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Abstract

The rapid advance of high-throughput technologies has enabled the generation of two-
dimensional or even multi-dimensional high-throughput data, e.g., genome-wide SsRNA screen
(1% dimension) for multiple changes in gene expression (2™ dimension) in many different cell
types or tissues or under different experimental conditions (3" dimension). We show that the
simple Z-based statistic and derivatives are no longer suitable for analyzing such data because of
the accumulation of experimental noise and/or off-target effects. Here, we introduce ZetaSuite, a
statistical package designed to score and rank hits from two-dimensional screens, construct
regulatory networks based on response similarities, and eliminate off-targets. Applying this
method to two large cancer dependency screen datasets, we identify not only genes critical for
cell fitness, but also those required for constraining cell proliferation. Strikingly, most of those
cancer constraining genes function in DNA replication/repair checkpoint, suggesting that cancer

cells also need to protect their genomes for long-term survival.
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Main

Genome-wide screen by RNA interference (with sRNA or shRNA) *® or CRISPR/Cas
(with sgRNA) “® has been extensively employed to identify global regulators in specific
biological pathways. Screen strategies with either arrayed or pooled targeting RNAs have been
developed, but most applications score a single functional readout, which we here refer to as
one-dimensional (many-to-one) screen. The array-based strategy has been extended to examine
multiple functional parameters in response to each treatment, known as multi-content (many-to-a
few) screen M. In the deep sequencing era, the array-based strategy has further evolved toward
two-dimensional high throughput (many-to-many) screen because of the feasibility to perform
functional perturbations and monitor functional consequences, both in a high throughput fashion,
as exemplified by the HTS? screen platform to monitor a gene signature comprising a set of
specific genes, rather than a single gene ®°. Pooled shRNA or sgRNA libraries have also been

1013 representing another

used to treat hundreds of cell lines to deduce cancer dependencies
format of two-dimensional screen. It may soon become no longer cost-prohibitive to perform
genome-wide functional perturbation (15-) and measure genome-wide response (2"%-) in many
different cell types or tissues (3“-dimension).

The advance in high throughput technologies is frequently accompanied with the demand
for developing new analytical tools to treat the data of increasng complexity. For one-
dimensional large-scale screen, t-test , Z-statistic or Robust Z , or strictly standardized mean
difference (SSMD) or Robust SSMD ** have been common choices to identify screen hits,
depending on the availability of replicates and build-in positive and/or negative controls [see ™

for choosing the most suitable method for processing data from different types of screen.

However, as demonstrated in the current study, these statistical approaches are not optimal for
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analyzing two-dimensional high throughput screen data due to the accumulation of experimental
errors and off-target effects.

Off-target effects remain a major challenge in analyzing screen results with SRNA,
shRNA or sgRNA. A general strategy to meet this challenge is to increase the number of
targeting RNASs against each gene and aggregate enriched hits to reflect the collective effect, as
with RSA *°, RIGER "/, and more recently, MAGeCK '®. Furthermore, ATARIS * and
DEMETER?2 % have been designed to remove targeting RNAs that likely cause off-target effects.
In ATARIS, for example, a set of targeting RNAs is each tested on multiple samples to identify
those that show the overall ssimilarity across the samples, assuming that the rest likely cause off-
target effects. In DEMETER ™ or DEMETER2 %, targeting RNAs that may cause off-target
effects are filtered by using their sequences in the corresponding seed region to calculate
potential microRNA-like effects on off-targets. Since numerous microRNAs do not strictly

follow such seed rule 4%

. it remains unclear to what extent this approach actually helps reduce
the off-target effects. Importantly, as most of these approaches require a large number of
targeting RNASs per gene (around 15 to 20), they are not applicable to screens with traditionally
arrayed siRNAs, typically consisting of 4 to 6 targeting RNASs per gene. In fact, the increased
sequence complexity in each set of targeting RNAs may also elevate the probability in off-
targeting, thus causing more artifacts than eliminated in some cases.

In this study, we introduce a new ZetaSuite designed to address multiple challenges in
two or multi-dimensional high throughput screens with either pooled or arrayed libraries, which
is perceived to have increasing utilities in modern biological research due to the ever-increasing

power of deep sequencing. ZetaSuite (available at https://github.conVYajingHao/ZetaSuite) can

identify and rank hits at afull Z range, rather than on an arbitrarily chosen cutoff, to differentiate
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86  between positives and negatives. When a large number of true positive and negative controls is
87 available, ZetaSuite can further draw a support vector machine (SVM) learning curve to
88 maximally separate positives from negatives. We first develop ZetaSuite by using in-house two-
89 dimensional SIRNA screen data designed to identify global splicing regulators, demonstrating
90 that the core spliceosome components are the most dominant class of regulators for alternative
91 splicing in mammalian cells. We next apply ZetaSuite to the existing cancer dependency maps,
92  reveding not only genes essential for cancer cells to survive, as reported earlier *°, but also genes
93 that act to prevent excessive cancer cdl proliferation, most corresponding to those involved in
94  DNA replication/repair checkpoint control. These findings demonstrate the broad utility of

95 ZetaSuite in processing multi-dimensional high throughput data to expose critical regulatory

96 pathways.
97
98 Results

99  Overview of the ZetaSuite frame wor kflow
100 ZetaSuite is a statistical and computational framework initially developed to process the
101 data from a SRNA screen for globa splicing regulators [see *°]. In this screen, we interrogated
102 ~400 endogenous alternative splicing (AS) events by using an oligo ligation-based strategy to
103  quantify their responses to 18,480 pools of sSIRNAS against annotated protein-coding genesin the
104 human genome (Supplementary Fig. 1a). We performed deep sequencing on bar-coded and
105 pooled samples from individually treated wells in 384-well plates to generate digital information
106 on interrogated MRNA isoforms, and by comparing to internal non-specific SSRNA treated
107 negative controls, we were able to quantify induced exon inclusion or skipping for each AS event

108 (similar to up- and down-regulated genes from a typica RNA-seq experiment). The resultant
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109 data matrix resembles those produced by high-content screens, parallel genome-wide screens, or
110  any screens that monitor multiple functional outcomes (Fig. 1a). Thus, this ZetaSuite package
111 (outlined in Supplementary Fig. 1b) developed from our splicing screen is generaly applicable to
112  other two-dimensiona high throughput data.

113 After a series of standard data pre-processing and quality control, ZetaSuite generates a
114  Z-score for each AS event against each targeting RNA (a pool of sSRNAs in primary screen or
115 individua sIRNAs in secondary screen) in the data matrix (Fig. 1b) and then computes the
116  number of hits at each Z-cutoff from low to high and in both directions to separately quantify
117 induced exon skipping (Fig. 1c, left) or incluson (Fig. 1d, right) events. This enables the
118 classification of functional data in both directions to identify global splicing activators (if mostly
119  causing exon skipping upon knockdown) or repressors (if mostly inducing exon inclusion events
120  upon knockdown) or both. The same strategy can thus also be used to characterize positive and
121  negative regulators in any specific biological pathway from two-dimensional high throughput
122  data

123 When internal positive controls are well separated from negative controls, ZetaSuite
124  calculates a SVM learning curve to maximally separate positives from negatives. Any SsSRNA
125 that generates a line (a string of data points in the plot) above the SVM line can thus be
126  considered a potential hit and the area between the two line presents the strength of the hit, which
127  can be used to compare and rank hits. We name this statistic as Z-based estimate of targets or
128 Zeta (€) (Fig. 1d). Even without positive controls in certain applications, it is gtill possible to
129 calculate the area under each line to generate a { score for a given hit, which can be used to infer
130 the relative strength of individual hits and rank-order them to deduce important biological

131 information.
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132 As with all screens, athreshold is needed to call hits. To this end, we utilize a large set of
133  non-expressed genes in a given cell type (HelLa cellsin our screen) as internal negative controls
134  and determine the number of hits above a given  to plot against the number of non-expressed
135 genes mistakenly identified as hits, which may result from either experimental noise or off-target
136  effects. We call this as a Screen Strength (SS) plot, and we select a balance point(s) as threshold
137  where further increase in { no longer significantly improves the value of the SS (Fig. le).
138 Finally, ZetaSuite takes full advantage of two-dimensional high throughput data to calculate
139 similaritiesin global responses through pairwise comparisons, which can be leveraged to deduce
140  off-target effects based on the results from the secondary screen (Fig. 1f), and more importantly,
141  to construct gene networks for functional analysis of screen hits (Fig. 1g). Together, ZetaSuite
142  provides a comprehensve package for analyzing two-dimensional high throughput data.

143

144  Increasing readout number leadsto diminishing screen specificity with traditional methods
145 Z or SSMD dtatistic has been typically used to identify hits from one-dimensional high
146  throughput screens. SSMD has advantages if a screen includes multiple replicates for each
147  targeting RNA ™. When the number of screen readouts increases, however, various random
148 outliers become accumulated, which has the potential to severely compromise the screen
149  specificity. For instance, we scored ~400 AS events against each SSRNA and 368 events passed
150 the quality control, and if any of these readouts meets a chosen cutoff, the probability of
151 experimental noise and/or off-target effects would be aggregated in proportion to the number of
152  readouts scored. To demonstrate this, we chose a stringent cutoff of Z>=3 # to identify hits from
153  our splicing screen data and used SIRNAs that target non-expressed genes as true negatives to

154  estimate the screen specificity. Randomly selecting 50 SSRNAs against non-expressed genes
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155 based on 5 randomly selected AS events, we identified 1 hit out of these 50 true negative SRNAs
156 (Fig. 2a). When all 368 AS events scored in our screen were taken into consideration, the
157 magjority of those true negative SSRNAs became hits (Fig. 2b). This alarming high false positive
158 rate became further evident when all RNA-seq identified non-expressed genes were included in
159 the anaysis (Supplementary Fig. 2ab). By sdlecting an increasing number of AS events as
160 readouts to determine the screen specificity, we found that the screen specificity was
161 progressively decreased (Fig. 2c) and we obtained the same result by performing a similar
162 analysis based on SSMD (Fig. 2d). In both analyses, we noted that the specificity was reduced to
163  about half when the number of functional readouts was increased to 50. This illustrated that the
164 most popular statistical approaches for analyzing one-dimensional screen data are no longer
165 suitable for processing two-dimensional high throughput data. Even after using the multiple
166  testing correction methods (such as FDR and Bonferroni correction methods), the number of
167 false positive hits were still very high (see Methods).

168 We next wondered whether we might adapt the concept from some more sophisticated
169  methods to analyze two-dimensional high throughput data. For example, RSA *°, RIGER *, and
170 MAGeCK *® are each designed to determine the impact of a given gene on a functional readout
171 (eg. cdl proliferation) by testing multiple targeting RNAs against each gene and then
172 aggregating the data to reflect the overall contribution of such gene to the functional
173  consequence. A typical data aggregation strategy is analogous to Gene Set Enrichment Analysis
174  (GSEA) %, which is to first rank order all targeting RNAs against all targeted genes tested in a
175  screen based on their functional impact (impact on cell proliferation from left to right) and then
176  score hits if multiple targeting RNAs are enriched at left (Fig. 2e, top raw) whereas a non-hit

177  lacksany enrichment (Fig. 2e, bottom raw).
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178 Here, by replacing individual targeting RNAs with individual AS events, we took a
179 similar strategy to evaluate the overall contribution of a given gene to global splicing control.
180 Using two well-known splicing regulators as benchmarks and separately rank ordering their
181 impact on exon skipping (left to right) or inclusion (right to left), we found that knockdown of
182 the core spliceosome component SF3B1 mainly caused exon skipping (Fig. 2f and
183  Supplementary Fig. 2c), whereas depletion of the SR protein family member SRSF2 induced
184  both exon inclusion and skipping in about equal frequency (Fig. 2g and Supplementary Fig. 2d),

185 consistent with the literature information 2%

. Extending this analysis genome-wide, we
186 identified thousands of genes as putative splicing regulators by using different aggregation
187  dtrategies associated with RSA, RIGER, or MAGeCK (Supplementary Fig. 2e). To evaluate the
188 performance of these methods, we took advantage of 5,006 SSIRNAS against non-expressed genes
189 as interna negative controls and 299 technical repeats with an SRNA against a well-known
190 splicing regulator PTB as internal positive controls in our screen to estimate the false discovery
191 rate (FDR=fase positives divided by false positives plus true positives). We observed an
192 aarmingly high error rate with each of these approaches even at the most stringent FDR cutoff
193 (Fig. 2h). Thisis likely due to the accumulation of experimental noise plus off-target effects, as
194  illustrated with traditional Z- or SSMD-based approaches (see Fig. 2a,b and Supplementary Fig.
195 2ab). These analyses thus present a compelling paradigm for the need to develop a new
196  satistical approach in order to fully explore the power of two-dimensional high throughput data.
197

198 Z-based estimation of global splicing regulators

199 It becomes quite evident from above analysis that the accumulative experimental noise

200 and off-target effects is a magjor problem in analyzing two-dimensional high throughput data,
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201  such that the screen specificity is progressively diminished as the number of readouts increases.
202 To begin to develop a new statistical strategy to address this problem, we first used non-
203  expressed genes to characterize the distribution of random splicing responses from all AS events
204  quantified in our screen. For each SSIRNA against a given non-expressed gene, we calculated Z
205 for the entire collection of the AS events scored and then displayed the number of “hits’ at each
206  Z-cutoff from low to high for induced exon skipping (toward right) or exon inclusion (toward
207  left). This showed the progressive decline in the number of hits in both directions as Z increases,
208 and after analyzing 10 randomly selected non-expressed genes this way, we noted that all exhibit
209 asimilar distribution (Fig. 3a, grey color). In comparison, 10 representative splicing regulators
210 (Supplementary Fig. 3a) all scored a much higher number of hits at any given Z cutoff (Fig. 3a,
211  individualy colored).

212 Interestingly, such distinct profiles between non-expressors and known splicing
213  regulators were similarly observed with a large number of built-in negative controls with a pool
214  of non-specific SRNAs (NS-mix) and positive controls with a specific SRNA pool against
215 PTBP1 (sPTBP1). This enabled us to develop a SVM curve to maximally separate positives
216 from negatives (Fig. 3b). We define the area between a putative hit above the SVM line as a Z-
217  based estimate of targets or Zeta (€). To favor the differences at higher Z cutoffs, we multiply the
218 number of Z with the area at the corresponding range and then aggregate the values from the full
219 range of Z to obtain a weighted-C score to define the overall impact of a putative splicing
220 regulator (Fig. 3c), which can be used to rank individual splicing regulators. To characterize a
221  given splicing regulator in splicing activation and repression, we separately calculated its
222  scores for aggregated exon inclusion or skipping events. After processing our splicing screen

223  data with this analysis pipeline (called ZetaSuite, see Supplementary Fig. 1b) and rank ordered

10
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224 thehitsaccording to their overall impact on AS (high to low from left to right), it became evident
225  that most high-ranking hits correspond to annotated core spliceosome components (Fig. 3d). This
226  demonstrated for the first time that components of the core splicing machinery also function as
227 the most prevalent class of AS regulators in mammalian cells. Moreover, these genes are in
228 general highly expressed in mammalian cells and their inactivation predominantly induce exon
229  skipping (Supplementary Fig. 3b,c).

230 To compare the performance of Zeta with other ranking approaches, such as that used in
231 RSA, RIGER, or MAGeCK, we again took advantage of a large number of built-in positive and
232  internal negative controls in our screen, which allowed us to precisely determine the numbers of
233  true and false positives and negatives to construct Receiver Operating Characteristic (ROC) (Fig.
234  3e) and Precision-Recall curves (PRC) (Fig. 3f). These comparisons demonstrate that the newly
235 developed ( datistic significantly outperform all other ranking methods in analyzing two-
236  dimensional high throughput splicing screen data (Fig. 3g).

237

238  Hit sdlection based on reflection points and Screen Strength

239 Any screen requires a cutoff to maximize true positives while minimize true negatives. In
240  most one-dimensional high throughput screens, hits are first ranked based on Z or SSMD and the
241  threshold is then determined by estimating the false positive level (FPL) and the false negative
242 level (FNL) . As Z or SSMD increases, FPL will gradually decrease while FNL will
243  progressively increase. This approach can be similarly applied to {-based scoring, as illustrated
244 with our splicing screen data using the sSIPTBP1 in technical repesats as true positives and SRNASs

245  against non-expressed genes as true negatives (Supplementary Fig. 4a). Using the balanced error

11
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246  level approach as recommended earlier %%, we obtained 0.7% for both FPL and FNL with
247  calculated FDR as 12.3%.

248 However, many sSSIRNA screens may not be able to build in a large number of true
249  positive controls, and additionally, the balanced error level is likely influenced by how well
250 positive controls can be differentiated from negative controls. We therefore sought to determine
251 a cutoff by only using non-expressed genes as negative controls, which would be generally
252  applicable to most genome-wide screens by RNAI. For this purpose, we introduce the concept of
253 apparent FDR (aFDR), which is defined as the number of non-expressors identified as false
254  positive hits among all hits scored at a given cutoff. Before screen, we have a basdline FDR
255 (bFDR), which corresponds to the number of non-expressors among the total number of genes
256 targeted in the screen. By definition, bFDR represents the chance from a random draw. We next
257  define the Screen Strength: SS=1-aFDR/bFDR, which can be used to evaluate the effectiveness a
258  screen has achieved relative to random draw. We can also use this parameter to compare between
259  different screen results. Using this approach, we plotted the SS based on our splicing screen data
260 against increasing C (Fig. 4d). Thisallows us to calculate the balance point (BP) for hits selection
261 where the SS will aimost no change as the stringency increases. With our splicing screen data,
262  we actually identified two such BPs, thereby enabling us to define candidate hits after BP1 and
263  high confidence hits after BP2, the latter of which maximally eiminate true false positives
264  derived from non-expressors (Fig. 4b).

265

266 A strategy to remove off-target effects from two-dimensional high throughput screen data
267 Off-target effects have been a mgjor problem in genome-wide screens. Recent strategies

268  to filter out off-targeting RNAS are to increase the number of targeting RNAs against each gene

12
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269 and eiminate those that show divergent effects from the consensus generated by multiple
270  targeting RNAs *°. These approaches are based on the assumption that an activity defined by the
271 magority of targeting RNAS reflects on-target effects, which may not always be the case. In
272  addition, these approaches require alarge number (usually 15 to 20) of targeting RNAS per gene,
273  thus unapplicable to traditional of SSRNA or shRNA libraries that typically contain 4 to 6
274  targeting RNA in each pool. In fact, the increased sequence complexity may also cause
275 additional off-target effects. We thus sought to utilize the data from primary and secondary
276  screens with traditional arrayed sSiIRNAS to filter out off-targets, again by taking advantage of
277  multiple functional readouts from each treatment.

278 As illustrated in Fig. 4c, we first identify SSRNA pools that show similar responses in
279  pairwise comparison, which we define by requiring R>=0.6 *°. Because two genes may have
280 related function in a common biological pathway, more than one sSiRNA in their pools often
281  show similar responses to both of their pools in the secondary screen, asillustrated with SNRPAL
282  and SF3B1, both being subunits of the U2 ribonucleoprotein particle (snRNP) (Fig. 4d and 4e).
283  Thisis further illustrated with multiple core spliceosome components (Supplementary Fig. 4b).
284  On the other hand, when a similar response results from some off-targeting effects, we found in
285 most cases where one specific SRNA in a given sSIRNA pool shows sequence complementarity
286  of consecutive 11nt or longer to the transcript targeted by the other SRNA pool (see Fig. 4f), as
287  shown earlier when examining cross reacting sRNAs *. Furthermore, it is this same SRNA that
288 isaso responsible the similar response in the secondary screen, as exemplified with FCHO1 and
289  SNRPB (Fig. 49). Indeed, in this case, SNRPB is a known core spliceosome component, whereas
290 FCHOL is a gene functioning in early step of clathrin-mediated endocytosis **, but without any

291  documented role in regulated splicing, suggesting that the high { value generated by ssIFCHO1

13
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292  resulted from its off-target effect on SNRPB. We thus propose a general strategy to eliminate
293 potential off-target effects if a single SSIRNA in a given pool is responsible for (i) generating a
294  dsimilar functional response and (ii) shows a significant sequence complementarity to the
295 transcript targeted by another SSRNA pool. Using this strategy, we identified multiple SSRNA
296 pools that likely caused off-targets due to specific cross reactions with well-established splicing
297  regulators (Supplementary Fig. 4c).

298 We extended this analysis to all non-expressors in our screen and showed that filtering
299  out those with identifiable off-targeting activities significantly improved the Screen Strength (Fig.
300 4a, from blue to red line). Moreover, { scores may differ when different positive controls are
301 usedto generatethe SMV. To evaluate thisimpact, we focused on high confidence hits after BP2
302 based on using repetitive SPTBP1 treatments as positive controls and found that >90% of hits
303 wereidentifiable with a different set of internal positive controls (see Supplementary Fig. 3a) to
304  deduce a dightly different SVM line (Supplementary Fig. 4d,f), suggesting that slightly distinct
305 positive controls only affect low-ranking candidates. Because of the ability to rank the hits, we
306 were also able to detect >90% of the hits based on siPTBP1-derived SVM based on the balance
307 point alone without using any SVM (Supplementary Fig. 4e,f), although the ability to generate a
308 SVM curve helps minimize inclusion of low confidence hits, which moderately affected multiple
309 readouts. Finaly, we evaluated the performance of the { satistic on different numbers of
310 functional readouts. Using true positives (ssPTBP1) and high confidence hits based on using all
311  ASreadouts as the reference sets, we tested whether { was able to detect these 'reference’ genes
312  using fewer readouts and found that { was able to identify over 80% of these 'reference’ genes
313 when the readout size reaches 200 or greater (Supplementary Fig. 4g). Thisinformation offers a

314  genera guide to designing future two-dimensional genome-wide screens.
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315

316  Application of ZetaSuite to under stand cor e fitness genesin cancer cells

317 Having established the general framework for the { statistic with our own splicing screen
318  data, we next sought to test its general applicability to other large-scale data resources. DRIVE *°
319 and DepMap ™ are representative of such data, both designed to determine cancer dependencies
320 by transducing a large pand of cancer cell lines with pooled shRNAs and identify depleted
321 shRNAs by deep sequencing to quantitatively report the essential function of their targeted genes
322 in individua cancer cell lines. DRIVE tested more cell lines than DepMap (overlap=113,
323  Supplementary Fig. 5a), whereas DepMap had more genes covered in its shRNA pools than
324 DRIVE (overlap=7,081, Supplementary Fig. 5b). Thus, smilar to our splicing screen data set,
325 the first dimenson consists of individual RNAI treatments and the second corresponds to
326  multiple functional readouts (different AS events vs different cell lines). Additionally, similar to
327  our experimental design, DepMap selected a set of known essential genes (n=210) % as positive
328 controls and used non-expressed genes (N=855) as negative controls. We found that these
329  controls are well separated based on t-distributed stochastic neighbor embedding (tSNE) ** with
330 both data sets (Supplementary Fig. 5c).

331 For data analysis, DRIVE utilized RSA to rank order hits and ATARIS to eiminate
332 shRNAsthat may cause off-target effects. A gene was considered essential if RSA>= -3 in >50%
333 of the cel lines tested. In contrast, DepMap removed off-target effects with DEMETER and
334  selected top hits showing 6 standard deviation (SD or o) or greater in any cell line tested for
335 further pathway analysis. As we demonstrated in treating our two-dimensional splicing screen
336 data, an arbitrary cutoff would always present a trade-off between sensitivity and specificity, and

337  even with the most extreme cutoff like 6o, experimental noise would still become accumulated
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338 with the increasing number of readouts scored in a screen. We thus introduced a general
339 parameter in ZetaSuite, the Screen Strength (SS), to compare between different screen results.
340 Here, we processed the data from DepMap and DRIVE with the ZetaSuite pipeline (see
341  Supplementary Fig. 1b). Although DRIVE and DepMap mainly determined cancer dependencies
342 by scoring depleted shRNASs, we wondered whether the data sets also contain useful information
343 on enriched shRNAs, which would be indicative of some opposite functions to cancer
344  dependency, referring here to as cancer checkpoint. To simplify the comparison between the two
345 data sets, we chose to start with the processed data with potential off-target effects aready
346  removed to quantify depleted and enriched shRNAs. We then plotted the DepMap and DRIVE
347 data in both directions in the full range of cut-offs. As expected, positive controls and non-
348  expressors are well separated in both data sets in the direction of cancer dependency (Fig. 5a).
349  We next calculated the weighted {-score for each tested gene in both data sets and then displayed
350 the data in the Screen Strength plot (Fig. 5b), from which we determined two balance points
351 (BP1 and BP2) for cancer dependency in both data sets. To identify genes involved in cancer
352  checkpoint, we unable to derive any balance point with the DepMap dataset, likely due to
353  scattered data from arelatively smaller number of cell lines surveyed (Fig. 5b), and for DRIVE,
354  weonly used the most stringent cutoff at BP2 to select hits (Fig. 5¢).

355 Based on the selected BP1 and BP2, we found that the mgjority of positive controls were
356 included in both data sets, suggesting that ZetaSuite-suggested cutoffs are able to encompass the
357 magority of cancer dependencies, even at BP2 (Fig. 5d). Since DepMap only focused on specific
358 cancer dependencies by requiring 66, we compared ZetaSuite-identified hits with DRIVE-
359  defined essential genes and previously annotated essential genes **, and based on BP2, we found

360 that ZetaSuite identified more hits than previous analyses (Fig. 5€). Moreover, none of those 10
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361 DRIVE hits(Fig. 5e, blue) missed by ZetaSuite are part of the annotated essential genes. Despite
362 the significantly enlarged hit size, enriched Gene Ontology (GO) terms, KEGG pathways and
363 Complexes annotated in the CORUM database * associated with newly identified hits are
364 similar to those deduced earlier based on much more stringent cutoffs, with top ranked terms
365 linked to key housekeeping activities, such as DNA replication, Splicing, Cell cycle, RNA
366 transport, Ribosome biogenesis, etc. (Supplementary Fig. 5d,ef). Additionally, we noted that
367 these newly identified hits were largely anti-correlated with AGO2 expression and copy number
368 variation (CNV) (Supplementary Fig. 5g), as reported earlier with the DRIVE dataset .
369 Conversdly, 8 out of 10 hits identified by DRIVE but missed with ZetaSuite lack the anti-
370 correlation with both AGO2 expression (Supplementary Fig. 5g, left) and AGO2 CNV
371 (Supplementary Fig. 5g, right). Together, these data demonstrated the effectiveness and
372  objectiveness of ZetaSuite in identifying cancer dependencies from previous large-scale screen
373 data

374

375 Biological insightsinto cancer dependency

376 The expanded list of cancer dependencies enabled us to gain further insights into critical
377  cancer development pathways compared to those already recognized from previous analysis with
378 thelimited set of genes. For example, based on similarities among different DRIVE cancer cells,
379 we were able to deduce 7 clusters by t-SNE plotting and draw the global network based on
380 regulation similarity for total hits that passed the BP1 threshold (Fig. 6a). One of these gene
381 networks is enriched in components of the transcription mediator complex and Pol I, all
382  connected to the well-known oncogene MYC (Fig. 6b), consistent with the known function of

383 MYC in transcriptional control *. Interestingly, MYC inhibition showed the most dramatic
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384  impact on rhabdoid cancer cells (Supplementary Fig. 6a), which is in agreement with a recent
385  observation that MY C inhibition effectively restricted rhabdoid tumor growth in vivo ®. In this
386 MYC dependency plot, we also noted significant MYC dependency in multiple myeloma (MM)
387  cancer cdlls, which isin line with frequent 8924 translocation that leads to MY C overexpression
388 inMM cancers ™.

389 We also detected two separate clusters connected by ATR, a key regulator of genotoxic
390 dtress. One cluster includes various genes involved in G1/S transition and modulation of DNA
391 topology and the other encompasses genes critical for DNA replication/repair (Fig. 6¢). Thisis
392 consistent with the existing literature on the function of ATR in connecting genotoxic stress to

393 cdl cycle control *

. Interestingly, we noted several splicing regulators (i.e., SRSF1 and SRSF2)
394  inthese clusters, both being previoudy implicated in inducing aberrant R loops that led to ATR
395 activation *. This has been suggested as a key mechanism underlying Myelodysplastic
396 Syndromes (MDS), a pre-leukemia that can rapidly progress to acute myeloid leukemia (AML),
397 thus explaining greater ATR dependency in leukemia than most other cancer types
398 (Supplementary Fig. 6b). These data further demonstrated the utility of the ZetaSuite in
399 analyzing the DRIVE and DepM ap datasets to mine important cancer pathways.

400

401 Genesinvolved in global cancer checkpoint

402 One of the most significant advances in further mining the DRIV E dataset with ZetaSuite
403 isthe discovery of genes whose depletion appears to promote tumor growth (i.e., those deduced
404  from enriched shRNAS). Strikingly, GO term analysis of these genes revealed that the vast

405 maority of them are involved in DNA checkpoint control (Fig. 6d). Previously, genes involved

406 in cancer dependencies were cross analyzed with copy number variation (CNV), gene expression,
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407  or mutation frequencies, revealing their association with low CNV and low expression, which
408  has been referred to as CYCLOPS genes “°. We also confirmed this finding with ZetaSuite-
409 identified cancer dependencies (Supplementary Fig. 6¢c). We performed a similar analysis on
410 cancer checkpoint genes and identified 9 mgjor clusters (Fig. 6€). Contrary to core fitness genes,
411  much fewer cancer checkpoint genes were associated with CNV, altered expression, or mutation
412 inDRIVE céll lines.

413 Several typical tumor suppressors were identified as strong cancer checkpoints in this
414  feature association analysis, including TP53 (encoding for p53) ** and its transcription target
415 CDKN2A (encoding for the cell cycle inhibitor p16) “> and CDKN1A (encoding for the cell cycle
416  inhibitor p21) . Interestingly, MDM2, an E3 ligase for p53, was also identified as a cancer
417  checkpoint gene (Fig. 6€). The similarity network clearly reflected the antagonizing function
418  between TP53 and MDM2 (Fig. 6f). In fact, while wildtype TP53 aways gave rise to a positive
419  dependency score, reflecting its tumor suppressor function, mutant TP53 produced a negative
420  cancer dependency score, indicating its oncogenic role in those tumor cdls (Fig. 6g,h), which is
421  infull agreement with the known functions of wildtype and mutant p53 in tumorigenesis *. Most
422  interestingly, as exemplified with MDM2, we observed that multiple cancer checkpoint genes are
423  aso linked to either low CNV or low expression (see Fig. 6€), suggesting that the CY CLOPS
424  phenomenon also applies to some key cancer checkpoints. MDM2 was also connected to a
425 cluster of genes functioning in cell differentiation, endocytosis, cell death and response to
426  oxidative stress, consistent with the role of MDM2 in regulating the transition from proliferation
427  todifferentiation *® and in the cellular response to oxidative stress “°.

428 In the elucidated p53 subnetwork, TP53BP1 and ATM activate TP53, which in turn

429  activates CDNK1A (Fig. 6f). Besides these known functional connections, we also identified
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430  various genes without prior connection to the p53 pathway, such as PCOLCE and CACNALI. As
431  an extracelular matrix protein and a major regulator of fibrillar collagen biosynthesis, disruption
432  of PCOLCE has been reported to induce cell growth in cultured fibroblasts, suggesting arolein
433  cell proliferation control “’. CACNALI, a gene involving controlling voltage-gated calcium
434  channels, was significantly down regulated in brain tumors compared to surrounding normal
435  tissues (Fig. 6i) and patients with low CACNALI expression were associated with poor prognosis
436  based on the TCGA database (Fig. 6j). The newly discovered connection of this and other critical
437  genes with the p53 pathway will fuel future studies on tumorigenesis.

438 Last, but not least, further analysis of the newly identified cancer checkpoints revealed
439  several mgor regulatory gene networks based on their similarities among different DRIVE cell
440 lines (Supplementary Fig. 6€). Besides those critical for cell aging, such as TP53, CDKN2A,
441  BGLAP, CDKNI1A, as described above, we aso noted gene networks for phosphorylation
442  regulation (e.g., MAP3K9, TAOK1, ROCK1/2), GTPase activities (e.g., EPHA5, TBC1D3D,
443 RND3), and DNA packaging (e.g., HISTIH2BN, HIST1H2BL/H/C). These findings not only
444 support the documented roles of specific MAPK and Rho GTPase pathways in coordinating
445  regulated tumor growth “®*, but also raise a new paradigm regarding how DNA packaging
446  proteins may promote tumor growth. Collectively, this functional connectivity map provides
447  critical ingghtsinto the involvement of an elaborated gene network in checkpoint control, which
448  may be critical for long-term cell survival, even among cancer cells.

449

450 Discussion

451 The increasing power and decreasing cost with deep sequencing technologies have

452  enabled multi-dimensional analyses of gene expression. By coupling high throughput screening
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453  with high throughput sequencing (HTS?), it is possible to utilize a specific set of genes as a
454  surrogate for specific cellular activities in chemical and genomic screens ®°. By monitoring
455  hundred or even thousand functional readouts, such “ultrahigh-content” screens offer numerous
456  advantages over traditional one-dimensional screens, among which include the ability to deduce
457  gene networks directly from the primary screen results and the feasibility to perform a drug
458  screen without relying on a pre-defined druggable target ®°. More recently, we have extended the
459 HTS® approach to a genome-wide screen by scoring hundreds of alternative splicing events to
460 identify global splicing regulators %, illustrating a two-dimensional screen strategy that can be
461  adapted to study many different paradigms in regulated gene expression.

462 This added dimension also requires a coordinated effort in developing a suitable
463  statistical mode for data analysis. We therefore developed a new { statistic, and using our in-
464  house HTS? data on global splicing regulators, we demonstrated that { outperforms al existing
465  strategies based on hit ranking and aggregation such as RSA *°, RIGER *” and MAGeCK *® | all
466 of which are based on the null hypothesis that most of screened genes are non-hits. These
467  existing methods are thus not suitable for analyzing data from secondary screen or using pre-
468 selected candidates. In contrast, the { statistic can be broadly used to process two-dimensional
469 data, which only requires a large number of negative controls. Interestingly, as demonstrated in
470  the current study, non-expressed genes can be considered a large set of internal negative controls.
471  In ZetaSuite, we also introduce the Screen Strength to measure the success of a given screen and
472  compare between screens.

473 Off-target effects represent a mgor problem in genome-wide screen with SsIRNAS,
474  shRNAs, or sgRNAS. To reduce the impact of off-target effects, one strategy is to increase the

475  number to targeting RNAs (up to 50 per gene) to target each gene *°. Multiple algorithms have
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476  been developed to remove potential off-target effects. For example, ATARIS was devel oped
477  based on the assumption that multiple on-targeting RNAs would give rise to similar results while
478  off-targeting RNAs would each cause a distinct non-specific effect *°. This assumption has the
479  potentia to retain off-targeting hitsif multiple targeting RNASs cause similar non-specific effects,
480 for instance, due to commonly induced cellular stress. In comparison, DEMETER ™ or its
481  recently refined version DEMETER 2 “ filter out off-targeting effects based on the assumption
482  that off-targets likely result from the sequences in the “seed” region to cause microRNA-like
483  effects on other genes. This assumption may not be reliable because of the very relax “seed rule”
484  and various miRNA-like effects induced by sequences outside the seed region #. In contrast to
485 these existing approaches, ZetaSuite eiminates off-targets based on two criteria, one on the
486 functional similarity and the other on the sequence complementarity between a targeting RNA
487  and an off-targeted transcript. Interestingly, by leveraging the results from the secondary screen,
488 we found that a single SSIRNA in a pool is often responsible for the off-targeting effect of that
489 pool and the same SsRNA aso shows the complementary sequence to the predicted off-target.
490 Our strategy thus enables the utilization of traditionally designed arrayed libraries for two-
491 dimensional genome-wide screens.

492 After demonstrating the power of the new { statistic to rank order global splicing
493  regulators and revealing a predominant role of the core splicing machinery in the regulation of
494  dternative splicing, we further took the ZetaSuite to re-analyze the large-scale data from public
495 DRIVE and DepMap cancer dependency projects, which were designed to tackle cancer
496 dependencies. Interestingly, prior effortsin analyzing these datasets have been primarily focused
497  on cancer dependencies, revealing various gene networks critical for cancer cell survival. DRIVE

498 defines cancer dependency by requiring RSA>= -3 on >50% of cdl lines surveyed while
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499 DepMap paid attention on specifically regulated hits with 6c or greater. These definitions appear
500 to be relatively arbitrary and unnecessarily too stringent without fully exploring the power of
501 such large-scale datasets. By revisiting these data with the newly developed ZetaSuite, we have
502 now elevated cancer dependencies by several folds, leading to the elucidation of several new
503 critical gene networks contributed by some well-established oncogenes and tumor suppressors,
504 such as MYC, ATR, and TP53. These discoveries potentiate further dissection of these
505 fundamental oncogenic pathways.

506 Perhaps the most intriguing observation from analyzing the DRIVE dataset is the
507 identification of genes whose depletion appears to accelerate cancer cell proliferation, at least
508 trandently during the treatment period. Strikingly, the vast majority of these hits function in
509 various DNA checkpoint pathways, which we refer to as cancer checkpoint, opposite to cancer
510 dependency. Interestingly, we note that some of those cancer checkpoints are also linked to CNV
511 and low expression, and although less prevalent compared to cancer dependencies, this
512  observation suggests that genes involved cancer checkpoints are also related to the phenomenon
513  of CYCLOPS “. Such depletion-induced cell proliferation may allow cancer cells to temporally
514  escape DNA checkpoint control, indicating that various cancer cells still retain such programs to
515 protect their unstable genomes from becoming further deteriorated. In this regard, the exposure
516 of these new cancer vulnerabilities may aid in the development of new cancer therapies, as

517  exemplified by using ATR inhibitor to treat MDS .

518
519 Methods
520 ZetaSuite is designed to address challenges in anayzing two-dimensional high

521  throughput data. Supplementary Fig. 1b provides an overview of the flow chart, as individually
522  detailed below.
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523 ZetaSuitePart 1.
524  Data preprocessing

525 Before running the main ZetaSuite procedure, raw data are first filtered to remove low-
526  quality samples (columns) and readouts (rows) in the data matrix to minimize false positives.
527  The default threshold is set to remove a row or a column if the number of drop-outs (missing
528 values; in our study, a value is missing if one of the mMRNA isoforms is undetectable) is larger
529 than the value of Qs+3*(Qs-Q1) where Q; and Qs are lower and upper quartile, respectively. The
530 remaining data are processed with the KNN-based method to estimate the missing values with
531 theparameter k=10.

532 ZetaSuitePart 2:
533 QC evaluation

534 Quality Control (QC) is a critical step in evaluating the experiment design. For all two-
535 dimension high throughput data, t-SNE plot * is first used to evaluate whether features are
536  sufficient to separate positive and negative controls. The SSMD score * is further generated for
537 each readout to evaluate the percentage of high-quality readouts. In our case, the data will be
538 further processed if >5% of reads are of the SSMD score >2.

539  Conversion of input matrix to Z-score matrix

540 After data pre-processing, the initial input matrix is arranged in N x M dimension, where
541 each row contains individual functional readouts against a SSRNA pool and each column
542  corresponds to individually SRNA pools tested on a given functional readout. Readouts in each
543  column may be thus considered as the data from one-dimensional screen (many-to-one), and thus,
544  the typical Z statistic can be used to evaluate the relative function of individual genes in such
545  column. The conversion is repeated on all columns, thereby converting the raw activity matrix
546  into a Z-score matrix. Suppose N;j; are the values in the original matrix i (1< i < N sSsRNA pool)
547  row andj (1< j £ M readout) column, then

548 Whereu; and g; are the mean and standard deviation of negative control samplesin columnj.

549  Generation of Zeta plot

550 The x-axis in the Zeta plot shows a series of Z-score cutoffs in two directions (in our case,
551 induced exon skipping in the positive direction and inclusion in the negative direction) and the y-
552  axis is the percentage of readouts survived at a given Z-score cutoff over the total scored
553  readouts.
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554 To generate this plot, the range of Z-scores is first determined by ranking the absolute
555 value of total Z;; (Z-score value in row i and column j) from the smallest to the largest (|Z,],
556  |Z,l, - Zica b V1 Zils VZigals -l Znx ml Where|Z,_1 |<|Z;|€|Z;4 1| @and i hereisthe rank number). To

557  exclude insgnificant changes that may result from experimental noise (|Z|<2, which equalsto p-
558  value>0.05), Z-cutoffs are selected in the range of [-|Z|y « m x 0.999; |, -2] in the negative direction
559  and [2, |Z|y x m x0.999|,] IN the positive direction. The Z range in both directions is next divided
560 into 100 bins (B = (byby, ..., by, bigo) » Where by = [Zpin + Zimax — Zmin) X (i —
561 1)/100ﬂZmin + (Zmax - Zmin) X (l)/lOO], Zmax is ether [- |Z[N XM X 0.999J| or
562  |Z|n x m x0.999)| @ Z,,;, IS €ither -2 or 2) and the percentage of readouts scored above the Z-
563  cutoff in each bin is determined.

564  Calculation of {'and weighted ¢ score

565 When a screen includes a large number of both negative and positive controls, these
566 controls are al displayed in a Zeta plot. Radial kernel SVM is next constructed to maximally
567  separate positives from negatives in the prior defined Z range using €1071 packages of R. To
568 avoid overfitting, it isimportant to use an independent dataset, such as non-expressors as internal
569 negative controls, to confirm the deduced SVM. To provide a value to represent the regulatory
570 function of genei that generates a curve above the SVM curve, the area between the two curves
571 iscaculated as the Zeta score (C) for this gene. To highlight hits scored at higher Z score bins,
572  the area in each bin is multiplied with the value of Z in such bin and all adjusted areas are
573  summed to giveriseto the final weighted { score;

574
Zmax
¢ = Z Area,, X m
m=Zmin
975

576  Wherethe Area,, isthe areain the specific bin,,,:

((Pm+1+Pm)—(Sm+1+Sm))*step .
77 Area, = { Z i (Prsa 4 Bn) > (Sva + )
0 ;lf (Pm+1 + Pm) < (Sm+1 + Sm)

578 Where the P,, and P,,,,, are the y-axis values of genei in the Zeta plot whereas §,, and S,,1
579 are the y-axis values on the SVM curve, both at bin,, and bin,,.,; step is the bin size which
580 equalsto (Z,,qx — Zmin)/100.

581 With certain screens without any positive controls, it will be impossible to generate a
582 SVM curve to help diminate experimental noise. In these applications, it is still possible to
583 calculate a { score for each gene by determining the Area,,, under the gene-specific curve at
584  bin,,:

((Prny1 + Pn) * step
Area,, = 5
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585 WheretheP,,, P,,,, and step are the same as those with the Areawith a SVM curve.

586 Although C scores are separately generated in our application to quantify the contribution
587  of agiven gene to exon inclusion or skipping, the absolute values of these { scores may also be
588 summed to reflect the global activity of such genein regulated splicing. ZeteSuite generates this
589 summed value as the default data output unless users select “-c no” to separately generate two
590  scoresin opposition directions.

591  Screen Strength and determination of the threshold for hit selection

592 The { scores can be used to rank genes and the next important step is to define a suitable
593 cutoff to define hits a different confidence levels. For this purpose, the concept of Screen
594  Strengthisfirst introduced:

aFDR

bFDR

S§=1-

595 Where aFDR (apparent FDR) is the number of non-expressors identified at hits divided by the
596 total number of hits and bFDR (baseline FDR) is the total number of non-expressors divided by
597  all screened genes.

598 Next, the Screen Strength plot is generated: { scores are first divided into 100 even bins
599 from the smallest to the largest and the SS value is determined at each bin. Connecting individual
600 SS values then generates a simulated SS curve, based on which to deduce individual balance
601 points (BPs). Users may choose one or multiple BPs to identify hits at the different SSintervals.

602 ZetaSuite Part 3:
603  Removing off-targeting hits

604 In the genome-wide screening, SSRNAs were designed to specifically degrade mRNA
605 transcripts of complementary sequence to reduce the expression of gene products. In practice,
606 these reagents exhibit a variable degree of suppression of the targeted gene and may also
607  suppress genes other than the intended target. The reagent’s phenotypic effects resulting from
608 suppression unintended genes was called off-target. The reason to off-targets is due to the part-
609  sequence complementary such as the microRNA-like off-targeting. And the consequence of off-
610 targetsis the phenotype or the effects on the readouts mainly due to off-targeting to a function
611 gene. Multiple methods have developed to deal with the off-targeting problem based on the
612 reason (refer DEMETER?2) and consequence (refer ATARIS). Different from the many-to-one
613 traditional screening data, the HTS? can better evaluate the phenotype consistency by comparing
614 the smilarity effects on all the readouts. Based on these conditions, we defined the off-targeting
615 hits by combine the off-targeting reason and consequence together by comparing the hits with
616 user-defined well-known genes or total-defined hits) the off-targeting genes should have one of
617 thetargeting RNAS targeted to the well function genes (at least 11nt complementary sequencein
618 the targeting RNA). 2) they should show high similarity on the readouts effects with targeted
619  well function genes (Pearson correlation score > 0.6).
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620  Functional interpretation of identified hits

621 Based on selected hits, ZetaSuite combine two gene function databases to interpret the
622  functions. One is Gene Ontology database, we used ClusterProfiler to enrich hits on the GO
623 terms. The top 15 GO terms with lowest adjust p-values were presented. The other is the
624 CORNUM complex databases, we annotated the hits to the complexes. The top 15 complexes
625 with highest hits number were gave. If the complexes number were lower than 15, the
626  complexes with hits number larger than 3 would be outputted.

627 Network construction

628 We modified the SC3 method by using the absolute values of Spearman and Pearson
629 correlation score to calculate the distance matrix and then used it to do the clustering. After SC3
630 analysis, each gene pair has a consensus score, which measures the regulation strengths. The
631 consensus scores were then used as the edge weights. Gene-gene similar correlation and anti-
632 correlation were annotated as different edge types. The nodes in the network represent the hits
633 identified by ZetaSuite pipeline. Larger nodes' size means larger { value. The color of the nodes
634 act for the clusters based the SC3 calculation. Cluster number was chosen based on the total
635  within-cluster sum of square “elbow” site. The resultant hit networks were visualized with Gephi
636 by using aYifan Hu Proportional layout. Disconnected nodes were then trimmed from the graph
637 before generating the plots.

638 Other experimental procedures
639  Testing the multiple testing correction methods on error rate reduction

640 The multiple testing correction methods, as FDR, Bonferroni correction etc., are
641 frequently used to reduce error accumulation in multiple hypothesis testing. However, it can only
642  be used to deal with the data from one-dimensional screens, but not suitable for two or multiple
643 dimensional screens. To further test this, a common cutoff is Z>=3 or <= -3, and thus, the
644  estimated false positive level (p-value) is below 0.01, meaning that for each readout, a given
645 SIRNA has 1% chance to be identified as a false positive hit. For all conditions, we did ~15,000
646 tests for each readout, and using the most stringent Bonferroni correction, we obtained a
647  corrected p-value of 0.01/15000=6.67x10" and a corresponding Z=4.97. Now using Z=4.97 as
648 the corrected cutoff to choose hits, we found that the false positive level was still as high as
649 24.9%. We therefore concluded that such canonical multiple testing correction methods are not
650 sufficient to reduce the accumulation of errors with increasing readouts in two-dimensional high
651 throughput screens.

652  Evaluating the optional number of functional readouts in two-dimensional screen
653 Positive controls and high-confidence hits, the latter of which are defined based on total
654 readouts, are used as references in our evaluation. The number of readouts is progressively

655 down-samples to 50, 100, 150, 200, 250 and 300 using R Sample function without replacement
656 and each specific number of down-sampled readouts are replicated 3 times. Down-sampled
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657 matrixes are processed using the same ZetaSuite pipeline. Hits from down-sampled matrixes are
658  used to determine the percentage of the hits over the reference sets.

659  Analysisof the splicing screen data with RIGER

660 RIGER was originally developed to identify essential genes in genome-scale shRNA
661 screens’’. In RIGER, the signal-to-noise ratio is entered as input, which is now replaced with the
662  Z-scores for individual alternative splicing readouts. The data are then processed with the latest
663 version of RIGER (2.0.2) from the website as provided in the source table above. Default RIGER
664 parameters are used in all steps, except that the number of permutations is set to 100,000 to
665 obtain a more precise p-value for each pool of SRNAs. The FDR is computed from the empirical
666 permutation p-values using the Benjamini-Hochberg procedure. This enables ranking of SRNA
667 poolshby FDR.

668 Analysisof splicing screen data with RSA

669 RSA is a probability-based method to identify hits, requiring data generated with multiple
670 targeting SRNAs against each gene *°. In RSA, fold-changes of treated over control samples are
671 entered asinput. In our application, the inputs are fold-changes of the splicing ratio of a given
672 aternative splicing event in a SRNA pool-treated well divided by the averaged splicing ratio
673 from NS-mix treated wells. The entered data are processed with the latest RSA software, as
674  specified in the source table above. The following parameters -1 0.2 -u 0.8 and -| 1.2 -u 2.0 are
675 usedto select hitsfor induced exon inclusion and skipping, respectively.

676  Analysisof splicing screen data with MAGeCK

677 MAGeCK is a statistical method designed to quantify the collective activity of multiple
678 siRNAs against each gene by using the robust rank aggregation (RRA) algorithm *°. In order to
679 meet the MAGeCK input requirement, each Z-score in the ZetaSuite input matrix is first
680 converted to p-value. The input data are processed with the modified RRA algorithm, as in
681 MAGeCK, with default parameters.

682 Processing DRIVE and DepMap cancer dependency datasets

683 The DRIVE and DepMap data already processed with DEMETER?2 are downloaded from
684  https://depmap.org/portal/download/. DepMap generated 3 independent datasets. In order to
685 avoid experimental variations in different datasets, only the biggest DepMap dataset is selected
686 for current analysis, which includes 285 cancer cell lines across approximately 100k shRNAS.
687 ZetaSuiteis applied to this dataset to calculate weighted {-scores with the parameters -z no —svm
688 noand-cno.

689 Feature association analysis on cancer dependencies and checkpoints
690 To analysis association with CNV or gene expression, cancer cell lines are ranked based

691 on thelevels of CNV in agiven gene or expression of the gene. Cancer dependency scores are
692  next compared between cell linesin top 25% versus bottom 25% and Wilcox-test is performed to
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determine the p-value for the gene. To analysis association with mutations, cancer cell lines are
divided in two groups with or without mutation in each gene. The cancer dependency scores are
next compared between these two groups and Wilcox-test is performed to generate the p-value
for the gene.

Data and code availability

The datasets used to evaluate the existing and new designed methods are available at the

website:XXX. The open source ZetaSuite is freely available at website XXX . We will update

this website periodically with new versions.
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Figure 1. Overview of the ZetaSuite wor kflow

a, Two-dimensional screens include high throughput screen by high through sequencing (HTS),
high-content screen, parallel genome-wide screens, etc. ZetaSuite uses the raw matrix as input to
calculate { score. b-g, Key steps in the ZetaSuite software from generating initial { scores (b) to
deducing hits by using negative and positive controls to derive a support vector machine (SVM)
learning curve (c) to calculating weighted { scores (d) to determining the Screen Strength (€) to
filtering out off-targets (f). The resulting data are used to construct regulatory gene networks
based on functional similarities (g).
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Figure 2. Increasing readout number leads to diminishing screen specificity with common
statistical approaches

a-b, The distribution of Z-scores based on 5 randomly selected alternative splicing (AS) events
monitored in our screen (a) or all AS events measured (b) in response to SIRNAs against 50
randomly selected non-expressed genes. The AS event was marked as red if the Z-score is >=3.
c-d, The Specificity based on common cutoffs (c, Z>=3) or SSMD (d, SSMD>=2) when
different numbers of AS events were monitored. The specificity (defined by 1 minus the number
of non-expressors scored as hits over the total number of non-expressors) is the mean value of 50
replicates under each condition. e, Illustration of the principal theory to determine hits based on
RSA, MAGeCK and RIGER. Induced changesin AS are first ranked and the effects of knocking
down a given gene on individual AS events are displayed as red bars. A hit would show
enriched AS events in one direction (top) while a non-hit would display a relatively random
distribution (bottom). f-g, The distribution of induced AS events (based on Z-scores of induced
exon skipping from left to right at top or induced exon inclusion from right to left at bottom) in
response to knockdown S~3B1 (f) or SRSF2 (g). h, The false discovery rate (FDR=FP/(FP+TP))
at different cutoffs with different methods. The FDRs at x-axis were calculated by different
methods (RSA, RIGER and MAGeCK). The FDRs at y-axis were deduced based on the non-
expressors and build-in positive controls (ssPTBP1). False Positive (FP): non-expressors; True
Positive (TP): siPTBP1-treated samples.
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Figure 3. The { statistic and comparison with several key existing statistical approaches

a, At each Z-score bin over a full Z-range, the level of hits (expressed as the percentage of
induced AS events over the total number of AS events monitored) is plotted with 10
representative splicing regulators (individually colored) compared to 10 non-expressors (grey).
Left and right separately plot induced exon inclusion and skipping events. b, At each Z-score bin
over a full Z-range, the level of hits in response to SSIPTBP1 (purple) or negative controls (NS
mix, green). An optimal SVM curve (red) is derived to maximally distinguish between true
positives (siPTBP1) and true-negatives (NS-mix). c, Calculation of a weighted {-score based on
the area between the specific Z-score line of a gene (black) and the SVM curve (red). At each Z-
bin, the area is multiplied by the Z-value, thus giving increasingly weights (purple) to hits at
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higher Z-scores. d, The distribution of weighted (-score for annotated core spliceosome
components among top 350 high-ranking genes. The top 10 high-ranking genes are enlarged
(top). Only DEFB131A doesn’t belong to core spliceosome, which was later determined to result
from off-targeting to SF3B1 (see Supplementary Fig. 4c). e-f, The ROC (e) and PRC (f) curves
are deduced using different methods. Weighted {-score in two directions calculated by ZetaSuite
are combined in this analysis to reflect the overall functional consequence. Thisis not applicable
to other methods, and we thus display the data separately. g, The summary of the areas under all
deduced ROC and PRC curves using different methods.
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Figure 4. Hit selection based on Screen Strength and strategy to filter out off-target effects

a, The comparison of the Screen Strength before (blue) and after (red) filtering out off-targets.
BP: balance point. Note that the Screen Strength based on the threshold defined by the
commonly used balanced error level (BRL) approach is also indicated (see Supplementary Fig.
4a). Those between BP1 and BP2 are candidate hits and those after BP2 are high confidence hits.
b, Weighed {-scores of expressed and non-expressed genes. A specific region is enlarged on the
right for comparative purpose. bFDR: baseline FDR. BP1 and BP2 are according to those
defined in a. ¢, Strategy to filter out off-target effects based on smilarity in response and
sequence complementarity. d, Comparison of AS events responsive to knockdown of SNRPA1
and SF3B1 or SNRPB and FCHOL in primary screen. Pearson correlation score is indicated in
each case. e, Comparison of AS events responsive to knockdown of the SsSRNA pool vs
individual SRNAs against SNRPA1 or S-3BL1 in the secondary screen. The third row shows the
comparison between the SSIRNA pool againg SF3B1 and individual SSRNAs against SNRPAL. f,
The sequence of a single SIRNA targeting FCHOL1 is aligned with its potential off-target on the
SNRPB transcript. g, Comparison of AS events responsive to knockdown of the SsSRNA pool vs
individual SRNAs against FCHOL1 or SNRPB in the secondary screen. The third row shows the
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comparison between the SIRNA pool against SNRPB and individual ssRNAs against FCHOL1.
Red highlights the predicted off-targeting SRNA.
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Figure5. Application of ZetaSuite to mine corefitness genesin cancer cells

a, At each gene dependency bin over a full range of gene dependency scores, the percentage of
cell lines responsive to knockdown of individual annotated essential genes (orange dots) or non-
expressed genes (blue dots) based on the DepMap (top) and DRIVE (bottom) datasets. b-c,
Screen Strength plot at different cutoffs for cancer dependency (left) or cancer checkpoint (right)
deduced from the DepMap (b) or DRIVE (c) dataset. Because of scattered data, balance point
could not be determined in the DepMap dataset. The two balance points (BP1 and BP2) in the
DRIVE dataset are marked (c). d, Hits for cancer dependency above the threshold defined by
BP1 or BP2 based on the data from DepMap (left) or DRIVE (right). e, Comparison of cancer
dependencies deduced in the DRIVE project with those newly determined with ZetaSuite and
previously annotated essential genes.
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Figure 6
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Figure 6. Biological insightsfrom identified cancer dependencies

a, Cluster (left) and global network (right) for cancer dependencies determined by ZetaSuite
from the DRIVE dataset. b-c, MYC-associated sub-network, highlighting its connectivity to
Mediators and Pol 1l components (b), and ATR connectivity to sub-networks associated with
genes involved in DNA conformation or DNA replication/repair (c). Colors correspond to
different clusters defined in a. d, Functionally enriched GO term biology pathways for cancer
checkpoint hits based on the DRIVE dataset. Shown are top 15 GO terms with smallest adjust p-
values. e, The association of ZetaSuite-identified cancer dependencies with gene expression,
copy number and mutation features. For each gene, cancer cell lines were firstly ranked based on
the levels of CNV or gene expression, and the cancer dependency scores were then compared
between cell lines in top 25% versus bottom 25%. The p-value (y-axis) for each gene in this
comparison was determined by Wilcox-test. In addition, for association analysis with mutations,
cancer cell lines were divided in two groups with or without mutation for each gene, The cancer
dependency scores were then compared between these two groups and the p-value (y-axis) in this
comparison was determined by Wilcox-test. Some representative genes are highlighted in each
feature group. Genes above the red dashed line have p-values<0.05. f, TP53-associated sub-
network. g, Averaged dependency scores for TP53 and MDM2 (top) and TP53 non-mutation
frequency (bottom) in different cancer tissues. Tissues are ranked based on averaged TP53
dependency scores. h, The TP53 gene dependencies in normal or mutated TP53 cell lines. ***
p<0.001 based on Wilcox-test. i, CACNA1I gene expression in normal brain tissues (based on the
GTEXx database) and brain tumors (based on the TCGA database). *** p<0.001 based on Wilcox-
test. j, Kaplan-Meier survival curves of brain tumor patients associated with high or low
CACNAL1I expression. The dashed lines indicate the 95% confidence intervals.
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