

at
m

en
t

6_
bas

eli
ne

6_
tre

at
m

en
t

0

5×105

1×106

2×106

4×106

6×106

8×106

Sample

C
on

tig
 le

ng
th

 (b
p)

Largest contig from metagenomic assemblies

1_
bas

eli
ne

1_
tre

at
m

en
t

2_
bas

eli
ne

2_
tre

at
m

en
t

3_
bas

eli
ne

3_
tre

at
m

en
t

4_
bas

eli
ne

4_
tre

at
m

en
t

5_
bas

eli
ne

5_
tre

at
m

en
t

6_
bas

eli
ne

6_
tre

at
m

en
t

0

1×108

2×108

3×108

4×108

Length of metagenomic assemblies

Sample

Le
ng

th
 o

f a
ss

em
bl

y 
(b

p) SRM
LRM

26 high-quality MAGs

18 are >98% complete

6 MAGs are 1 contig

SRM LRM

21 MAGs

2 are >98% complete

1 MAG <20 contigs

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.31.458285doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458285
http://creativecommons.org/licenses/by-nc-nd/4.0/


C.  
 

 
 
Fig. 5. Comparison of metagenomic assemblies and metagenome assembled genomes (MAGs) for SRM and LRM. (A) 
Length of the longest contig in bp from each sample’s metagenomic assemblies from SRM and LRM (left). Total length of each 
sample’s metagenomic assemblies for SRM and LRM (right). (B) MAGs passing filtering criteria from Participant 5’s baseline 
sample from SRM (left) and LRM (right). (C) The number of MAGs passing filtering from all samples for the 20 genera with the 
greatest number of recovered MAGs, for SRM (left) and LRM (right). 
 
Discussion 
 
Taxonomic and functional profiling studies of the human microbiome largely rely on short-read 
DNA sequencing, despite its shortcomings. Recent improvements in long-read sequencing 
technology provide a promising, but more costly, alternative to traditional short-read sequencing 
that could potentially change the microbiome profiling landscape. To our knowledge there are 
no studies applying HiFi long-read sequencing to clinical microbiome samples, and this 
comparative evaluation illustrates the strengths and weaknesses of short-read and long-read 
approaches for clinical microbiome analysis and highlights the importance of choosing an 
approach appropriate for the research question. For taxonomic profiles—the most sought 
microbiome information—any of the four methods applied in this comparison can be used, since 
the overall proportions of phyla and families were similar across methods. The most apparent 
difference was LRA generating a greater proportion of unknown phyla due to the high proportion 
of reads annotated as bacterium LF-3. This human gut isolate is not classified at higher 
taxonomic levels on NCBI (Accession No. PRJEB6481), but in GTDB, it is classified as the 
species Faecalibacillus intestinali, in the phylum Firmicutes and family Erysipelatoclostridiaceae. 
If LRA had used GTDB taxonomy for bacterium LF-3, the overall taxonomic profiles of the 
samples for LRA would more closely resemble other methods at the phylum level, but not at the 
family level (Fig. 2A). Differences in taxonomic profiles across methods could be due to a 
variety of factors aside from database differences, including DNA extraction methods, 
amplification bias, and downstream analysis. However, all four methods preserved relationships 
between the samples. 
 
For microbiota taxonomic profiles, taxonomic resolution is an important factor to consider when 
choosing a sequencing method, as increasing evidence shows that strains are the functional 
units of the microbiome (62). For example, although the species Cutibacterium acnes is a 
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dominant skin commensal, a study showed based on full-length 16S rRNA sequencing and 
metagenomics, that the distribution of C. acnes strains significantly differed between acne 
patients and healthy individuals (63). Metagenomic sequencing typically provides greater 
taxonomic resolution than 16S rRNA sequencing, and in our analysis both LRM and SRM 
generated species-level taxonomic profiling. For SRA, the fraction of reads assigned to species 
was considerably higher when the Greengenes taxonomy database was used instead of the 
SILVA taxonomy database. This highlights the significant impact of the chosen reference 
database. LRA, unlike all other methods, provided strain-level resolution for an average of 
13.4% of reads across all samples. In addition, LRA provided the greatest resolution in 
identifying the highest number of unique taxa per sample. 
 
Tracking active ingredient strains is essential for measuring their impact on the native host 
microbiome and their fate in the gut (e.g., engraftment or clearance). All four microbiome 
analysis methods applied here could detect an LBP active ingredient strain in treated samples, 
and relative levels of this strain in treated samples were comparable across methods. Presence 
of the active ingredient strain was orthogonally verified with strain-specific qPCR. LRA analysis 
showed that the active ingredient strain DSM 33213’s ASV contains a single mutation that 
enables its distinction from all other known genomes of the same species. If there were a 
closely related strain present in the microbiota, DSM 33213 could not be confidently detected 
with SRA alone since the full-length 16S rRNA gene is identical to 9 other strains. Although LRA 
had high sensitivity in detecting DSM 33213, its specificity was lower since DSM 33213 was not 
detected in most treated samples. For high strain sensitivity and specificity with LRA, higher 
read coverage is likely necessary. Overall, LRA is a cost-effective method for tracking closely 
related strains in microbiota samples without the need for costly metagenomic sequencing. The 
StrainID method has been successfully applied to tracking closely related strains in the fecal 
microbiomes of premature infants (20). Importantly, STMC-103H is an LBP containing multiple 
strains. Only DSM 33213 could be reliably detected with sequencing methods. Other STMC-
103H strains were detected in treatment samples with qPCR, but not with sequencing. Due to 
its higher sensitivity, qPCR should remain the gold standard for detecting specific strains. 
Sequencing can likely only detect strains above a certain threshold of abundance in the gut. 
However, sequencing can provide additional information on detected higher abundance active 
ingredient strains. 
 
Targeted culturing is the primary method applied to understand the true viability, and not just 
presence of DNA, of active ingredient strains after administration. Here we show that 
metagenomics can provide information on the replication activity of an active ingredient strain 
from stool DNA. SRM and LRM reads mapping to DSM 33213’s genome generated peak-and-
trough coverage patterns, indicative of an actively replicating strain. The genomic location of the 
coverage trough also matched between SRM and LRM. This provides evidence that this active 
ingredient strain can actively replicate in the host intestine. If the same coverage pattern of DSM 
33213 persisted after cessation of LBP treatment, this would provide evidence for “engraftment” 
of the active ingredient strain. In a subset of participants in the trial, levels of DSM 33213 
measured by strain-specific qPCR remained high one month after cessation of treatment, 
providing evidence for engraftment. Mapping SRM reads to DSM 33213’s genome produced 
spurious spikes in coverage, likely representing areas of the genome highly conserved among 
more distantly related organisms. The absence of these spikes with LRM mapping highlights the 
increased confidence inherent in mapping long reads. Assembling reads into contigs further 
increases mapping confidence; both SRM and LRM resulted in high-confidence matches 
between contigs and active ingredient strain genomes in treated samples, but not in baseline 
pretreatment samples. The longest alignments for SRM contigs were less than 500 kb, while the 
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longest alignments for LRM contigs were over 1.6 Mbp, increasing confidence in active 
ingredient strain detection with the LRM.  
 
Since metagenomic sequencing provides direct information about microbial gene content, it can 
help elucidate the mechanism of the microbiome’s contribution to health or disease or the 
potential mechanism of action of an LBP. For example, metagenomics analysis of microbiome 
samples from patients with Behcet’s disease (a rare disorder that causes blood vessel 
inflammation and skin sores and lesions) compared to healthy controls revealed enrichment of 
Bilophila species and opportunistic pathogens and increased microbial functions including 
oxidation-reduction and type III and IV secretion systems in patients with the disease (64). High-
confidence functional annotations depend on high-quality sequence data. Comparing functional 
microbiome profiles across methods, the percentage of reads with known functional annotations 
was substantially higher with LRM (63% vs. 34%). Even though the cost of LRM is higher, the 
amount of useful data is substantially greater and requires less bioinformatic processing since 
HiFi reads are high-quality consensus reads. Long reads contain multiple genes in their original 
genomic context, increasing confidence in their taxonomic and functional annotation. There was 
no substantial overlap in differentially abundant pathways across methods, which could be 
attributed to the limited number of samples used in this analysis, differences in reference 
databases, and the smaller fraction of data with known annotations for SRM. PICRUSt2-based 
EC profiles from LRA data were not more similar to the LRM-based EC profiles from the same 
sample than to EC profiles from different samples. This highlights the limitation of taxonomy-
based functional estimation and the importance of metagenomics for functional inference of the 
microbiome.  
 
Metagenomic assemblies from SRM and LRM generated comparable assembly lengths for 
each sample, showing that the total unique genomic content was captured with both methods. 
However, LRM assemblies were substantially more complete than SRM assemblies. With 
relaxed filtering criteria for SRM MAGs, both methods produced comparable numbers of MAGs 
with overlapping taxonomy. However, only LRM binning produced high-quality MAGs consisting 
of single contigs, representing near-complete genomes extracted from complex microbial 
communities.  
 
A notable challenge in comparing sequencing methods is that each method requires analysis 
pipelines and databases that are optimized for the distinct nature of the raw sequencing data. 
The impact of chosen databases was especially obvious when different databases were applied 
to the same sequencing method. For example, with SRA sequencing, using the Greengenes 
database increased the fraction of reads assigned to species compared to the SILVA database. 
Also, within LRM, Methanobrevibacter smithii was not identified when GTDB was used for 
taxonomic annotation but was identified when the NCBI taxonomic database was applied. For 
functional annotation of metagenomic data, independent of the analysis method, the proportion 
of data with known functional annotations was substantially higher with LRM than SRM. To 
overcome pipeline differences for this analysis, contigs assembled from SRM were analyzed 
using the LRM functional profiling pipeline. Even when the same pipeline was used, the 
proportion of assembled SRM contigs with functional annotations was still lower than the 
proportion of LRM reads with functional annotations.  
 
Microbiome researchers and LBP developers must weigh the pros and cons of microbiome 
analysis methods to answer their core research questions. To our knowledge, this is the first 
comprehensive comparison of long-read and short-read approaches for microbiome 
characterization using samples from a live biotherapeutic intervention study. As sequencing 
technologies evolve, it is increasingly clear that SRA sequencing falls short of providing the 
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high-resolution or functional microbiome information necessary to inform the development of 
microbiome-based interventions. Although the application of LRA sequencing provides 
taxonomic profiles at strain-level resolution, the lack of direct functional information is still a 
notable caveat of all amplicon-sequencing approaches. While LRM generated the highest 
amount of functionally annotated data in this study, SRM provided similar, though less 
complete, microbial genome recovery. While all approaches applied here could detect similar 
trends in the abundance of a target LBP strain, LRM sequencing provided the highest 
confidence in identifying an active ingredient strain, including providing evidence of active 
replication.   
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