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 2 

Abstract 24 

The rapid advance of high-throughput technologies has enabled the generation of two-25 

dimensional or even multi-dimensional high-throughput data, e.g., genome-wide siRNA screen 26 

(1st dimension) for multiple changes in gene expression (2nd dimension) in many different cell 27 

types or tissues or under different experimental conditions (3rd dimension). We show that the 28 

simple Z-based statistic and derivatives are no longer suitable for analyzing such data because of 29 

the accumulation of experimental noise and/or off-target effects. Here, we introduce ZetaSuite, a 30 

statistical package designed to score and rank hits from two-dimensional screens, construct 31 

regulatory networks based on response similarities, and eliminate off-targets. Applying this 32 

method to two large cancer dependency screen datasets, we identify not only genes critical for 33 

cell fitness, but also those required for constraining cell proliferation. Strikingly, most of those 34 

cancer constraining genes function in DNA replication/repair checkpoint, suggesting that cancer 35 

cells also need to protect their genomes for long-term survival.    36 

 37 
 38 
  39 
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Main 40 

 Genome-wide screen by RNA interference (with siRNA or shRNA) 1-3 or CRISPR/Cas 41 

(with sgRNA) 4-6 has been extensively employed to identify global regulators in specific 42 

biological pathways. Screen strategies with either arrayed or pooled targeting RNAs have been 43 

developed, but most applications score a single functional readout, which we here refer to as 44 

one-dimensional (many-to-one) screen. The array-based strategy has been extended to examine 45 

multiple functional parameters in response to each treatment, known as multi-content (many-to-a 46 

few) screen 1,7. In the deep sequencing era, the array-based strategy has further evolved toward 47 

two-dimensional high throughput (many-to-many) screen because of the feasibility to perform 48 

functional perturbations and monitor functional consequences, both in a high throughput fashion, 49 

as exemplified by the HTS2 screen platform to monitor a gene signature comprising a set of 50 

specific genes, rather than a single gene 8,9. Pooled shRNA or sgRNA libraries have also been 51 

used to treat hundreds of cell lines to deduce cancer dependencies 10-13, representing another 52 

format of two-dimensional screen. It may soon become no longer cost-prohibitive to perform 53 

genome-wide functional perturbation (1st-) and measure genome-wide response (2nd-) in many 54 

different cell types or tissues (3rd-dimension).  55 

The advance in high throughput technologies is frequently accompanied with the demand 56 

for developing new analytical tools to treat the data of increasing complexity.  For one-57 

dimensional large-scale screen, t-test , Z-statistic or Robust Z , or strictly standardized mean 58 

difference (SSMD) or Robust SSMD 14 have been common choices to identify screen hits, 59 

depending on the availability of replicates and build-in positive and/or negative controls [see 15 60 

for choosing the most suitable method for processing data from different types of screen]. 61 

However, as demonstrated in the current study, these statistical approaches are not optimal for 62 
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analyzing two-dimensional high throughput screen data due to the accumulation of experimental 63 

errors and off-target effects.   64 

Off-target effects remain a major challenge in analyzing screen results with siRNA, 65 

shRNA or sgRNA. A general strategy to meet this challenge is to increase the number of 66 

targeting RNAs against each gene and aggregate enriched hits to reflect the collective effect, as 67 

with RSA 16, RIGER 17, and more recently, MAGeCK 18. Furthermore, ATARiS 19 and 68 

DEMETER2 20 have been designed to remove targeting RNAs that likely cause off-target effects. 69 

In ATARiS, for example, a set of targeting RNAs is each tested on multiple samples to identify 70 

those that show the overall similarity across the samples, assuming that the rest likely cause off-71 

target effects. In DEMETER 11 or DEMETER2 20, targeting RNAs that may cause off-target 72 

effects are filtered by using their sequences in the corresponding seed region to calculate 73 

potential microRNA-like effects on off-targets. Since numerous microRNAs do not strictly 74 

follow such seed rule 21,22. it remains unclear to what extent this approach actually helps reduce 75 

the off-target effects. Importantly, as most of these approaches require a large number of 76 

targeting RNAs per gene (around 15 to 20), they are not applicable to screens with traditionally 77 

arrayed siRNAs, typically consisting of 4 to 6 targeting RNAs per gene. In fact, the increased 78 

sequence complexity in each set of targeting RNAs may also elevate the probability in off-79 

targeting, thus causing more artifacts than eliminated in some cases. 80 

In this study, we introduce a new ZetaSuite designed to address multiple challenges in 81 

two or multi-dimensional high throughput screens with either pooled or arrayed libraries, which 82 

is perceived to have increasing utilities in modern biological research due to the ever-increasing 83 

power of deep sequencing.  ZetaSuite (available at https://github.com/YajingHao/ZetaSuite) can 84 

identify and rank hits at a full Z range, rather than on an arbitrarily chosen cutoff, to differentiate 85 
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between positives and negatives. When a large number of true positive and negative controls is 86 

available, ZetaSuite can further draw a support vector machine (SVM) learning curve to 87 

maximally separate positives from negatives. We first develop ZetaSuite by using in-house two-88 

dimensional siRNA screen data designed to identify global splicing regulators, demonstrating 89 

that the core spliceosome components are the most dominant class of regulators for alternative 90 

splicing in mammalian cells. We next apply ZetaSuite to the existing cancer dependency maps, 91 

revealing not only genes essential for cancer cells to survive, as reported earlier 10, but also genes 92 

that act to prevent excessive cancer cell proliferation, most corresponding to those involved in 93 

DNA replication/repair checkpoint control. These findings demonstrate the broad utility of 94 

ZetaSuite in processing multi-dimensional high throughput data to expose critical regulatory 95 

pathways. 96 

 97 

Results 98 

Overview of the ZetaSuite frame workflow 99 

ZetaSuite is a statistical and computational framework initially developed to process the 100 

data from a siRNA screen for global splicing regulators [see 23]. In this screen, we interrogated 101 

~400 endogenous alternative splicing (AS) events by using an oligo ligation-based strategy to 102 

quantify their responses to 18,480 pools of siRNAs against annotated protein-coding genes in the 103 

human genome (Supplementary Fig. 1a). We performed deep sequencing on bar-coded and 104 

pooled samples from individually treated wells in 384-well plates to generate digital information 105 

on interrogated mRNA isoforms, and by comparing to internal non-specific siRNA treated 106 

negative controls, we were able to quantify induced exon inclusion or skipping for each AS event 107 

(similar to up- and down-regulated genes from a typical RNA-seq experiment). The resultant 108 
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data matrix resembles those produced by high-content screens, parallel genome-wide screens, or 109 

any screens that monitor multiple functional outcomes (Fig. 1a). Thus, this ZetaSuite package 110 

(outlined in Supplementary Fig. 1b) developed from our splicing screen is generally applicable to 111 

other two-dimensional high throughput data. 112 

After a series of standard data pre-processing and quality control, ZetaSuite generates a 113 

Z-score for each AS event against each targeting RNA (a pool of siRNAs in primary screen or 114 

individual siRNAs in secondary screen) in the data matrix (Fig. 1b) and then computes the 115 

number of hits at each Z-cutoff from low to high and in both directions to separately quantify 116 

induced exon skipping (Fig. 1c, left) or inclusion (Fig. 1d, right) events. This enables the 117 

classification of functional data in both directions to identify global splicing activators (if mostly 118 

causing exon skipping upon knockdown) or repressors (if mostly inducing exon inclusion events 119 

upon knockdown) or both. The same strategy can thus also be used to characterize positive and 120 

negative regulators in any specific biological pathway from two-dimensional high throughput 121 

data.  122 

When internal positive controls are well separated from negative controls, ZetaSuite 123 

calculates a SVM learning curve to maximally separate positives from negatives. Any siRNA 124 

that generates a line (a string of data points in the plot) above the SVM line can thus be 125 

considered a potential hit and the area between the two line presents the strength of the hit, which 126 

can be used to compare and rank hits. We name this statistic as Z-based estimate of targets or 127 

Zeta (ζ) (Fig. 1d). Even without positive controls in certain applications, it is still possible to 128 

calculate the area under each line to generate a ζ score for a given hit, which can be used to infer 129 

the relative strength of individual hits and rank-order them to deduce important biological 130 

information.   131 
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As with all screens, a threshold is needed to call hits. To this end, we utilize a large set of 132 

non-expressed genes in a given cell type (HeLa cells in our screen) as internal negative controls 133 

and determine the number of hits above a given ζ to plot against the number of non-expressed 134 

genes mistakenly identified as hits, which may result from either experimental noise or off-target 135 

effects. We call this as a Screen Strength (SS) plot, and we select a balance point(s) as threshold 136 

where further increase in ζ  no longer significantly improves the value of the SS (Fig. 1e). 137 

Finally, ZetaSuite takes full advantage of two-dimensional high throughput data to calculate 138 

similarities in global responses through pairwise comparisons, which can be leveraged to deduce 139 

off-target effects based on the results from the secondary screen (Fig. 1f), and more importantly, 140 

to construct gene networks for functional analysis of screen hits (Fig. 1g). Together, ZetaSuite 141 

provides a comprehensive package for analyzing two-dimensional high throughput data. 142 

 143 

Increasing readout number leads to diminishing screen specificity with traditional methods 144 

 Z or SSMD statistic has been typically used to identify hits from one-dimensional high 145 

throughput screens. SSMD has advantages if a screen includes multiple replicates for each 146 

targeting RNA 15.  When the number of screen readouts increases, however, various random 147 

outliers become accumulated, which has the potential to severely compromise the screen 148 

specificity. For instance, we scored ~400 AS events against each siRNA and 368 events passed 149 

the quality control, and if any of these readouts meets a chosen cutoff, the probability of 150 

experimental noise and/or off-target effects would be aggregated in proportion to the number of 151 

readouts scored.  To demonstrate this, we chose a stringent cutoff of Z>=3 24 to identify hits from 152 

our splicing screen data and used siRNAs that target non-expressed genes as true negatives to 153 

estimate the screen specificity. Randomly selecting 50 siRNAs against non-expressed genes 154 
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based on 5 randomly selected AS events, we identified 1 hit out of these 50 true negative siRNAs 155 

(Fig. 2a). When all 368 AS events scored in our screen were taken into consideration, the 156 

majority of those true negative siRNAs became hits (Fig. 2b). This alarming high false positive 157 

rate became further evident when all RNA-seq identified non-expressed genes were included in 158 

the analysis (Supplementary Fig. 2a,b). By selecting an increasing number of AS events as 159 

readouts to determine the screen specificity, we found that the screen specificity was 160 

progressively decreased (Fig. 2c) and we obtained the same result by performing a similar 161 

analysis based on SSMD (Fig. 2d). In both analyses, we noted that the specificity was reduced to 162 

about half when the number of functional readouts was increased to 50. This illustrated that the 163 

most popular statistical approaches for analyzing one-dimensional screen data are no longer 164 

suitable for processing two-dimensional high throughput data.  Even after using the multiple 165 

testing correction methods (such as FDR and Bonferroni correction methods), the number of 166 

false positive hits were still very high (see Methods).  167 

 We next wondered whether we might adapt the concept from some more sophisticated 168 

methods to analyze two-dimensional high throughput data. For example, RSA 16, RIGER 17, and 169 

MAGeCK 18 are each designed to determine the impact of a given gene on a functional readout 170 

(e.g. cell proliferation) by testing multiple targeting RNAs against each gene and then 171 

aggregating the data to reflect the overall contribution of such gene to the functional 172 

consequence. A typical data aggregation strategy is analogous to Gene Set Enrichment Analysis 173 

(GSEA) 25, which is to first rank order all targeting RNAs against all targeted genes tested in a 174 

screen based on their functional impact (impact on cell proliferation from left to right) and then 175 

score hits if multiple targeting RNAs are enriched at left (Fig. 2e, top raw) whereas a non-hit 176 

lacks any enrichment (Fig. 2e, bottom raw).  177 
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Here, by replacing individual targeting RNAs with individual AS events, we took a 178 

similar strategy to evaluate the overall contribution of a given gene to global splicing control. 179 

Using two well-known splicing regulators as benchmarks and separately rank ordering their 180 

impact on exon skipping (left to right) or inclusion (right to left), we found that knockdown of 181 

the core spliceosome component SF3B1 mainly caused exon skipping (Fig. 2f and 182 

Supplementary Fig. 2c), whereas depletion of the SR protein family member SRSF2 induced 183 

both exon inclusion and skipping in about equal frequency (Fig. 2g and Supplementary Fig. 2d), 184 

consistent with the literature information 26,27. Extending this analysis genome-wide, we 185 

identified thousands of genes as putative splicing regulators by using different aggregation 186 

strategies associated with RSA, RIGER, or MAGeCK (Supplementary Fig. 2e). To evaluate the 187 

performance of these methods, we took advantage of 5,006 siRNAs against non-expressed genes 188 

as internal negative controls and 299 technical repeats with an siRNA against a well-known 189 

splicing regulator PTB as internal positive controls in our screen to estimate the false discovery 190 

rate (FDR=false positives divided by false positives plus true positives). We observed an 191 

alarmingly high error rate with each of these approaches even at the most stringent FDR cutoff 192 

(Fig. 2h). This is likely due to the accumulation of experimental noise plus off-target effects, as 193 

illustrated with traditional Z- or SSMD-based approaches (see Fig. 2a,b and Supplementary Fig. 194 

2a,b). These analyses thus present a compelling paradigm for the need to develop a new 195 

statistical approach in order to fully explore the power of two-dimensional high throughput data. 196 

 197 

Z-based estimation of global splicing regulators 198 

 It becomes quite evident from above analysis that the accumulative experimental noise 199 

and off-target effects is a major problem in analyzing two-dimensional high throughput data, 200 
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such that the screen specificity is progressively diminished as the number of readouts increases. 201 

To begin to develop a new statistical strategy to address this problem, we first used non-202 

expressed genes to characterize the distribution of random splicing responses from all AS events 203 

quantified in our screen. For each siRNA against a given non-expressed gene, we calculated Z 204 

for the entire collection of the AS events scored and then displayed the number of “hits” at each 205 

Z-cutoff from low to high for induced exon skipping (toward right) or exon inclusion (toward 206 

left). This showed the progressive decline in the number of hits in both directions as Z increases, 207 

and after analyzing 10 randomly selected non-expressed genes this way, we noted that all exhibit 208 

a similar distribution (Fig. 3a, grey color).  In comparison, 10 representative splicing regulators 209 

(Supplementary Fig. 3a) all scored a much higher number of hits at any given Z cutoff (Fig. 3a, 210 

individually colored).  211 

Interestingly, such distinct profiles between non-expressors and known splicing 212 

regulators were similarly observed with a large number of built-in negative controls with a pool 213 

of non-specific siRNAs (NS-mix) and positive controls with a specific siRNA pool against 214 

PTBP1 (siPTBP1). This enabled us to develop a SVM curve to maximally separate positives 215 

from negatives (Fig. 3b). We define the area between a putative hit above the SVM line as a Z-216 

based estimate of targets or Zeta (ζ). To favor the differences at higher Z cutoffs, we multiply the 217 

number of Z with the area at the corresponding range and then aggregate the values from the full 218 

range of Z to obtain a weighted-ζ score to define the overall impact of a putative splicing 219 

regulator (Fig. 3c), which can be used to rank individual splicing regulators. To characterize a 220 

given splicing regulator in splicing activation and repression, we separately calculated its ζ 221 

scores for aggregated exon inclusion or skipping events. After processing our splicing screen 222 

data with this analysis pipeline (called ZetaSuite, see Supplementary Fig. 1b) and rank ordered 223 
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the hits according to their overall impact on AS (high to low from left to right), it became evident 224 

that most high-ranking hits correspond to annotated core spliceosome components (Fig. 3d). This 225 

demonstrated for the first time that components of the core splicing machinery also function as 226 

the most prevalent class of AS regulators in mammalian cells. Moreover, these genes are in 227 

general highly expressed in mammalian cells and their inactivation predominantly induce exon 228 

skipping (Supplementary Fig. 3b,c).  229 

To compare the performance of Zeta with other ranking approaches, such as that used in 230 

RSA, RIGER, or MAGeCK, we again took advantage of a large number of built-in positive and 231 

internal negative controls in our screen, which allowed us to precisely determine the numbers of 232 

true and false positives and negatives to construct Receiver Operating Characteristic (ROC) (Fig. 233 

3e) and Precision-Recall curves (PRC) (Fig. 3f). These comparisons demonstrate that the newly 234 

developed ζ statistic significantly outperform all other ranking methods in analyzing two-235 

dimensional high throughput splicing screen data (Fig. 3g).  236 

 237 

Hit selection based on reflection points and Screen Strength 238 

 Any screen requires a cutoff to maximize true positives while minimize true negatives. In 239 

most one-dimensional high throughput screens, hits are first ranked based on Z or SSMD and the 240 

threshold is then determined by estimating the false positive level (FPL) and the false negative 241 

level (FNL) 28. As Z or SSMD increases, FPL will gradually decrease while FNL will 242 

progressively increase. This approach can be similarly applied to ζ-based scoring, as illustrated 243 

with our splicing screen data using the siPTBP1 in technical repeats as true positives and siRNAs 244 

against non-expressed genes as true negatives (Supplementary Fig. 4a). Using the balanced error 245 
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level approach as recommended earlier 28, we obtained 0.7% for both FPL and FNL with 246 

calculated FDR as 12.3%.  247 

However, many siRNA screens may not be able to build in a large number of true 248 

positive controls, and additionally, the balanced error level is likely influenced by how well 249 

positive controls can be differentiated from negative controls. We therefore sought to determine 250 

a cutoff by only using non-expressed genes as negative controls, which would be generally 251 

applicable to most genome-wide screens by RNAi. For this purpose, we introduce the concept of 252 

apparent FDR (aFDR), which is defined as the number of non-expressors identified as false 253 

positive hits among all hits scored at a given cutoff. Before screen, we have a baseline FDR 254 

(bFDR), which corresponds to the number of non-expressors among the total number of genes 255 

targeted in the screen. By definition, bFDR represents the chance from a random draw. We next 256 

define the Screen Strength: SS=1-aFDR/bFDR, which can be used to evaluate the effectiveness a 257 

screen has achieved relative to random draw. We can also use this parameter to compare between 258 

different screen results. Using this approach, we plotted the SS based on our splicing screen data 259 

against increasing ζ (Fig. 4a). This allows us to calculate the balance point (BP) for hits selection 260 

where the SS will almost no change as the stringency increases. With our splicing screen data, 261 

we actually identified two such BPs, thereby enabling us to define candidate hits after BP1 and 262 

high confidence hits after BP2, the latter of which maximally eliminate true false positives 263 

derived from non-expressors (Fig. 4b).   264 

 265 

A strategy to remove off-target effects from two-dimensional high throughput screen data  266 

 Off-target effects have been a major problem in genome-wide screens.  Recent strategies 267 

to filter out off-targeting RNAs are to increase the number of targeting RNAs against each gene 268 
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and eliminate those that show divergent effects from the consensus generated by multiple 269 

targeting RNAs 19.  These approaches are based on the assumption that an activity defined by the 270 

majority of targeting RNAs reflects on-target effects, which may not always be the case.  In 271 

addition, these approaches require a large number (usually 15 to 20) of targeting RNAs per gene, 272 

thus unapplicable to traditional of siRNA or shRNA libraries that typically contain 4 to 6 273 

targeting RNA in each pool. In fact, the increased sequence complexity may also cause 274 

additional off-target effects. We thus sought to utilize the data from primary and secondary 275 

screens with traditional arrayed siRNAs to filter out off-targets, again by taking advantage of 276 

multiple functional readouts from each treatment.    277 

As illustrated in Fig. 4c, we first identify siRNA pools that show similar responses in 278 

pairwise comparison, which we define by requiring R>=0.6 29. Because two genes may have 279 

related function in a common biological pathway, more than one siRNA in their pools often 280 

show similar responses to both of their pools in the secondary screen, as illustrated with SNRPA1 281 

and SF3B1, both being subunits of the U2 ribonucleoprotein particle (snRNP) (Fig. 4d and 4e). 282 

This is further illustrated with multiple core spliceosome components (Supplementary Fig. 4b). 283 

On the other hand, when a similar response results from some off-targeting effects, we found in 284 

most cases where one specific siRNA in a given siRNA pool shows sequence complementarity 285 

of consecutive 11nt or longer to the transcript targeted by the other siRNA pool (see Fig. 4f), as 286 

shown earlier when examining cross reacting siRNAs 30. Furthermore, it is this same siRNA that 287 

is also responsible the similar response in the secondary screen, as exemplified with FCHO1 and 288 

SNRPB (Fig. 4g). Indeed, in this case, SNRPB is a known core spliceosome component, whereas 289 

FCHO1 is a gene functioning in early step of clathrin-mediated endocytosis 31, but without any 290 

documented role in regulated splicing, suggesting that the high ζ value generated by siFCHO1 291 
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resulted from its off-target effect on SNRPB. We thus propose a general strategy to eliminate 292 

potential off-target effects if a single siRNA in a given pool is responsible for (i) generating a 293 

similar functional response and (ii) shows a significant sequence complementarity to the 294 

transcript targeted by another siRNA pool. Using this strategy, we identified multiple siRNA 295 

pools that likely caused off-targets due to specific cross reactions with well-established splicing 296 

regulators (Supplementary Fig. 4c).  297 

We extended this analysis to all non-expressors in our screen and showed that filtering 298 

out those with identifiable off-targeting activities significantly improved the Screen Strength (Fig. 299 

4a, from blue to red line). Moreover, ζ scores may differ when different positive controls are 300 

used to generate the SMV. To evaluate this impact, we focused on high confidence hits after BP2 301 

based on using repetitive siPTBP1 treatments as positive controls and found that >90% of hits 302 

were identifiable with a different set of internal positive controls (see Supplementary Fig. 3a) to 303 

deduce a slightly different SVM line (Supplementary Fig. 4d,f), suggesting that slightly distinct 304 

positive controls only affect low-ranking candidates. Because of the ability to rank the hits, we 305 

were also able to detect >90% of the hits based on siPTBP1-derived SVM based on the balance 306 

point alone without using any SVM (Supplementary Fig. 4e,f), although the ability to generate a 307 

SVM curve helps minimize inclusion of low confidence hits, which moderately affected multiple 308 

readouts. Finally, we evaluated the performance of the ζ statistic on different numbers of 309 

functional readouts. Using true positives (siPTBP1) and high confidence hits based on using all 310 

AS readouts as the reference sets, we tested whether ζ was able to detect these 'reference' genes 311 

using fewer readouts and found that ζ was able to identify over 80% of these 'reference' genes 312 

when the readout size reaches 200 or greater (Supplementary Fig. 4g). This information offers a 313 

general guide to designing future two-dimensional genome-wide screens. 314 
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 315 

 Application of ZetaSuite to understand core fitness genes in cancer cells 316 

 Having established the general framework for the ζ statistic with our own splicing screen 317 

data, we next sought to test its general applicability to other large-scale data resources. DRIVE 10 318 

and DepMap 11 are representative of such data, both designed to determine cancer dependencies 319 

by transducing a large panel of cancer cell lines with pooled shRNAs and identify depleted 320 

shRNAs by deep sequencing to quantitatively report the essential function of their targeted genes 321 

in individual cancer cell lines. DRIVE tested more cell lines than DepMap (overlap=113, 322 

Supplementary Fig. 5a), whereas DepMap had more genes covered in its shRNA pools than 323 

DRIVE (overlap=7,081, Supplementary Fig. 5b). Thus, similar to our splicing screen data set, 324 

the first dimension consists of individual RNAi treatments and the second corresponds to 325 

multiple functional readouts (different AS events vs different cell lines). Additionally, similar to 326 

our experimental design, DepMap selected a set of known essential genes (n=210) 20 as positive 327 

controls and used non-expressed genes (n=855) as negative controls. We found that these 328 

controls are well separated based on t-distributed stochastic neighbor embedding (tSNE) 32 with 329 

both data sets (Supplementary Fig. 5c).  330 

For data analysis, DRIVE utilized RSA to rank order hits and ATARiS to eliminate 331 

shRNAs that may cause off-target effects. A gene was considered essential if RSA>= -3 in >50% 332 

of the cell lines tested. In contrast, DepMap removed off-target effects with DEMETER and 333 

selected top hits showing 6 standard deviation (SD or σ) or greater in any cell line tested for 334 

further pathway analysis. As we demonstrated in treating our two-dimensional splicing screen 335 

data, an arbitrary cutoff would always present a trade-off between sensitivity and specificity, and 336 

even with the most extreme cutoff like 6σ, experimental noise would still become accumulated 337 
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with the increasing number of readouts scored in a screen. We thus introduced a general 338 

parameter in ZetaSuite, the Screen Strength (SS), to compare between different screen results. 339 

 Here, we processed the data from DepMap and DRIVE with the ZetaSuite pipeline (see 340 

Supplementary Fig. 1b). Although DRIVE and DepMap mainly determined cancer dependencies 341 

by scoring depleted shRNAs, we wondered whether the data sets also contain useful information 342 

on enriched shRNAs, which would be indicative of some opposite functions to cancer 343 

dependency, referring here to as cancer checkpoint. To simplify the comparison between the two 344 

data sets, we chose to start with the processed data with potential off-target effects already 345 

removed to quantify depleted and enriched shRNAs. We then plotted the DepMap and DRIVE 346 

data in both directions in the full range of cut-offs. As expected, positive controls and non-347 

expressors are well separated in both data sets in the direction of cancer dependency (Fig. 5a). 348 

We next calculated the weighted ζ-score for each tested gene in both data sets and then displayed 349 

the data in the Screen Strength plot (Fig. 5b), from which we determined two balance points 350 

(BP1 and BP2) for cancer dependency in both data sets. To identify genes involved in cancer 351 

checkpoint, we unable to derive any balance point with the DepMap dataset, likely due to 352 

scattered data from a relatively smaller number of cell lines surveyed (Fig. 5b), and for DRIVE, 353 

we only used the most stringent cutoff at BP2 to select hits (Fig. 5c).   354 

Based on the selected BP1 and BP2, we found that the majority of positive controls were 355 

included in both data sets, suggesting that ZetaSuite-suggested cutoffs are able to encompass the 356 

majority of cancer dependencies, even at BP2 (Fig. 5d). Since DepMap only focused on specific 357 

cancer dependencies by requiring 6σ, we compared ZetaSuite-identified hits with DRIVE-358 

defined essential genes and previously annotated essential genes 33, and based on BP2, we found 359 

that ZetaSuite identified more hits than previous analyses (Fig. 5e). Moreover, none of those 10 360 
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DRIVE hits (Fig. 5e, blue) missed by ZetaSuite are part of the annotated essential genes. Despite 361 

the significantly enlarged hit size, enriched Gene Ontology (GO) terms, KEGG pathways and 362 

Complexes annotated in the CORUM database 34 associated with newly identified hits are 363 

similar to those deduced earlier based on much more stringent cutoffs, with top ranked terms 364 

linked to key housekeeping activities, such as DNA replication, Splicing, Cell cycle, RNA 365 

transport, Ribosome biogenesis, etc. (Supplementary Fig. 5d,e,f). Additionally, we noted that 366 

these newly identified hits were largely anti-correlated with AGO2 expression and copy number 367 

variation (CNV) (Supplementary Fig. 5g), as reported earlier with the DRIVE dataset 10. 368 

Conversely, 8 out of 10 hits identified by DRIVE but missed with ZetaSuite lack the anti-369 

correlation with both AGO2 expression (Supplementary Fig. 5g, left) and AGO2 CNV 370 

(Supplementary Fig. 5g, right). Together, these data demonstrated the effectiveness and 371 

objectiveness of ZetaSuite in identifying cancer dependencies from previous large-scale screen 372 

data. 373 

 374 

Biological insights into cancer dependency  375 

 The expanded list of cancer dependencies enabled us to gain further insights into critical 376 

cancer development pathways compared to those already recognized from previous analysis with 377 

the limited set of genes.  For example, based on similarities among different DRIVE cancer cells, 378 

we were able to deduce 7 clusters by t-SNE plotting and draw the global network based on 379 

regulation similarity for total hits that passed the BP1 threshold (Fig. 6a).  One of these gene 380 

networks is enriched in components of the transcription mediator complex and Pol II, all 381 

connected to the well-known oncogene MYC (Fig. 6b), consistent with the known function of 382 

MYC in transcriptional control 35.  Interestingly, MYC inhibition showed the most dramatic 383 
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impact on rhabdoid cancer cells (Supplementary Fig. 6a), which is in agreement with a recent 384 

observation that MYC inhibition effectively restricted rhabdoid tumor growth in vivo 36. In this 385 

MYC dependency plot, we also noted significant MYC dependency in multiple myeloma (MM) 386 

cancer cells, which is in line with frequent 8q24 translocation that leads to MYC overexpression 387 

in MM cancers 37. 388 

We also detected two separate clusters connected by ATR, a key regulator of genotoxic 389 

stress. One cluster includes various genes involved in G1/S transition and modulation of DNA 390 

topology and the other encompasses genes critical for DNA replication/repair (Fig. 6c). This is 391 

consistent with the existing literature on the function of ATR in connecting genotoxic stress to 392 

cell cycle control 38.  Interestingly, we noted several splicing regulators (i.e., SRSF1 and SRSF2) 393 

in these clusters, both being previously implicated in inducing aberrant R loops that led to ATR 394 

activation 39. This has been suggested as a key mechanism underlying Myelodysplastic 395 

Syndromes (MDS), a pre-leukemia that can rapidly progress to acute myeloid leukemia (AML), 396 

thus explaining greater ATR dependency in leukemia than most other cancer types 397 

(Supplementary Fig. 6b). These data further demonstrated the utility of the ZetaSuite in 398 

analyzing the DRIVE and DepMap datasets to mine important cancer pathways. 399 

 400 

Genes involved in global cancer checkpoint 401 

 One of the most significant advances in further mining the DRIVE dataset with ZetaSuite 402 

is the discovery of genes whose depletion appears to promote tumor growth (i.e., those deduced 403 

from enriched shRNAs). Strikingly, GO term analysis of these genes revealed that the vast 404 

majority of them are involved in DNA checkpoint control (Fig. 6d). Previously, genes involved 405 

in cancer dependencies were cross analyzed with copy number variation (CNV), gene expression, 406 
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or mutation frequencies, revealing their association with low CNV and low expression, which 407 

has been referred to as CYCLOPS genes 40. We also confirmed this finding with ZetaSuite-408 

identified cancer dependencies (Supplementary Fig. 6c). We performed a similar analysis on 409 

cancer checkpoint genes and identified 9 major clusters (Fig. 6e). Contrary to core fitness genes, 410 

much fewer cancer checkpoint genes were associated with CNV, altered expression, or mutation 411 

in DRIVE cell lines.   412 

 Several typical tumor suppressors were identified as strong cancer checkpoints in this 413 

feature association analysis, including TP53 (encoding for p53) 41 and its transcription target 414 

CDKN2A (encoding for the cell cycle inhibitor p16) 42 and CDKN1A (encoding for the cell cycle 415 

inhibitor p21) 43.  Interestingly, MDM2, an E3 ligase for p53, was also identified as a cancer 416 

checkpoint gene (Fig. 6e). The similarity network clearly reflected the antagonizing function 417 

between TP53 and MDM2 (Fig. 6f). In fact, while wildtype TP53 always gave rise to a positive 418 

dependency score, reflecting its tumor suppressor function, mutant TP53 produced a negative 419 

cancer dependency score, indicating its oncogenic role in those tumor cells (Fig. 6g,h), which is 420 

in full agreement with the known functions of wildtype and mutant p53 in tumorigenesis 44. Most 421 

interestingly, as exemplified with MDM2, we observed that multiple cancer checkpoint genes are 422 

also linked to either low CNV or low expression (see Fig. 6e), suggesting that the CYCLOPS 423 

phenomenon also applies to some key cancer checkpoints. MDM2 was also connected to a 424 

cluster of genes functioning in cell differentiation, endocytosis, cell death and response to 425 

oxidative stress, consistent with the role of MDM2 in regulating the transition from proliferation 426 

to differentiation 45 and in the cellular response to oxidative stress 46.  427 

 In the elucidated p53 subnetwork, TP53BP1 and ATM activate TP53, which in turn 428 

activates CDNK1A (Fig. 6f).  Besides these known functional connections, we also identified 429 
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various genes without prior connection to the p53 pathway, such as PCOLCE and CACNA1I. As 430 

an extracellular matrix protein and a major regulator of fibrillar collagen biosynthesis, disruption 431 

of PCOLCE has been reported to induce cell growth in cultured fibroblasts, suggesting a role in 432 

cell proliferation control 47.  CACNA1I, a gene involving controlling voltage-gated calcium 433 

channels, was significantly down regulated in brain tumors compared to surrounding normal 434 

tissues (Fig. 6i) and patients with low CACNA1I expression were associated with poor prognosis 435 

based on the TCGA database (Fig. 6j). The newly discovered connection of this and other critical 436 

genes with the p53 pathway will fuel future studies on tumorigenesis. 437 

Last, but not least, further analysis of the newly identified cancer checkpoints revealed 438 

several major regulatory gene networks based on their similarities among different DRIVE cell 439 

lines (Supplementary Fig. 6e). Besides those critical for cell aging, such as TP53, CDKN2A, 440 

BGLAP, CDKN1A, as described above, we also noted gene networks for phosphorylation 441 

regulation (e.g., MAP3K9, TAOK1, ROCK1/2), GTPase activities (e.g., EPHA5, TBC1D3D, 442 

RND3), and DNA packaging (e.g., HIST1H2BN, HIST1H2BL/H/C). These findings not only 443 

support the documented roles of specific MAPK and Rho GTPase pathways in coordinating 444 

regulated tumor growth 48,49, but also raise a new paradigm regarding how DNA packaging 445 

proteins may promote tumor growth. Collectively, this functional connectivity map provides 446 

critical insights into the involvement of an elaborated gene network in checkpoint control, which 447 

may be critical for long-term cell survival, even among cancer cells. 448 

 449 

Discussion 450 

The increasing power and decreasing cost with deep sequencing technologies have 451 

enabled multi-dimensional analyses of gene expression.  By coupling high throughput screening 452 
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with high throughput sequencing (HTS2), it is possible to utilize a specific set of genes as a 453 

surrogate for specific cellular activities in chemical and genomic screens 8,9.  By monitoring 454 

hundred or even thousand functional readouts, such “ultrahigh-content” screens offer numerous 455 

advantages over traditional one-dimensional screens, among which include the ability to deduce 456 

gene networks directly from the primary screen results and the feasibility to perform a drug 457 

screen without relying on a pre-defined druggable target 8,9. More recently, we have extended the 458 

HTS2 approach to a genome-wide screen by scoring hundreds of alternative splicing events to 459 

identify global splicing regulators 23, illustrating a two-dimensional screen strategy that can be 460 

adapted to study many different paradigms in regulated gene expression. 461 

This added dimension also requires a coordinated effort in developing a suitable 462 

statistical model for data analysis. We therefore developed a new ζ statistic, and using our in-463 

house HTS2 data on global splicing regulators, we demonstrated that ζ outperforms all existing 464 

strategies based on hit ranking and aggregation, such as RSA 16, RIGER 17 and MAGeCK 18 , all 465 

of which are based on the null hypothesis that most of screened genes are non-hits. These 466 

existing methods are thus not suitable for analyzing data from secondary screen or using pre-467 

selected candidates. In contrast, the ζ statistic can be broadly used to process two-dimensional 468 

data, which only requires a large number of negative controls. Interestingly, as demonstrated in 469 

the current study, non-expressed genes can be considered a large set of internal negative controls. 470 

In ZetaSuite, we also introduce the Screen Strength to measure the success of a given screen and 471 

compare between screens. 472 

 Off-target effects represent a major problem in genome-wide screen with siRNAs, 473 

shRNAs, or sgRNAs. To reduce the impact of off-target effects, one strategy is to increase the 474 

number to targeting RNAs (up to 50 per gene) to target each gene 50. Multiple algorithms have 475 
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been developed to remove potential off-target effects. For example, ATARiS was developed 476 

based on the assumption that multiple on-targeting RNAs would give rise to similar results while 477 

off-targeting RNAs would each cause a distinct non-specific effect 19. This assumption has the 478 

potential to retain off-targeting hits if multiple targeting RNAs cause similar non-specific effects, 479 

for instance, due to commonly induced cellular stress. In comparison, DEMETER 11 or its 480 

recently refined version DEMETER 2 20 filter out off-targeting effects based on the assumption 481 

that off-targets likely result from the sequences in the “seed” region to cause microRNA-like 482 

effects on other genes. This assumption may not be reliable because of the very relax “seed rule” 483 

and various miRNA-like effects induced by sequences outside the seed region 21. In contrast to 484 

these existing approaches, ZetaSuite eliminates off-targets based on two criteria, one on the 485 

functional similarity and the other on the sequence complementarity between a targeting RNA 486 

and an off-targeted transcript. Interestingly, by leveraging the results from the secondary screen, 487 

we found that a single siRNA in a pool is often responsible for the off-targeting effect of that 488 

pool and the same siRNA also shows the complementary sequence to the predicted off-target. 489 

Our strategy thus enables the utilization of traditionally designed arrayed libraries for two-490 

dimensional genome-wide screens.  491 

After demonstrating the power of the new ζ statistic to rank order global splicing 492 

regulators and revealing a predominant role of the core splicing machinery in the regulation of 493 

alternative splicing, we further took the ZetaSuite to re-analyze the large-scale data from public 494 

DRIVE and DepMap cancer dependency projects, which were designed to tackle cancer 495 

dependencies. Interestingly, prior efforts in analyzing these datasets have been primarily focused 496 

on cancer dependencies, revealing various gene networks critical for cancer cell survival. DRIVE 497 

defines cancer dependency by requiring RSA>= –3 on >50% of cell lines surveyed while 498 
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DepMap paid attention on specifically regulated hits with 6σ or greater. These definitions appear 499 

to be relatively arbitrary and unnecessarily too stringent without fully exploring the power of 500 

such large-scale datasets. By revisiting these data with the newly developed ZetaSuite, we have 501 

now elevated cancer dependencies by several folds, leading to the elucidation of several new 502 

critical gene networks contributed by some well-established oncogenes and tumor suppressors, 503 

such as MYC, ATR, and TP53. These discoveries potentiate further dissection of these 504 

fundamental oncogenic pathways. 505 

  Perhaps the most intriguing observation from analyzing the DRIVE dataset is the 506 

identification of genes whose depletion appears to accelerate cancer cell proliferation, at least 507 

transiently during the treatment period. Strikingly, the vast majority of these hits function in 508 

various DNA checkpoint pathways, which we refer to as cancer checkpoint, opposite to cancer 509 

dependency. Interestingly, we note that some of those cancer checkpoints are also linked to CNV 510 

and low expression, and although less prevalent compared to cancer dependencies, this 511 

observation suggests that genes involved cancer checkpoints are also related to the phenomenon 512 

of CYCLOPS 40. Such depletion-induced cell proliferation may allow cancer cells to temporally 513 

escape DNA checkpoint control, indicating that various cancer cells still retain such programs to 514 

protect their unstable genomes from becoming further deteriorated. In this regard, the exposure 515 

of these new cancer vulnerabilities may aid in the development of new cancer therapies, as 516 

exemplified by using ATR inhibitor to treat MDS 51.  517 

 518 

Methods 519 

ZetaSuite is designed to address challenges in analyzing two-dimensional high 520 
throughput data. Supplementary Fig. 1b provides an overview of the flow chart, as individually 521 
detailed below. 522 
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ZetaSuite Part 1:  523 

Data preprocessing 524 

Before running the main ZetaSuite procedure, raw data are first filtered to remove low-525 
quality samples (columns) and readouts (rows) in the data matrix to minimize false positives. 526 
The default threshold is set to remove a row or a column if the number of drop-outs (missing 527 
values; in our study, a value is missing if one of the mRNA isoforms is undetectable) is larger 528 
than the value of Q3+3*(Q3-Q1) where Q1 and Q3 are lower and upper quartile, respectively. The 529 
remaining data are processed with the KNN-based method to estimate the missing values with 530 
the parameter k=10.  531 

ZetaSuite Part 2: 532 

QC evaluation 533 

Quality Control (QC) is a critical step in evaluating the experiment design. For all two-534 
dimension high throughput data, t-SNE plot 32 is first used to evaluate whether features are 535 
sufficient to separate positive and negative controls. The SSMD score 14 is further generated for 536 
each readout to evaluate the percentage of high-quality readouts. In our case, the data will be 537 
further processed if >5% of reads are of the SSMD score >2. 538 

Conversion of input matrix to Z-score matrix  539 

After data pre-processing, the initial input matrix is arranged in N x M dimension, where 540 
each row contains individual functional readouts against a siRNA pool and each column 541 
corresponds to individually siRNA pools tested on a given functional readout.  Readouts in each 542 
column may be thus considered as the data from one-dimensional screen (many-to-one), and thus, 543 
the typical Z statistic can be used to evaluate the relative function of individual genes in such 544 
column. The conversion is repeated on all columns, thereby converting the raw activity matrix 545 
into a Z-score matrix. Suppose Nij are the values in the original matrix i (1≤ i ≤ N siRNA pool) 546 
row and j (1≤ j ≤ M readout) column, then 547 

��� �
���  �  ��

��

 

Where ��  and ��  are the mean and standard deviation of negative control samples in column j.   548 

Generation of Zeta plot 549 

The x-axis in the Zeta plot shows a series of Z-score cutoffs in two directions (in our case, 550 
induced exon skipping in the positive direction and inclusion in the negative direction) and the y-551 
axis is the percentage of readouts survived at a given Z-score cutoff over the total scored 552 
readouts.  553 
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To generate this plot, the range of Z-scores is first determined by ranking the absolute 554 
value of total Zij (Z-score value in row i and column j) from the smallest to the largest (|��|, 555 

|��|, …|����|, |��|, |����|, …,|��� 	|
,
where

 
|����|≤|��|≤|����| and i here is the rank number). To 556 

exclude insignificant changes that may result from experimental noise (|Z|<2, which equals to p-557 
value>0.05), Z-cutoffs are selected in the range of [-|�
� � 	 � �.


�|, -2] in the negative direction 558 
and [2, |�
� � 	 ��.


�|,] in the positive direction. The Z range in both directions is next divided 559 
into 100 bins (B = ���,��, … , �� , … , ����� , where �� 	 
���� � ����� 
 ����� � �� 
560 
1�/100, ���� � ����� 
 ����� � ���/100�; ���� is either  [- |�
� � 	 � �.


�|  or  561 |�
� � 	 ��.


�| and ���� is either -2 or 2) and the percentage of readouts scored above the Z-562 
cutoff in each bin is determined.  563 

Calculation of ζ and weighted ζ score 564 

When a screen includes a large number of both negative and positive controls, these 565 
controls are all displayed in a Zeta plot. Radial kernel SVM is next constructed to maximally 566 
separate positives from negatives in the prior defined Z range using e1071 packages of R. To 567 
avoid overfitting, it is important to use an independent dataset, such as non-expressors as internal 568 
negative controls, to confirm the deduced SVM. To provide a value to represent the regulatory 569 
function of gene i that generates a curve above the SVM curve, the area between the two curves 570 
is calculated as the Zeta score (ζ) for this gene.  To highlight hits scored at higher Z score bins, 571 
the area in each bin is multiplied with the value of Z in such bin and all adjusted areas are 572 
summed to give rise to the final weighted ζ score: 573 

 574 

�� 	 � ����� �  �
����

������

 

 575 
Where the ����� is the area in the specific ����: 576 

 ����� 	  � ��������������������������

�
  ;  �� � ��� �  �� ! �"��� � "��

 0                                               ; �� � ��� �  �� # �"��� � "��     $ 577 

Where the  � and  ��� are the y-axis values of gene i in the Zeta plot whereas  "� ��% "��� 578 
are the y-axis values on the SVM curve, both at ���� and ������; step is the bin size which 579 
equals to ����� 
 �����/100. 580 

 With certain screens without any positive controls, it will be impossible to generate a 581 
SVM curve to help eliminate experimental noise. In these applications, it is still possible to 582 
calculate a ζ score for each gene by determining the �����  under the gene-specific curve at 583 ����: 584 

����� 	  �� ��� �  �� & '(�)
2         
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Where the  �,  ��� and step are the same as those with the Area with a SVM curve. 585 

Although ζ scores are separately generated in our application to quantify the contribution 586 
of a given gene to exon inclusion or skipping, the absolute values of these ζ scores may also be 587 
summed to reflect the global activity of such gene in regulated splicing. ZeteSuite generates this 588 
summed value as the default data output unless users select “-c no” to separately generate two 589 
ζ scores in opposition directions. 590 

Screen Strength and determination of the threshold for hit selection 591 

The ζ scores can be used to rank genes and the next important step is to define a suitable 592 
cutoff to define hits at different confidence levels. For this purpose, the concept of Screen 593 
Strength is first introduced:     594 

"" 	 1 
 �+,-
�+,- 

Where aFDR (apparent FDR) is the number of non-expressors identified at hits divided by the 595 
total number of hits and bFDR (baseline FDR) is the total number of non-expressors divided by 596 
all screened genes.  597 

Next, the Screen Strength plot is generated: ζ scores are first divided into 100 even bins 598 
from the smallest to the largest and the SS value is determined at each bin. Connecting individual 599 
SS values then generates a simulated SS curve, based on which to deduce individual balance 600 
points (BPs). Users may choose one or multiple BPs to identify hits at the different SS intervals. 601 

ZetaSuite Part 3: 602 

Removing off-targeting hits  603 

In the genome-wide screening, siRNAs were designed to specifically degrade mRNA 604 
transcripts of complementary sequence to reduce the expression of gene products. In practice, 605 
these reagents exhibit a variable degree of suppression of the targeted gene and may also 606 
suppress genes other than the intended target. The reagent’s phenotypic effects resulting from 607 
suppression unintended genes was called off-target. The reason to off-targets is due to the part-608 
sequence complementary such as the microRNA-like off-targeting. And the consequence of off-609 
targets is the phenotype or the effects on the readouts mainly due to off-targeting to a function 610 
gene. Multiple methods have developed to deal with the off-targeting problem based on the 611 
reason (refer DEMETER2) and consequence (refer ATARiS). Different from the many-to-one 612 
traditional screening data, the HTS2 can better evaluate the phenotype consistency by comparing 613 
the similarity effects on all the readouts. Based on these conditions, we defined the off-targeting 614 
hits by combine the off-targeting reason and consequence together by comparing the hits with 615 
user-defined well-known genes or total-defined hits) the off-targeting genes should have one of 616 
the targeting RNAs targeted to the well function genes (at least 11nt complementary sequence in 617 
the targeting RNA). 2) they should show high similarity on the readouts’ effects with targeted 618 
well function genes (Pearson correlation score > 0.6).  619 
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Functional interpretation of identified hits 620 

Based on selected hits, ZetaSuite combine two gene function databases to interpret the 621 
functions. One is Gene Ontology database, we used ClusterProfiler to enrich hits on the GO 622 
terms. The top 15 GO terms with lowest adjust p-values were presented. The other is the 623 
CORNUM complex databases, we annotated the hits to the complexes. The top 15 complexes 624 
with highest hits’ number were gave. If the complexes number were lower than 15, the 625 
complexes with hits’ number larger than 3 would be outputted. 626 

Network construction 627 

We modified the SC3 method by using the absolute values of Spearman and Pearson 628 
correlation score to calculate the distance matrix and then used it to do the clustering. After SC3 629 
analysis, each gene pair has a consensus score, which measures the regulation strengths. The 630 
consensus scores were then used as the edge weights. Gene-gene similar correlation and anti-631 
correlation were annotated as different edge types. The nodes in the network represent the hits 632 
identified by ZetaSuite pipeline. Larger nodes’ size means larger ζ value. The color of the nodes 633 
act for the clusters based the SC3 calculation. Cluster number was chosen based on the total 634 
within-cluster sum of square “elbow” site. The resultant hit networks were visualized with Gephi 635 
by using a Yifan Hu Proportional layout. Disconnected nodes were then trimmed from the graph 636 
before generating the plots. 637 

Other experimental procedures 638 

Testing the multiple testing correction methods on error rate reduction 639 

The multiple testing correction methods, as FDR, Bonferroni correction etc., are 640 
frequently used to reduce error accumulation in multiple hypothesis testing. However, it can only 641 
be used to deal with the data from one-dimensional screens, but not suitable for two or multiple 642 
dimensional screens. To further test this, a common cutoff is Z>=3 or <= –3, and thus, the 643 
estimated false positive level (p-value) is below 0.01, meaning that for each readout, a given 644 
siRNA has 1% chance to be identified as a false positive hit. For all conditions, we did ~15,000 645 
tests for each readout, and using the most stringent Bonferroni correction, we obtained a 646 
corrected p-value of 0.01/15000=6.67x10-7 and a corresponding Z=4.97. Now using Z=4.97 as 647 
the corrected cutoff to choose hits, we found that the false positive level was still as high as 648 
24.9%. We therefore concluded that such canonical multiple testing correction methods are not 649 
sufficient to reduce the accumulation of errors with increasing readouts in two-dimensional high 650 
throughput screens. 651 

Evaluating the optional number of functional readouts in two-dimensional screen 652 

Positive controls and high-confidence hits, the latter of which are defined based on total 653 
readouts, are used as references in our evaluation. The number of readouts is progressively 654 
down-samples to 50, 100, 150, 200, 250 and 300 using R Sample function without replacement 655 
and each specific number of down-sampled readouts are replicated 3 times. Down-sampled 656 
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matrixes are processed using the same ZetaSuite pipeline. Hits from down-sampled matrixes are 657 
used to determine the percentage of the hits over the reference sets.  658 

Analysis of the splicing screen data with RIGER 659 

 RIGER was originally developed to identify essential genes in genome-scale shRNA 660 
screens 17. In RIGER, the signal-to-noise ratio is entered as input, which is now replaced with the 661 
Z-scores for individual alternative splicing readouts. The data are then processed with the latest 662 
version of RIGER (2.0.2) from the website as provided in the source table above. Default RIGER 663 
parameters are used in all steps, except that the number of permutations is set to 100,000 to 664 
obtain a more precise p-value for each pool of siRNAs. The FDR is computed from the empirical 665 
permutation p-values using the Benjamini-Hochberg procedure. This enables ranking of siRNA 666 
pools by FDR.  667 

Analysis of splicing screen data with RSA 668 

RSA is a probability-based method to identify hits, requiring data generated with multiple 669 
targeting siRNAs against each gene 16. In RSA, fold-changes of treated over control samples are 670 
entered as input.  In our application, the inputs are fold-changes of the splicing ratio of a given 671 
alternative splicing event in a siRNA pool-treated well divided by the averaged splicing ratio 672 
from NS-mix treated wells. The entered data are processed with the latest RSA software, as 673 
specified in the source table above. The following parameters -l 0.2 -u 0.8 and -l 1.2 -u 2.0 are 674 
used to select hits for induced exon inclusion and skipping, respectively.  675 

Analysis of splicing screen data with MAGeCK 676 

MAGeCK is a statistical method designed to quantify the collective activity of multiple 677 
siRNAs against each gene by using the robust rank aggregation (RRA) algorithm 18. In order to 678 
meet the MAGeCK input requirement, each Z-score in the ZetaSuite input matrix is first 679 
converted to p-value.  The input data are processed with the modified RRA algorithm, as in 680 
MAGeCK, with default parameters.   681 

Processing DRIVE and DepMap cancer dependency datasets 682 

The DRIVE and DepMap data already processed with DEMETER2 are downloaded from 683 
https://depmap.org/portal/download/.  DepMap generated 3 independent datasets. In order to 684 
avoid experimental variations in different datasets, only the biggest DepMap dataset is selected 685 
for current analysis, which includes 285 cancer cell lines across approximately 100k shRNAs. 686 
ZetaSuite is applied to this dataset to calculate weighted ζ-scores with the parameters -z no –svm 687 
no and -c no.  688 

Feature association analysis on cancer dependencies and checkpoints 689 

To analysis association with CNV or gene expression, cancer cell lines are ranked based 690 
on the levels of CNV in a given gene or expression of the gene. Cancer dependency scores are 691 
next compared between cell lines in top 25% versus bottom 25% and Wilcox-test is performed to 692 
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determine the p-value for the gene. To analysis association with mutations, cancer cell lines are 693 
divided in two groups with or without mutation in each gene. The cancer dependency scores are 694 
next compared between these two groups and Wilcox-test is performed to generate the p-value 695 
for the gene. 696 

 697 

Data and code availability 698 

The datasets used to evaluate the existing and new designed methods are available at the 699 
website:XXX. The open source ZetaSuite is freely available at website XXX . We will update 700 
this website periodically with new versions. 701 
 702 
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Figure 1 

 

Figure 1. Overview of the ZetaSuite workflow 
 
a, Two-dimensional screens include high throughput screen by high through sequencing (HTS2), 
high-content screen, parallel genome-wide screens, etc. ZetaSuite uses the raw matrix as input to 
calculate ζ score. b-g, Key steps in the ZetaSuite software from generating initial ζ scores (b) to 
deducing hits by using negative and positive controls to derive a support vector machine (SVM) 
learning curve (c) to calculating weighted ζ scores (d) to determining the Screen Strength (e) to 
filtering out off-targets (f). The resulting data are used to construct regulatory gene networks 
based on functional similarities (g).        
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Figure 2 

 
 
Figure 2. Increasing readout number leads to diminishing screen specificity with common 
statistical approaches 
 
a-b, The distribution of Z-scores based on 5 randomly selected alternative splicing (AS) events 
monitored in our screen (a) or all AS events measured (b) in response to siRNAs against 50 
randomly selected non-expressed genes. The AS event was marked as red if the Z-score is >=3. 
c-d, The Specificity based on common cutoffs (c, Z>=3) or SSMD (d, SSMD>=2) when 
different numbers of AS events were monitored. The specificity (defined by 1 minus the number 
of non-expressors scored as hits over the total number of non-expressors) is the mean value of 50 
replicates under each condition. e, Illustration of the principal theory to determine hits based on 
RSA, MAGeCK and RIGER. Induced changes in AS are first ranked and the effects of knocking 
down a given gene on individual AS events are displayed as red bars.  A hit would show 
enriched AS events in one direction (top) while a non-hit would display a relatively random 
distribution (bottom). f-g, The distribution of induced AS events (based on Z-scores of induced 
exon skipping from left to right at top or induced exon inclusion from right to left at bottom) in 
response to knockdown SF3B1 (f) or SRSF2 (g). h, The false discovery rate (FDR=FP/(FP+TP)) 
at different cutoffs with different methods.  The FDRs at x-axis were calculated by different 
methods (RSA, RIGER and MAGeCK). The FDRs at y-axis were deduced based on the non-
expressors and build-in positive controls (siPTBP1). False Positive (FP): non-expressors; True 
Positive (TP): siPTBP1-treated samples.  
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2021. ; https://doi.org/10.1101/2021.08.29.458095doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.29.458095
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38

 

Figure 3 

 

Figure 3. The ζ statistic and comparison with several key existing statistical approaches 
 
a, At each Z-score bin over a full Z-range, the level of hits (expressed as the percentage of 
induced AS events over the total number of AS events monitored) is plotted with 10 
representative splicing regulators (individually colored) compared to 10 non-expressors (grey).  
Left and right separately plot induced exon inclusion and skipping events. b, At each Z-score bin 
over a full Z-range, the level of hits in response to siPTBP1 (purple) or negative controls (NS-
mix, green). An optimal SVM curve (red) is derived to maximally distinguish between true 
positives (siPTBP1) and true-negatives (NS-mix). c, Calculation of a weighted ζ-score based on 
the area between the specific Z-score line of a gene (black) and the SVM curve (red). At each Z-
bin, the area is multiplied by the Z-value, thus giving increasingly weights (purple) to hits at 
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higher Z-scores. d, The distribution of weighted ζ-score for annotated core spliceosome 
components among top 350 high-ranking genes. The top 10 high-ranking genes are enlarged 
(top). Only DEFB131A doesn’t belong to core spliceosome, which was later determined to result 
from off-targeting to SF3B1 (see Supplementary Fig. 4c). e-f, The ROC (e) and PRC (f) curves 
are deduced using different methods. Weighted ζ-score in two directions calculated by ZetaSuite 
are combined in this analysis to reflect the overall functional consequence. This is not applicable 
to other methods, and we thus display the data separately. g, The summary of the areas under all 
deduced ROC and PRC curves using different methods. 
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Figure 4 

 

 
Figure 4. Hit selection based on Screen Strength and strategy to filter out off-target effects  
 
a, The comparison of the Screen Strength before (blue) and after (red) filtering out off-targets. 
BP: balance point. Note that the Screen Strength based on the threshold defined by the 
commonly used balanced error level (BRL) approach is also indicated (see Supplementary Fig. 
4a).  Those between BP1 and BP2 are candidate hits and those after BP2 are high confidence hits. 
b, Weighed ζ-scores of expressed and non-expressed genes. A specific region is enlarged on the 
right for comparative purpose. bFDR: baseline FDR. BP1 and BP2 are according to those 
defined in a. c, Strategy to filter out off-target effects based on similarity in response and 
sequence complementarity. d, Comparison of AS events responsive to knockdown of SNRPA1 
and SF3B1 or SNRPB and FCHO1 in primary screen. Pearson correlation score is indicated in 
each case. e, Comparison of AS events responsive to knockdown of the siRNA pool vs 
individual siRNAs against SNRPA1 or SF3B1 in the secondary screen. The third row shows the 
comparison between the siRNA pool against SF3B1 and individual siRNAs against SNRPA1. f, 
The sequence of a single siRNA targeting FCHO1 is aligned with its potential off-target on the 
SNRPB transcript. g, Comparison of AS events responsive to knockdown of the siRNA pool vs 
individual siRNAs against FCHO1 or SNRPB in the secondary screen. The third row shows the 
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comparison between the siRNA pool against SNRPB and individual siRNAs against FCHO1. 
Red highlights the predicted off-targeting siRNA. 
 
Figure 5 
 

 
 
 

Figure 5. Application of ZetaSuite to mine core fitness genes in cancer cells 

a, At each gene dependency bin over a full range of gene dependency scores, the percentage of 
cell lines responsive to knockdown of individual annotated essential genes (orange dots) or non-
expressed genes (blue dots) based on the DepMap (top) and DRIVE (bottom) datasets. b-c, 
Screen Strength plot at different cutoffs for cancer dependency (left) or cancer checkpoint (right) 
deduced from the DepMap (b) or DRIVE (c) dataset. Because of scattered data, balance point 
could not be determined in the DepMap dataset. The two balance points (BP1 and BP2) in the 
DRIVE dataset are marked (c). d, Hits for cancer dependency above the threshold defined by 
BP1 or BP2 based on the data from DepMap (left) or DRIVE (right). e, Comparison of cancer 
dependencies deduced in the DRIVE project with those newly determined with ZetaSuite and 
previously annotated essential genes. 
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Figure 6 
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Figure 6. Biological insights from identified cancer dependencies 
 
a, Cluster (left) and global network (right) for cancer dependencies determined by ZetaSuite 
from the DRIVE dataset. b-c, MYC-associated sub-network, highlighting its connectivity to 
Mediators and Pol II components (b), and ATR connectivity to sub-networks associated with 
genes involved in DNA conformation or DNA replication/repair (c). Colors correspond to 
different clusters defined in a. d, Functionally enriched GO term biology pathways for cancer 
checkpoint hits based on the DRIVE dataset. Shown are top 15 GO terms with smallest adjust p-
values. e, The association of ZetaSuite-identified cancer dependencies with gene expression, 
copy number and mutation features. For each gene, cancer cell lines were firstly ranked based on 
the levels of CNV or gene expression, and the cancer dependency scores were then compared 
between cell lines in top 25% versus bottom 25%. The p-value (y-axis) for each gene in this 
comparison was determined by Wilcox-test. In addition, for association analysis with mutations, 
cancer cell lines were divided in two groups with or without mutation for each gene, The cancer 
dependency scores were then compared between these two groups and the p-value (y-axis) in this 
comparison was determined by Wilcox-test. Some representative genes are highlighted in each 
feature group. Genes above the red dashed line have p-values<0.05. f, TP53-associated sub-
network. g, Averaged dependency scores for TP53 and MDM2 (top) and TP53 non-mutation 
frequency (bottom) in different cancer tissues. Tissues are ranked based on averaged TP53 
dependency scores. h, The TP53 gene dependencies in normal or mutated TP53 cell lines. *** 
p<0.001 based on Wilcox-test. i, CACNA1I gene expression in normal brain tissues (based on the 
GTEx database) and brain tumors (based on the TCGA database). *** p<0.001 based on Wilcox-
test. j, Kaplan-Meier survival curves of brain tumor patients associated with high or low 
CACNA1I expression. The dashed lines indicate the 95% confidence intervals. 
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