

1 **Biosynthetic gene cluster profiling predicts the positive association between antagonism and**
2 **phylogeny in *Bacillus***

3 **Authors:**

4 Liming Xia^{1§}, Youzhi Miao^{1§}, A'li Cao¹, Yan Liu¹, Zihao Liu¹, Xinli Sun¹, Yansheng Xue¹, Zhihui Xu¹,
5 Weibing Xun¹, Qirong Shen¹, Nan Zhang^{1*}, Ruifu Zhang^{2*}

6 **Affiliations:**

7 ¹Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation
8 Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving
9 fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China

10 ²Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute
11 of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing
12 100081, P. R. China

13 [§]Both authors contributed equally to this paper.

14 ***Corresponding authors:**

15 **Nan Zhang**, College of Resources & Environmental Sciences, Nanjing Agricultural University, 210095,
16 Nanjing, P. R. China E-mail: nanzhang@njau.edu.cn.

17 **Ruifu Zhang**, Institute of Agricultural Resources and Regional Planning, Chinese Academy of
18 Agricultural Sciences, Beijing 100081, P. R. China; E-mail: zhangruifu@caas.cn.

19 The authors declare no conflict of interest.

20 **Abstract:** Understanding the driving forces and intrinsic mechanisms of microbial competition is a
21 fundamental question in microbial ecology. Despite the well-established negative correlation
22 between exploitation competition and phylogenetic distance, the process of interference
23 competition that is exemplified by antagonism remains controversial. Here, we studied the genus
24 *Bacillus*, a commonly recognized producer of multifarious antibiotics, to explore the role of
25 phylogenetic patterns of biosynthetic gene clusters (BGCs) in mediating the relationship between
26 antagonism and phylogeny. Comparative genomic analysis revealed a positive association between
27 BGC distance and phylogenetic distance. Antagonistic tests demonstrated that the inhibition
28 phenotype positively correlated with both phylogenetic and predicted BGC distance, especially for
29 antagonistic strains possessing abundant BGCs. Mutant-based verification showed that the
30 antagonism was dependent on the BGCs that specifically harbored by the antagonistic strain. These
31 findings highlight that BGC-phylogeny coherence regulates the positive correlation between
32 congeneric antagonism and phylogenetic distance, which deepens our understanding of the driving
33 force and intrinsic mechanism of microbial interactions.

34 **Keywords:** antagonism; biosynthetic gene clusters (BGCs); phylogenetic distance; *Bacillus*

35

36 **Introduction**

37 Microbes are naturally surrounded by taxonomically different ones with which they compete for
38 scarce resources and space¹. Competition between different species is generally categorized as
39 exploitation competition, which involves the rapid consumption of a limited resource^{2,3}, and
40 interference competition, which refers to direct antagonistic interactions⁴. Microbial antagonism is

41 driven by diverse toxins, such as broad-spectrum antibiotics and strain-specific bacteriocins^{5,6}, and
42 is recognized as a key element regulating populations and determining their success within diverse
43 communities⁷. The stunning diversity of both the categories and functions of antimicrobial
44 metabolites among different species, results in the extraordinary complexity of interference
45 competition between microbes with different phylogenetic relationships^{4,8}. Accordingly, illustrating
46 the driving forces and mechanisms of antagonistic competition is crucial for understanding and
47 predicting microbial behaviors during community assemblage and succession².

48 Phylogenetic relatedness is considered to be closely associated with microbial competition,
49 based on its determination of both primary and secondary metabolic profiles^{2,4}. Despite the well-
50 established negative correlation between exploitation competition and phylogenetic distance², the
51 process of interference competition is much more complicated and remains controversial. Russel et
52 al. demonstrated that inhibition was more prevalent between closely related bacteria, and this
53 negative correlation between antagonism and phylogeny was mediated by the overlap of the
54 metabolic niche among different strains⁹. Conversely, other studies examined congeneric
55 competition in *Vibrio* and *Streptomyces* and revealed that closely related strains competed less than
56 phylogenetically distant strains, which was probably caused by the effect of the prior coexistence
57 and distribution of secondary metabolites in different genomes^{7,10,11}. Additionally, the positive
58 relationship between kin discrimination and phylogeny was indicated within *Bacillus subtilis*, which
59 was modulated by genes involved in antimicrobials and cell-surface modifiers^{12,13}; however, this
60 correlation was lost or even became a certain extent of negative when more distantly *Bacillus* strains
61 were tested for antagonism, probably being dependent on the demand of protecting public goods¹⁴.

62 Taken together, the relationship between antagonism and phylogenetic distance with regard to
63 microbes from different taxonomical scale or groups, as well as the involved biological mechanism,
64 is still under debate, which limits both our understanding and application of these microbial
65 interactions.

66 Biosynthetic gene clusters (BGCs) are responsible for the production of various secondary
67 metabolites that contribute to interference competition between different microbes^{15,16}, and also
68 usually provide resistance against the self-produced antibiotic to protect the host cell^{4,17,18}. Although
69 the relevance (or lack of relevance) of BGCs to antagonism or phylogeny have been evaluated in
70 diverse microbes^{11,16,17,19-21}, the involvement of BGCs profile in mediating the relationship between
71 interference competition and phylogeny, has not been well addressed. Here, we hypothesize that
72 the correlation between BGC and phylogenetic distance can predict the pattern of congeneric
73 antagonism among different taxonomic groups, as strains possessing higher BGC similarity should
74 have a lower probability of inhibiting each other. To test this hypothesis, we referred to the Gram-
75 positive *Bacillus* as the target genus, which is a commonly recognized producer of multifarious
76 secondary metabolites^{16,19,22-25}, including non-ribosomal lipopeptides (e.g., surfactin, iturin, and
77 fengycin families produced by various species)²³, non-ribosomal polyketides (e.g., difficidin and
78 macrolactin produced by *B. amyloliquefaciens* and *B. velezensis*)¹⁹, peptide-polyketide hybrid
79 compound (e.g., zwittermicin produced by *B. cereus* and *B. thuringiensis*)²⁴, and ribosomally
80 synthesized and post-translationally modified peptides (RiPPs; e.g., lichenicidin produced by *B.*
81 *licheniformis*)²⁶. We attempted to address the role of the BGC-phylogeny relevance in shaping the
82 association between antagonism and phylogenetic distance based on comparative genomic analysis,

83 antagonistic assessments, and mutant-based verification. This study provides new insights to better
84 understand the driving force and mechanism of interference competition in microbial ecology,
85 which will allow us to better manipulate community assemblages for practical purpose.

86

87 **Results**

88 **Positive correlation between biosynthetic gene cluster (BGC) and phylogenetic distance in the**
89 **genus *Bacillus***

90 BGCs are responsible for the synthesis of secondary metabolites involved in microbial interference
91 competition. To investigate the relationship between BGC and phylogenetic distance within the
92 genus *Bacillus*, we collected 4,268 available *Bacillus* genomes covering 139 species from the NCBI
93 database (Table S1). Phylogenetic analysis based on the sequences of 120 ubiquitous single-copy
94 proteins²⁷ showed that the 139 species could be generally clustered into four clades (Fig. 1 & Table
95 S2; the phylogenetic tree including all the detailed species information is shown in Fig. S1), including
96 a *subtilis* clade that includes species from diverse niches and can be further divided into the *subtilis*
97 and *pumilus* subclades, a *cereus* clade that contains typical pathogenic species (*B. cereus*, *B.*
98 *anthracis*, *B. thuringiensis*, etc.), a *megaterium* clade, and a *circulans* clade.

99 Prediction using the bioinformatic tool antiSMASH¹⁵ detected 49,671 putative BGCs in the
100 4,268 genomes, corresponding to an average of 11.6 BGCs per genome (Table S3). The *subtilis* clade
101 had the most BGCs, 13.1 BGCs per genome, followed by the *cereus* and *megaterium* clades, while
102 the *circulans* clade only had 4.3 BGCs/genome (Fig. 2a; Table S4). The two most abundant BGC
103 classes were nonribosomal peptide-synthetase (NRPS) and RiPPs, which had an abundance of 3.7

104 and 3.1 per genome on average, respectively (Fig. S2 & Table S4). Interestingly, *subtilis* clade
105 accommodated significantly higher abundance of BGCs in other polyketide synthase (PKSother; 2.0
106 per genome vs. 0.0~1.1 per genome) and PKS-NRPS_Hybrids (0.7 vs. 0.0~0.2) classes, as compared
107 with the three other clades (Table S4); while *cereus* clade had more BGCs in RiPPs than other clades
108 on average (Table S4). Overall, the profile of BGC products and classification was generally
109 consistent with the phylogenetic tree (Fig. S3).

110 To further evaluate whether the diversity and concrete distribution of the BGCs among
111 genomes were relevant to the phylogenetic relatedness, we selected 545 representative *Bacillus*
112 genomes based on the following criteria: (i) high genome sequencing quality for further BGC
113 distance calculation, and (ii) covering all *Bacillus* species. We analyzed the interactive sequence
114 similarity network of BGCs in these genomes by using the "biosynthetic gene similarity clustering
115 and prospecting engine" (BiG-SCAPE)²⁸. The (dis)similarity of paired BGCs was calculated based on a
116 combination of three metrics, including the Jaccard index (JI), adjacency index (AI), and domain
117 sequence similarity (DSS), which resulted in 1,110 gene cluster families (GCFs) and 76 gene cluster
118 clans (GCCs) of the 4,877 putative BGCs (Tables S5 & S6). The hierachal clustering based on the
119 abundance of these GCFs among each genome (Table S7) indicated that, each phylogenetic
120 clade/subclade revealed its own distinctive BGCs distribution profile, and possessed a number of
121 taxonomy-specific secondary metabolites (Figs. 2b & S4; Table S5). The widespread BGCs in *cereus*
122 clade included fengycin, bacillibactin, bacteriocin, NRPS, and petrobactin, in which petrobactin was
123 a clade-specific BGC; polyoxygenpeptin, thurincin, and zwittermicin were also specific molecules but
124 were mainly present in a certain of *B. cereus* and *B. thuringiensis* genomes (Figs. 2b & S4). In *subtilis*

125 clade, most species possessed surfactin, fengycin, bacilysin, bacillibactin, and T3PKS, while each
126 group can also produce unique BGCs, such as betalactone for *B. pumilus*, subtilin and subtilosin for
127 *B. subtilis*, difficidin and macrolactin for *B. amyloliquefaciens* and *B. velezensis*, mersacidin,
128 plantazolicin, and plipastatin for a certain of genomes in the above two species, and lichenysin for
129 *B. licheniformis* (Figs. 2b & S4). Species in *megaterium* clade mostly accommodated siderophore,
130 surfactin, and T3PKS, some strains can potentially produce lanthipeptide, paeninodin, or
131 bacteriocins. The dominating BGC in *circulans* clade was identified as T3PKS, and some species may
132 synthesize siderophore, bacteriocin, or lanthipeptide (Figs. 2b & S4).

133 Furthermore, we calculated the BGC distance between different genomes based on the above
134 GCFs clustering data, and found a significant positive correlation between the BGC and phylogenetic
135 distance (Fig. 2c) ($P < 0.001$, $R^2 = 0.2847$). Interestingly, the BGC distance of genomes within or
136 between closely related species (phylogenetic distance < 0.1) was all very close (Figs. 2c & S5); while
137 the distance for distant species (phylogenetic distance > 0.3) became much dispersive (Figs. 2c &
138 S5), as some can be relatively close (e.g., a certain of connections between *cereus* and *subtilis* clade,
139 Fig. S5d) but some can be very remote (e.g., a certain of connections between *circulans* clade and
140 other three clades, Fig. S5h). To summarize, these findings demonstrate that the BGCs distribution
141 profile was generally dependent on the phylogenetic relationship within the genus *Bacillus*.

142

143 **Antagonism positively correlates with both the phylogenetic and BGC distance in *Bacillus***
144 BGCs not only contribute to the synthesis of secondary metabolites but also usually afford self-
145 tolerance to the antibiotic they encode²⁹. We therefore hypothesized that the BGC-phylogeny

146 coherence in *Bacillus* (Fig. 2b & 2c) determines a positive correlation between antagonism and
147 phylogenetic distance. To verify this hypothesis, we first used the bacterial colony confrontation
148 assay to investigate the relationship between the antagonistic efficiency and phylogenetic distance
149 of the paired strains (Fig. S6). The antagonistic bacteria included eight strains from the *subtilis* or
150 *cereus* clade, which are the two dominant groups within the genus *Bacillus* and have been explored
151 as providing abundant secondary metabolites (Fig. 2a); the target bacteria included 61 strains
152 representing all four clades with different phylogenetic similarities (Table S8). The results indicated
153 that all of these antagonistic strains tended to show stronger antagonistic ability towards distant
154 species than towards closely related species. For instance, *B. amyloliquefaciens* ACCC19745 and *B.*
155 *pumilus* ACCC04450 (both belong to the *subtilis* clade) showed weak antagonism against strains in
156 the same subclade but exhibited an increased antagonistic ability to the out-clade species (Fig. 3a &
157 3b). Correspondingly, the antagonistic abilities of *B. thuringiensis* YX7 and *B. mobilis* XL40 (*cereus*
158 clade) towards other *Bacillus* strains were also enhanced with increasing phylogenetic distance (Fig.
159 3c & 3d). Based on the results of the colony confrontation assays, a significant positive correlation
160 between antagonism and phylogenetic distance was revealed (Fig. 3e) ($P < 0.001$, $R^2 = 0.1263$). To
161 further clarify whether this association was mediated by the BGC distribution pattern, we calculated
162 the predicted BGC distance among all the tested paired strains (for strains whose genomes have not
163 been completely sequenced, we referred to the *Bacillus* genomes in the NCBI database that shared
164 the highest 16S rRNA similarity). Interestingly, there was also a significant positive correlation
165 between antagonism and the predicted BGC distance (Fig. 3f) ($P < 0.001$, $R^2 = 0.1132$), suggesting
166 that BGC profiling is likely to play a role in regulating interspecies antagonism.

167 Furthermore, to check the positive antagonism-phylogeny correlation in a more defined system,
168 we performed a fermentation supernatant assessment to test the inhibition between paired strains.
169 This strategy can avoid potential bacterial nutrient competition and is feasible for a wider range of
170 antagonistic strains since antagonism is not influenced by the growth speed or morphology of the
171 colony (Fig. S6). Here, we expanded the antagonistic strains to 17 species covering all four
172 phylogenetic clades (Table S8). The extracellular metabolites of antagonistic bacteria also generally
173 showed stronger inhibition to distantly related strains than to closely related strains; this pattern
174 was particularly clear for antagonistic strains in the *subtilis* clade, which harbored the most BGCs
175 (Figs. 4a & S6). As expected, antagonism showed a significant positive correlation with both
176 phylogenetic (Fig. 4b, $P < 0.001$, $R^2 = 0.1619$) and predicted BGC distance (Fig. 4c, $P < 0.001$, $R^2 =$
177 0.0852). Intriguingly, we found that the correlation between antagonism and phylogenetic distance
178 for each individual antagonistic strain, was positively associated with the predicted quantity of BGCs
179 in this bacteria (for strains whose genomes have not been completely sequenced, we referred to
180 the average quantity of BGCs in this species; Fig. 4d, $P < 0.01$, $R^2 = 0.3663$). This finding suggests that
181 the antagonistic bacteria carrying abundant BGCs (e.g., > 10) tend to have a clear positive correlation
182 between inhibition phenotype and phylogenetic distance, while those with fewer BGCs (e.g., < 8)
183 show a weak or even irregular antagonistic pattern against diverse targets. Furthermore, the BGC-
184 phylogeny coherence was similar among all the antagonistic strains (no significant relevance with
185 BGCs No.; Fig. S7, $P = 0.4201$, $R^2 = -0.0199$), while the antagonism-BGC distance correlation revealed
186 a positive association with the quantity of BGCs in bacteria (i.e., bacteria having fewer BGCs showed
187 a weak antagonism-BGC distance relevance, and vice versa.; Fig. 4e, $P < 0.05$, $R^2 = 0.1822$), which

188 can partially explain the weak correlation between antagonism and phylogenetic distance in strains
189 possessing fewer BGCs.

190

191 **The positive correlation of antagonism and phylogenetic distance in *Bacillus* is mediated by the**
192 **specifically harbored BGCs in antagonistic strains**

193 Having determined that the positive correlation between antagonism and phylogenetic distance
194 was consistent with the BGC-phylogeny coherence in *Bacillus*, we further investigated the mediation
195 mechanism of BGCs in the interspecies interactions. We used a typical secondary metabolite
196 producer, *B. velezensis* SQR9 belonging to *subtilis* clade, to identify the primary antagonistic
197 antibiotic towards different strains. Strain SQR9 devotes approximately 9.9% of its genome to the
198 synthesis of various antimicrobial metabolites³⁰, including five nonribosomal lipopeptides or
199 dipeptides (surfactin, bacillomycin D, fengycin, bacillibactin, and bacilysin), three polyketides
200 (macrolactin, bacillaene, and difficidin)³¹, and one antimicrobial fatty acid (FA; bacillunoic acid)¹⁸.

201 The antagonistic characteristics of SQR9 mutants deficient in each of the above BGCs and SQR9 Δ sfp
202 with the 4'-phosphopantetheinyl transferase gene deleted and only bacilysin can be synthesized^{22,30}
203 (Table S8), towards 24 target strains (Table S8) were investigated using a fermentation supernatant
204 inhibition assay. SQR9 Δ sfp nearly completely lost its antagonism towards all the target strains,
205 suggesting that the synthesis of the antibiotics involved in congeneric antagonism is strongly
206 dependent on Sfp (Fig. 5). The active antimicrobial metabolites were found to be relevant to the
207 phylogenetic positions of the target strains, as a specific BGC was involved in the inhibition of strains
208 in one taxonomic group. In detail, difficidin dominated the suppression of the *megaterium* clade (Fig.

209 5); macrolactin was the primary antibiotic against the *cereus* clade (Fig. 5); difficidin and bacillaene
210 both contributed to the inhibition of the *circulans* clade (Fig. 5). Strain SQR9 also used the
211 antimicrobial FA to compete with strains in closely related species (*B. halotolerans* CF7, *B.*
212 *licheniformis* LY2, and *B. sonorensis* YX13) (Fig. 5). Furthermore, we assigned the BGCs present in
213 the testing strains if more than 80% of the corresponding *Bacillus* species genomes possessed the
214 cluster (marked by the cross in Fig. 5). Importantly, antagonism was fully attributed to the BGCs that
215 were present in strain SQR9 but absent in the target strains, while the metabolites shared by both
216 SQR9 and the target strain were not involved. Additionally, the three identified functional antibiotics
217 (difficidin, macrolactin, and bacillaene) for congeneric inhibition belong to PKSother or PKS-
218 NRPS_Hybrids classes; enrichment of both classes in *subtilis* clade than the other three (Table S4)
219 coincides with the weak inhibition on *subtilis* clade by strain SQR9. Taken together, these results
220 demonstrated that interference competition was dependent on the BGCs specifically harbored by
221 the antagonistic strains, and strains that shared more (analogous) BGCs tended to have a lower
222 probability and intensity of antagonism. It should be noted that not all the unique BGCs in
223 antagonistic strains contribute to inhibition of the targets (Fig. 5), and whether a target strain being
224 resistant or sensitive to a specific secondary metabolite that it doesn't synthesis, shall involve
225 complicated molecular mechanisms and still needs further investigation.

226

227 **Discussion**

228 The competition-relatedness hypothesis proposed by Charles R. Darwin in the *Origin of Species*, that
229 is, congeneric species are likely to compete more fiercely by means of their functional similarity³²,

230 has been examined in various organisms and has received both positive and negative support³³⁻³⁶.

231 With regard to the microbial fierce competition exemplified by antagonism, Russel et al. found a

232 negative correlation between inhibition probability and phylogenetic distance⁹; some other

233 scientists discovered a positive relationship between antagonistic interaction (including kin

234 discrimination) and phylogenetic dissimilarity in genus *Vibrio*⁷ and *Streptomyces*^{10,11}, and species *B.*

235 *subtilis*^{12,13}. The present study demonstrated that antagonism tended to be positively correlated

236 with phylogenetic distance within the genus *Bacillus* (Figs. 3 & 4). Comprehensively, we pronounce

237 that within a relatively narrow phylogenetic range, such as for congeneric strains, BGC similarity,

238 which determines the secondary metabolite profile, appears to be the main driver of antagonistic

239 interactions (Figs. 2~5). BGCs themselves, or other elements in the same genome, usually afford

240 self-resistance by providing active efflux or modification of the relevant antibiotic^{29,37}, while the

241 absence of a specific BGC suggests the potential to be sensitive to this metabolite^{17,18}; this principle

242 was also confirmed by the observation that antagonism was dependent on the BGC that was present

243 in the antagonistic strain but absent in the target strain (Fig. 5). In addition, despite the mobility of

244 BGCs among different microbes^{16,38}, their distribution pattern was generally in accordance with the

245 phylogenetic relationship within genus (Fig. 2b & 2c). Consequently, closely related species with a

246 higher BGC similarity have a lower probability of inhibiting each other, while distant species in the

247 same genus are likely to suppress each other more fiercely (Figs. 3 & 4). Therefore, we highlighted

248 that the coherence between BGCs distribution and phylogenetic characteristics is one of the crucial

249 factors regulating congeneric interactions. Comparatively, at a larger taxonomic scale, the

250 significant variation in the BGCs distribution among bacteria from different genera or even phyla

251 can contribute to an irregular correlation between the secondary metabolite profile and
252 phylogenetic distance^{28,39,40}. In this situation, functional similarity, such as metabolic niche overlap,
253 may become the main driver and lead to a negative correlation between antagonism and
254 phylogenetic distance⁹. Taken together, this taxonomic range-dependent association between
255 antagonism and phylogeny should indicate a cooperation-competition tradeoff during microbial
256 interactions and is coordinated by a set of sophisticated molecular mechanisms.

257 Interestingly, the positive correlation between antagonism and phylogeny was relatively strong
258 in antagonistic strains possessing abundant BGCs (e.g., > 10), but was weak or even not significant
259 in those harboring fewer BGCs (e.g., < 8) (Fig. 4d). This divergence is likely to arise from the altered
260 antagonism-BGC distance correlation in different bacteria (Figs. 4e & S6). As inhibition is mainly
261 dependent on specific BGCs that are present in antagonistic strain and absent in target strain (Fig.
262 5), we further identified the unique BGCs in each antagonistic strain for confronting different targets
263 (Table S9). It has been shown that for bacteria possessing fewer BGCs (e.g., *B. aquimaris* XL39 and
264 *B. horikoshii* ACCC02299), the low number of the unique antibiotics (usually ≤ 3 , excluding those
265 without antimicrobial activity, e.g., oligosaccharide and phosphonate), was not appropriate for
266 statistical analysis and can impair the biological regularity of inhibition phenotype against diverse
267 targets (Table S9). This attribution can partially explain the weak correlation between antagonism
268 and phylogeny in these strains. Furthermore, other potential factors may also contribute the
269 relatively low correlation between antagonism and phylogeny, for example, the unknown secondary
270 metabolites of bacteriocins may specifically kill close relatives, internal genetic variation (e.g., point
271 mutations, partial deletion, altered gene regulation, and silent expression) or external cues (e.g.,

272 environmental factors and competing strains) can affect the antibiotic production^{11,17,41,42}, and the
273 undiscovered genetic and physiological features may also regulate the response to different
274 predicted BGCs. It would be important to identify more secondary metabolites responsible for
275 bacterial interference competition and to further investigate the exquisite regulation characteristics
276 of these functional molecules.

277 Noticeably, there are some differences between our finding and that reported by Lyons &
278 Kolter, who demonstrated a negative correlation between kin discrimination and phylogeny¹⁴. This
279 discrepancy may be attributed by the following reasons: (i) The antagonism in this research were
280 evaluated by colony confrontation and fermentation supernatant inhibition, which was dominated
281 by diffusible secondary antibiotics within a comparatively longer distance; while the kin
282 discrimination in Lyons & Kolter's study was assessed based on swarm interaction, biofilm meeting,
283 and halo formation¹⁴, which was likely to be dependent on closer cell association (e.g., toxin-
284 antitoxin system and cell surface contact)¹³. (ii) The antagonism-phylogeny correlation in our study
285 was calculated based on interactions between diverse antagonistic and target strains. However, the
286 halo assay performed previously examined the inhibition of one indicated species (*B. subtilis*
287 NCIB3610) by different testing strains¹⁴; as discussed above, the different BGCs distribution patterns
288 (e.g., the quantity) among distinct antagonistic strains can influence the inhibition phenotype and
289 its relationship with phylogenetic distance. In general, we consider that Lyons & Kolter's study has
290 provided important knowledge with regard to kin discrimination and close contact, especially in a
291 mixed bacterial population¹⁴; and our study focused more on the antagonistic interaction *sensu lato*,
292 which can occur within a longer distance.

293 *Bacilli* possess an amazing capacity to synthesize a diverse range of secondary metabolites;
294 previous studies have indicated the phylogenetic conservation of BGCs in the genus *Bacillus* and
295 identified multiple species/clade-specific molecules^{16,17,43}. Based on bioinformatics analysis of
296 genomes from a larger scale, we also demonstrated the phylogenetic dependence of BGCs
297 distribution pattern in the genus *Bacillus* (Fig. 2b & 2c). Specifically, the *subtilis* clade appeared to
298 be the most abundant arsenal for secondary metabolites¹⁶, where the 1,259 genomes possessed
299 16,502 BGCs belonging to 117 products, 310 GCFs, and 47 GCCs, including numerous distinctive and
300 powerful products such as difficidin and macrolactin that produced by *B. amyloliquefaciens* and *B.*
301 *velezensis*, lichenicidin produced by *B. licheniformis*, and so on (Table S5). On the other hand, the
302 BGC-phylogeny regression suggested that the variation of secondary metabolites among intra- or
303 closely related species was slight and stable, but can be either moderate or drastic among distant
304 groups (Figs. 2c & S5). This finding coincides with the high transferability of BGCs among different
305 genomes and acquisition through horizontal gene transfer (HGT)^{16,38}, therefore, the correlation (R^2
306 = 0.2847, Fig. 2c) is relatively lower as compared with other conserved genes (e.g., housekeeping
307 genes or metabolism relevant characteristics)⁴⁴.

308 The cooperation-competition tradeoff among microbial interactions is usually the consequence
309 of the balance between benefits, such as public goods sharing and cross-feeding, and costs, such as
310 resource competition and stress resistance^{2,14}. Within a narrow phylogenetic range (e.g., congeneric
311 interactions), only closely associated species can share secreted cooperative goods, such as surfactin
312 for swarming and biofilm formation¹⁴ or siderophores for iron acquisition^{45,46}, while metabolic
313 similarity decreases moderately or even changes irregularly with phylogenetic distance^{9,11}.

314 Consequently, closely related species can enjoy a higher benefit of public goods than the cost of
315 resource competition and therefore exhibit a relatively weak antagonistic tendency, while distantly
316 related species can hardly share public goods but still confront nutrient competition; thus, the
317 relatively lower benefit than cost contributes to a strong demand for congeneric inhibition. Over a
318 broad phylogenetic range (e.g., intra-phylum interactions), all strains can barely exploit mutually
319 cooperative goods; hence, their benefit-cost balance is predominantly driven by the cost of nutrient
320 competition⁹. As a result, metabolic similarity facilitates the negative correlation between
321 antagonism and phylogenetic distance. This dualistic relationship between interference competition
322 and phylogenetic distance could be a consequence of natural selection, which impels microbes to
323 balance cooperation and competition in an economical manner and plays an important role in
324 regulating community assemblage and succession⁴⁷.

325 In conclusion, the present study demonstrates the consistency between the BGCs distribution
326 and phylogenetic tendency within the genus *Bacillus*, and this coherence acts as the main factor
327 driving the positive correlation between congeneric antagonism and phylogenetic distance,
328 especially in strains possessing abundant BGCs. We expect this positive association between
329 congeneric antagonism and phylogeny is either pronounced^{10,11} or can be predicted in other genera
330 with abundant BGCs. This study deepens our understanding of the driving forces and intrinsic
331 mechanism of microbial interactions and provides implications for designing synthetic microbial
332 communities and manipulating population assemblages for practical purposes.

333

334 **Materials and Methods**

335 **Bacterial strains and growth conditions**

336 All 90 *Bacillus* strains used in this study are listed in Table S8, including 3 strains obtained from the
337 *Bacillus* Genetic Stock Center (BGSC), 17 strains obtained from the Agricultural Culture Collection of
338 China (ACCC) that originated from different environmental samples, 60 strains isolated from the
339 plant rhizosphere by this laboratory, and 10 mutants of *B. velezensis* SQR9. All strains were grown
340 at 30°C in low-salt Luria-Bertani (LLB) medium (10 g L⁻¹ peptone; 5 g L⁻¹ yeast extract; 3 g L⁻¹ NaCl);
341 when necessary, final concentrations of antibiotics were added as follows: 100 mg L⁻¹ spectinomycin
342 (Spc) and 20 mg L⁻¹ zeocin (Zeo). To collect the fermentation supernatant for antagonism assessment,
343 the bacterial strains were cultured in Landy medium⁴⁸. The 16S rRNA genes were amplified with the
344 27F (5'-AGAGTTGATCCTGGCTCAG-3') and 1492R (5'-GGTTACCTTGTACGACTT-3') primers and
345 were subsequently Sanger sequenced. The taxonomic affiliations of these strains were determined
346 through the EzBioCloud and NCBI databases.

347

348 ***Bacillus* genomic, phylogenetic, and biosynthetic gene cluster analysis**

349 In total, 4,268 available genomes from 139 different *Bacillus* species were downloaded from the
350 NCBI database using the ncbi-genome-download script (<https://github.com/kblin/ncbigenome->
351 download/) (Table S1). Then, a phylogenetic tree was constructed based on the concatenation of
352 120 ubiquitous single-copy proteins using GTDB-Tk 1.4.1 software with the default parameters^{27,49}.
353 The resulting tree was subsequently visualized and edited with Figtree 1.4.4
354 (<http://tree.bio.ed.ac.uk/software/figtree/>). Maximum likelihood (ML) phylogenetic trees of the 16S
355 rRNA sequence of these strains used in antagonism assessments were constructed by MEGA 5.0.

356 Biosynthetic gene clusters (BGCs) of all 4,268 *Bacillus* genomes were predicted using
357 antiSMASH 5.0 software¹⁵. Considering that numerous congeneric strains shared highly similar BGC
358 profiling, in order to compare the BGC distribution among different *Bacillus* groups more adequately,
359 545 representative *Bacillus* genomes with high sequencing quality and covering all species, were
360 further selected for BGC distance analysis (Table S1). In detail, the BGC distances were calculated as
361 the weighted combination of the Jaccard Index (JI), adjacency index (AI), and domain sequence
362 similarity (DSS), which resulted in the classification of different gene cluster families (GCFs) and gene
363 cluster clans (GCCs) based on the two cutoff values (0.3 and 0.7, respectively) by the "biosynthetic
364 gene similarity clustering and prospecting engine" (BiG-SCAPE) software²⁸. Each *Bacillus* genome
365 was thus annotated to have different GCFs or GCCs, forming a matrix table, which was then organized
366 and visualized using linear models (LM) and hierarchical clustering (HCL) with the average linkage
367 clustering method to view the whole data set by the TIGR multiexperiment viewer (MeV,
368 <http://www.tigr.org/software>). The BGC distances between different *Bacillus* genomes were then
369 defined as the similarity at the level of GCFs and were directly extracted from the above clustering
370 data. Connection of *Bacillus* genomes with different correlation between BGC distance and
371 phylogenetic distance, was visualized using CIRCOS software (www.circos.ca).
372

373 **Antagonism assay**

374 The inhibition of antagonistic strains on target strains (listed in Table S8) was evaluated by both
375 colony antagonism and fermentation supernatant inhibition assessments. Five milliliters of a diluted
376 overnight culture of each target strain ($\sim 10^5$ CFU mL⁻¹) was spread onto LLB plates (10 cm \times 10 cm)

377 to be grown as a bacterial lawn. For the colony antagonism assay, 4 μ L of the antagonistic strain
378 culture ($\sim 10^8$ CFU mL $^{-1}$) was spotted onto plates covered by the target strain layer; for the
379 fermentation supernatant inhibition assay, 150 μ L of the filtration-sterilized extracellular
380 supernatant of the antagonistic strain cultured in Landy medium for 48 h was injected into an Oxford
381 cup and then placed on lawns of the target strain. The plates were placed at 22°C until a clear zone
382 formed around the spot, and the inhibition was scored. A heatmap showing the profile of the
383 fermentation supernatant inhibition assay was built by the TIGR multiexperiment viewer (MeV,
384 <http://www.tigr.org/software>). Each antagonism assay includes three biological replicates.

385

386 ***B. velezensis* SQR9 mutant construction**

387 Marker-free deletion strains of the target BGC genes were constructed using the strategy previously
388 described by Zhou et al.⁵⁰. In detail, the left franking (LF) region (~ 1000 bp), direct repeat (DR)
389 sequence (~ 500 bp), and right flanking (RF) region (~ 1000 bp) were amplified from genomic DNA of
390 strain SQR9 using the primer pairs LF-F/LF-R, DR-F/DR-R, and RF-F/RF-R, respectively. The PS cassette
391 (~ 2300 bp; Spc resistance gene) was amplified with the primers PS-F/PS-R using p7S6 as a template⁵¹.
392 The four fragments were fused using overlap PCR in the order of LF, DR, PS cassette, and RF.
393 Subsequently, the fused fragments were transformed into competent cells of *B. velezensis* SQR9, and
394 the transformants were selected via first-step screening on LLB plates containing Spc. The final
395 mutants were obtained by combining LLB medium containing 10 mM p-Cl-Phe and the verified
396 primer pair VF/VR. The primers used in this study are listed in Table S10. Each antagonism assay
397 includes three biological replicates.

398

399 **Statistics**

400 LM were performed in the R package (version 3.6.1) to assess the correlation between BGC distance
401 and phylogenetic distance, inhibition phenotype and phylogenetic distance/predicted BGC distance,
402 as well as the association of antagonism-phylogeny/BGC-phylogenetic distance/antagonism-BGC
403 distance and the quantity of BGCs in antagonistic strains. Statistical significance was based on a *P*-
404 value < 0.01. Graphs of the correlation data were created using the “ggplot2” package in R; the gray
405 shaded areas denote the 95% confidence intervals. The Duncan's multiple rang tests (*P* < 0.05) of
406 the SPSS version 22.0 (IBM, Chicago, IL, version 22.0) was used for statistical analysis of differences
407 among treatments.

408

409 **Data availability**

410 The authors confirm that the data supporting the findings of this study are available within the article
411 or from the corresponding authors upon request. The DNA sequences from all incubation samples are
412 deposited in the NCBI Sequence GenBank database with accession number listed in Supplementary Table
413 S8.

414

415 **Acknowledgements**

416 This work was financially supported by the National Natural Science Foundation of China (42090060,
417 31972512, and 32072665), the Fundamental Research Funds for the Central Universities
418 (KJQN201919), and the Agricultural Science and Technology Innovation Program of CAAS (CAAS-

419 ZDRW202009).

420 **Author contributions**

421 Q.S., N.Z. and R.Z. conceived and designed the study. L.X. and A.C. performed experimental work. L.X.,
422 Y.M., Y.L., Z.L., Z.X. and W.X. analyzed the data. Y.L., X.S. and Y.X. contributed materials. N.Z., R.Z., Y.M. and
423 L.X. wrote the manuscript.

424 **Conflict of Interest**

425 The authors declare no conflict of interest.

426 **References**

- 427 1. Pérez-Gutiérrez, R.-A. *et al.* Antagonism influences assembly of a *Bacillus* guild in a local community
428 and is depicted as a food-chain network. *ISME J* **7**, 487-497 (2013).
- 429 2. Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. *Trends Microbiol* **24**, 833-
430 845 (2016).
- 431 3. Hibbing, M.E., Fuqua, C., Parsek, M.R. & Peterson, S.B. Bacterial competition: surviving and thriving
432 in the microbial jungle. *Nat Rev Microbiol* **8**, 15-25 (2010).
- 433 4. Granato, E.T., Meiller-Legrand, T.A. & Foster, K.R. The evolution and ecology of bacterial warfare. *Curr
434 Biol* **29**, R521-R537 (2019).
- 435 5. Gonzalez, D., Sabnis, A., Foster, K.R. & Mavridou, D.A.I. Costs and benefits of provocation in bacterial
436 warfare. *Proc Natl Acad Sci U S A* **115**, 7593-7598 (2018).
- 437 6. Jamet, A. & Nassif, X. New players in the toxin field: polymorphic toxin systems in bacteria. *MBio* **6**,
438 e00285-15 (2015).
- 439 7. Cordero, O.X. *et al.* Ecological populations of bacteria act as socially cohesive units of antibiotic

440 production and resistance. *Science* **337**, 1228-31 (2012).

441 8. P., d.V.R. *et al.* Comparative genomics reveals high biological diversity and specific adaptations in the

442 industrially and medically important fungal genus *Aspergillus*. *Genome Biol* **18**, 28 (2017).

443 9. Russel, J., Røder, H.L., Madsen, J.S., Burmølle, M. & Sørensen, S.J. Antagonism correlates with

444 metabolic similarity in diverse bacteria. *Proc Natl Acad Sci U S A* **114**, 10684-10688 (2017).

445 10. Vetsigian, K., Jajoo, R. & Kishony, R. Structure and evolution of *Streptomyces* interaction networks in

446 soil and in silico. *PLoS Biol* **9**, e1001184 (2011).

447 11. Westhoff, S., Kloosterman, A., van Hoesel, S.F.A., van Wezel, G.P. & Rozen, D.E. Competition sensing

448 alters antibiotic production in *Streptomyces*. *mBio* **12**, e02729-20 (2021).

449 12. Stefanic, P., Kraigher, B., Lyons, N.A., Kolter, R. & Mandic-Mulec, I. Kin discrimination between

450 sympatric *Bacillus subtilis* isolates. *PNAS* **112**, 14042-14047 (2015).

451 13. Lyons, N.A., Kraigher, B., Stefanic, P., Mandic-Mulec, I. & Kolter, R. A combinatorial kin discrimination

452 system in *Bacillus subtilis*. *Curr Biol* **26**, 733-742 (2016).

453 14. Lyons, N.A. & Kolter, R. *Bacillus subtilis* protects public goods by extending kin discrimination to closely

454 related species. *mBio* **8**, e00723-17 (2017).

455 15. Blin, K. *et al.* antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. *Nucleic*

456 *Acids Res* **47**, W81-W87 (2019).

457 16. Steinke, K., Mohite, O.S., Weber, T. & Kovacs, A.T. Phylogenetic distribution of secondary metabolites

458 in the *Bacillus subtilis* species complex. *mSystems* **6**, e00057-21 (2021).

459 17. Kiesewalter, H.T. *et al.* Genomic and chemical diversity of *Bacillus subtilis* secondary metabolites

460 against plant pathogenic fungi. *mSystems* **6**, e00770-20 (2021).

461 18. Wang, D. *et al.* A genomic island in a plant beneficial rhizobacterium encodes novel antimicrobial fatty
462 acids and a self-protection shield to enhance its competition. *Environ Microbiol* (2019).

463 19. Chowdhury, S.P., Hartmann, A., Gao, X. & Borriss, R. Biocontrol mechanism by root-associated *Bacillus*
464 *amyloliquefaciens* FZB42 - a review. *Front Microbiol* **6**, 780 (2015).

465 20. Gross, H. & Loper, J.E. Genomics of secondary metabolite production by *Pseudomonas* spp. *Nat Prod*
466 *Rep* **26**, 1408-1446 (2009).

467 21. Chen, X. *et al.* Structural and functional characterization of three polyketide synthase gene clusters in
468 *Bacillus amyloliquefaciens* FZB 42. *J Bacteriol* **188**, 4024-4036 (2006).

469 22. Chen, X.H. *et al.* Comparative analysis of the complete genome sequence of the plant growth-
470 promoting bacterium *Bacillus amyloliquefaciens* FZB42. *Nat Biotechnol* **25**, 1007-14 (2007).

471 23. Ongena, M. & Jacques, P. *Bacillus* lipopeptides: versatile weapons for plant disease biocontrol. *Trends*
472 *Microbiol* **16**, 115-125 (2008).

473 24. Sansinenea, E. & Ortiz, A. Secondary metabolites of soil *Bacillus* spp. *Biotechnol Lett* **33**, 1523-38
474 (2011).

475 25. Zhao, X. & Kuipers, O.P. Identification and classification of known and putative antimicrobial
476 compounds produced by a wide variety of *Bacillales* species. *BMC Genomics* **17**, 882 (2016).

477 26. Letzel, A., Pidot, S.J. & Hertweck, C. Genome mining for ribosomally synthesized and post-
478 translationally modified peptides (RiPPs) in anaerobic bacteria. *BMC Genomics* **15**, 983 (2014).

479 27. Parks, D.H. *et al.* A standardized bacterial taxonomy based on genome phylogeny substantially revises
480 the tree of life. *Nat Biotechnol* **36**, 996-1004 (2018).

481 28. Navarro-Munoz, J.C. *et al.* A computational framework to explore large-scale biosynthetic diversity.

482 29. Wilson, D.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. *Nat Rev Microbiol* **12**, 35-48 (2014).

483 30. Zhang, N. *et al.* Whole transcriptomic analysis of the plant-beneficial rhizobacterium *Bacillus* *amyloliquefaciens* SQR9 during enhanced biofilm formation regulated by maize root exudates. *BMC Genomics* **16**, 685 (2015).

484 31. Xu, Z. *et al.* Enhanced control of cucumber wilt disease by *Bacillus amyloliquefaciens* SQR9 by altering the regulation of its DegU phosphorylation. *Appl Environ Microbiol* **80**, 2941-2950 (2014).

485 32. Darwin, C. *On the Origin of Species*. John Murray, London (1859).

486 33. Alexandrou, M.A. *et al.* Evolutionary relatedness does not predict competition and co-occurrence in natural or experimental communities of green algae. *Proc Biol Sci* **282**, 20141745 (2015).

487 34. Kunstler, G. *et al.* Plant functional traits have globally consistent effects on competition. *Nature* **529**, 204-7 (2016).

488 35. Venail, P.A. *et al.* The influence of phylogenetic relatedness on species interactions among freshwater green algae in a mesocosm experiment. *J Ecol* **102**, 1288-1299 (2014).

489 36. Violle, C., Nemergut, D.R., Pu, Z. & Jiang, L. Phylogenetic limiting similarity and competitive exclusion. *Ecol Lett* **14**, 782-7 (2011).

490 37. van Bergeijk, D.A., Terlouw, B.R., Medema, M.H. & van Wezel, G.P. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. *Nat Rev Microbiol* **18**, 546-558 (2020).

491 38. Khaldi, N., Collemare, C., Lebrun, M. & Wolfe, K.H. Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. *Genome Biol* **9**, R18 (2008).

503 39. Crits-Christoph, A., Diamond, S., Butterfield, C.N., Thomas, B.C. & Banfield, J.F. Novel soil bacteria

504 possess diverse genes for secondary metabolite biosynthesis. *Nature* **558**, 440-444 (2018).

505 40. Dittmann, E., Gugger, M., Sivonen, K. & Fewer, D.P. Natural product biosynthetic diversity and

506 comparative genomics of the Cyanobacteria. *Trends Microbiol* **23**, 642-652 (2015).

507 41. Yun, C.S., Motoyama, T. & Osada, H. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-

508 PKS hybrid enzyme. *Nat Commun* **6**, 8758 (2015).

509 42. Zhang, M.M. *et al.* CRISPR-Cas9 strategy for activation of silent *Streptomyces* biosynthetic gene

510 clusters. *Nat Chem Biol* **13**, 607-609 (2017).

511 43. Grubbs, K.J. *et al.* Large-scale bioinformatics analysis of *Bacillus* genomes uncovers conserved roles

512 of natural products in bacterial physiology. *mSystems* **2**, e00040-17 (2017).

513 44. Levy, R. & Borenstein, E. Metabolic modeling of species interaction in the human microbiome

514 elucidates community-level assembly rules. *Proc Natl Acad Sci U S A* **110**, 12804-12809 (2013).

515 45. Griffin, A.S., West, S.A. & Buckling, A. Cooperation and competition in pathogenic bacteria. *Nature*

516 **430**, 1024-1027 (2004).

517 46. Gu, S. *et al.* Competition for iron drives phytopathogen control by natural rhizosphere microbiomes.

518 *Nat Microbiol* **5**, 1002-1010 (2020).

519 47. Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? *Microbiol*

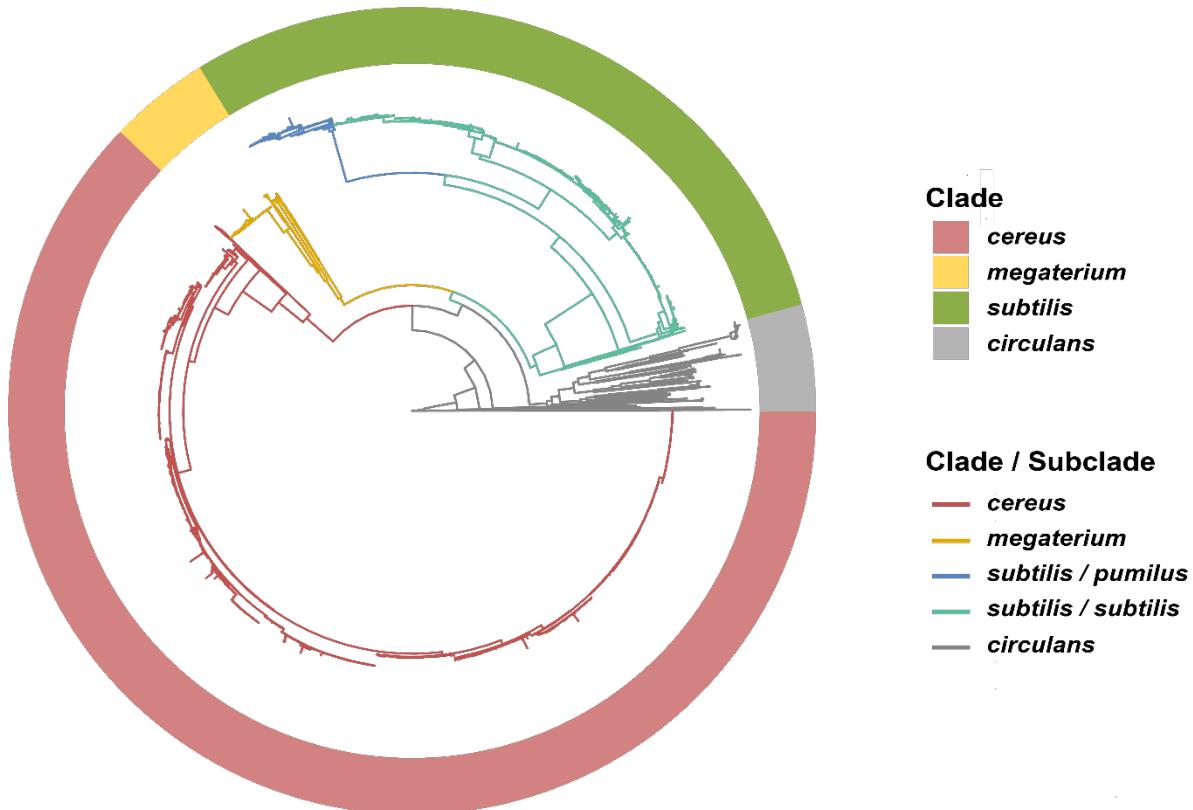
520 *Mol Biol R* **81**, e00002-17 (2017).

521 48. Landy, M., Rosenman, S.B. & Warren, G.H. An antibiotic from *Bacillus subtilis* active against

522 pathogenic fungi. *J Bacteriol* **54**, 24 (1947).

523 49. Chaumeil, P.A., Mussig, A.J., Hugenholtz, P. & Parks, D.H. GTDB-Tk: a toolkit to classify genomes with

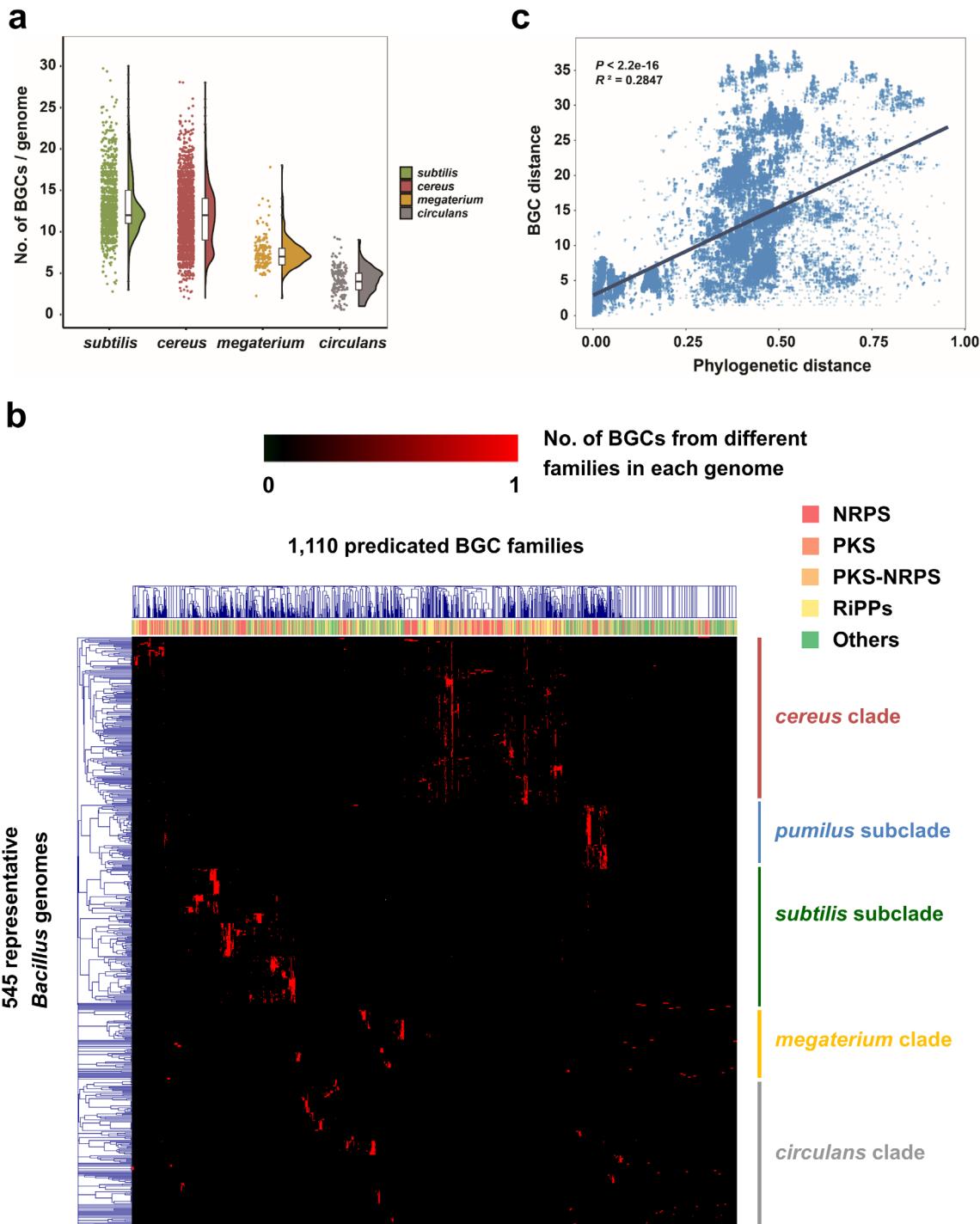
524 the Genome Taxonomy Database. *Bioinformatics* (2019).


525 50. Zhou, C. *et al.* pheS*, an effective host-genotype-independent counter-selectable marker for marker-
526 free chromosome deletion in *Bacillus amyloliquefaciens*. *Appl Microbiol Biotechnol* **101**, 217-227
527 (2017).

528 51. Yan, X., Yu, H.J., Hong, Q. & Li, S.P. Cre/lox system and PCR-based genome engineering in *Bacillus*
529 *subtilis*. *Appl Environ Microbiol* **74**, 5556-62 (2008).

530

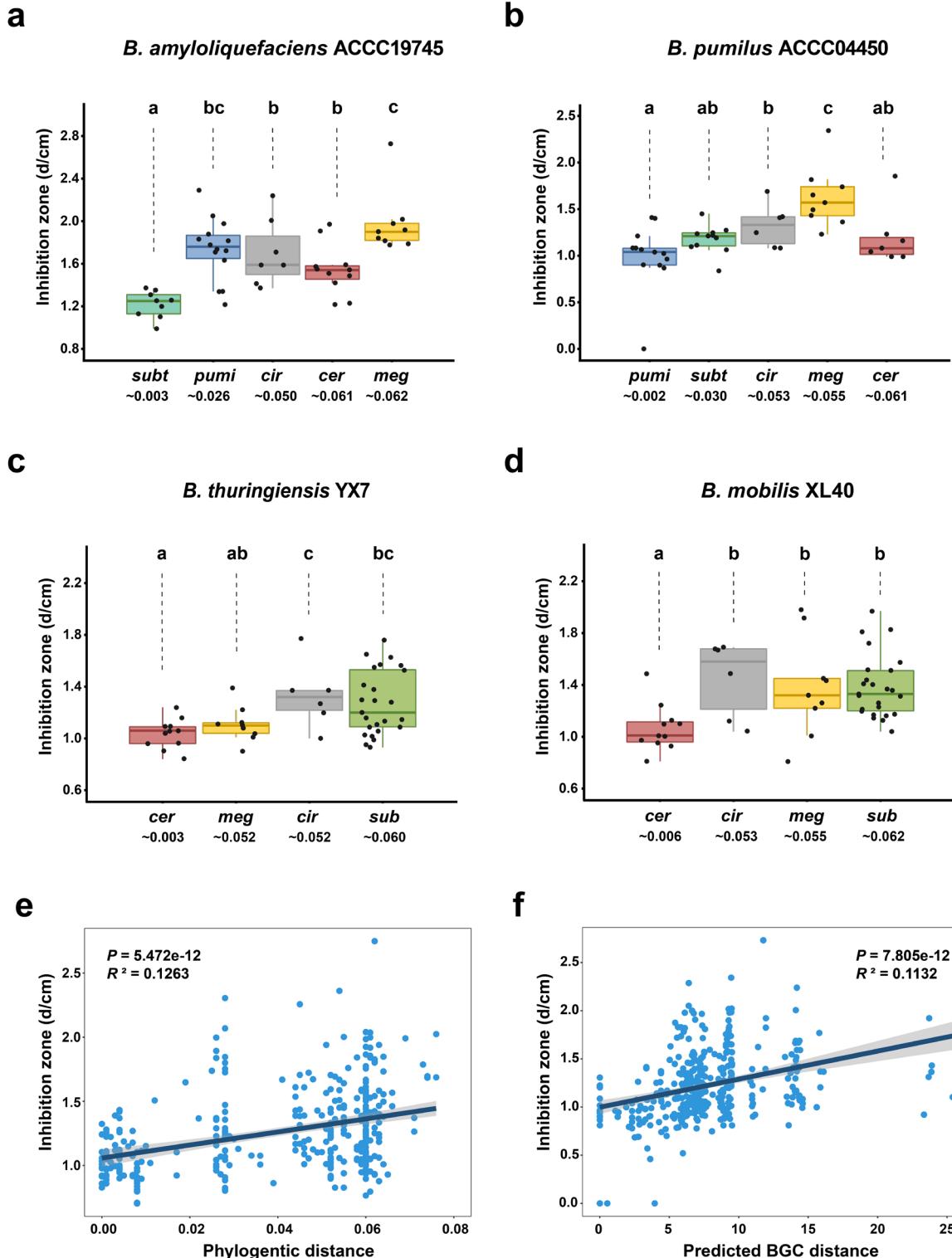
531 **Figures**


532 **Fig. 1**

533

534 **Fig. 1 Phylogram of the tested *Bacillus* genomes.** The maximum likelihood (ML) phylogram of 4,268 *Bacillus*
535 genomes was based on the sequences of 120 ubiquitous single-copy proteins²⁷. The phylogenetic tree shows
536 that *Bacillus* species can be generally clustered into the *subtilis* (light green circle; further includes *subtilis*
537 (dark green) and *pumilus* (blue) subclades as shown in the branches), *cereus* (red), *megaterium* (yellow), and
538 *circulans* (gray) clades. For detailed information of the species, please refer to the phylogenetic tree in Fig. S1.

539 **Fig. 2**

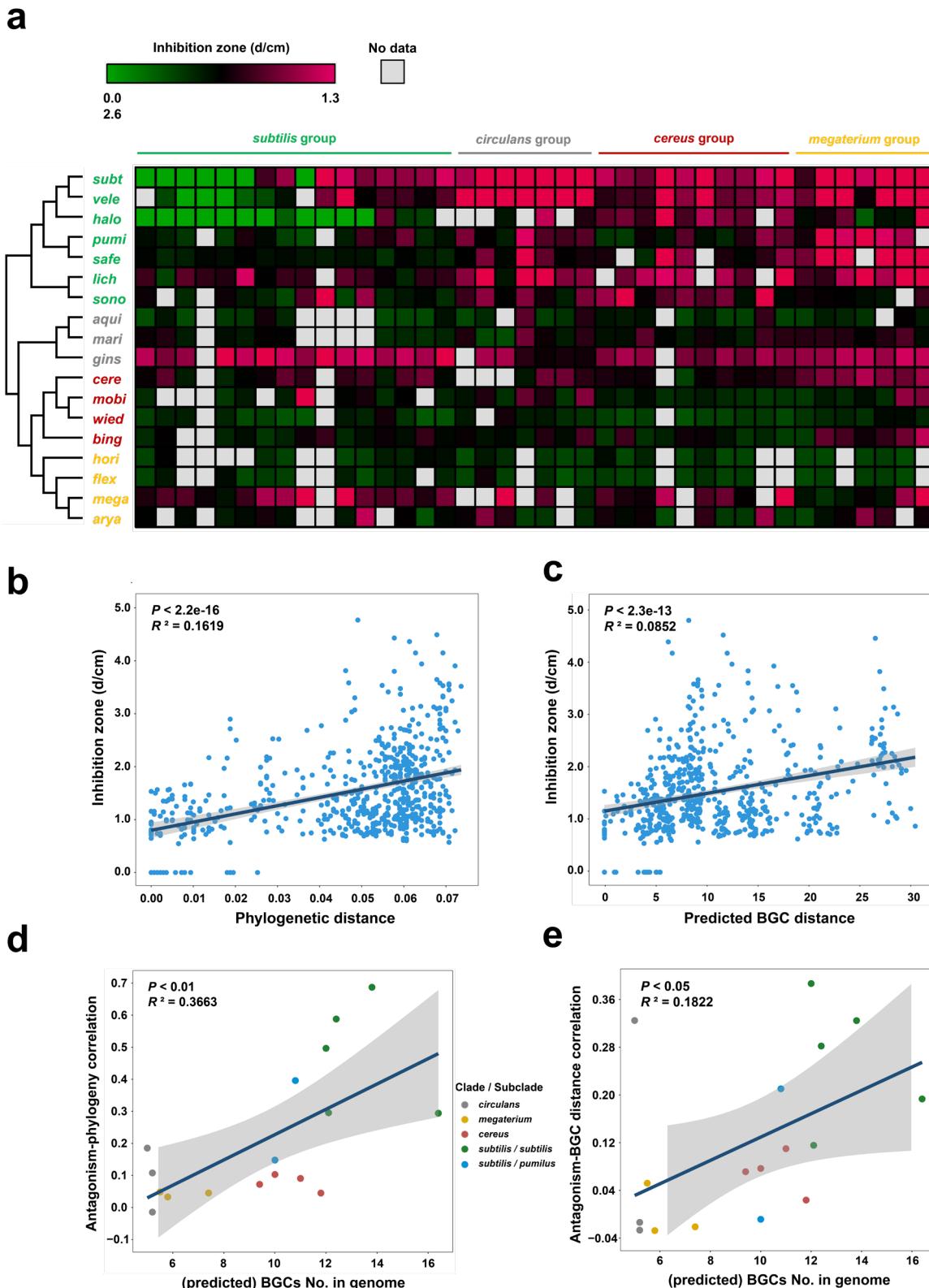


540

541 **Fig. 2 Biosynthetic gene cluster (BGC) distribution is correlated with phylogeny in the genus *Bacillus*. (a)** The
542 numbers of BGCs in the 4,268 *Bacillus* genomes from different clades as defined by antiSMASH¹⁵. **(b)**

543 Hierarchal clustering among the 545 representative *Bacillus* genomes based on the abundance of the different
544 biosynthesis gene cluster families (GCFs). Each row represents a GCF, which was classified through BiG-SCAPE
545 by calculating the Jaccard index (JI), adjacency index (AI), and domain sequence similarity (DSS) of each BGC²⁸;
546 the color bar on the top of the heatmap represents the BGC class of each GCF, where PKS includes classes of
547 PKSother and PKSI, PKS-NRPS means PKS-NRPS Hybrids, Others includes classes of saccharides, terpene, and
548 others. Each line represents a *Bacillus* genome, and the abundance of each GCF in different genomes is shown
549 in the heatmap. The left tree was constructed based on the distribution pattern of GCFs, which showed a
550 similar pattern to the phylogram in **Fig. 1. (c)** The correlation between the BGC and phylogenetic distance of
551 the 545 representative *Bacillus* genomes ($P < 0.001$, $R^2 = 0.2847$).

552 Fig. 3



553

554 Fig. 3 Colony antagonism phenotype is positively correlated with the phylogenetic and BGC distance within

555 ***Bacillus* species. (a~d)** Inhibition of colonies of *B. amyloliquefaciens* ACCC19745, *B. pumilus* ACCC04450, *B.*
556 *thuringiensis* YX7, and *B. mobilis* XL40 against *Bacillus* from different clades. The number below the
557 abbreviations indicates the average 16S rRNA gene phylogenetic distance of the target strains with the
558 corresponding antagonistic strain. Each inhibition assay includes three biological replicates and the average is
559 shown in the boxplots and used for the correlation analysis; boxplots with different letters are statistically
560 different according to the Duncan's multiple range tests ($P < 0.05$). **(e & f)** Correlation between the antagonism
561 phenotype (diameter of the inhibition zone) and 16S rRNA phylogenetic **(e)** or predicted BGC distance **(f)**
562 among all the tested paired strains. For strains whose genomes have not been completely sequenced, we
563 referred to the *Bacillus* genomes in the NCBI database that shared the highest 16S rRNA similarity.

564 Fig. 4

565

566 **Fig. 4 Congeneric inhibition by fermentation supernatants is positively correlated with the phylogenetic and**

567 **BGC distance in *Bacillus*. (a)** Heatmap showing the antagonistic profiles of the fermentation supernatant of

568 17 antagonistic strains (in the left column) on the 40 target strains (in the top line). The maximum likelihood

569 (ML) phylogenetic tree was constructed based on the 16S rRNA sequence of the 17 antagonistic strains: *subt*,

570 *B. subtilis* RZ30; *vele*, *B. velezensis* SQR9; *halo*, *B. halotolerans* CF7; *pumi*, *B. pumilus* ACCC04450; *safe*, *B.*

571 *safensis* LY9; *lich*, *B. licheniformis* CC11; *sono*, *B. sonorensis* YX13; *aqui*, *B. aquimaris* XL39; *mari*, *B. marisflavi*

572 XL37; *gins*, *B. ginsengihumi* ACCC05679; *cere*, *B. cereus* ACCC10263; *mobi*, *B. mobilis* XL40; *wied*, *B. wiedmannii*

573 XL36; *bing*, *B. bingmayongensis* KF27; *hori*, *B. horikoshii* ACCC02299; *flex*, *B. flexus* DY11; *mega*, *B. megaterium*

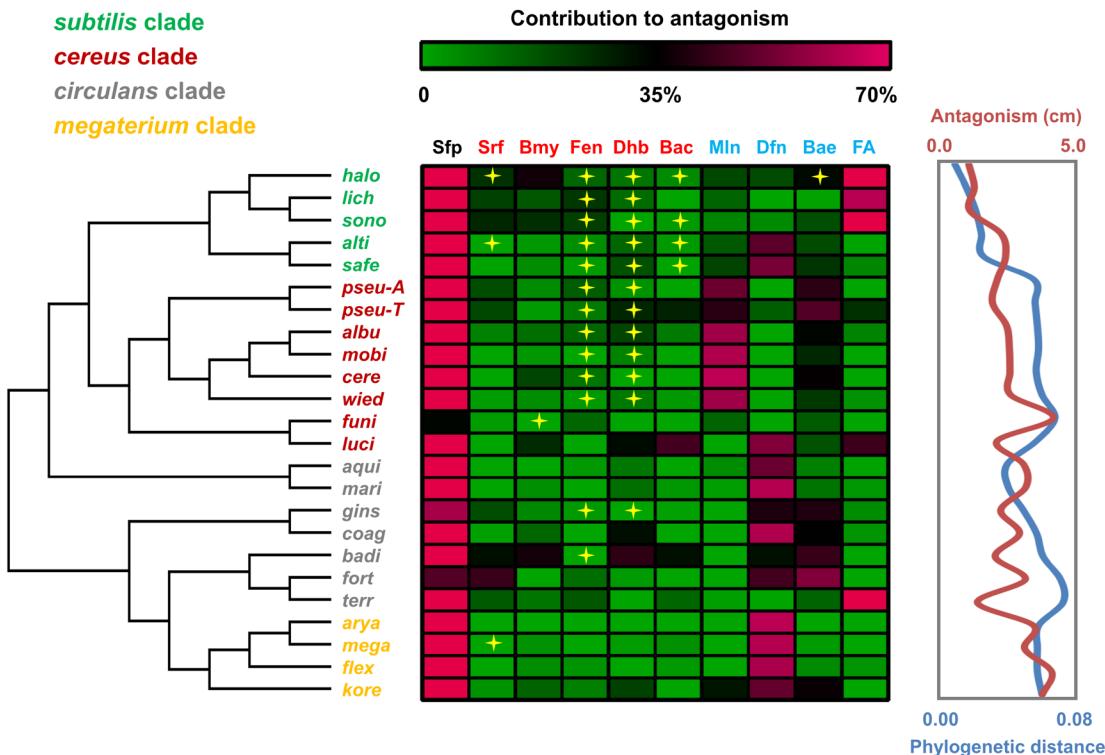
574 ACCC01509. Each inhibition assay includes three biological replicates and the average is shown in the heatmap

575 and used for the correlation analysis. **(b & c)** Correlation between the antagonism phenotype (diameter of the

576 inhibition zone) and 16S rDNA phylogenetic distance **(b)** or the predicted BGC distance **(c)** among all the tested

577 paired strains. For strains whose genomes have not been completely sequenced, we referred to the *Bacillus*

578 genomes in the NCBI database that shared the highest 16S rRNA similarity. **(d & e)** Correlation between the


579 antagonism-phylogeny association **(d)** or antagonism-BGC distance association **(e)** and the (predicted)

580 quantity of BGCs in antagonistic strains. For strains whose genomes have not been completely sequenced, we

581 referred to the average quantity of BGCs in this species. The color of the dots represents the clade/subclade

582 which the antagonistic strains belong to.

583 **Fig. 5**

584

585 **Fig. 5 Contribution of BGCs to antagonizing *Bacillus* species from different clades by *B. velezensis* SQR9.** The
586 heatmap shows the contribution of each BGC product (on the top) to the inhibition of each target strain (on
587 the left), which was calculated as the percentage of the decreased inhibition zone of the corresponding BGC-
588 deficient mutant compared with wild type. The maximum likelihood (ML) tree on the left was constructed
589 based on the 16S rRNA sequences of the 24 target strains: *halo*, *B. halotolerans* CF7; *lich*, *B. licheniformis* LY2;
590 *sono*, *B. sonorensis* YX13; *alti*, *B. altitudinis* LY37; *safe*, *B. safensis* LY9; *pseu-A*, *B. pseudomycoides* ACCC10238;
591 *pseu-B*, *B. pseudomycoides* TZ8; *albu*, *B. albus* XL388; *mobi*, *B. mobilis* XL40; *cere*, *B. cereus* ACCC10263; *wied*,
592 *B. wiedmannii* CF23; *funi*, *B. funiculus* ACCC05674; *luci*, *B. luciferensis* XL165; *aqui*, *B. aquimaris* XL39; *mari*, *B.*
593 *marisflavi* XL37; *gins*, *B. ginsengihumi* ACCC05679; *coag*, *B. coagulans* ACCC10229; *badi*, *B. badius* ACCC60106;
594 *fort*, *B. fortis* ACCC10219; *terr*, *B. terrae* TL19; *arya*, *B. aryabhattai* XL26; *mega*, *B. megaterium* ACCC01509;

595 *flex*, *B. flexus* DY11; *kore*, *B. koreensis* ACCC05681. The abbreviations on the top (except Sfp) represent
596 different BGC products: Srf, surfactin; Bmy, bacillomycin D; Fen, fengycin; Dhb, bacillibactin; Bac, bacilysin;
597 Mln, macrolactin; Bae, bacillaene; Dfn, difficidin; FA, an antimicrobial fatty acid, bacillunoic acid. Specifically,
598 Sfp (phospho-pantheinyltransferase) is not an antibiotic but is necessary for modification of the above
599 antibiotics and ensuring their activity, except for bacilysin^{22,30}; here, the contribution of Sfp to antagonism
600 means the relative reduction of inhibition by SQR9Δsfp compared to that of wild-type SQR9 towards different
601 targets. The curves in the right box show the antagonistic phenotype and phylogenetic distance of *B. velezensis*
602 SQR9 with each of the target strains. Each inhibition assay included three biological replicates and the average
603 contribution was shown in the heatmap.

604 **Supporting Information**

605 **Table S1 Information of the 4,268 *Bacillus* genomes used for the phylogenetic analysis and**

606 **biosynthetic gene cluster (BGC) prediction.**

607 **Table S2 Taxonomic distribution of genomes across different species and clades.**

608 **Table S3 Prediction of the putative biosynthetic gene clusters (BGCs) in all 4,268 *Bacillus* genomes**

609 **by using antiSMASH.**

610 **Table S4 Statistics of different classes of biosynthetic gene clusters (BGCs) in different *Bacillus***
611 **clades.**

612 **Table S5 Biosynthesis gene cluster families (GCFs) and gene cluster clans (GCCs) in the 545**
613 **representative *Bacillus* genomes based on interactive sequence similarity network analysis using**
614 **BiG-SCAPE.**

615 **Table S6 Product information of each predicted biosynthesis gene cluster family (GCF) and gene**
616 **cluster clan (GCC) in the 545 representative *Bacillus* genomes.**

617 **Table S7 Statistics of biosynthetic gene clusters families (GCFs) in the 545 representative *Bacillus***
618 **genomes.**

619 **Table S8 Bacterial strains used in this study.**

620 **Table S9 Quantity of specific biosynthetic gene clusters (BGCs) of each antagonistic strain when**
621 **confronted with different target strains in the fermentation supernatant inhibition assay.** For
622 strains whose genome have not been completely sequenced, the BGC presence was assigned if more
623 than 80% of the corresponding *Bacillus* species genomes possessed this cluster, and their total
624 predicted BGCs No. was calculated as the average BGCs. No. in all genomes of this species.

625 **Table S10 Primers used for mutants construction and verification.**

626 **Fig. S1 Maximum likelihood (ML) phylogenetic tree of the 4,268 *Bacillus* genomes based on the**
627 **sequences of 120 ubiquitous single-copy proteins**²⁷. This phylogram is the fully-annotated version
628 of Fig. 1, which shows the detailed species information of the *Bacillus* genomes.

629 **Fig. S2 Distribution of the biosynthetic gene clusters (BGCs) types.** BGCs belonging to PKSI or EPS
630 are not shown in this figure since they are extremely rare in *Bacillus* genomes.

631 **Fig. S3 Profile of biosynthetic gene cluster (BGC) products and classification attached to the**
632 **phylogenetic tree of total 4,268 *Bacillus* genomes.** Matching to the genome order in the
633 phylogenetic tree (the same as that in Figs. 1 & S1), BGCs profile in each genome were shown as the
634 number of 256 detailed product types (Table S3) by the heatmap (which were further clustered only
635 at the level of BGC products), as well as the number of 8 different classifications (NPRS, PKSI,
636 PKSother, PKS-NRP_Hybrids, RiPPs, Saccharides, Terpene, and Others) through the histogram.

637 **Fig. S4** Hierarchal clustering among the 545 representative *Bacillus* genomes based on the
638 abundance of the different biosynthesis gene cluster families (GCFs). This figure is the fully-
639 annotated version of Fig. 2b. Each row represents a GCF and has been noted with the potential BGC
640 product, which was classified through BiG-SCAPE by calculating the Jaccard index (JI), adjacency
641 index (AI), and domain sequence similarity (DSS) of each BGC²⁸. Each line represents a *Bacillus*
642 genome, and the abundance of each GCF in different genomes is shown in the heatmap. The left
643 tree was constructed based on the distribution pattern of BGCs from different families, which
644 showed a similar pattern to the phylogram in **Fig. 1**.

645 **Fig. S5 Connection of *Bacillus* genomes in 7 groups showing different correlation between**
646 **biosynthetic gene clusters (BGCs) distance and phylogenetic distance. (a)** The correlation between

647 the BGC and phylogenetic distance of the 545 representative *Bacillus* genomes forms 7
648 distinguishable groups (group 1~7). **(b~h)** For detail analysis, the points of 7 groups in **(a)**,
649 corresponding to different relationships of two *Bacillus* genomes, were extracted, respectively, and
650 shown as the lines, which connected each two different genomes indicated by their own points. All
651 connected genomes were ranked as the orders in phylogenetic tree of the 545 *Bacillus* genomes
652 from top to bottom, as that shown in **(b)**. Different colors were used to indicate each *Bacillus*
653 clades/subclades: red, *cereus* clade; blue, *pumilus* subclade; green, *subtilis* subclade; yellow,
654 *megaterium* clade; gray, *circulans* clade. Pd: phylogenetic distance; BGCd: BGC distance.

655 **Fig. S6 Visual representations of colony confrontation and fermentation supernatant inhibition**
656 **assay.**

657 **Fig. S7 Correlation of the BGC-phylogenetic distance association with the (predicted) quantity of**
658 **BGCs in antagonistic strains.** For strains whose genomes have not been completely sequenced, we
659 referred to the average quantity of BGCs in this species. The color of the dots represents the
660 clade/subclade which the antagonistic strains belong to.