

1 Title:
2 The pigtail macaque (*Macaca nemestrina*) model of COVID-19 reproduces diverse
3 clinical outcomes and reveals new and complex signatures of disease
4
5 Alexandra Melton^{1,2}, Lara A Doyle-Meyers^{1,9}, Robert V Blair¹, Cecily Midkiff¹, Hunter J
6 Melton³, Kasi Russell-Lodrigue¹, Pyone P Aye^{1,9}, Faith Schiro¹, Marissa Fahlberg¹, Dawn
7 Szeltner¹, Skye Spencer¹, Brandon J Beddingfield¹, Kelly Goff¹, Nadia Golden¹, Toni
8 Penney¹, Breanna Picou¹, Krystle Hensley¹, Kristin E Chandler¹, Jessica A Plante⁴,
9 Kenneth S Plante⁴, Scott C Weaver⁴, Chad J Roy^{1,8}, James A Hoxie⁵, Hongmei Gao⁶,
10 David C Montefiori⁶, Joseph L Mankowski⁷, Rudolf P Bohm^{1,9}, Jay Rappaport^{1,8}, Nicholas
11 J Maness^{1,8,*}

12
13 ¹Tulane National Primate Research Center, Covington, Louisiana
14 ²Biomedical Science Training Program, Tulane University School of Medicine, New
15 Orleans, Louisiana

16 ³Florida State University, Department of Statistics, Tallahassee, Florida
17 ⁴World Reference Center for Emerging Viruses and Arboviruses, Institute for Human
18 Infections and Immunity, University of Texas Medical Branch, Galveston, Texas

19 ⁵Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
20 ⁶Duke University Medical Center, Duke Human Vaccine Institute, Durham, North
21 Carolina

22 ⁷Department of Molecular and Comparative Pathobiology, Johns Hopkins School of
23 Medicine, Baltimore, Maryland

24 ⁸Department of Microbiology and Immunology, Tulane University School of Medicine,
25 New Orleans, Louisiana

26 ⁹Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana

1 *To whom correspondences should be addressed

2
3

1 **Abstract**

2 The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 disease, has
3 killed over four million people worldwide as of July 2021 with infections rising again due
4 to the emergence of highly transmissible variants. Animal models that faithfully
5 recapitulate human disease are critical for assessing SARS-CoV-2 viral and immune
6 dynamics, for understanding mechanisms of disease, and for testing vaccines and
7 therapeutics. Pigtail macaques (PTM, *Macaca nemestrina*) demonstrate a rapid and
8 severe disease course when infected with simian immunodeficiency virus (SIV),
9 including the development of severe cardiovascular symptoms that are pertinent to
10 COVID-19 manifestations in humans. We thus proposed this species may likewise
11 exhibit severe COVID-19 disease upon infection with SARS-CoV-2. Here, we
12 extensively studied a cohort of SARS-CoV-2-infected PTM euthanized either 6- or 21-
13 days after respiratory viral challenge. We show that PTM demonstrate largely mild-to-
14 moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, including
15 CD4+ T cells that upregulate CD8 and express cytotoxic molecules, as well as virus-
16 targeting T cells that were predominantly CD4+. We also noted increases in
17 inflammatory and coagulation markers in blood, pulmonary pathologic lesions, and the
18 development of neutralizing antibodies. Together, our data demonstrate that SARS-CoV-
19 2 infection of PTM recapitulates important features of COVID-19 and reveals new
20 immune and viral dynamics and thus may serve as a useful animal model for studying
21 pathogenesis and testing vaccines and therapeutics.

22

1 **Introduction**

2 In late 2019, a novel coronavirus was found circulating in humans in China. This virus
3 showed substantial genomic similarities with the severe acute respiratory syndrome
4 coronavirus (SARS-CoV) that caused an outbreak and panic in 2003¹ in addition to a
5 number of bat sarbecoviruses²; hence, it was named SARS-CoV-2³. SARS-CoV-2 is the
6 causative agent of COVID-19 disease and a worldwide pandemic that has killed more
7 than four million persons to date including over 600,000 deaths in the United States.
8 Though most infected individuals exhibit no or mild symptoms, a subset experience
9 severe complications, including highly elevated pro-inflammatory cytokines and
10 coagulation biomarkers, acute respiratory distress syndrome (ARDS), and death⁴⁻⁹. Most
11 available data suggest that the intensity of the immune response plays a role in
12 determining COVID-19 severity and progression, with severe disease occurring
13 approximately 3-to-4-weeks after initial symptoms.^{10,11} Thus, a deep understanding of
14 the immunopathologic mechanisms of disease in those with advanced disease and of
15 viral clearance in asymptomatic infection and those with mild disease is critical for the
16 development of next generation therapies and vaccines.

17

18 Animal models that faithfully recapitulate human disease are needed to assess the roles
19 of particular cell subsets in disease etiology. Various species of nonhuman primates can
20 be infected by SARS-CoV-2 and exhibit disease ranging from mild to severe¹²⁻¹⁶. The
21 use of timed infections with well characterized viral stocks in animals with relatively high
22 genetic similarity with humans allows the dissection of immune responses with nuance
23 and detail not possible in humans. The most widely used species of NHP for COVID-19
24 research has been the rhesus macaque (*Macaca mulatta*). This model has proved
25 valuable for testing vaccines as viral infection dynamics in this species are robust and
26 well-studied and therefore can be compared between treatment groups. However,

1 SARS-CoV-2-induced disease in this species is generally mild and does not recapitulate
2 the more severe disease seen in a subset of humans. Thus, multiple NHP models are
3 needed to capture the spectrum of disease seen in humans. In this study, we infected
4 pigtail macaques (PTM, *Macaca nemestrina*) with SARS-CoV-2 (WA1/2020 isolate) to
5 assess this novel animal model of COVID-19 disease.

6

7 PTM are a unique and valuable animal model for other viral diseases. Simian
8 immunodeficiency virus (SIV) infection of rhesus macaques (RhM) is the most widely
9 used nonhuman primate model of HIV/AIDS and is used widely for testing vaccines and
10 cure strategies. However, SIV-associated disease in RhM can take up to several years
11 to develop, somewhat limiting their use for studying disease mechanisms. In contrast,
12 infection of PTM with the same viral isolates leads to rapid disease development with
13 enhanced cardiovascular manifestations relative to RhM, which is of particular relevance
14 to COVID-19 disease¹⁷⁻²⁰. Thus, we proposed that SARS-CoV-2 infection of PTM may
15 likewise lead to accelerated COVID-19 disease or demonstrate immune features of
16 disease not detected in other animal models. If so, this species will be valuable for
17 assessing COVID-19 disease mechanisms and for testing novel vaccines and
18 therapeutics. We tracked viral and immune dynamics through the course of infection in
19 a cohort of PTM. We found that disease in this model largely mirrored that observed in
20 RhM but with unique immune features, such as pulmonary infiltration of CD4+ T cells
21 that exhibit antiviral and cytotoxic functions, as is seen in COVID-19 patients²¹.
22 Together, our data characterize, in depth, a novel animal model that may prove useful
23 for assessing moderate COVID-19 disease mechanisms and testing new therapeutics.

24

25 **Materials and Methods**

26 Animal cohort, viral inoculations, and procedures

1 Four male pigtail macaques (PTM), between the ages of 5 and 6 years old (Table S1),
2 were exposed to 1×10^6 TCID₅₀ of SARS-CoV-2 USA WA1/2020 (World Reference
3 Center for Emerging Viruses and Arboviruses, Galveston, TX) through both intranasal
4 and intratracheal inoculation. The viral stock was sequenced and determined to have no
5 mutations at greater than 5% of reads that differed from the original patient isolate. Pre-
6 and post-exposure samples included blood, bronchoalveolar lavage (BAL), and mucosal
7 swabs (nasal, pharyngeal, rectal, and bronchial brush). Physical examination and
8 imaging (radiography Figure S1) were conducted before viral exposure and weekly after
9 exposure. Animals were monitored for 6 (n=2) or 21 (n=2) days before euthanasia and
10 tissue harvest. At necropsy, samples from each of the major lung lobes (left and right,
11 cranial, middle, and caudal lobes) were collected in TRIzol (Invitrogen, Lithuania) and
12 fresh frozen at -80°C. The remainder of the lung lobes were infused and then immersed
13 in formalin fixative. The rest of the necropsy was performed routinely with collection of
14 tissues from all major organs in DMEM media, fresh frozen, or in formalin fixative.

Animal ID	Sex	Age (y)	Weight (kg)
MA27	Male	6.07	7.55
MA30	Male	5.61	5.80
MA24	Male	5.64	8.40
MA28	Male	5.81	8.60

15

16 Ethics Statement

17 Pigtail macaques used in this study were purpose bred at the University of Washington
18 National Primate Research Center for experiments. Macaques were housed in
19 compliance with the NRC Guide for the Care and Use of Laboratory Animals and the
20 Animal Welfare Act. Animal experiments were approved by the Institutional Animal Care
21 and Use Committee of Tulane University (protocol P0451). The Tulane National Primate
22 Research Center (TNPRC) is fully accredited by AAALAC International, Animal Welfare

1 Assurance No. A3180-01. During the study, animals were singly housed indoors in
2 climate-controlled conditions with a 12/12-light/dark cycle. All the animals on this study
3 were monitored twice daily to ensure their welfare. Any abnormalities, including those of
4 appetite, stool, and behavior, were recorded and reported to a veterinarian. The animals
5 were fed commercially prepared nonhuman primate diet twice daily. Supplemental foods
6 were provided in the form of fruit, vegetables, and foraging items as part of the TNPRC
7 environmental enrichment program. Water was available ad libitum through an automatic
8 watering system. The TNPRC environmental enrichment program is reviewed and
9 approved by the IACUC semi-annually. Veterinarians in the TNPRC Division of
10 Veterinary Medicine have established procedures to minimize pain and distress using
11 several approaches. Animals were anesthetized with ketamine-HCl (10 mg/kg) or
12 tiletamine/zolazepam (3-8 mg/kg) prior to all procedures. Preemptive and post
13 procedural analgesia (buprenorphine 0.01 mg/kg or buprenorphine sustained-release
14 0.2 mg/kg SQ) was used for procedures that would likely cause more than momentary
15 pain or distress in humans undergoing the same procedures. The above listed
16 anesthetics and analgesics were used to minimize pain and distress in accordance with
17 the recommendations of the Weatherall Report. The animals were euthanized at the end
18 of the study using methods consistent with recommendations of the American Veterinary
19 Medical Association (AVMA) Panel on euthanasia and per the recommendations of the
20 IACUC. Specifically, the animals were anesthetized with tiletamine/zolazepam (8 mg/kg
21 IM) and given buprenorphine (0.01 mg/kg IM) followed by an overdose of pentobarbital
22 sodium. Death was confirmed using auscultation to confirm the cessation of respiratory
23 and circulatory functions and by the lack of corneal reflexes.

24

25 Isolation of Viral RNA

1 The *Quick-RNA Viral Kit* (Zymo Research, Irvine, CA) was used to isolate viral RNA
2 (vRNA) from mucosal swab and bronchial brush samples collected in 200 µL DNA/RNA
3 Shield 1X (Zymo Research, Irvine, CA) following the manufacturer's protocol. Briefly,
4 400 µL DNA/RNA viral buffer was added to the swab samples. In a modification to the
5 manufacturer's protocol, swabs were transferred directly to the Zymo spin column for
6 centrifugation. The vRNA was eluted in 50 µL elution buffer.

7

8 *Viral RNA Quantification by Quantitative Real-Time PCR*

9 Quantification of viral RNA was performed as described²² using the CDC N1
10 primers/probe for quantification of total viral RNA and with primers/probe specific for the
11 nucleocapsid subgenomic RNA to provide an estimate of replicating virus. Specifically,
12 vRNA was quantified using the QuantStudio 6 Real-Time PCR System (Applied
13 Biosystems, Waltham, MA). Five microliters vRNA was added in duplicate to a 0.1 mL
14 96-well MicroAmp fast optical reaction plate (Applied Biosystems, REF# 4346906). For
15 genomic vRNA quantification, the 2019-nCoV RUO Kit (Integrated DNA Technologies,
16 Coralville, IA) was used, according to the manufacturer's protocol, to target the N1
17 amplicon of the N gene along with TaqPath 1-Step RT-qPCR Master Mix (Applied
18 Biosystems Waltham, MA). For the subgenomic assay, a forward primer targeting the
19 subgenomic leader sequence and a reverse primer/probe (Integrated DNA
20 Technologies, Waltham, MA) designed to target the N gene, was used along with the
21 TaqPath Master Mix mentioned above. Fifteen microliters of the respective master mix
22 was added to each well and run using the following conditions: 25°C for 2 minutes, 50°C
23 for 15 minutes, 95°C for 2 minutes followed by 40 cycles of 95°C for 3 seconds and
24 60°C for 30 seconds. In vitro transcribed RNA was quantified and diluted to known copy
25 numbers and used to generate the genomic and subgenomic standard curves. Both

1 genomic and subgenomic viral copy numbers were calculated by plotting Cq values from
2 unknown samples against the respective standard curve. Positive, negative, and non-
3 template controls were analyzed along with each set of samples.

4

5 *Isolation of PBMCs*

6 Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood using
7 SepMate-50 Isolation tubes (Stem Cell Technologies, Vancouver, Canada) per the
8 manufacturer's protocol. Cells were counted using a Cellometer Auto 2000 (Nexcelom,
9 Lawrence, MA), resuspended in Bambanker cell freezing medium (GC Lymphotec,
10 Tokyo, Japan) at approximately 1×10^7 cells/mL and cryopreserved at -80°C.

11

12 *ELISA assays*

13 D-dimer levels in sodium citrate plasma samples were measured via an enzyme-linked
14 immunosorbent assay (ELISA) (Ray Biotech, Peachtree Corners, GA) per the
15 manufacturer's protocol. Samples were diluted 600,000-fold and plated in duplicate.
16 Plates were analyzed using the GloMax Explorer plate reader (Promega, Madison, WI)
17 and GraphPad Prism (GraphPad Software version 9, LaJolla, California). Heatmap was
18 generated using Microsoft Excel. Data was normalized by dividing raw data values from
19 Day 6, 14 and 21 by the baseline value for each animal.

20

21 Kynurenone and tryptophan levels in plasma were measured using commercially
22 available enzyme-linked immunosorbent assays (Rocky Mountain Diagnostics, Colorado
23 Springs, CO) per the manufacturer's protocol. The GloMax Explorer plate reader
24 (Promega, Madison, WI) along with GraphPad Prism v9 were used to analyze the plates.

25

26 *Quantification of Inflammatory Cytokines and Coagulation Biomarkers*

1 BioLegend's bead-based immunosorbent assays were used to measure inflammatory
2 cytokines in serum (LegendPlex NHP Inflammation Panel, BioLegend, San Diego, CA)
3 and coagulation biomarkers in sodium citrate plasma (LegendPlex Human Fibrinolysis
4 Panel). Serum and plasma samples were diluted 4-fold and 10,000-fold, respectively,
5 and assayed in duplicate. Results were read using a MacsQuant 16 Flow Cytometer
6 (Miltenyi Biotec) and LegendPlex's online data analysis tool (Qognit). Heatmap was
7 generated using Microsoft Excel. Data was normalized by dividing raw data values from
8 Day 6, 14 and 21 by the baseline value for each animal.

9

10 Flow Cytometry Analysis

11 Phenotypic and intracellular cytokine analysis of mononuclear cells (MNC) isolated from
12 blood and bronchoalveolar lavage (BAL) was performed using antibodies against
13 markers listed in Supplementary Tables 2-4. Briefly, cells were washed and counted with
14 the Cellometer Auto 2000 (Nexcelom Bioscience, Lawrence, MA). Cells were then
15 pelleted and resuspended in Live/Dead stain cocktail (50 µL PBS + 0.5 µL live/dead
16 stain per test) (Fixable Aqua Dead Cell Stain Kit, Invitrogen, Lithuania) and incubated in
17 the dark for 20 minutes. Cells were washed in PBS supplemented with 2% FBS,
18 pelleted, resuspended, and incubated in surface-stain cocktail consisting of 50µL BD
19 Horizon Brilliant Violet Stain Buffer (BD Bioscience, Franklin Lakes, NJ) plus antibodies
20 (see Supplementary Tables 2-4) for 20 minutes in the dark. Cells were washed in PBS
21 with 2% FBS, pelleted, then resuspended in 200 µL BD Cytofix/Cytoperm solution (BD
22 Biosciences, Franklin Lakes, NJ) and incubated in the dark for 20 minutes. Cells were
23 washed in BD Perm/Wash Buffer (BD Biosciences, Franklin Lakes, NJ), pelleted, and
24 resuspended in intracellular-staining cocktail consisting of 100 µL BD Perm/Wash Buffer
25 plus antibodies according to Supplementary Tables 2-4 and incubated for 20 minutes in

1 the dark. Finally, cells were then washed, pelleted, and resuspended in 200 μ L 1x BD
2 Stabilizing Fixative (BD Biosciences, Franklin Lakes, NJ).

3

4 Monocyte Cytokine Expression

5 To measure monocyte cytokine expression, MNCs from blood and BAL were washed
6 and counted (Cellometer Auto 2000, Nexcelom Bioscience, Lawrence, MA), pelleted,
7 and then resuspended in DMEM (Gibco, Grand Island, NY) with 5% Anti-Anti (Gibco,
8 Grand Island, NY) at 1×10^6 cells/mL. Cells were stimulated with lipopolysaccharide at 10
9 ng/mL (Sigma, St Louis, MO) and incubated with 1 μ L/mL Brefeldin-A (BioLegend, San
10 Diego, CA) for 4-6 hours at 37°C, 5% CO₂. Cells were then stained following the
11 procedure described above with antibodies listed in the Monocyte Panel (Table S2).

12

13 T cell Cytokine Expression

14 MNCs from BAL were counted, washed, pelleted, and resuspended in DMEM with 5%
15 Anti-Anti at 1×10^6 cells/mL. T cell cytokine expression was measured by stimulating
16 MNCs with cell stimulation cocktail (Biolegend, San Diego, CA) for 4-6 hours at 37°C,
17 5% CO₂. To measure T cell responses to SARS-CoV-2 antigens, MNCs from blood and
18 BAL were washed, pelleted and resuspended in DMEM with 5% Anti-Anti and 10% FBS
19 at 1×10^6 cells/mL followed by overnight stimulation at 37°C, 5% CO₂ with either cell
20 stimulation cocktail or with one of the following viral peptide pools obtained through BEI
21 Resources, NIAID, NIH: Peptide Array, SARS Coronavirus Nucleocapsid Protein (NR-
22 52419), Spike Glycoprotein (NR-52402), Membrane Protein (NR-53822), or Envelope
23 Protein (NR-53822) along with Brefeldin-A. Cells were stained as described above using
24 the antibodies listed in the T cell panel (Table S4).

25

1 All samples were acquired on a LSРFortessa Cell Analyzer (BD Biosciences, Franklin
2 Lakes, NJ) using BD FACSDIVA 8.0.1 software. Approximately 1x10⁶ cells were
3 acquired from each sample. Data was analyzed using FlowJo version 10.7.1 for MAC
4 (Becton Dickinson and Company, Ashland, OR). SARS-CoV-2 antigen specific T cell
5 response figures (9A&B) were generated using the Matlab based tool cyt3²³. Data was
6 transformed using arcsin 150. Cytokine expression was measured in FlowJo and, when
7 applicable, applied to cyt3 generated figures. t-distributed stochastic neighbor
8 embedding (tSNE) analysis was performed in FlowJo 10.7.1, nightingale rose plots were
9 generated in R using the ggplot2 package, radial plots were generated in Microsoft
10 Excel.

11

12 *Histopathology and Immunohistochemistry*

13 Zinc-formalin fixed tissues were processed routinely, embedded in paraffin and cut in to
14 5 µm sections for hematoxylin and eosin (H&E) or immunohistochemical (IHC) staining.
15 For H&E staining, tissue samples were collected in Zinc formalin (Anatech, Sparks, NV)
16 and immersion fixed for a minimum of 72 hours before being washed and dehydrated
17 using a Thermo Excelsior AS processor. Upon removal from the processor, tissues were
18 transferred to a Thermo Shandon Histocentre 3 embedding station where they were
19 submersed in warm paraffin and allowed to cool into blocks. From these blocks, 5um
20 sections were cut and mounted on charged glass slides, baked overnight at 60°C and
21 passed through Xylene, graded ethanol, and double distilled water to remove paraffin
22 and rehydrate tissue sections. A Leica Autostainer XL was used to complete the
23 deparaffinization, rehydration and routine hematoxylin and eosin stain preparing the
24 slides for examination by a board-certified veterinary pathologist using HALO software
25 (Indica Labs, Albuquerque, NM).

26

1 For IHC staining, tissue sections were mounted on Superfrost Plus Microscope slides
2 (Fisher Scientific, Carlsbad, CA), incubated for 1 hour at 60°C, and passed through
3 Xylene, graded ethanol, and double distilled water to remove paraffin and rehydrate
4 tissue sections. A microwave was used for heat induced epitope retrieval (HIER). Slides
5 were boiled for 20 minutes in a Tris based solution, pH 9 (Vector Laboratories,
6 Burlingame, CA), supplemented with 0.01% Tween-20. Slides were briefly rinsed in hot,
7 distilled water and transferred to a hot citrate based solution, pH 6.0 (Vector
8 Laboratories, Burlingame, CA) where they were allowed to cool to room temperature. All
9 slide manipulation from this point forward was done at room temperature with
10 incubations taking place in a black humidifying chamber. Once cool, slides were rinsed
11 in tris buffered saline (TBS) and incubated with Background Punisher (Biocare Medical,
12 Pacheco, CA) for 10 minutes. Slides were then submerged in a solution of TBS
13 supplemented with 0.01% TritonX100 (TBS-TX100) and placed on a rocker platform for
14 two 5 minute washes followed by a TBS rinse before being returned to humidifying
15 chamber to be incubated with serum free protein block (Dako, Santa Clara, CA) for 20
16 minutes. Mouse anti-Granzyme primary antibody (Table S6) was then added to the
17 slides and allowed to bind for 60 minutes. Slides were then washed twice with TBS-
18 TX100 and once with TBS. The labeling of the antibody for visualization was done using
19 the MACH3 AP kit (Biocare Medical, Pacheco, CA). Both the MACH3 probe and polymer
20 were incubated for 20 minutes with TBS-TX100 and TBS washes in between. Slides
21 were incubated with permanent red substrate (Dako, Santa Clara, CA) for 20 minutes
22 and placed in TBS to halt the enzymatic reaction.

23

24 All other staining was done consecutively with the following method. Slides were
25 incubated with a blocking buffer comprised of 10% normal goat serum (NGS) and 0.02%
26 fish skin gelatin in phosphate buffered saline (PBS) for 40 minutes. This blocking buffer

1 was also used to dilute both primary and secondary antibodies (Table S6). Primary
2 antibodies were added to slides for 60 minutes. After washing two times with PBS
3 supplemented with 0.02% fish skin gelatin and 0.01% TritonX100 (PBS-FSG-TX100)
4 and once with PBS-FSG, slides were incubated for 40 minutes with a secondary
5 antibody made in goat, raised against the primary host species, and tagged with an
6 Alexa Fluor fluorochrome (488 or 568). The 3 washes mentioned above were repeated
7 before DAPI nuclear stain was added for 10 minutes. Slides were mounted using anti-
8 quenching mounting media containing Mowiol (Sigma, St Louis, MO) and DABCO
9 (Sigma, St Louis, MO) and allowed to dry overnight before imaging with a Axio Slide
10 Scanner (Zeiss, Hamburg, Germany). HALO software (Indica Labs Albuquerque, NM)
11 was used for quantification and analysis.

12

13 *Detection of Neutralizing Antibodies in Serum*

14 Pseudovirus neutralization testing of serum samples was performed using a SARS-CoV-
15 2.D614G spike-pseudotyped virus in 293/ACE2 cells, with neutralization assessed via
16 reduction in luciferase activity as described^{24,25}.

17

18 *Statistical Analysis*

19 GraphPad Prism (version 9 GraphPad Software, LaJolla California) was used for all
20 graphing and statistical analyses. The Kruskal-Wallis with Dunn's multiple comparison
21 test was used to compare changes in cell frequencies and surface marker, cytokine and
22 Granzyme B expression,

23

24 **Results**

25 *Viral dynamics*

1 Four pigtail macaques (PTM) inoculated with SARS-CoV-2 were followed via blood,
2 mucosal swab and bronchoalveolar lavage (BAL) sampling. Two animals were
3 euthanized at 6 days post infection (dpi) and two at 21 dpi (Figure 1A). Quantitative RT-
4 PCR was used to track viral genomic and subgenomic RNA through the course of the
5 study at several sites. We detected both genomic and subgenomic SARS-CoV-2 RNA in
6 all four animals throughout the first several days of infection (Figure 1B-K). One animal,
7 MA27, euthanized at 6-days post infection (dpi), showed a spike in genomic and
8 subgenomic viral RNA (vRNA) at necropsy in the pharynx (Figure 1D,E), with viral levels
9 also beginning to rise in the nasal cavity (Figure 1B,C). MA28, euthanized at 21-dpi,
10 showed detectable levels of vRNA in the nasal and rectal mucosa throughout the course
11 of the study (Figure 1B,J). These findings are consistent with viral kinetics seen in
12 Rhesus macaques with the possible exception of lower viral loads in the pharynx in the
13 PTM model.

14

15 **Pulmonary disease and pathology**

16 Thoracic radiographs were obtained from all animals before infection and weekly after,
17 revealing subtle changes consistent with interstitial pneumonia reflective of mild to
18 moderate COVID-19 (Figure S1A-L). Postmortem examination at 6-days post infection
19 (dpi) revealed mild-to-moderate SARS-CoV-2-associated pneumonia in one of the two
20 animals, MA27. The pneumonia was characterized by multifocal tan-plum areas of
21 consolidation in the caudal left lung lobe (Figure S2A, Table S1). At 21-dpi, gross lesions
22 were minimal and only observed in one of two animals, MA28. The lesions in this animal
23 were two small, flat tan foci on the dorsolateral aspect of the left caudal lung lobe (Figure
24 S2D, Table S1).

25

1 Histopathological findings consistent with SARS-CoV-2 associated pneumonia were
2 observed in both animals at 6-dpi. Both animals had an interstitial pneumonia that was
3 localized to regions of the left caudal lung. Regions of interstitial pneumonia were
4 characterized by alveolar septa that were mild to markedly expanded by a mixture of
5 macrophages, lymphocytes, and neutrophils. Alveolar septa were frequently lined by
6 type II pneumocytes (Figure 2C&D), and alveoli contained large numbers of alveolar
7 macrophages with rafts of fibrin in more severely affected areas (Figure 2A-D).

8

9 At 21-dpi, minimal-to-mild residual interstitial pulmonary inflammation was observed in
10 both animals. The residual inflammation was composed of perivascular lymphoid
11 aggregates along with mild thickening of alveolar septa (Figure 2E&F). The inflammatory
12 infiltrate at this time point was composed predominately of lymphocytes; however, in one
13 animal, MA28, low numbers of multinucleated giant cells were present in alveoli. (Figure
14 2H).

15

16 **Serum cytokine measures of inflammation**

17 We next measured a panel of cytokines in blood serum after infection. Fluctuations in
18 several inflammatory cytokine levels, as compared to baseline, were found throughout
19 the study. Interleukin-8 (IL-8), a neutrophil chemoattractant, was the most consistently
20 increased cytokine at 6-dpi whereas IL-6 and IL-12-p40 decreased in all animals at day
21 6 (Figure 3A). Interestingly, MA27 had a stronger inflammatory cytokine response at 6-
22 dpi compared to the other three animals, as exemplified by increases in several
23 cytokines, including IL-10, IFN- γ , GM-CSF, IL-8, IL-17A, MCP-1 and most notably, TNF-
24 α and IFN- β . As stated previously, this animal had increasing viral loads at 6-dpi
25 suggesting a possible link between the intensity of the inflammatory response and the
26 level of replicating virus. Animal MA28, which exhibited consistently high genomic vRNA

1 levels in both nasal and rectal swabs through 21-dpi, showed a rise IL-10, IL-1 β , IL-
2 12p40 and IP-10 serum levels at necropsy (21-dpi).

3

4 **Markers of coagulopathy**

5 Complications related to coagulopathy have been reported in humans with severe
6 COVID-19 disease, with highly elevated levels of D-dimers in particular a biomarker of
7 disease severity^{26,27}. To examine whether PTM recapitulate this phenotype, we
8 measured multiple biomarkers of coagulation in blood (Figure 3B), including fibrinogen,
9 prothrombin, factor XIII, antithrombin, plasminogen, and D-dimers. We found nearly
10 universal increases in coagulation biomarkers in the first week of infection. Specifically,
11 we noted increased D-dimer levels in all four animals at 6-dpi, with MA27 and MA28
12 exhibiting a greater than 3-fold increase relative to baseline before resolving to near
13 baseline levels. Interestingly, several biomarkers (fibrinogen, prothrombin, factor XIII,
14 antithrombin, and plasminogen) began to rise again at 21-dpi.

15

16 **Kynurenine tryptophan pathway**

17 Pro-inflammatory cytokines, specifically interferon gamma- γ (IFN- γ), promote the
18 kynurenine (Kyn) pathway (KP) of tryptophan (Trp) catabolism²⁸. Recent studies in
19 humans hospitalized with COVID-19 suggest that the Kyn:Trp ratio positively correlates
20 with disease severity²⁹. We measured the Kyn:Trp ratio in plasma at baseline, and days
21 6, 14 and 21 (Figure 3C, S3A,B). Again, MA27 showed the greatest increase in the
22 Kyn:Trp ratio at 6-dpi possibly providing another biomarker of the more severe disease
23 course seen in this animal.

24

25 **NK cells**

1 The initial immune response to SARS-CoV-2 infection involves the intricate interplay
2 between cells of the innate immune system. Natural killer (NK) cells are cytotoxic
3 lymphocytes that often play a key role in the early defense against viral infections.
4 Studies of hospitalized COVID-19 patients show that decreases in circulating NK cells
5 correlate with disease severity^{30,31}. Here, we measured the percentage of NK cells
6 (defined as CD45+ CD3- CD8+) in both the blood and bronchoalveolar lavage fluid
7 (BAL) at baseline, and days 6-, 14-, and 21-post infection (Figure 3D&E). We did not find
8 significant changes in NK cells in our study. However, MA28 and MA24 had slight
9 increases in circulating NK cells at day 6 and day 14, respectively. Flow cytometry
10 analysis of BAL indicated an increase in infiltrating NK cells in the lung at 6-dpi in all four
11 animals.

12

13 **Neutrophil to lymphocyte ratio**

14 A high incidence of neutrophilia coupled with lymphocytopenia has been reported in
15 COVID-19 patients^{31,32}. Animals MA24, MA27, and MA28 all experienced neutrophilia
16 and lymphocytopenia during the course of the study but the changes were mild and
17 values largely stayed within normal limits. Pre-infection data on these cells were not
18 available for MA30 (Table S1). The neutrophil to lymphocyte ratio (NLR) has been
19 identified as an important predictor of disease severity in human patients³³. We thus
20 measured the NLR at baseline and 6-, 14- and 21-dpi. MA27 had the highest NLR at 1-
21 and 4-days post infection (Figure 3F-H). These data are consistent with the increased
22 inflammatory cytokine and D-dimer levels, higher K:T ratio, and increasing viral titers at
23 the time of necropsy observed in MA27. Each potentially correlate with or contribute to
24 the more severe lung pathology observed in this animal at necropsy.

25

26 **SARS-CoV-2 infection and macrophage pulmonary infiltration**

1 Fluorescent immunohistochemistry of the lung for SARS-CoV-2 nucleoprotein identified
2 small clusters of SARS-CoV-2 infected cells, predominately lining the alveolar septa, in
3 both animals sacrificed at 6-dpi (Figure 4 A,B&E). COVID-19 disease is commonly
4 characterized by pulmonary infiltration of inflammatory immune cells³⁴. Innate cells,
5 particularly monocytes/macrophages are considered important mediators of disease
6 progression³⁵. At 6-dpi, the alveoli contained large numbers of IBA1+ macrophages
7 (Figures 4A-D,F). By 21-dpi, macrophage numbers were greatly reduced and no SARS-
8 CoV-2+ cells were detected in either MA24 or MA28 (Figure 4C-F).

9 Flow cytometry showed increases in CD14+ CD16- classical monocytes in both the
10 blood and BAL at 6-dpi (Figures 4I&L) and an increase in CD14+ CD16+ intermediate
11 monocytes (Figure 4M) in BAL at 6-dpi. Heterogeneous fluctuations of circulating
12 intermediate and CD14- CD16+ non-classical monocytes occurred throughout the study
13 (Figures 4J&K). MA27 and MA24 showed increases in inflammatory cytokine, tumor
14 necrosis factor- α (TNF- α)-expressing classical monocytes in the BAL at 6-dpi (Figure
15 4H). Interleukin-1 β (IL-1 β) and IL-6 are key inflammatory cytokines involved in the
16 pathophysiology of COVID-19 disease in humans^{36,37}. Here, we noted increases in IL-1 β
17 expression in peripheral CD14+ CD16- monocytes throughout the study (Figure 5A). As
18 indicated in Figure 3A, serum levels of IL-6 remained low after infection. We also found
19 that peripheral monocyte expression of IL-6 stayed relatively stable post infection, with
20 only one animal, MA24, showing an increase at days 14 and 21 compared to 6-dpi
21 (Figure 5B). There was an upward trend that was not statistically significant in neutrophil
22 chemoattractant, IL-8, expression (Figure 5C).

23

24 **Peripheral T cell responses**

25 Understanding the role of the adaptive immune response to SARS-CoV-2 infection is a
26 key component to the development of effective vaccines and treatment options for

1 COVID-19. Using flow cytometry, we measured changes to T cell populations in both the
2 blood and BAL at baseline and 6-, 14-, and 21-dpi. CD3+ T cell fluctuations in the blood
3 were driven by CD4 T cells which showed levels increasing significantly between days
4 14- and 21-pi (Figure 6A). As the percentage of CD4 T cells rise and fall over the course
5 of the study, we observed the opposite pattern in the percentage of cytotoxic CD8 T cells
6 (Figure 6B). We found increases in Ki-67+ CD4 T cells at 6-dpi (MA27, MA28 and
7 MA30) and 14-dpi (MA24 and MA28) indicating increased CD4 T cell proliferation
8 (Figure 6C&D). Increases in expression of the T cell exhaustion marker, PD-1, have
9 been noted in a number of studies involving human COVID-19 patients³⁸⁻⁴⁰. Here we
10 found a significant increase in PD-1+ CD4 T cells at 14-dpi (Figure 6I). Interestingly, we
11 saw a decrease in the percentage of CD4 T cells at this same timepoint.

12

13 We next used tSNE analysis to show changes in PD-1 expressing cell populations over
14 the course of the study (Figures 6E,F,H). At baseline, CD4- CD8- (double negative) T
15 cells made up the greatest proportion of PD-1+ CD3+ T cells (Figure 6H). Beginning at
16 day 6-pi, CD4 T cells made up the majority of PD-1 expressing cells, with only one
17 animal, MA28, showing increases in PD-1 expressing cytotoxic T cells at 6 and 14-dpi
18 (Figure 6J).

19

20 **Pulmonary T cell responses**

21 We next sought to characterize the dynamics of pulmonary T cell populations over the
22 course of infection by examining the frequency as well as cytokine and surface protein
23 expression before SARS-CoV-2 infection, and at days 6-, 14-, and 21- post viral
24 challenge. Using PMA stimulation, we noted increased frequencies of CD4+/CD8+
25 double positive (DP) T cells after viral challenge which remained elevated throughout the
26 study (Figure 7A&B) ((Median DP T cells as a percentage of CD3+ T cells: Baseline: 2%

1 (n=2), 6-dpi: 23% (n=4), 14-dpi: 30% (n=2), 21-dpi: 31% (n=2)). We also examined fold
2 changes in surface protein and cytokine expression among the DP, CD4 and CD8 single
3 positive T cell populations as compared to baseline in two of the animals, MA24 and
4 MA27 (Figure 7E-J). Both MA24 (euthanized at 21-dpi) and MA27 (euthanized at 6-dpi)
5 showed large increases among all three T cell populations in TNF- α expression at 6-dpi.
6 At fourteen days post infection, MA24 showed increased expression of Granzyme B in
7 both the DP and CD8 T cell populations. Interestingly, it was the DP T cell population
8 which showed the greatest fold increase in Granzyme B over baseline indicating the
9 cytotoxic potential of this DP T cell population.

10

11 We also compared the activity of each T cell subtype within the same time point of
12 infection (Figure 8A-O). Prior to infection, DP T cells showed higher TNF- α , IFN- γ , IL-10,
13 MIP-1 β , and IL-22 expression than traditional CD4 and CD8 T cells, indicating that these
14 cells may potentially perform a non-specific function in the pulmonary immune
15 response⁴¹. After viral challenge, we found higher frequencies of Granzyme B
16 expressing DP T cells compared to CD4 T cells and, most notably, CD8 T cells at each
17 timepoint post infection (Figure 8E,J&O). We found significant increases in CD4 T cells
18 expressing IL-2, IL-10 and MIP-1b (Figure 8A-E). At 14-dpi, we noted a significant
19 increase in MIP-1 β expressing CD8 T cells (Figure 8I). DP T cells also showed
20 increased activity post viral challenge with significant increases in the frequency of IL-10,
21 TNF- α , MIP-1 β and Granzyme B expressing cells. Taken together, these findings show
22 that the DP T cell population has functions which overlap with both CD4 and CD8 T
23 cells⁴¹. We speculate that these cells are major histocompatibility complex class II
24 (MHC-II) restricted CD4 T cells which upregulate CD8 upon activation, generating the
25 described DP T cell population which has greater cytotoxic potential than traditional CD4

1 T cells. Pulmonary infiltrating cytotoxic CD4 T cells potentially aid CD8 T cells in viral
2 clearance and are a unique aspect of COVID-19 disease²¹.

3

4 ***CD4 T cell and Granzyme B expression in the lungs***

5 Fluorescent Immunohistochemistry (IHC) identified cytotoxic CD4 T cells (CD4+
6 Granzyme B+) in the lungs of all four PTM at necropsy (Figure 9). We detected large
7 numbers of infiltrating Granzyme B positive cells in the lungs of MA27 and MA30
8 (euthanized at 6-dpi) along with rare cytotoxic T cells (Figure 9A,B,F,G). At 21-dpi, MA24
9 (Figure 9C) showed low numbers of Granzyme B+ cells compared to MA28 (Figure 9D)
10 and the other two animals which were euthanized at 6-dpi. Cytotoxic CD4 T cells were
11 detected in the lung of MA28 and, with less frequency, in MA24 (Figure 9G).

12

13 We then used flow cytometry to measure cytotoxic CD4 T cells in BAL
14 (CD45+CD3+CD4+Granzyme B+). To mirror the IHC analysis, we did not exclude CD8+
15 cells from our cytotoxic CD4+ population. Mononuclear cells were stimulated with PMA
16 cocktail and cytotoxic CD4 T cells were measured as a percentage of CD45+ cells
17 (Figure 9H&J) and CD3+ T cells (Figure 5I&K) in both the stimulated and unstimulated
18 conditions. We noted a considerable increase in cytotoxic CD4 T cells in BAL at 14-dpi.

19

20 **SARS-CoV-2 peptide specific T cell response in the lung 21-days post infection**

21 Mononuclear cells, isolated from BAL, were incubated overnight with SARS-CoV-2
22 peptides and analyzed by flow cytometry. We detected specific CD4 T cell responses
23 against SARS-CoV-2 that localized to the lung 21 days after viral infection. Specifically,
24 we identified CD4 T cell responses to membrane, nucleocapsid and to a lesser degree,
25 spike peptides (Figure 10A). CD8 T cell responses against the virus were also noted, but
26 at lower frequencies (Figure 10B). In FlowJo, we gated on the CD4 T cell population and

1 applied tSNE analysis to identify and characterize virus specific CD4 T cells responding
2 to membrane and nucleocapsid viral peptides (Figure 10C&D). tSNE analysis revealed a
3 unique cluster of CD4 T cells that responded to stimulation. In this population of
4 responding cells (Figure 10E&F), we noted increased expression of CD8 and HLA-DR,
5 indicating cell activation. Increased expression of inflammatory cytokines and
6 chemokines was also detected in the antiviral CD4 T cells. We noted a decrease in
7 Granzyme B expression suggesting that the antigen specific CD4 T cells have reduced
8 cytotoxic capacity, unlike the DP T cells (cytotoxic CD4) described previously (Figures 7,
9 8 and 9). As expected, antiviral CD4s have increased CD95 expression indicating a
10 memory phenotype. Numerous studies of SARS-CoV-2 convalescent humans have
11 described antiviral T cells with a relative predominance of CD4 T cells^{42,43}. These
12 antiviral responses are most often noted in the blood. In our study, we were unable to
13 detect antigen-specific T cell responses in the blood 21 days after viral infection (data
14 not shown). Taken together, our data provide a valuable addition to the data from
15 humans and may suggest important roles for antiviral CD4 T cells in the pulmonary
16 compartment.

17

18 **Humoral immune responses**

19 Using flow cytometry, we measured B cell kinetics in the blood at baseline and days 6-,
20 14- and 21-post infection (Figure 11A). We did not detect any significant changes in the
21 percentage of peripheral B cells over the course of the study. We next tested serum from
22 infected animals for neutralizing antibodies using a pseudovirus assay. Not surprisingly,
23 no neutralization was detected at 6-dpi in any sample, including the animals euthanized
24 at that time point. By 14-dpi, neutralizing antibody responses were detectable in both
25 MA24 and MA28 with responses decreasing by 21-dpi (Figure 11B).

26

1 **Discussion**

2 The novel coronavirus SARS-CoV-2 has caused a global pandemic with little precedent.

3 As of the time of submission, this virus has infected nearly 190 million individuals

4 worldwide and killed four million, including over 600,000 in the United States. Illness

5 caused by this virus, termed COVID-19, ranges from asymptomatic^{44,45} to flu-like

6 symptoms to severe pneumonia^{46,47}. In the most severe cases, patients have

7 experienced acute respiratory distress syndrome (ARDS) and death⁴⁸. It has also

8 become apparent that a number of surprising symptoms can be associated with SARS-

9 CoV-2 infection, including: coagulopathy, thrombosis, kidney failure and chronic

10 respiratory/neurological issues that seemingly persist well beyond viral clearance^{36,49–56}.

11 Although several highly effective vaccines have been created to combat the COVID-19

12 pandemic^{57–59}, billions of individuals remain unvaccinated worldwide. Furthermore, the

13 emergence of new viral variants with enhanced transmissibility^{60–63} and the ability to

14 infect even the vaccinated⁶⁴ (though this population is overwhelmingly protected from

15 severe disease^{65–67}) suggest that this virus will persist indefinitely. Barring the

16 development and mass deployment of vaccines capable of inducing sterilizing immunity,

17 an exceedingly difficult task, intense research focus must remain to decipher disease

18 mechanisms so those that do become infected can be treated.

19

20 Critical to both understanding and treating the broad spectrum of disease sequelae

21 caused by SARS-CoV-2 is the development of animal models that faithfully recapitulate

22 COVID-19. Animal models allow timed infection and euthanasia along with extensive

23 sample collection that are not possible during human infections. Rhesus macaques

24 (RhM), cynomolgus macaques (CyM), and African green monkeys (AGM) have all been

25 used to achieve this goal^{12–15,68}. To date, none of these models consistently recapitulate

26 severe COVID-19 disease but some data suggest AGM may exhibit more severe

1 disease than the others^{12,13}. When infected with simian immunodeficiency virus (SIV),
2 pigtail macaques (PTM) exhibit rapid and severe disease relative to RhM and CyM,
3 including rapid destruction of the CD4 immune compartment, severe gastrointestinal
4 disease, and complications related to coagulopathy^{17–19,69–71}. Many of these disease
5 features are also relevant to severe COVID-19 disease^{49–54,72–74}. A recent report
6 demonstrated that a related species of pigtail macaques showed an abbreviated period
7 of SARS-CoV-2 viral replication but possibly more severe disease than RhM⁷⁵. Thus,
8 PTM may be a reasonable model for severe disease and used to test novel therapeutics
9 and vaccines to prevent disease.

10

11 We infected a small cohort of PTM with SARS-CoV-2 through a combination of
12 intratracheal and intranasal instillation. Animals were tracked for viral replication in
13 multiple sites, for immune dynamics in blood and bronchoalveolar lavage cells, and for
14 innate and other markers of disease in blood and tissues. We identified a range of
15 disease severity, even in our small cohort, with one animal euthanized at six days post
16 infection showing more severe pulmonary lesions than the rest. Interestingly, multiple
17 early indicators that are consistent with a more severe disease course in humans, were
18 also detected in this animal, including: viral titer, an elevated neutrophil to lymphocyte
19 ratio, elevated kynurenone to tryptophan ratio, and elevated serum inflammatory
20 cytokines. Our findings suggest that these factors correlate with and may predict disease
21 severity. Expanded cohort sizes that include both male and females as well as aged
22 animals may uncover additional clinical manifestations.

23

24 Viral dynamics were similar in PTM as we have reported in RhM^{12,13}. Viral RNA,
25 including subgenomic RNA, was consistently detected throughout the first several days
26 of infection. We detected persistent viral titers at multiple sites in some of the animals

1 throughout the course of the study. These data confirm PTM as a robust model of viral
2 infection and replication, similar to RhM, and suggest this model may be used to study
3 novel virus host relationships.

4

5 COVID-19 disease is commonly characterized by pulmonary infiltration of inflammatory
6 immune cells³⁴. Innate cells, particularly monocytes, are considered important mediators
7 of disease progression³⁵. Although infiltrating monocytes were identified in our PTM, T
8 cells were a more dominant cellular infiltrate into lungs as detected in bronchoalveolar
9 lavage sampling. Specifically, we identified a unique population of CD4+/CD8+ double
10 positive T cells that upregulated inflammatory cytokines such as TNF- α as well as
11 Granzyme B over the course of infection. Traditionally, these cells would be predicted to
12 be major histocompatibility complex class II (MHC-II) restricted CD4 T cells that
13 upregulate CD8 upon activation. Pulmonary infiltrating CD4 T cells with cytotoxic
14 capacity, as measured by Granzyme B, are a unique and possibly understudied aspect
15 of COVID-19 disease.

16

17 We also identified relatively high magnitude CD4 T cell responses against the virus that
18 localized to the lung 21 days after viral infection. CD8 T cells against the virus were also
19 noted, but at lower frequencies. Many studies have reported antiviral T cells in SARS-
20 CoV-2 convalescent humans, with a relative predominance of CD4 T cells, however
21 these responses are nearly always noted in blood^{42,43}. Thus, our data provide a valuable
22 addition to the data from humans and may suggest important roles for antiviral CD4 T
23 cells in pulmonary sites.

24

25 Taken together, our data define a new animal model for COVID-19. PTM show robust
26 viral replication, SARS-CoV-2 associated pneumonia, and complex innate and adaptive

1 immune responses that may shed light on mechanisms of COVID-19 disease. This
2 model may prove valuable for testing novel immunomodulatory therapeutics and
3 vaccines, including those that modulate pulmonary infiltration of T cells and other
4 inflammatory cells. Finally, our data confirmed COVID-19 associated inflammation was
5 not always resolved 21dpi, despite no evidence of continued viral replication at that time
6 point. Thus, this model may also be valuable for the study of long-term chronic effects
7 associated with SARS-CoV-2 infection.

8

9 **Figure legends**

10 **Figure 1. Viral dynamics.** **A.** Outline of study design. Four PTM were exposed to
11 1x10⁶ TCID50 of SARS-CoV-2 (isolate WA1/2020) through a combination of intranasal
12 and intratracheal inoculation on Day 0. Figure created with BioRender.com. **B-K.**
13 Quantification of SARS-CoV-2 RNA levels from mucosal swabs overtime (Quantitative
14 RT PCR). Genomic (**B,D,F,H,J**) Subgenomic (**C,E,G,I,K**). B-K Baseline: n=4, Day 1:
15 n=4, Day 4: n=4, Day 6: n=4, Day 14: n=2, Day 21: n=2

16

17 **Figure 2. Histopathologic findings in SARS-CoV-2 infected pigtail macaques**
18 (**PTM**). Histopathologic findings at 6- (**A-D**) and 21-dpi (**E-H**). **A&B.** At 6-dpi alveolar
19 septa are expanded by inflammatory infiltrate and alveoli contain rafts of fibrin (**arrows**).
20 **C&D.** The inflammatory infiltrate is composed of a mixture of histiocytes, lymphocytes,
21 and neutrophils, and alveolar septa are frequently lined by type II pneumocytes
22 (**arrows**). In severely affected areas, alveoli contain fibrin rafts (**C, asterisks**). **E&F.** At
23 21-dpi, there is residual inflammation composed of perivascular lymphoid aggregates
24 (**asterisks**), and mild thickening of alveolar septa (**arrows**). **G&H.** The residual
25 inflammation is composed predominately of lymphocytes, and in MA28, rare
26 multinucleated giant cells (**H, arrows**).

1

2 **Figure 3. Inflammatory innate immune response in pigtail macaques challenged**
3 **with SARS-CoV-2. A.** Changes in serum cytokine levels at 6-, 14- and 21-days post
4 SARS-CoV-2 infection. Data represent fold changes from baseline. **B.** Changes in
5 coagulation biomarkers in plasma at 4-, 6-, 14- and 21-days post infection (dpi). Data are
6 fold changes from baseline. **C.** Ratio of Kynurenine (Kyn) to Tryptophan (Trp) as a
7 measure of indoleamine 2,3-dioxygenase (IDO) activity before and after SARS-CoV-2
8 infection. **D&E.** Frequency of Natural Killer (NK, CD45+ CD3- CD8+) cells in the blood
9 (D) or (E) BAL at baseline, 6-, 14- and 21-days post infection (dpi). Bars represent
10 median **F.** Absolute number of neutrophils pre- and post- SARS-CoV-2 infection. **G.**
11 Absolute number of lymphocytes pre- and post-SARS-CoV-2 infection. **H.** Changes in
12 neutrophil to lymphocyte ratio before and after SARS-CoV-2 infection. Figures 3C&D
13 Baseline: n=4, Day 6: n=4, Day 14: n=2, Day 21: n=2; Figure 3E Baseline: n=3, Day 6:
14 n=4, Day 14: n=2, Day 21: n=2; Figures 3F-H Baseline: n=3, Day 1: n=4, Day 4: n=4
15 Day 6: n=4, Day 14: n=2, Day 21: n=2. Figures C-H Day 0=day of infection. Kruskal-
16 Wallis test for variance for overall medians used to determine significance. Kruskal-
17 Wallis comparison of overall means (P_{KW}) test used to determine significance. P values
18 ≤ 0.05 reported

19

20 **Figure 4. Pulmonary SARS-CoV-2 infection and macrophage/monocytes in the**
21 **lung and blood. A-D.** SARS-CoV-2 infection and macrophage infiltration in the lungs of
22 pigtailed macaques at 6- (**A&B**) and 21- days post infection (dpi, **C&D**). DAPI=White,
23 Green=SARS-CoV-2, Red=IBA1,Blue=Autofluorescence. **E-F.** Percentage of SARS-
24 CoV-2 infected cells (**E**) and IBA1+ macrophages (**F**) in the lung at necropsy. Bars
25 represent median. **G&H.** Frequency of IL-8 (**G**) and TNF- α (**H**) expressing classical
26 monocytes (CD45+ HLA-DR+ CD14- CD16+) in BAL. **I-O.** Classical (**I&L**) intermediate

1 (CD45+ HLA-DR+ CD14+ CD16+) (**J&M**), and non-classical monocytes (CD45+ HLA-
2 DR+ CD14- CD16+) (**K&O**) frequencies in the blood and BAL before and after SARS-
3 CoV-2 infection. Day 0=day of infection. I-O Baseline (day -7): n=3, Day 6: n=4, Day 14:
4 n=2, Day 21: n=2. Kruskal-Wallis comparison of overall means (P_{KW}) and Dunn's
5 Multiple comparisons (designated by line, P_D) tests used to determine significance. P
6 values ≤ 0.05 reported
7

8 **Figure 5. A-D. Monocyte cytokine response in the blood of pigtail macaques**
9 **challenged with SARS-CoV-2.** Frequency of IL-1 β (**A**), IL-6 (**B**), IL-8 (**C**) and TNF- α (**D**)
10 expressing classical monocytes (CD45+ HLA-DR+ CD14- CD16+)
11 in the blood. Bars represent median. Day 0=day of infection. Baseline (-7): n=3, Day 6:
12 n=4, Day 14: n=2, Day 21: n=2.
13

14 **Figure 6. T cells in the blood. A-B.** CD4+ (**A**) and CD8+ (**B**) T cell frequencies in the
15 blood before and 1-, 2-, and 3-weeks post SARS-CoV-2 infection. **C-D.** Changes in Ki-67
16 expressing CD4+ (**C**) and CD8+ (**D**) T cells. Bars represent median **E.** tSNE plots
17 displaying changes in PD-1 expression (red) in peripheral CD45+ cells overtime. MA24
18 (**E**) and MA28 (**F**) displayed as a representative animal. **G.** Merged tSNE indicating
19 phenotype of the tSNE defined cell populations in E. **H.** Average changes in the
20 percentages of CD4+, CD8+, CD4- CD8- (DN) and CD4+ CD8+ (DP) T cells within the
21 total PD-1+ CD3+ cell population. **I-L.** Frequency of PD-1+ expressing CD4+ (**I**), CD8+
22 (**J**), DP (**K**) and DN (**L**) T cells in the blood. Bars represent median. Kruskal-Wallis
23 comparison of overall means (P_{KW}) and Dunn's Multiple comparisons (designated by
24 line, P_D) tests used to determine significance. P values ≤ 0.05 reported. Baseline (-7):
25 n=4, Day 6: n=4, Day 14: n=2, Day 21: n=2.
26

1 **Figure 7. Adaptive T cell responses in the BAL.** **A.** Representative flow cytometry
2 plots showing changes in CD4 and CD8 expression in PMA/ionomycin stimulated CD3+
3 cells in BAL. Two animals shown (MA24 necropsied at 21-dpi, MA27 necropsied at 6-
4 dpi). **B-D.** Effect of PMA/ionomycin on the frequency of CD4+ CD8+ (DP, **B**) CD4+ (**C**)
5 and CD8+ (**D**) T cells in BAL before and 6-, 14-, and 21-days post SARS-CoV-2
6 infection. Bars represent mean and standard deviation. **E-J.** Nightingale Rose Plots
7 (NRPs) showing fold changes in cytokine and surface protein expression compared to
8 baseline (MFI). Yellow=6-dpi, Purple=14-dpi, Green=21-dpi. Size of petals represents
9 magnitude of increase in expression. Distance from one white ring to the next is a 1-fold
10 change. A decrease in expression is represented by a petal size less than the distance
11 between two rings. Two animals shown (MA24 necropsied at 21-dpi, MA27 necropsied
12 at 6-dpi). At 6-dpi, MA24 DP T cell TNF- α MFI is 24x baseline and CD4+ T cell TNF- α
13 MFI is 50x baseline. Graph cutoff is set to a 12-fold change. **B-D.** Baseline: n=3 (No
14 Stimulation (Stim)) and n=2 (Stim), Day 6: n=4 (No Stim) and n=4 (Stim), Day 14: n=2
15 (No Stim) and n=2 (Stim), Day 21: n=2 (No Stim) and n=2 (Stim).

16
17 **Figure 8. Changes in T cell cytokine expression in the lung.** **A-O.** PMA/ionomycin
18 stimulated CD4+ T cells (**A-E**), CD8+ T cells (**F-J**), and CD4+ CD8+ (DP) T cells (**K-O**).
19 Bars represent median. Kruskal-Wallis comparison of overall means (P_{KW}) and Dunn's
20 Multiple comparisons (designated by line, P_D) tests used to determine significance. P
21 values ≤ 0.05 reported. Baseline (-7): n=2, Day 6: n=4, Day 14: n=2, Day 21: n=2.

22
23 **Figure 9. CD4 and Granzyme B expression in the lungs of SARS-CoV-2 infected**
24 **macaques at 6- (A&B) and 21-days post infection (dpi, C&D).** At 6-dpi, MA27 (**A**) and
25 MA30 (**B**) the lungs are infiltrated by large numbers of Granzyme B positive cells (red,
26 arrows). Insets: Rare CD4+ cells (green) exhibit granzyme expression. At 21-dpi, MA24

1 (C) exhibits low numbers of Granzyme B positive cells (red, arrows) compared to MA28
2 (D) and the two, 6-dpi animals (A&B). DAPI=Blue, Green=CD4, Red=Granzyme B. E-G.
3 Percentage of CD4+ (E), Granzyme B+ (F) and CD4+ Granzyme B+ (G) cells in the lung
4 at necropsy. Bars represent median. H-K. CD4+ Granzyme B+ T cells (CD45+ CD3+
5 CD4+ Granzyme B+) in BAL at Baseline (-7) and 6-, 14- and 21-dpi as a percentage of
6 CD45+ cells (H&J) and CD3+ cells (I&K). H&I. Mononuclear cells, isolated from BAL,
7 were stimulated with PMA/ionomycin for 4-6 hours. Bars represent median and standard
8 deviation. Kruskal-Wallis comparison of overall means (P_{KW}) and Dunn's Multiple
9 comparisons (designated by line, P_D) tests used to determine significance. P values
10 ≤ 0.05 reported. H-K. Baseline: n=3 (No Stimulation (Stim)) and n=2 (Stim), Day 6: n=4
11 (No Stim) and n=4 (Stim), Day 14: n=2 (No Stim) and n=2 (Stim), Day 21: n=2 (No Stim)
12 and n=2 (Stim).

13

14 **Figure 10. SARS-CoV-2 peptide specific T cell response in the lung 21-days post**
15 **infection.** Two animals shown (MA24 & MA28 necropsied 21-dpi) A&B. Flow cytometry
16 dot plots showing CD4+ (A) and CD8+ (B) T cell Interferon- γ (IFN- γ) response to
17 overnight SARS-CoV-2 peptide (spike, membrane, nucleocapsid and envelope)
18 stimulation. No stim o/n=cells incubated overnight without stimulation. Heatmap
19 represents arcsin transformed MFI values. C&D. tSNE plots of CD4+ T cells showing an
20 expansion in cells following overnight peptide stimulation. M=SARS-CoV-2 membrane
21 peptides (C), N=SARS-CoV-2 nucleocapsid peptides (D). E&F. Radial bar plot
22 comparing MFI values of the expanded CD4+ T cell population gated on in C&D to the
23 unchanged CD4+ population within the same tSNE plot. Representative animals MA24,
24 MA28 (necropsied at 21-dpi). The higher MFI value is set to 100 and the percent
25 difference is calculated between the higher and lower MFI values. Size of the petals
26 represent this analysis.

1

2 **Figure 11. Humoral immune response in SARS-CoV-2 infected pigtail macaques.**

3 **A.** B cell frequencies in the blood before and 6-, 14-, and 21-days post (dpi) SARS-CoV-
4 2 infection. Bars indicate median. **B.** Pseudovirus neutralization assay showing serum
5 antibody levels against SARS-CoV-2 using HEK 293T/ACE2 cells. Baseline (-7): n=4,
6 Day 6: n=4, Day 14: n=2, Day 21: n=2

7

8 **Supplemental Figure 1. Radiographs of pigtail macaques (PTM) challenged with**
9 **SARS-CoV-2.** MA27 baseline (**A**) and 6-days post infection (dpi) (**B**). MA30 at baseline
10 (**C**) and 6-dpi (**D**). MA24 at baseline (**E**), 6-dpi (**F**), 14-dpi (**G**) and 21-dpi (**H**). MA28 at
11 baseline (**I**), 6-dpi (**J**), 14-dpi (**K**) and 21-dpi (**L**). Baseline for all four PTM was
12 established 3-days prior to infection.

13

14 **Supplemental Figure 2. Gross pathological pulmonary pathology in SARS-CoV-2**
15 **infected pigtail macaques (PTM). A-D.** Gross pulmonary pathology at 6- (**A&B**) and
16 21-days post infection (dpi, **C&D**). **A.** MA27, the left caudal lung lobe has multifocal tan-
17 plum areas of consolidation (arrows). Inset: the consolidation extends to the
18 diaphragmatic and medial surface of the left caudal lung. There is no evidence of gross
19 pathology in MA30 (B) or MA24 (C). **D.** MA28, the laterodorsal aspect of the left caudal
20 lobe contains two small, flat tan foci (arrows). Inset: closer view of tan foci.

21

22 **Supplemental Figure 3. Changes in IDO activity post SARS-CoV-2 Infection. A.**
23 Tryptophan (Trp) and **B.** Kynurenone (Kyn) levels in plasma before and after SARS-CoV-
24 2 infection. Day 0=day of infection, Baseline: n=4, Day 7: n=4, Day 14: n=2, Day 21:
25 n=2. dpi=days post infection.

26

1 **Supplemental Table 1. Clinical, blood and necropsy observations in pigtail**
2 **macaques (PTM) challenged with SARS-CoV-2 (n=4).** Values in parenthesis
3 represent days post SARS-CoV-2 Infection. Neutrophilia, eosinophilia, basophilia,
4 monocytosis defined as \geq 2-fold increase over baseline¹⁶. Lymphocytopenia,
5 moncytopenia, eosinopenia, basopenia defined as a 35% reduction from baseline¹⁶.
6 CRP: C-reactive protein
7

8 **Supplemental Table 2. Monocyte Flow Cytometry Panel.**

9 **Supplemental Table 3. Phenotype Flow Cytometry Panel.**

10 **Supplemental Table 4. T cell Flow Cytometry Panel.**

11 **Supplemental Table 5. T cell SARS-CoV-2 Peptide, PMA/Ionomycing Stimulation**

12 **Supplemental Table 6. Immunohistochemistry Reagent Panel.**

13

14

15 **Acknowledgements**

16 The following reagents were obtained through BEI Resources, NIAID, NIH: Peptide
17 arrays NR4219, NR-52402, NR-53822, NR-53822. Funding was provided by NIH NAIID
18 grants P51OD01110459, R21 AI150413-01, R01 AI38782-01, and R24 AI120942.

19

20

1 **Bibliography**

2 1. Stadler K, Massignani V, Eickmann M, et al. SARS--beginning to understand a new
3 virus. *Nat Rev Microbiol.* 2003;1(3):209-218. doi:10.1038/nrmicro775

4 2. Boni MF, Lemey P, Jiang X, et al. Evolutionary origins of the SARS-CoV-2
5 sarbecovirus lineage responsible for the COVID-19 pandemic. *Nat Microbiol.*
6 2020;5(11):1408-1417. doi:10.1038/s41564-020-0771-4

7 3. Gorbatenya AE, Baker SC, Baric RS, et al. The species Severe acute respiratory
8 syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-
9 2. *Nat Microbiol.* 2020;5(4):536-544. doi:10.1038/s41564-020-0695-z

10 4. Sayampanathan AA, Heng CS, Pin PH, Pang J, Leong TY, Lee VJ. Infectivity of
11 asymptomatic versus symptomatic COVID-19. *Lancet.* 2021;397(10269):93-94.
12 doi:10.1016/S0140-6736(20)32651-9

13 5. Teo AKJ, Choudhury Y, Tan IB, et al. Saliva is more sensitive than
14 nasopharyngeal or nasal swabs for diagnosis of asymptomatic and mild COVID-
15 19 infection. *Sci Rep.* 2021;11(1):1-8. doi:10.1038/s41598-021-82787-z

16 6. Xie C, Li Q, Li L, et al. Association of early inflammation with age and
17 asymptomatic disease in covid-19. *J Inflamm Res.* 2021;14:1207-1216.
18 doi:10.2147/JIR.S304190

19 7. Zhu J, Ji P, Pang J, et al. Clinical characteristics of 3062 COVID-19 patients: A
20 meta-analysis. *J Med Virol.* 2020;92(10):1902-1914. doi:10.1002/jmv.25884

21 8. McElvaney OJ, McEvoy NL, McElvaney OF, et al. Characterization of the
22 inflammatory response to severe COVID-19 illness. *Am J Respir Crit Care Med.*
23 2020;202(6):812-821. doi:10.1164/rccm.202005-1583OC

24 9. Zhang R, Liu Y, Zhang B, et al. Coagulopathy is associated with multiple organ
25 damage and prognosis of COVID-19. *EXCLI J.* 2021;20:174-191.
26 doi:10.17179/excli2020-2853

1 10. Zingaropoli MA, Nijhawan P, Carraro A, et al. Increased sCD163 and sCD14
2 Plasmatic Levels and Depletion of Peripheral Blood Pro-Inflammatory Monocytes,
3 Myeloid and Plasmacytoid Dendritic Cells in Patients With Severe COVID-19
4 Pneumonia. *Front Immunol.* 2021;12(February):1-12.
5 doi:10.3389/fimmu.2021.627548

6 11. Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. *JCI/*
7 *Insight.* 2020;5(11). doi:10.1172/jci.insight.138999

8 12. Fahlberg MD, Blair R V., Doyle-Meyers LA, et al. Cellular events of acute,
9 resolving or progressive COVID-19 in SARS-CoV-2 infected non-human primates.
10 *Nat Commun.* 2020;11(1):1-14. doi:10.1038/s41467-020-19967-4

11 13. Blair R V, Vaccari M, Doyle-Meyers LA, et al. Acute Respiratory Distress in Aged,
12 SARS-CoV-2-Infected African Green Monkeys but Not Rhesus Macaques. *Am J*
13 *Pathol.* 2021;191(2):274-282. doi:<https://doi.org/10.1016/j.ajpath.2020.10.016>

14 14. Munster VJ, Feldmann F, Williamson BN, et al. Respiratory disease in rhesus
15 macaques inoculated with SARS-CoV-2. *Nature.* 2020;585(7824):268-272.
16 doi:10.1038/s41586-020-2324-7

17 15. Hartman AL, Nambulli S, McMillen CM, et al. SARS-CoV-2 infection of African
18 green monkeys results in mild respiratory disease discernible by PET/CT imaging
19 and shedding of infectious virus from both respiratory and gastrointestinal tracts.
20 *PLoS Pathog.* 2020;16(9):1-24. doi:10.1371/journal.ppat.1008903

21 16. Woolsey C, Borisevich V, Prasad AN, et al. Establishment of an African green
22 monkey model for COVID-19 and protection against re-infection. *Nat Immunol.*
23 2021;22(1):86-98. doi:10.1038/s41590-020-00835-8

24 17. Canary LA, Vinton CL, Morcock DR, et al. Rate of AIDS progression is associated
25 with gastrointestinal dysfunction in simian immunodeficiency virus-infected pigtail
26 macaques. *J Immunol.* 2013;190(6):2959-2965. doi:10.4049/jimmunol.1202319

1 18. Klatt NR, Canary LA, Vanderford TH, et al. Dynamics of simian immunodeficiency
2 virus SIVmac239 infection in pigtail macaques. *J Virol.* 2012;86(2):1203-1213.
3 doi:10.1128/JVI.06033-11

4 19. Klatt NR, Harris LD, Vinton CL, et al. Compromised gastrointestinal integrity in
5 pigtail macaques is associated with increased microbial translocation, immune
6 activation, and IL-17 production in the absence of SIV infection. *Mucosal*
7 *Immunol.* 2010;3(4):387-398. doi:10.1038/mi.2010.14

8 20. Metcalf Pate KA, Lyons CE, Dorsey JL, et al. Platelet Activation and Platelet-
9 Monocyte Aggregate Formation Contribute to Decreased Platelet Count During
10 Acute Simian Immunodeficiency Virus Infection in Pig-tailed Macaques. *J Infect*
11 *Dis.* 2013;208(6):874-883. doi:10.1093/infdis/jit278

12 21. Kaneko N, Boucau J, Kuo H-H, et al. Expansion of Cytotoxic CD4+ T cells in the
13 lungs in severe COVID-19. *medRxiv Prepr Serv Heal Sci.* March 2021.
14 doi:10.1101/2021.03.23.21253885

15 22. Beddingfield BJ, Maness NJ, Fears AC, et al. Effective prophylaxis of COVID-19
16 in rhesus macaques using a combination of two parentally-administered SARS-
17 CoV-2 neutralizing antibodies. *bioRxiv.* January 2021:2021.05.26.445878.
18 doi:10.1101/2021.05.26.445878

19 23. Amir EAD, Davis KL, Tadmor MD, et al. ViSNE enables visualization of high
20 dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.
21 *Nat Biotechnol.* 2013;31(6):545-552. doi:10.1038/nbt.2594

22 24. Shen X, Tang H, McDanal C, et al. SARS-CoV-2 variant B.1.1.7 is susceptible to
23 neutralizing antibodies elicited by ancestral spike vaccines. *Cell Host Microbe.*
24 2021;29(4):529-539.e3. doi:10.1016/j.chom.2021.03.002

25 25. Weissman D, Alameh MG, de Silva T, et al. D614G Spike Mutation Increases
26 SARS CoV-2 Susceptibility to Neutralization. *Cell Host Microbe.* 2021;29(1):23-

1 31.e4. doi:10.1016/j.chom.2020.11.012

2 26. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult
3 inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet*
4 (London, England). 2020;395(10229):1054-1062. doi:10.1016/S0140-
5 6736(20)30566-3

6 27. Yu H-H, Qin C, Chen M, Wang W, Tian D-S. D-dimer level is associated with the
7 severity of COVID-19. *Thromb Res.* 2020;195:219-225.
8 doi:10.1016/j.thromres.2020.07.047

9 28. Rebnord EW, Strand E, Midttun Ø, et al. The kynurenine:tryptophan ratio as a
10 predictor of incident type 2 diabetes mellitus in individuals with coronary artery
11 disease. *Diabetologia*. 2017;60(9):1712-1721. doi:10.1007/s00125-017-4329-9

12 29. Lionetto L, Ulivieri M, Capi M, et al. Increased kynurenine-to-tryptophan ratio in
13 the serum of patients infected with SARS-CoV2: An observational cohort study.
14 *Biochim Biophys Acta - Mol Basis Dis.* 2021;1867(3):166042.
15 doi:10.1016/j.bbadi.2020.166042

16 30. Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in
17 COVID-19 patients. *Cell Mol Immunol.* 2020;17(5):533-535. doi:10.1038/s41423-
18 020-0402-2

19 31. Song CY, Xu J, He JQ, Lu YQ. COVID-19 early warning score: A multi-parameter
20 screening tool to identify highly suspected patients. *medRxiv*. 2020.
21 doi:10.1101/2020.03.05.20031906

22 32. Zhang B, Zhou X, Zhu C, et al. Immune Phenotyping Based on the Neutrophil-to-
23 Lymphocyte Ratio and IgG Level Predicts Disease Severity and Outcome for
24 Patients With COVID-19. *Front Mol Biosci.* 2020;7. doi:10.3389/fmolb.2020.00157

25 33. Liu J, Liu Y, Xiang P, et al. Neutrophil-to-lymphocyte ratio predicts critical illness
26 patients with 2019 coronavirus disease in the early stage. *J Transl Med.*

1 2020;18(1):1-12. doi:10.1186/s12967-020-02374-0

2 34. Mauvais-Jarvis F, Klein SL, Levin ER. Estradiol, Progesterone,
3 Immunomodulation, and COVID-19 Outcomes. *Endocrinol (United States)*.
4 2020;161(9):1-8. doi:10.1210/endocr/bqaa127

5 35. Bösmüller H, Matter M, Fend F, Tzankov A. The pulmonary pathology of COVID-
6 19. *Virchows Arch*. 2021;478(1):137-150. doi:10.1007/s00428-021-03053-1

7 36. Schulte-Schrepping J, Reusch N, Paclik D, et al. Severe COVID-19 Is Marked by
8 a Dysregulated Myeloid Cell Compartment. *Cell*. 2020;182(6):1419-1440.e23.
9 doi:10.1016/j.cell.2020.08.001

10 37. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J. E (2 , 6 , 7).
11 2020;724(August):718-724.

12 38. Diao B, Wang C, Tan Y, et al. Reduction and Functional Exhaustion of T Cells in
13 Patients With Coronavirus Disease 2019 (COVID-19). *Front Immunol*.
14 2020;11(May):1-7. doi:10.3389/fimmu.2020.00827

15 39. Bellesi S, Metafuni E, Hohaus S, et al. Increased CD95 (Fas) and PD-1
16 expression in peripheral blood T lymphocytes in COVID-19 patients. *Br J
17 Haematol*. 2020;191(2):207-211. doi:10.1111/bjh.17034

18 40. Sattler A, Angermair S, Stockmann H, et al. SARS-CoV-2-specific T cell
19 responses and correlations with COVID-19 patient predisposition. *J Clin Invest*.
20 2020;130(12):6477-6489. doi:10.1172/JCI140965

21 41. Diedrich CR, Gideon HP, Rutledge T, et al. CD4CD8 Double Positive T cell
22 responses during Mycobacterium tuberculosis infection in cynomolgus macaques.
23 *J Med Primatol*. 2019;48(2):82-89. doi:10.1111/jmp.12399

24 42. Meckiff BJ, Ramírez-Suástequi C, Fajardo V, et al. Imbalance of Regulatory and
25 Cytotoxic SARS-CoV-2-Reactive CD4+ T Cells in COVID-19. *Cell*.
26 2020;183(5):1340-1353.e16. doi:10.1016/j.cell.2020.10.001

1 43. Weiskopf D, Schmitz KS, Raadsen MP, et al. Phenotype and kinetics of SARS-
2 CoV-2-specific T cells in COVID-19 patients with acute respiratory distress
3 syndrome. *Sci Immunol.* 2020;5(48):1-14. doi:10.1126/SCIIMMUNOL.ABD2071

4 44. Gandhi M, Yokoe DS, Havlir D V. Asymptomatic Transmission, the Achilles' Heel
5 of Current Strategies to Control Covid-19. *N Engl J Med.* 2020;382(22):2158-
6 2160. doi:10.1056/NEJMe2009758

7 45. Gatto M, Bertuzzo E, Mari L, et al. Spread and dynamics of the COVID-19
8 epidemic in Italy: Effects of emergency containment measures. *Proc Natl Acad
9 Sci U S A.* 2020;117(19):10484-10491. doi:10.1073/pnas.2004978117

10 46. Guan W-J, Ni Z-Y, Hu Y, et al. Clinical Characteristics of Coronavirus Disease
11 2019 in China. *N Engl J Med.* 2020;382(18):1708-1720.
12 doi:10.1056/NEJMoa2002032

13 47. Kujawski SA, Wong KK, Collins JP, et al. Clinical and virologic characteristics of
14 the first 12 patients with coronavirus disease 2019 (COVID-19) in the United
15 States. *Nat Med.* 2020;26(6):861-868. doi:10.1038/s41591-020-0877-5

16 48. Wu JT, Leung K, Bushman M, et al. Estimating clinical severity of COVID-19 from
17 the transmission dynamics in Wuhan, China. *Nat Med.* 2020;26(4):506-510.
18 doi:10.1038/s41591-020-0822-7

19 49. Fogarty H, Townsend L, Ni Cheallaigh C, et al. COVID19 coagulopathy in
20 Caucasian patients. *Br J Haematol.* 2020;189(6):1044-1049.
21 doi:10.1111/bjh.16749

22 50. Llitjos J-F, Leclerc M, Chochois C, et al. High incidence of venous
23 thromboembolic events in anticoagulated severe COVID-19 patients. *J Thromb
24 Haemost.* 2020;18(7):1743-1746. doi:10.1111/jth.14869

25 51. Panigada M, Bottino N, Tagliabue P, et al. Hypercoagulability of COVID-19
26 patients in intensive care unit: A report of thromboelastography findings and other

1 parameters of hemostasis. *J Thromb Haemost*. 2020;18(7):1738-1742.

2 doi:<https://doi.org/10.1111/jth.14850>

3 52. Porfida A, Pola R. Venous thromboembolism in COVID-19 patients. *J Thromb*
4 *Haemost*. 2020;18(6):1516-1517. doi:[10.1111/jth.14842](https://doi.org/10.1111/jth.14842)

5 53. Spiezia L, Boscolo A, Poletto F, et al. COVID-19-Related Severe
6 Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute
7 Respiratory Failure. *Thromb Haemost*. 2020;120(6):998-1000. doi:[10.1055/s-0040-1710018](https://doi.org/10.1055/s-0040-1710018)

9 54. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic
10 complications in critically ill ICU patients with COVID-19. *Thromb Res*.
11 2020;191:145-147. doi:[10.1016/j.thromres.2020.04.013](https://doi.org/10.1016/j.thromres.2020.04.013)

12 55. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis
13 in COVID-19. *Lancet (London, England)*. 2020;395(10234):1417-1418.
14 doi:[10.1016/S0140-6736\(20\)30937-5](https://doi.org/10.1016/S0140-6736(20)30937-5)

15 56. Bridwell R, Long B, Gottlieb M. Neurologic complications of COVID-19. *Am J*
16 *Emerg Med*. 2020;38(7):1549.e3-1549.e7. doi:[10.1016/j.ajem.2020.05.024](https://doi.org/10.1016/j.ajem.2020.05.024)

17 57. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273
18 SARS-CoV-2 Vaccine. *N Engl J Med*. 2021;384(5):403-416.
19 doi:[10.1056/NEJMoa2035389](https://doi.org/10.1056/NEJMoa2035389)

20 58. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2
21 mRNA Covid-19 Vaccine. *N Engl J Med*. 2020;383(27):2603-2615.
22 doi:[10.1056/NEJMoa2034577](https://doi.org/10.1056/NEJMoa2034577)

23 59. Sadoff J, Le Gars M, Shukarev G, et al. Interim Results of a Phase 1-2a Trial of
24 Ad26.COV2.S Covid-19 Vaccine. *N Engl J Med*. 2021;384(19):1824-1835.
25 doi:[10.1056/NEJMoa2034201](https://doi.org/10.1056/NEJMoa2034201)

26 60. Winger A, Caspari T. The Spike of Concern-The Novel Variants of SARS-CoV-2.

1 *Viruses*. 2021;13(6):1002. doi:10.3390/v13061002

2 61. Singh J, Rahman SA, Ehtesham NZ, Hira S, Hasnain SE. SARS-CoV-2 variants
3 of concern are emerging in India. *Nat Med*. 2021;27(7):1131-1133.
4 doi:10.1038/s41591-021-01397-4

5 62. Lessells RJ. SARS-CoV-2 variants of concern: the knowns and unknowns.
6 *Anaesthesia, Crit care pain Med*. 2021;40(3):100868.
7 doi:10.1016/j.accpm.2021.100868

8 63. Walensky RP, Walke HT, Fauci AS. SARS-CoV-2 Variants of Concern in the
9 United States—Challenges and Opportunities. *JAMA*. 2021;325(11):1037-1038.
10 doi:10.1001/jama.2021.2294

11 64. Olsen RJ, Christensen PA, Long SW, et al. Trajectory of Growth of SARS-CoV-2
12 Variants in Houston, Texas, January through May 2021 Based on 12,476
13 Genome Sequences. *Am J Pathol*. July 2021:S0002-9440(21)00317-5.
14 doi:10.1016/j.ajpath.2021.07.002

15 65. Abu-Raddad LJ, Chemaitelly H, Butt AA, Vaccination NSG for C-19. Effectiveness
16 of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. *N
17 Engl J Med*. 2021;385(2):187-189. doi:10.1056/NEJMc2104974

18 66. Haas EJ, Angulo FJ, McLaughlin JM, et al. Impact and effectiveness of mRNA
19 BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases,
20 hospitalisations, and deaths following a nationwide vaccination campaign in Israel:
21 an observational study using national surveillance data. *Lancet (London,
22 England)*. 2021;397(10287):1819-1829. doi:10.1016/S0140-6736(21)00947-8

23 67. Wu K, Werner AP, Koch M, et al. Serum Neutralizing Activity Elicited by mRNA-
24 1273 Vaccine. *N Engl J Med*. 2021;384(15):1468-1470.
25 doi:10.1056/NEJMc2102179

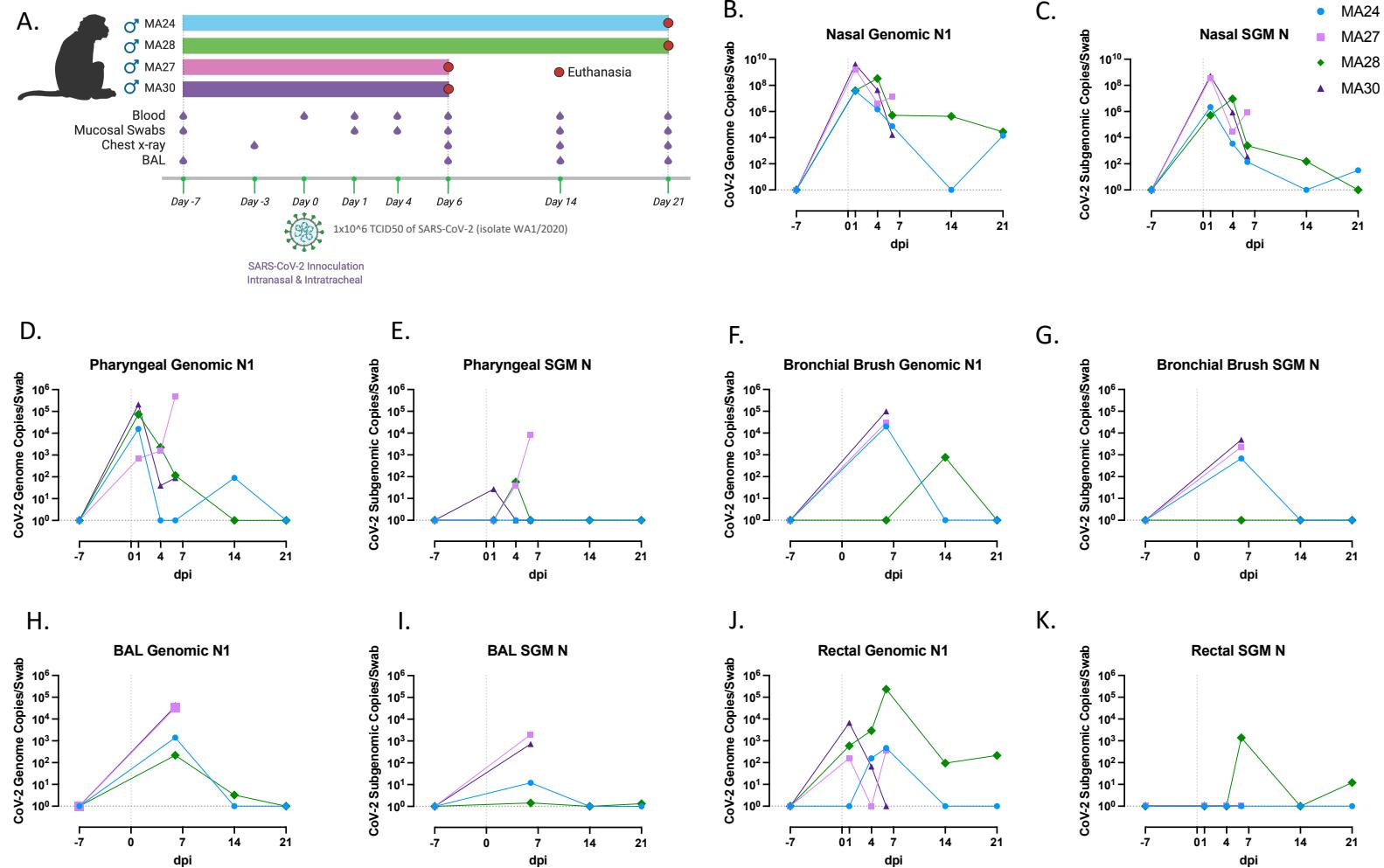
26 68. Woolsey C, Borisevich V, Prasad AN, et al. Establishment of an African green

1 monkey model for COVID-19 and protection against re-infection. *Nat Immunol.*
2 2021;22(1):86-98. doi:10.1038/s41590-020-00835-8

3 69. Pandrea I, Cornell E, Wilson C, et al. Coagulation biomarkers predict disease
4 progression in SIV-infected nonhuman primates. *Blood*. 2012;120(7):1357-1366.
5 doi:10.1182/blood-2012-03-414706

6 70. Schechter ME, Andrade BB, He T, et al. Inflammatory monocytes expressing
7 tissue factor drive SIV and HIV coagulopathy. *Sci Transl Med*. 2017;9(405):1-14.
8 doi:10.1126/scitranslmed.aam5441

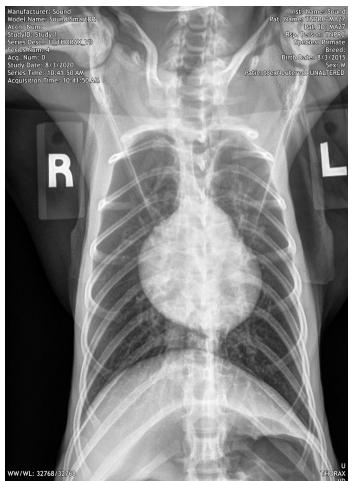
9 71. Beck SE, Kelly KM, Queen SE, et al. Macaque species susceptibility to simian
10 immunodeficiency virus: increased incidence of SIV central nervous system
11 disease in pigtailed macaques versus rhesus macaques. *J Neurovirol*.
12 2015;21(2):148-158. doi:10.1007/s13365-015-0313-7


13 72. Jin X, Lian J-S, Hu J-H, et al. Epidemiological, clinical and virological
14 characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with
15 gastrointestinal symptoms. *Gut*. 2020;69(6):1002 LP - 1009. doi:10.1136/gutjnl-
16 2020-320926

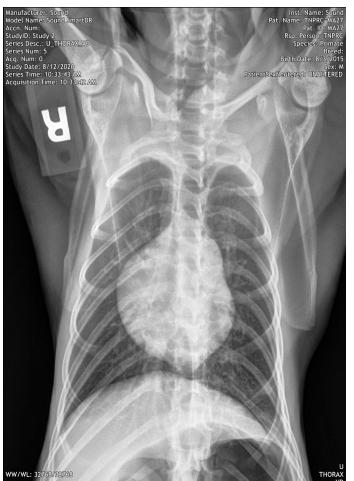
17 73. Lee I-C, Huo T-I, Huang Y-H. Gastrointestinal and liver manifestations in patients
18 with COVID-19. *J Chin Med Assoc*. 2020;83(6):521-523.
19 doi:10.1097/JCMA.0000000000000319

20 74. Hunt RH, East JE, Lanas A, et al. COVID-19 and Gastrointestinal Disease:
21 Implications for the Gastroenterologist. *Dig Dis*. 2021;39(2):119-139.
22 doi:10.1159/000512152

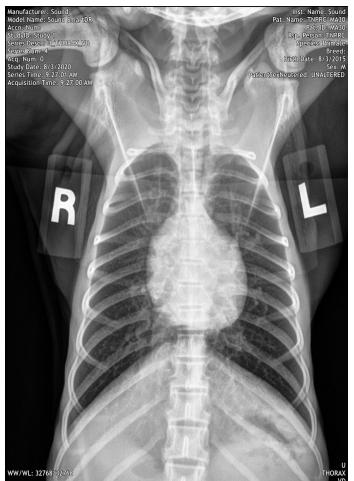
23 75. Song T-Z, Zheng H-Y, Han J-B, et al. Northern pig-tailed macaques (*Macaca*
24 *leonina*) infected with SARS-CoV-2 show rapid viral clearance and persistent
25 immune response. *Zool Res*. 2021;42(3):350-353. doi:10.24272/j.issn.2095-
26 8137.2020.334


Figure 1. Viral dynamics. **A.** Outline of study design. Four PTM were exposed to 1x10⁶ TCID50 of SARS-CoV-2 (isolate WA1/2020) through a combination of intranasal and intratracheal inoculation on Day 0. Figure created with BioRender.com. **B-K.** Quantification of SARS-CoV-2 RNA levels from mucosal swabs overtime (Quantitative RT PCR). Genomic (**B,D,F,H,J**) Subgenomic (**C,E,G,I,K**). **B-K** Baseline: n=4, Day 1: n=4, Day 4: n=4, Day 6: n=4, Day 14: n=2, Day 21: n=2

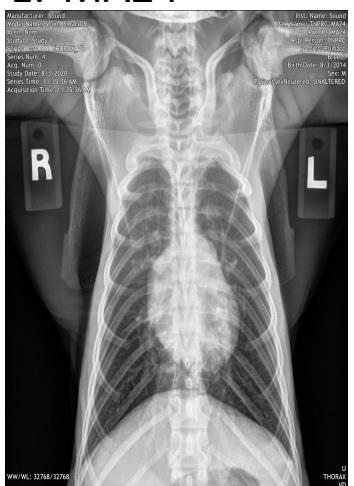
Supplemental Table 1. Clinical, Blood and Necropsy Observations

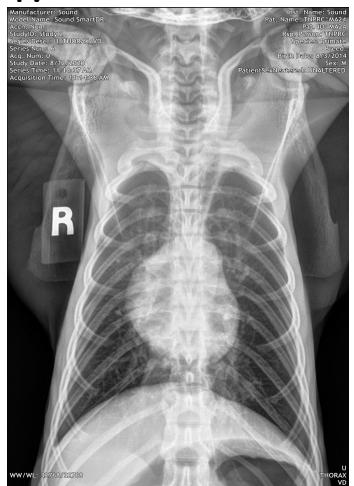

Animal ID	Sex	Age (y)	Clinical Observations		Blood Cell Counts	Blood Chemistry	Gross Findings	Necropsy Observations	
			Sign	Value				Case Summary	
MA27	M	6.07	Decreased appetite [5]					Lungs: caudal left lobe contains two red-grey regions 1 and 2 cm on the lateral aspect and a 3x4 cm zone on the medial aspect.	
			Soft stool [5]		Neutrophilia (4), Monocytosis (4)			Lymph nodes: Enlarged 3x normal	
			Necropsy 6 dpi		Lymphopenia (1), Eosinopenia (1, 4)				
					Neu/Lym ratio 6.35 (1), 6.26 (4)				
MA30	M	5.61	Mild cough (2,3)						
			Decreased appetite (1,3, 5)						
			Had soft stool prior to infection						
			Necropsy 6 dpi						
MA24	M	5.64	Mild cough (3)	Slight increased effort breathing (20)	Neutrophilia (4, 21), Eosinophilia (4, 21), Basophilia (4, 14, 21)	8-fold ↑ in CRP (1)	No significant gross abnormalities	Lungs: No gross lung lesions.	
			Decreased appetite (3, 5, 7, 9, 15, 16)		Lymphocytopenia (1), Monocytopenia (14)				
			Soft stool (4, 5, 8, 9, 16, 17, 20)		Neu/Lym ratio: 4.09 (1), 3.15 (4)				
			Necropsy 21 dpi						
MA28	M	5.81	Slight increased effort breathing (8-12, 16, 19)		Neutrophilia (21), basophilia (21)		Two small areas of consolidation in the left caudal lung, along with foreign debris. Moderate mesenteric and mandibular lymph node enlargement	Mild multifocal interstitial pneumonia with rare areas of pneumonecrosis and septal thickening. Findings could be compatible with a resolving viral pneumonia.	
			Decreased appetite (7, 9, 15, 16)		Lymphocytopenia (4, 6), Monocytopenia (4, 14), Eosinopenia (4, 6)			Moderate to severe lymphoid hyperplasia was observed in the bronchial lymph node and tonsils.	
								Proximal large intestine showed chronic inflammation compatible with chronic bacterial colitis.	
			Necropsy 21 dpi						

Supplemental Table 1. Clinical, blood and necropsy observations in pigtail macaques (PTM) challenged with SARS-CoV-2 (n=4). Values in parenthesis represent days post SARS-CoV-2 Infection. Neutrophilia, eosinophilia, basophilia, monocytosis defined as ≥ 2 -fold increase over baseline¹⁶. Lymphocytopenia, monocytopenia, eosinopenia, basopenia defined as a 35% reduction from baseline¹⁶. CRP: C-reactive protein

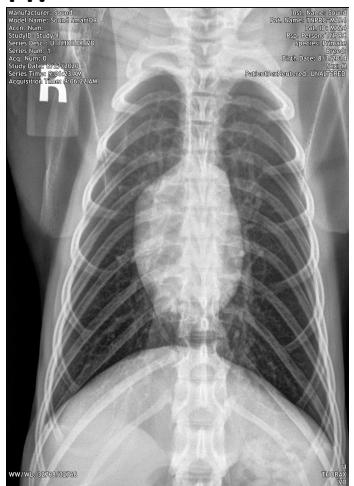

A. MA27

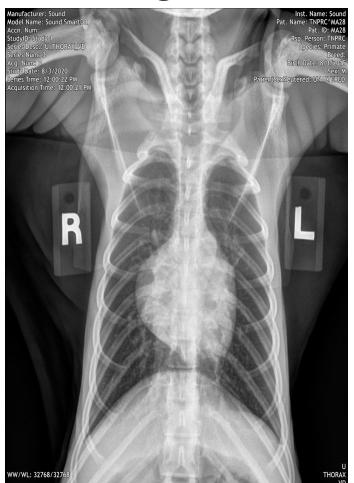
B.

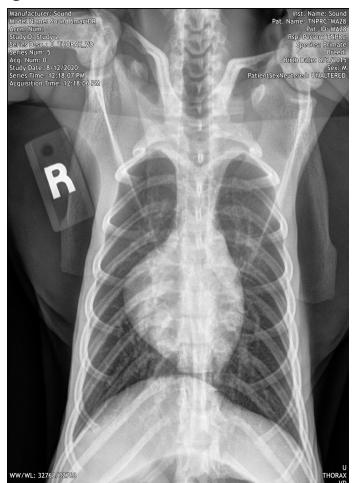

C. MA30


D.

E. MA24

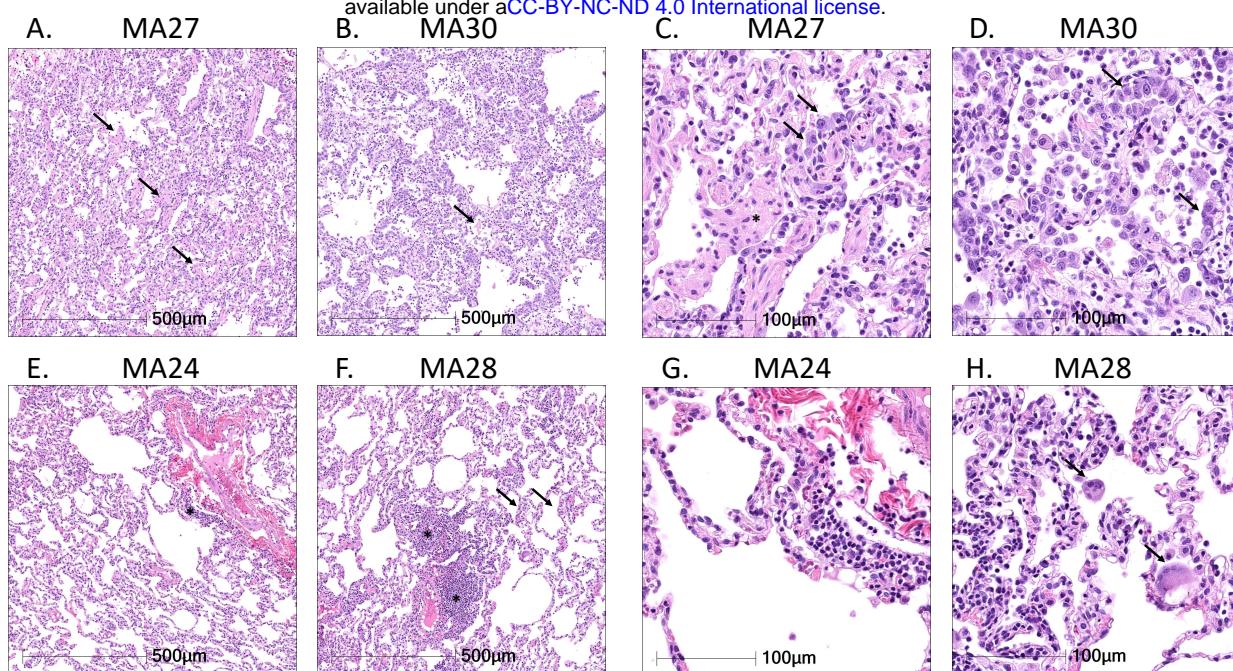

F.

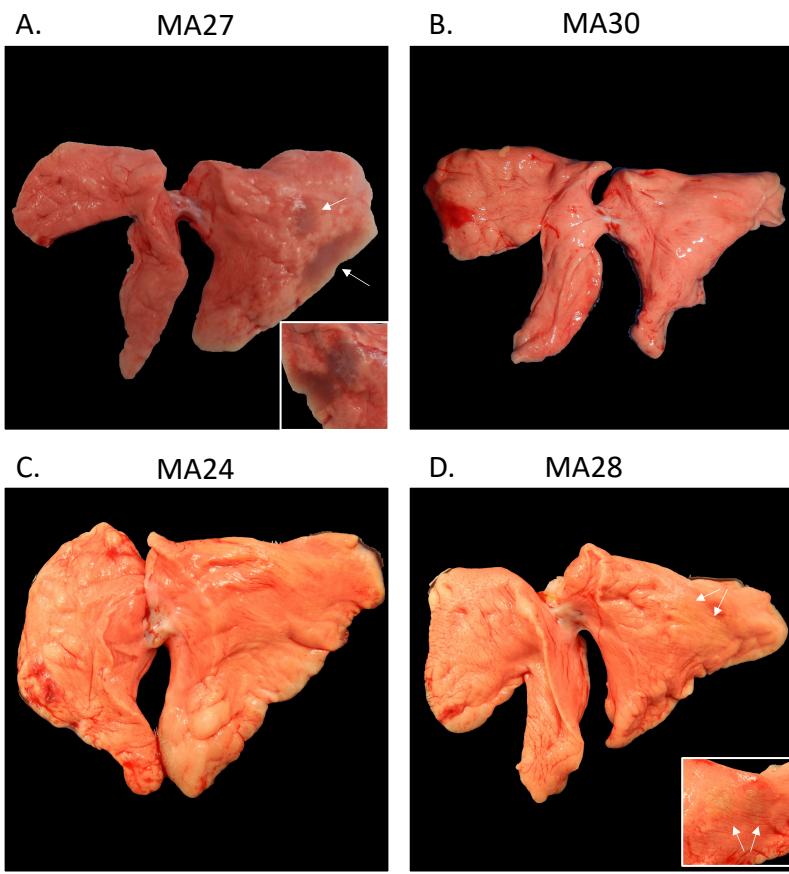

G.


H.

I. MA28

J.


K.


L.

Supplemental Figure 1. Radiographs of pigtail macaques (PTM) challenged with SARS-CoV-2. MA27 baseline (A) and 6-days post infection (dpi) (B). MA30 at baseline (C) and 6-dpi (D). MA24 at baseline (E), 6-dpi (F), 14-dpi (G) and 21-dpi (H). MA28 at baseline (I), 6-dpi (J), 14-dpi (K) and 21-dpi (L). Baseline for all four PTM was established 3-days prior to infection.

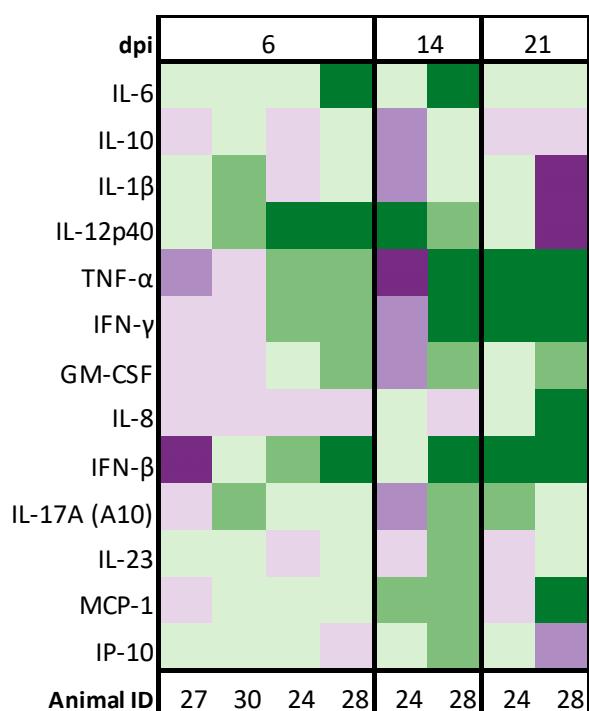
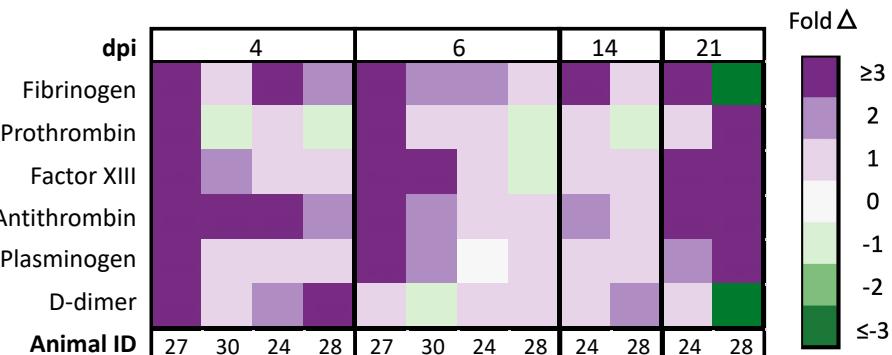
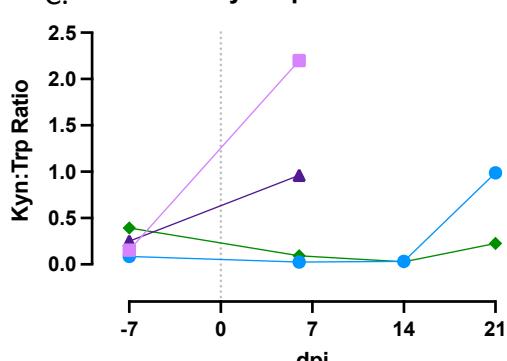


Figure 2. Histopathologic findings in SARS-CoV-2 infected pigtail macaques (PTM). Histopathologic findings at 6- (A-D) and 21-dpi (E-H). **A&B.** At 6-dpi alveolar septa are expanded by inflammatory infiltrate and alveoli contain rafts of fibrin (arrows). **C&D.** The inflammatory infiltrate is composed of a mixture of histiocytes, lymphocytes, and neutrophils, and alveolar septa are frequently lined by type II pneumocytes (arrows). In severely affected areas, alveoli contain fibrin rafts (C, asterisks). **E&F.** At 21-dpi, there is residual inflammation composed of perivascular lymphoid aggregates (asterisks), and mild thickening of alveolar septa (arrows). **G&H.** The residual inflammation is composed predominately of lymphocytes, and in MA28, rare multinucleated giant cells (H, arrows).

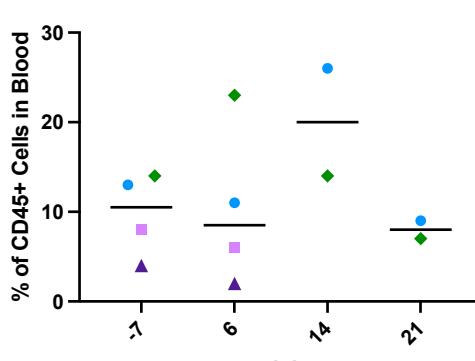


Supplemental Figure 2. Gross pathological pulmonary pathology in SARS-CoV-2 infected pigtail macaques (PTM). A-D. Gross pulmonary pathology at 6- (A&B) and 21-days post infection (dpi, C&D). **A.** MA27, the left caudal lung lobe has multifocal tan-plum areas of consolidation (arrows). Inset: the consolidation extends to the diaphragmatic and medial surface of the left caudal lung. There is no evidence of gross pathology in MA30 (B) or MA24 (C). **D.** MA28, the laterodorsal aspect of the left caudal lobe contains two small, flat tan foci (arrows). Inset: closer view of tan foci.

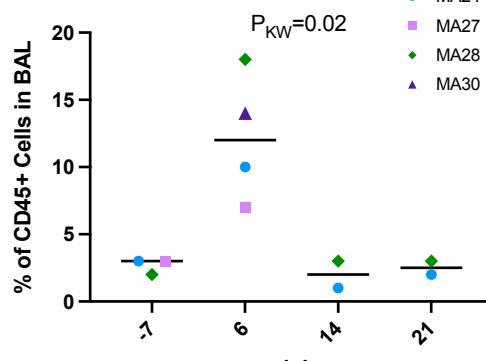
A.



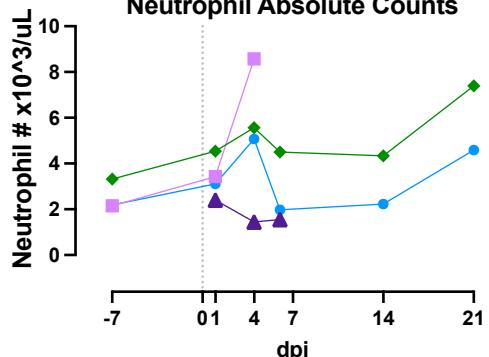
B.


C.

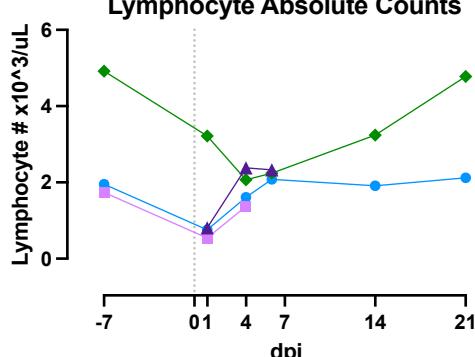
Kyn:Trp Ratio


D.

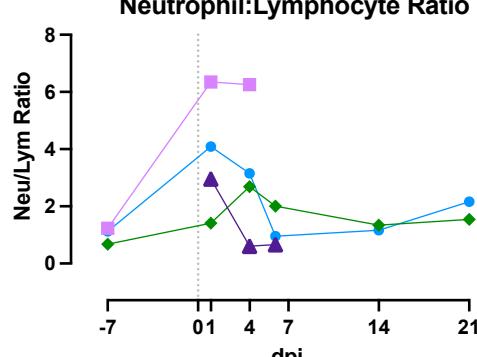
NK Cells in Blood


E.

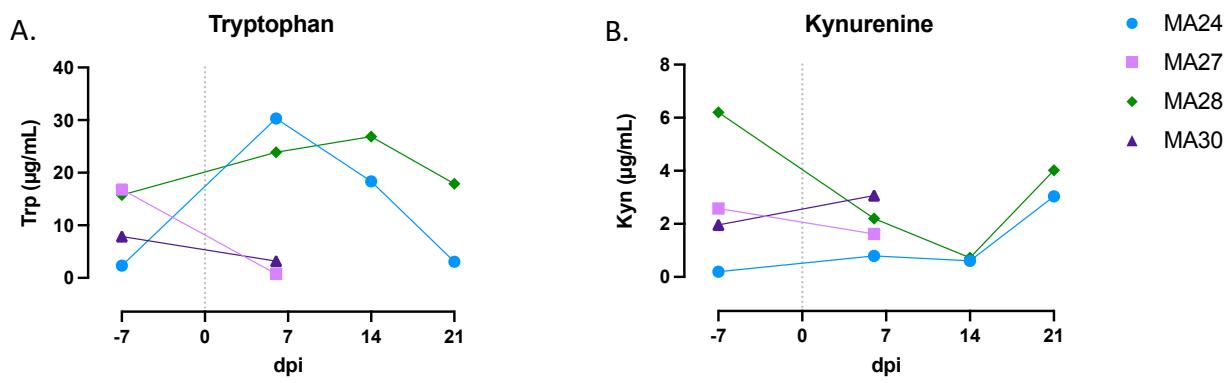
NK Cells in BAL


F.

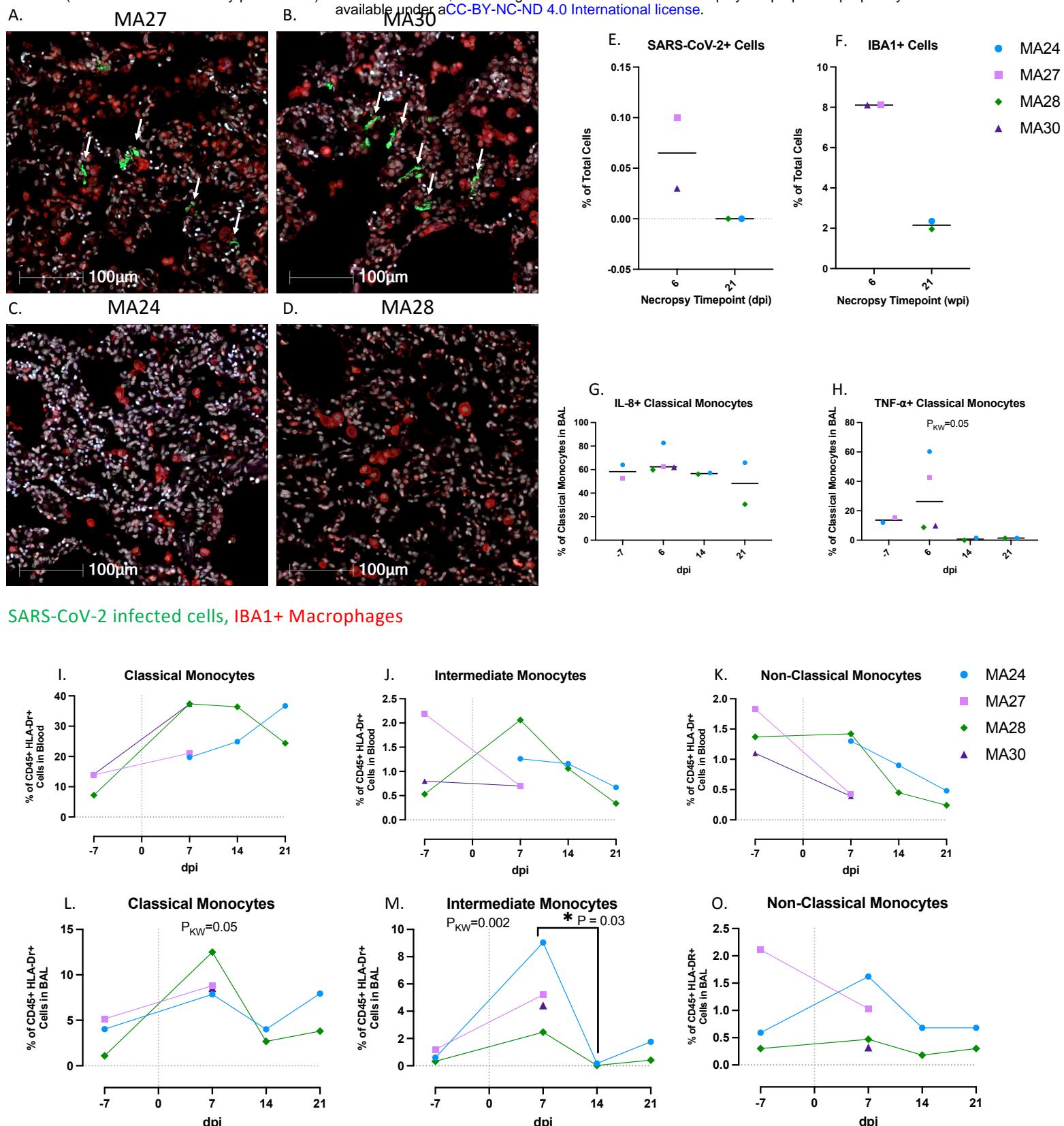
Neutrophil Absolute Counts

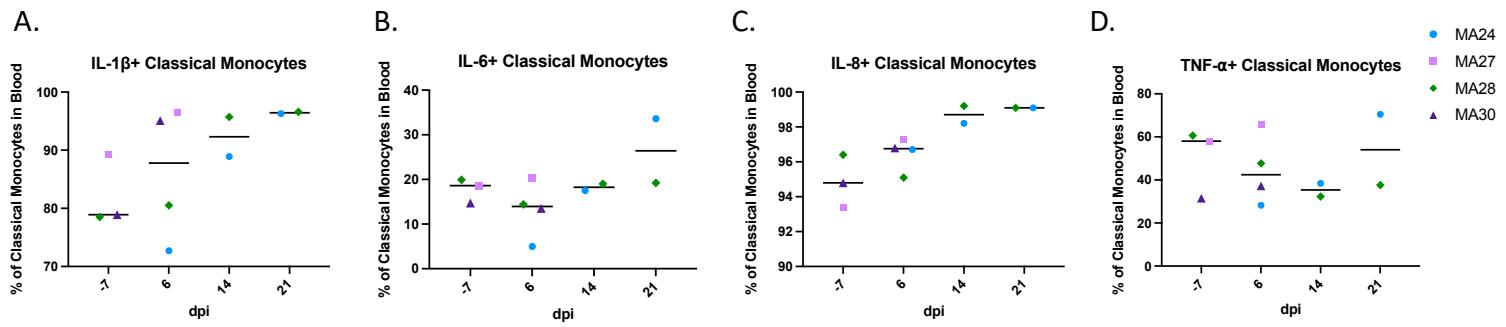

G.

Lymphocyte Absolute Counts



H.


Neutrophil:Lymphocyte Ratio


Figure 3. Inflammatory innate immune response in pigtail macaques challenged with SARS-CoV-2. A. Changes in serum cytokine levels at 6-, 14- and 21-days post SARS-CoV-2 infection. Data represent fold changes from baseline. **B.** Changes in coagulation biomarkers in plasma at 4-, 6-, 14- and 21-days post infection (dpi). Data are fold changes from baseline. **C.** Ratio of Kynurenine (Kyn) to Tryptophan (Trp) as a measure of indoleamine 2,3-dioxygenase (IDO) activity before and after SARS-CoV-2 infection. **D&E.** Frequency of Natural Killer (NK, CD45+ CD3- CD8+) cells in the blood (**D**) or (**E**) BAL at baseline, 6-, 14- and 21-days post infection (dpi). Bars represent median. **F.** Absolute number of neutrophils pre- and post-SARS-CoV-2 infection. **G.** Absolute number of lymphocytes pre- and post-SARS-CoV-2 infection. **H.** Changes in neutrophil to lymphocyte ratio before and after SARS-CoV-2 infection. Figures 3C&D Baseline: n=4, Day 6: n=4, Day 14: n=2, Day 21: n=2; Figure 3E Baseline: n=3, Day 6: n=4, Day 14: n=2, Day 21: n=2; Figures 3F-H Baseline: n=3, Day 1: n=4, Day 4: n=4 Day 6: n=4, Day 14: n=2, Day 21: n=2. Figures C-H Day 0=day of infection. Kruskal-Wallis test for variance for overall medians used to determine significance. Kruskal-Wallis comparison of overall means (P_{KW}) test used to determine significance. P values <0.05 reported.

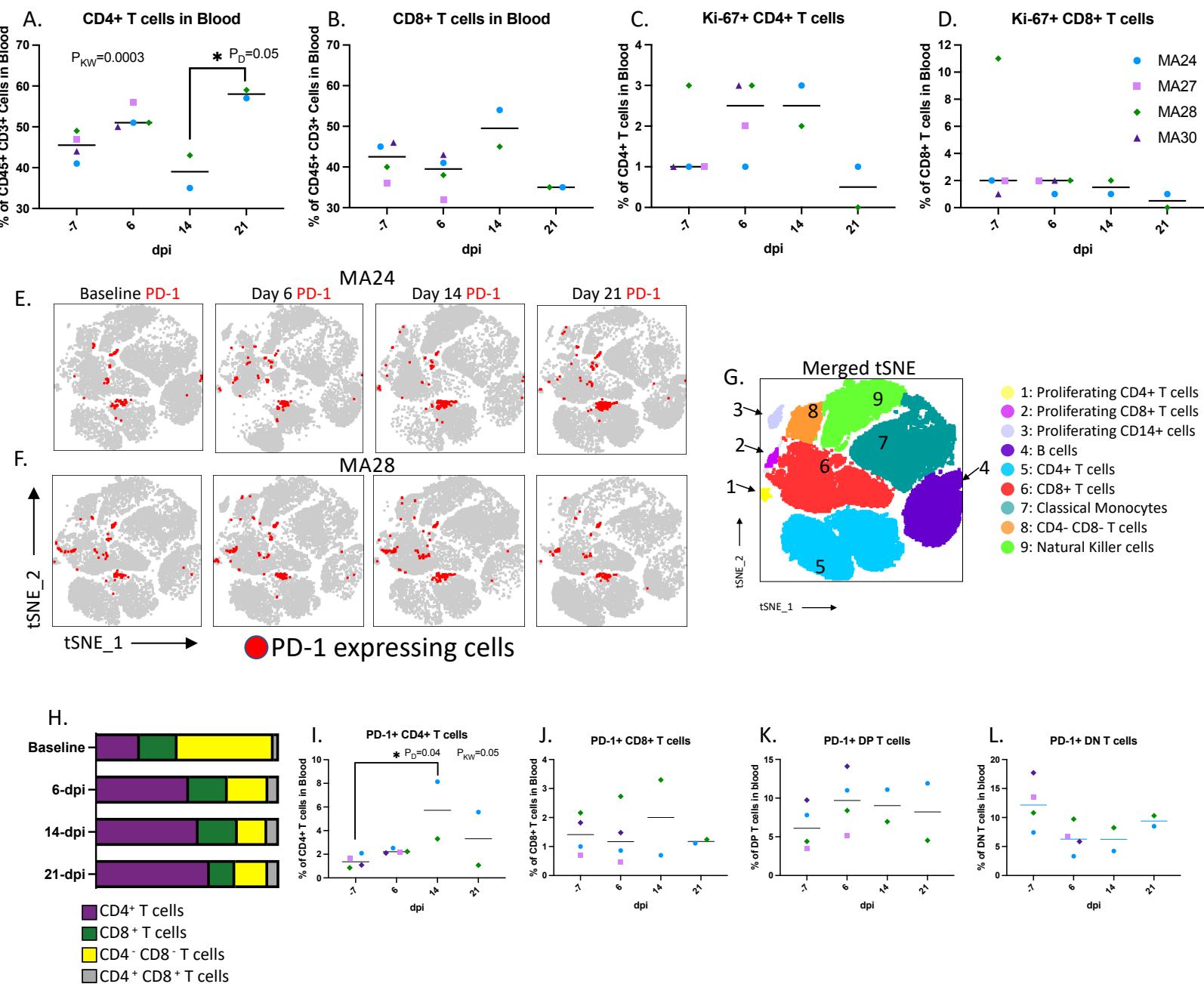

Supplemental Figure 3. Changes in IDO activity post SARS-CoV-2 Infection. A. Tryptophan (Trp) and B. Kynurenine (Kyn) levels in plasma before and after SARS-CoV-2 infection. Day 0=day of infection, Baseline: n=4, Day 7: n=4, Day 14: n=2, Day 21: n=2. dpi=days post infection.

Figure 4. Pulmonary SARS-CoV-2 infection and macrophage/monocytes in the lung and blood. **A-D.** SARS-CoV-2 infection and macrophage infiltration in the lungs of pigtailed macaques at 6- (A&B) and 21- days post infection (dpi, C&D). DAPI=White, Green=SARS-CoV-2, Red=IBA1,Blue=Autofluorescence. **E-F.** Percentage of SARS-CoV-2 infected cells (E) and IBA1+ macrophages (F) in the lung at necropsy. Bars represent median. **G&H.** Frequency of IL-8 (G) and TNF-α (H) expressing classical monocytes (CD45+ HLA-DR+ CD14- CD16+) in BAL. **I-O.** Classical (I&L) intermediate (CD45+ HLA-DR+ CD14+ CD16+) (J&M), and non-classical monocytes (CD45+ HLA-DR+ CD14- CD16+) (K&O) frequencies in the blood and BAL before and after SARS-CoV-2 infection. Day 0=day of infection. I-O Baseline (day -7): n=3, Day 6: n=4, Day 14: n=2, Day 21: n=2. Kruskal-Wallis comparison of overall means (P_{KW}) and Dunn's Multiple comparisons (designated by line, P_D) tests used to determine significance. P values ≤ 0.05 reported

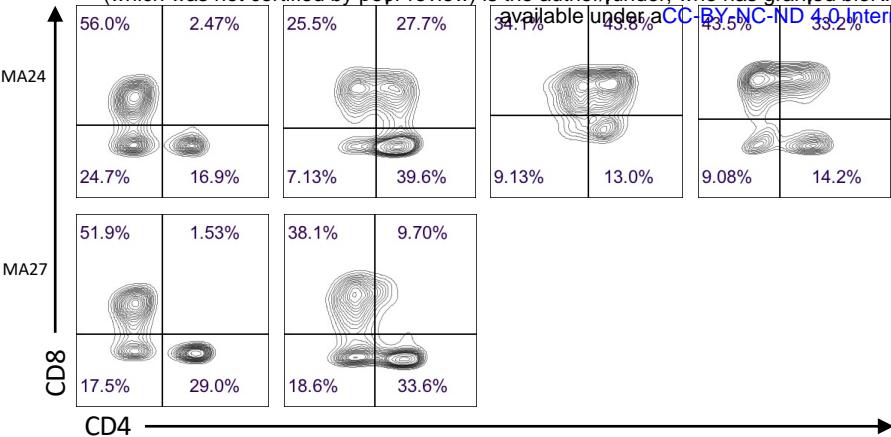


Figure 5. A-D. Monocyte cytokine response in the blood of pigtail macaques challenged with SARS-CoV-2.
Frequency of IL-1 β (A), IL-6 (B), IL-8 (C) and TNF- α (D) expressing classical monocytes (CD45+ HLA-DR+ CD14- CD16+) in the blood. Bars represent median. Day 0=day of infection. Baseline (-7): n=3, Day 6: n=4, Day 14: n=2, Day 21: n=2.

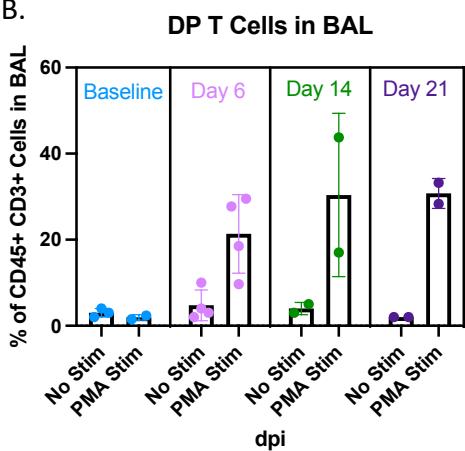
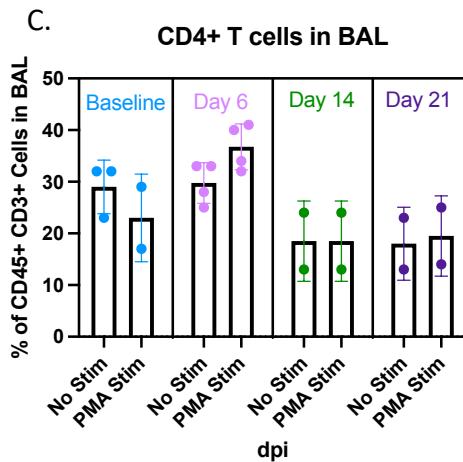
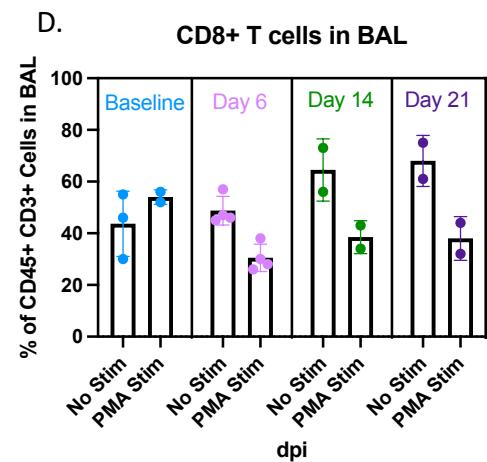
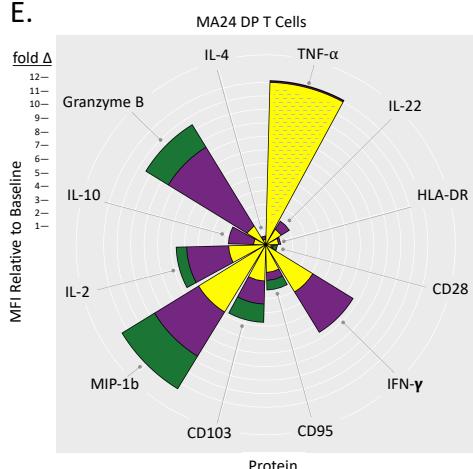
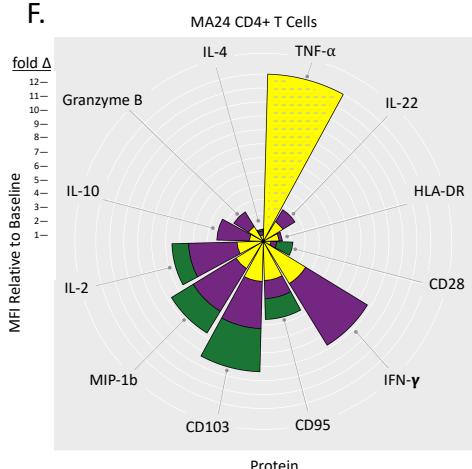


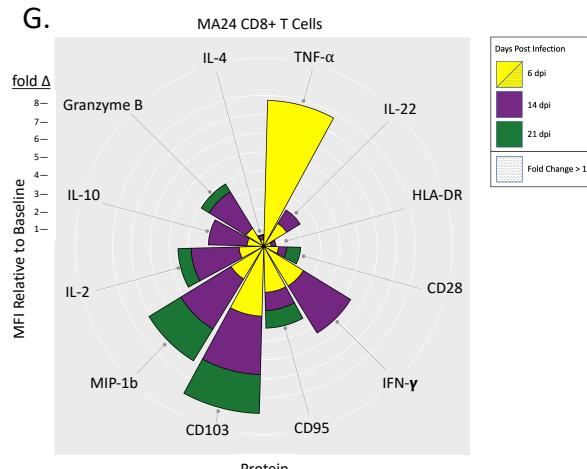
Figure 6. T cells in the blood. **A-B.** CD4+ (A) and CD8+ (B) T cell frequencies in the blood before and 1-, 2-, and 3-weeks post SARS-CoV-2 infection. **C-D.** Changes in Ki-67 expressing CD4+ (C) and CD8+ (D) T cells. Bars represent median. **E.** tSNE plots displaying changes in PD-1 expression (red) in peripheral CD45+ cells overtime. MA24 (E) and MA28 (F) displayed as a representative animals. **G.** Merged tSNE indicating phenotype of the tSNE defined cell populations in E. **H.** Average changes in the percentages of CD4+, CD8+, CD4- CD8- (DN) and CD4+ CD8+ (DP) T cells within the total PD-1+ CD3+ cell population. **I-L.** Frequency of PD-1+ expressing CD4+ (I), CD8+ (J), DP (K) and DN (L) T cells in the blood. Bars represent median. Kruskal-Wallis comparison of overall means (P_{KW}) and Dunn's Multiple comparisons (designated by line, P_D) tests used to determine significance. P values ≤ 0.05 reported. Baseline (-7): n=4, Day 6: n=4, Day 14: n=2, Day 21: n=2.

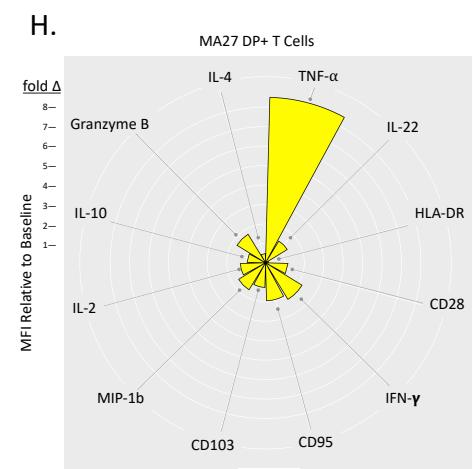

A.

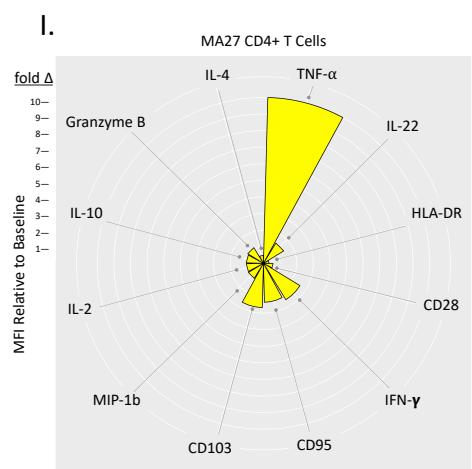

B.

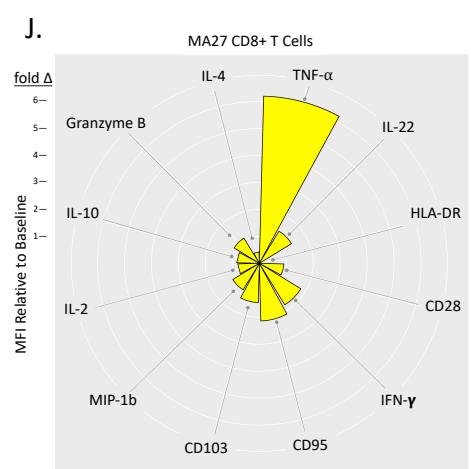

C.

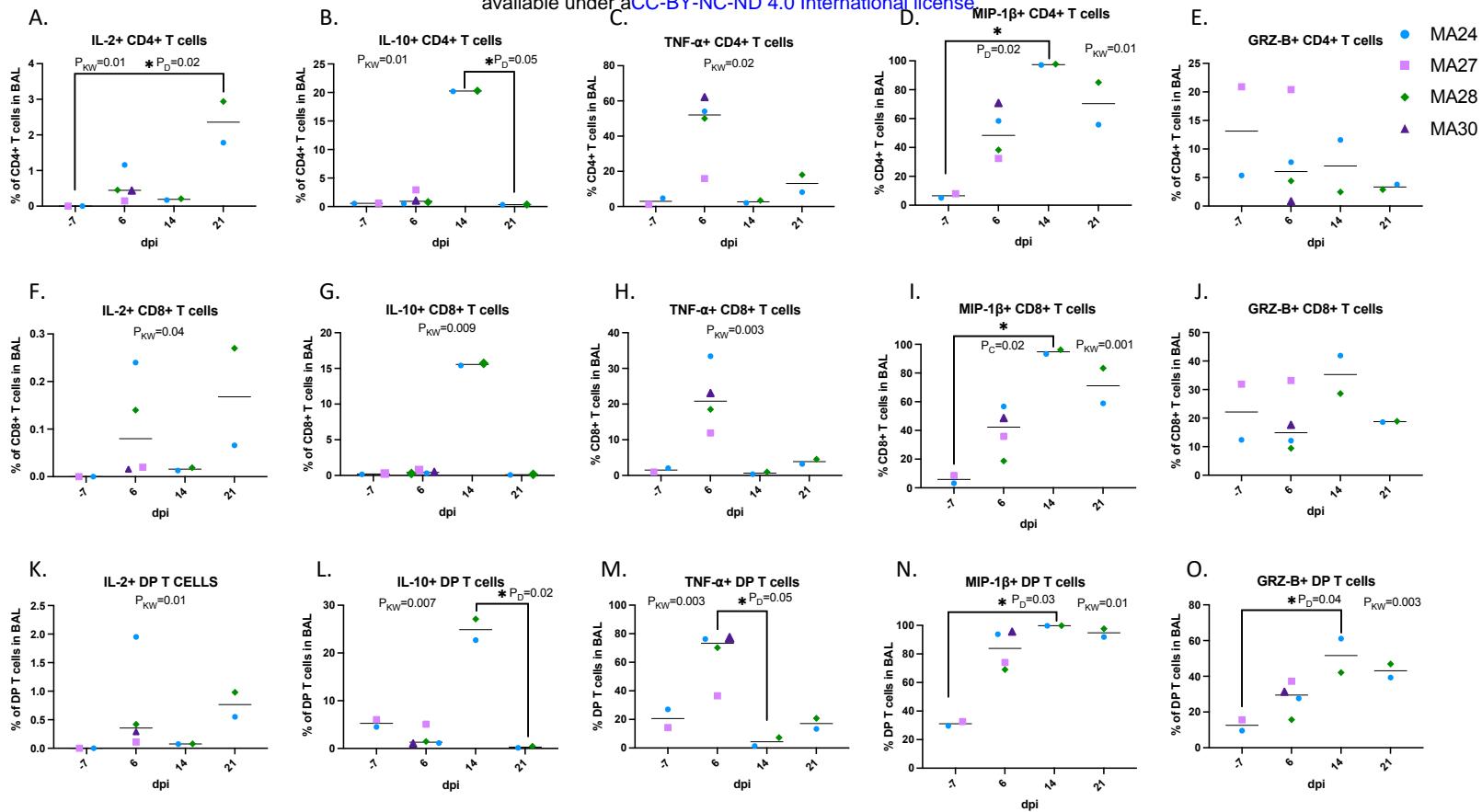

D.

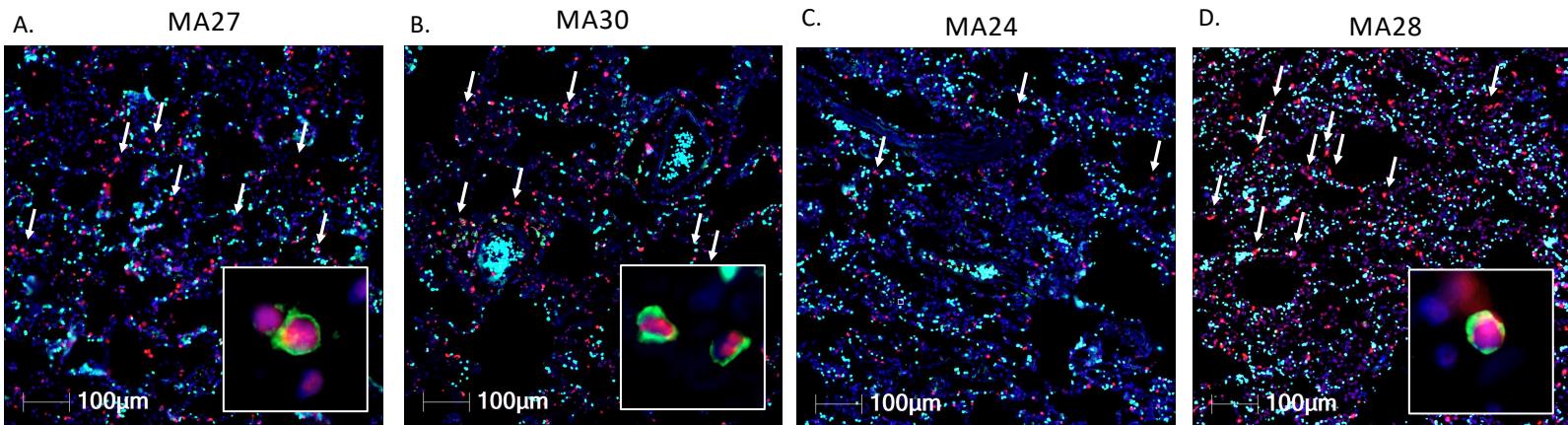

E.


F.


G.


H.


I.


J.

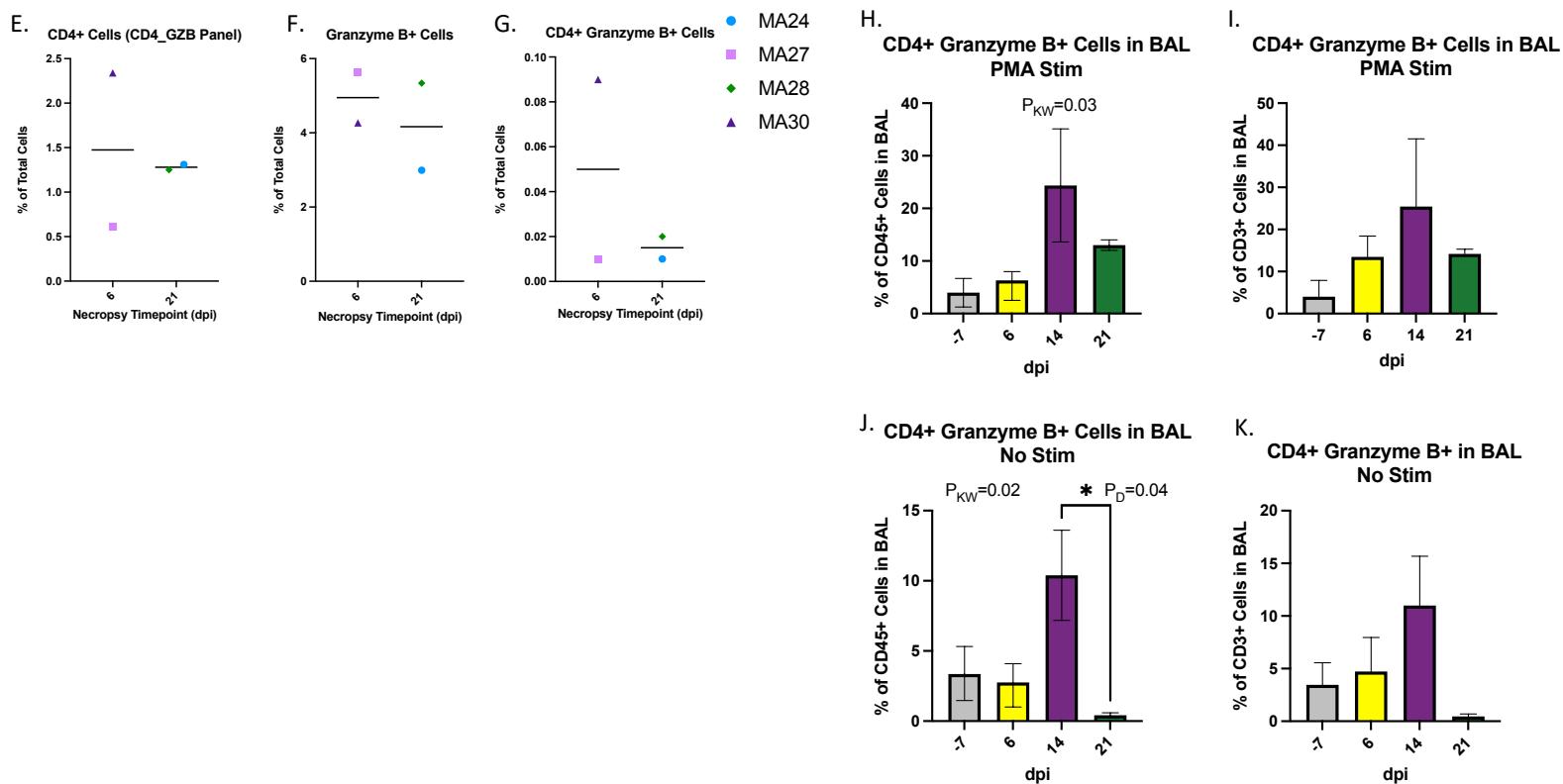
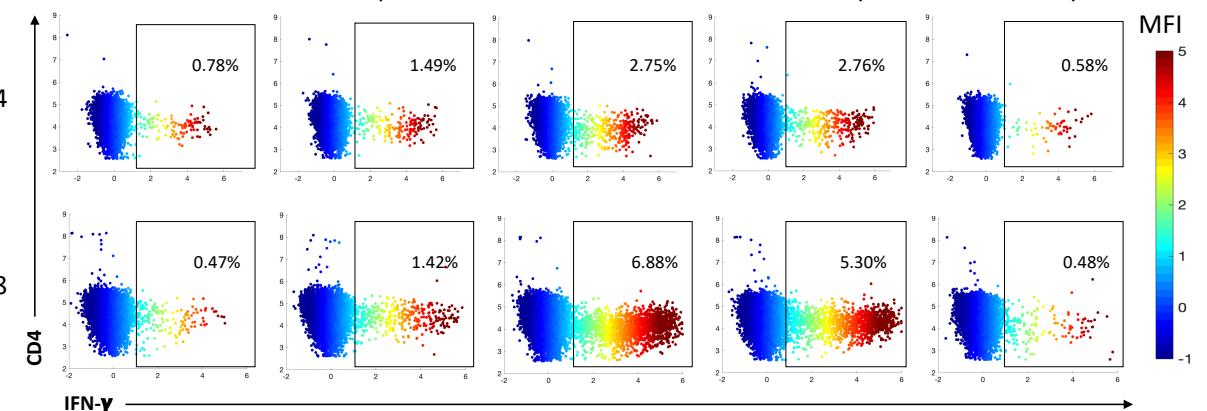

Figure 7. Adaptive T cell responses in the BAL. **A.** Representative flow cytometry plots showing changes in CD4 and CD8 expression in PMA/ionomycin stimulated CD3+ cells in BAL. Two animals shown (MA24 necropsied at 21-dpi, MA27 necropsied at 6-dpi). **B-D.** Effect of PMA/ionomycin on the frequency of CD4+ CD8+ (DP, **B**) CD4+ (**C**) and CD8+ (**D**) T cells in BAL before and 6-, 14-, and 21-days post SARS-CoV-2 infection. Bars represent mean and standard deviation. **E-J.** Nightingale Rose Plots (NRPs) showing fold changes in cytokine and surface protein expression compared to baseline (MFI). Yellow=6-dpi, Purple=14-dpi, Green=21-dpi. Size of petals represents magnitude of increase in expression. Distance from one white ring to the next is a 1-fold change. A decrease in expression is represented by a petal size less than the distance between two rings. Two animals shown (MA24 necropsied at 21-dpi, MA27 necropsied at 6-dpi). At 6-dpi, MA24 DP T cell TNF- α MFI is 24x baseline and CD4+ T cell TNF- α MFI is 50x baseline. Graph cutoff is set to a 12-fold change. **B-D.** Baseline: n=3 (No Stimulation (Stim)) and n=2 (Stim), Day 6: n=4 (No Stim) and n=4 (Stim), Day 14: n=2 (No Stim) and n=2 (Stim), Day 21: n=2 (No Stim) and n=2 (Stim).

Figure 8. Changes in T cell cytokine expression in the lung. A-O. PMA/ionomycin stimulated CD4+ T cells (A-E), CD8+ T cells (F-J), and CD4+ CD8+ (DP) T cells (K-O). Bars represent median. Kruskal-Wallis comparison of overall means (P_{KW}) and Dunn's Multiple comparisons (designated by line, P_D) tests used to determine significance. P values ≤ 0.05 reported. Baseline (-7): n=2, Day 6: n=4, Day 14: n=2, Day 21: n=2.



Granzyme B+ cells, CD4+ cells

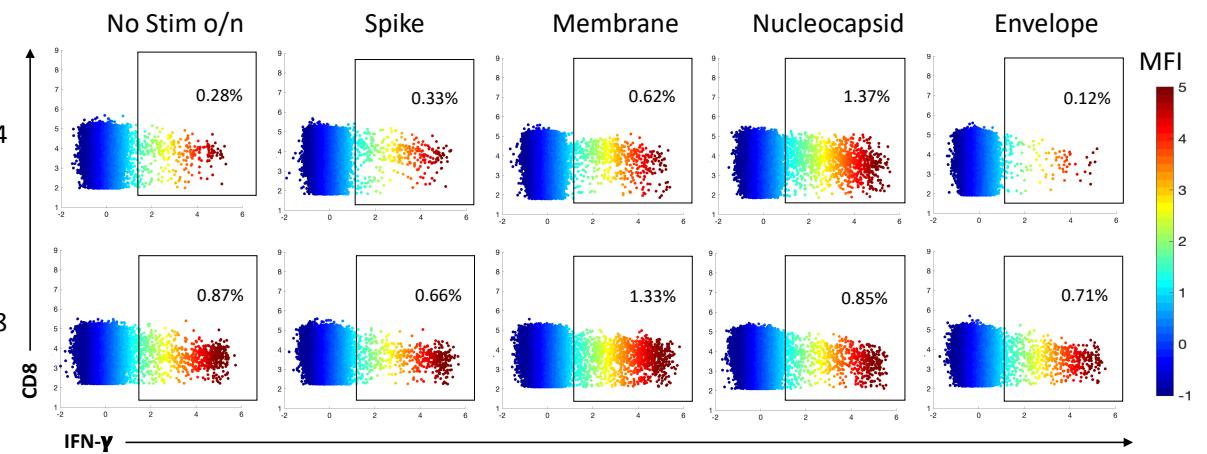
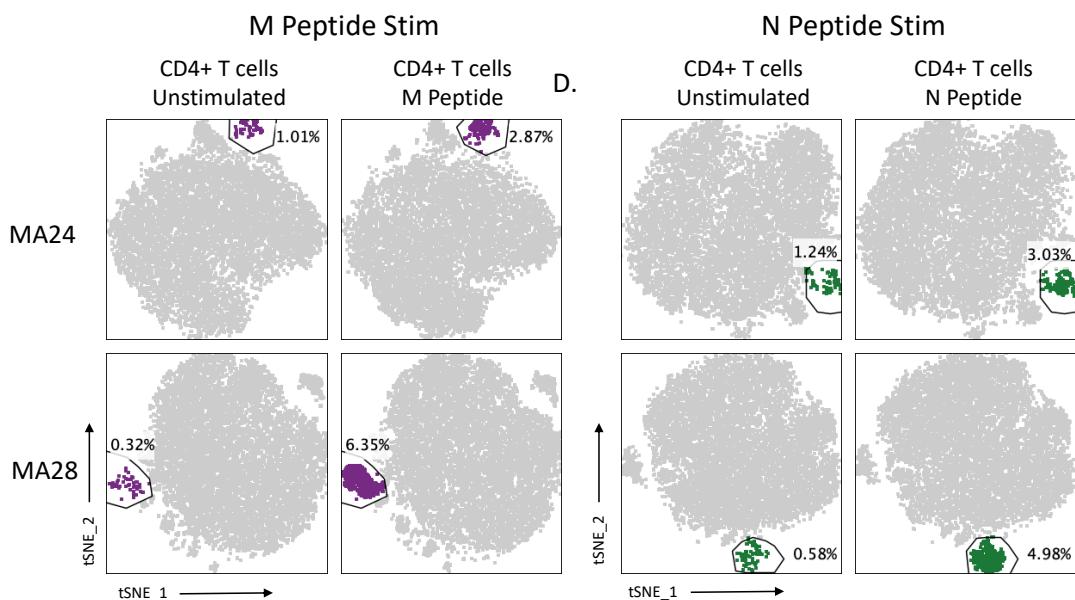
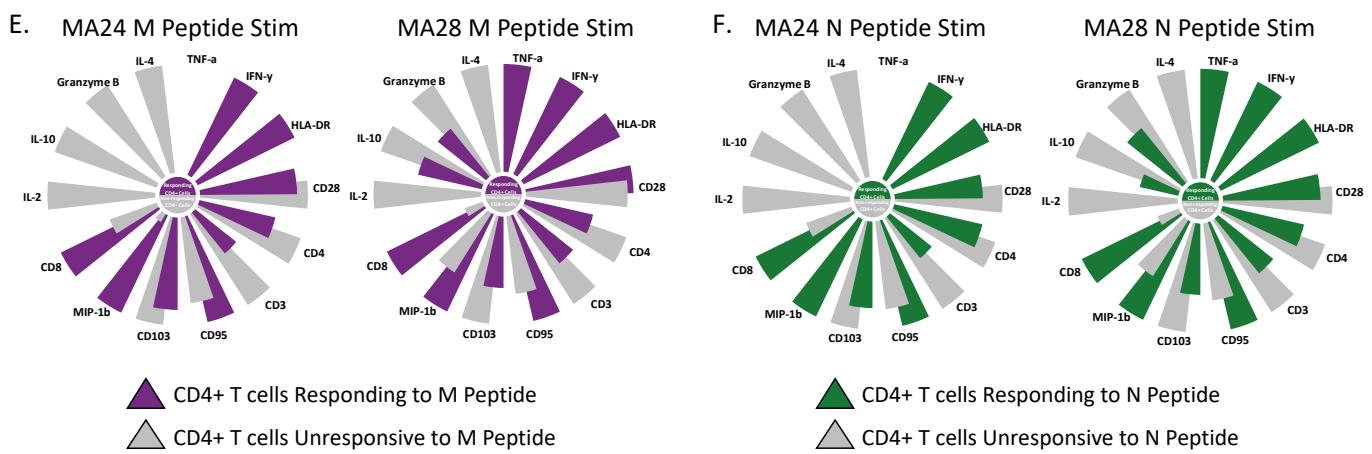
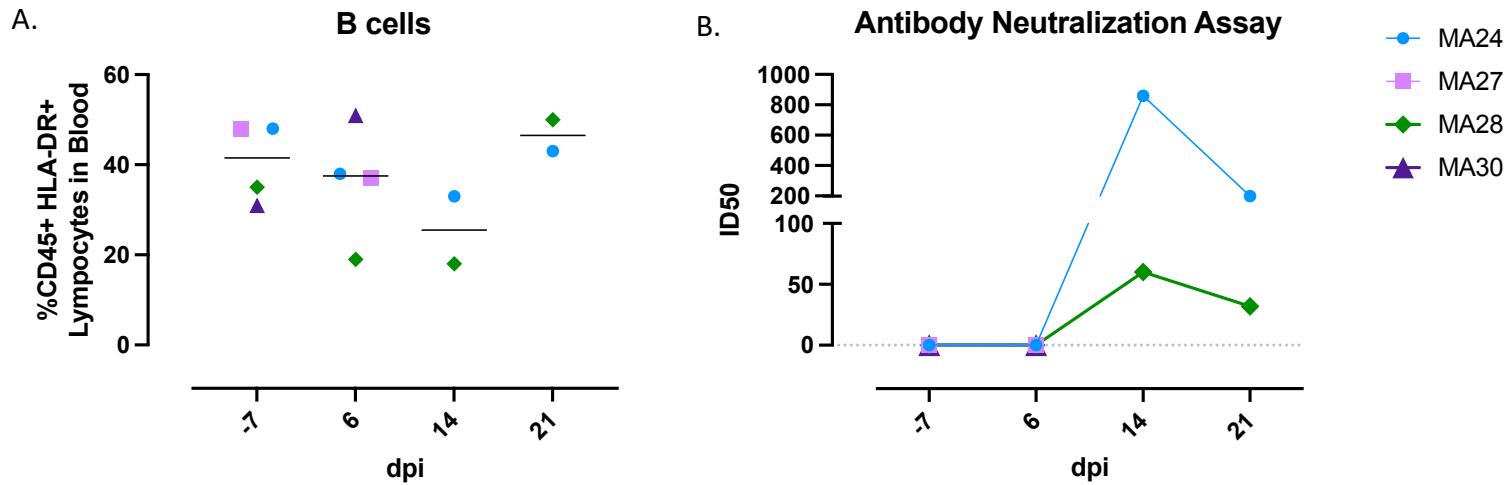


Figure 9. CD4 and Granzyme B expression in the lungs of SARS-CoV-2 infected macaques at 6- (A&B) and 21-days post infection (dpi, C&D). At 6-dpi, MA27 (A) and MA30 (B) the lungs are infiltrated by large numbers of Granzyme B positive cells (red, arrows). Insets: Rare CD4+ cells (green) exhibit granzyme expression. At 21-dpi, MA24 (C) exhibits low numbers of Granzyme B positive cells (red, arrows) compared to MA28 (D) and the two, 6-dpi animals (A&B). DAPI=Blue, Green=CD4, Red=Granzyme B. **E-G.** Percentage of CD4+ (E), Granzyme B+ (F) and CD4+ Granzyme B+ (G) cells in the lung at necropsy. Bars represent median. **H-K.** CD4+ Granzyme B+ T cells (CD45+ CD3+ CD4+ Granzyme B+) in BAL at Baseline (-7) and 6-, 14- and 21-dpi as a percentage of CD45+ cells (H&J) and CD3+ cells (I&K). **H&I.** Mononuclear cells, isolated from BAL, were stimulated with PMA/ionomycin for 4-6 hours. Bars represent median and standard deviation. Kruskal-Wallis comparison of overall means (P_{kw}) and Dunn's Multiple comparisons (designated by line, P_d) tests used to determine significance. P values ≤ 0.05 reported. **H-K.** Baseline: n=3 (No Stimulation (Stim)) and n=2 (Stim), Day 6: n=4 (No Stim) and n=4 (Stim), Day 14: n=2 (No Stim) and n=2 (Stim), Day 21: n=2 (No Stim) and n=2 (Stim).


A.


B.


C.

D.

Figure 10. SARS-CoV-2 peptide specific T cell response in the lung 21-days post infection. Two animals shown (MA24 & MA28 necropsied 21-dpi) **A&B.** Flow cytometry dot plots showing CD4+ (**A**) and CD8+ (**B**) T cell Interferon- γ (IFN- γ) response to overnight SARS-CoV-2 peptide (spike, membrane, nucleocapsid and envelope) stimulation. No stim o/n=cells incubated overnight without stimulation. Heatmap represents arcsin transformed MFI values. **C&D.** tSNE plots of CD4+ T cells showing an expansion in cells following overnight peptide stimulation. M=SARS-CoV-2 membrane peptides (**C**), N=SARS-CoV-2 nucleocapsid peptides (**D**). **E&F.** Radial bar plot comparing MFI values of the expanded CD4+ T cell population gated on in **C&D** to the unchanged CD4+ population within the same tSNE plot. Representative animals MA24, MA28 (necropsied at 21-dpi). The higher MFI value is set to 100 and the percent difference is calculated between the higher and lower MFI values. Size of the petals represent this analysis.

Figure 11. Humoral immune response in SARS-CoV-2 infected pigtail macaques. A. B cell frequencies in the blood before and 6-, 14-, and 21-days post (dpi) SARS-CoV-2 infection. Bars indicate median. **B.** Pseudovirus neutralization assay showing serum antibody levels against SARS-CoV-2 using HEK 293T/ACE2 cells. Baseline (-7): n=4, Day 6: n=4, Day 14: n=2, Day 21: n=2

Supplemental Table 2. Monocyte Panel

Fluorochrome	Antigen	Volume (uL)/Test	Clone	Catalog#	Lot#	Company
FITC	IL-6*	5	MQ2-6A3	554696	6168973	BD Pharmingen
PCP-Cy5.5	CD169	5	7-239	346020	B309159	BioLegend
AL647	IL-1B*	5	JK1B-1	508208	B274564	BioLegend
AL700	TNF-a*	5	MAb11	502928	B221571	BioLegend
APC-Cy7	HLA-DR	5	L243	307618	B295253	BioLegend
PacBlue	CD66	2	TET2	130-119-851	1320070484	Miltenyi Biotec
			Fixable Aqua Dead Cell Stain Kit	L34957		
BV510	L/D	0.5				Invitrogen
BV605	CD45	5	D058-1283	564098	9051992	BD Horizon
BV650	CD11c	5	S-HCL-3	744437	0203626	BD OptiBuild
BV711	CD16	5	3G8	302044	B296475	BioLegend
BV786	CD103	5	Ber-ACT8	350230	B274642	BioLegend
PE-CF594	IL-8*	5	G265-8	563531	0219387	BD Horizon
PE-Cy7	CD68*	5	Y1/82A	565595	0079803	BD Pharmingen
BUV395	CD123	5	7G3	564195	9337379	BD Horizon
BUV496	CD206	5	19.2	741173	0261803	BD OptiBuild
BUV737	CD14	5	M5E2	612764	0140605	BD Horizon

Supplemental Table 3. Phenotype Panel

Fluorochrome	Antigen	Volume (uL)/Test	Clone	Catalog#	Lot#	Company
FITC	CD21	5	B-Ly4	561372	0149866	BD Pharmingen
PCP-Cy5.5	CD169	5	7-239	346020	B309159	BioLegend
APC	CD11c	5	S-HCL-3	340714	70397	BD Pharmingen
AL700	Ki67*	5	B56	561277	9261927	BD Pharmingen
APC-Cy7	CD20	5	L27	561277	8320624	BD Bioscience
PacBlue	CD8	5	SK1	344718	B280004	BioLegend
			Fixable Aqua Dead Cell Stain Kit	L34957		
BV510	L/D	0.5				Invitrogen
BV605	CD4	5	OKT4	317438	B297647	BioLegend
BV650	CD3	5	SP34-2	563916	D163859	BD Horizon
BV711	CD16	5	3G8	302044	B296475	BioLegend
BV785	CD27	5	O323	302832	B264783	BioLegend
PE	FasL	5	NOK-1	306407	B269886	BioLegend
PE-CF594	HLA-DR	5	L243	307654	B320176	BioLegend
PE-Cy5	CD95	5	DX2	15-0959-42	2252537	Invitrogen
PE-Cy7	PD-1 (CD279)	5	J105	25-2799-42	228650	Invitrogen
BUV395	CD45	5	D058-1283	564099	0192257	BD Horizon
BUV496	CD28	5	CD28.2	741168	0203628	BD OptiBuild
BUV737	CD14	5	M5E2	612764	0140605	BD Horizon

* Intracellular

Supplemental Table 4. T cell Panel

Fluorochrome	Antigen	Volume (uL)/Test	Clone	Catalog#	Lot#	Company
FITC	MIP-1b*	20	D21-1351	560565	348912	BD Parmingen
PCP-Cy5.5	IL-2*	5	MQ1-17H12	560708	8142599	BD Parmingen
AL647	IFN-g*	5	4S-B3	502516	B228928	BioLegend
AL700	TNF-a*	5	MAb11	557996	8179967	BD Parmingen
APC-Cy7	HLA-DR	5	L243	307618	B295253	BioLegend
PacBlue	CD8	5	SK1	344718	B280004	BioLegend
BV510	Live/Dead	0.5	Fixable Aqua Dead Cell Stain Kit	L34957		Invitrogen
BV605	CD4	5	OKT4	317438	B297647	BioLegend
BV650	CD3	5	SP34-2	563916	D163859	BD Horizon
BV711	CD95	5	DX2	563132	004458	BD Horizon
PE	IL10*	5	JES3-9D7	501404	B273796	BioLegend
PE-CF594	GZB*	5	GB11	562462	0050626	BD Horizon
PE-Cy7	IL-4*	5	MP4-25D2	500824	B293168	BioLegend
BUV395	CD45	5	D058-1283	564099	0101778	BD Horizon
BUV496	CD28	5	CD28.2	741168	0203628	BD OptiBuild

* Intracellular

Supplemental Table 5. T cell SARS-CoV-2 Peptide, PMA/Ionomycin Stimulation

Stimulant	Volume (uL)/mL	Catalog#	Lot#	Company
Cell Stimulation Cocktail	1	423301	B295704	BioLegend
SARS-CoV-2 Spike Peptide	10	NR-52402		BEI Resources, NIAID, NIH
SARS-CoV-2 Membrane Peptide	5	NR-53822		BEI Resources, NIAID, NIH
SARS-CoV-2 Nucleocapsid Peptide	5	NR-52419		BEI Resources, NIAID, NIH
SARS-CoV-2 Envelope Peptide	5	NR-53822		BEI Resources, NIAID, NIH
Brefeldin-A	1	420601	B211242	BioLegend

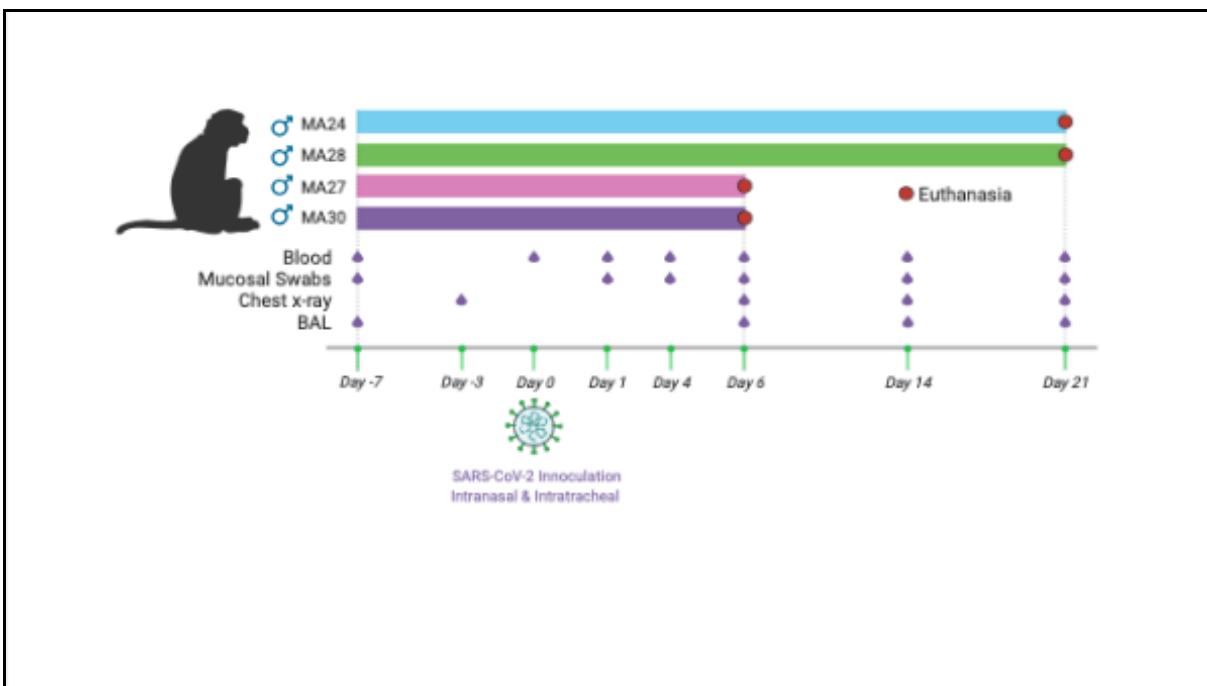
Supplemental Table 6. Immunohistochemistry

Primary Antibody	Species	Company	Catalog#	Dilution	Secondary Antibody	
					Species	Fluorochrome
SARS	Guinea Pig	BEI	NR-10361	1:1000	Goat anti-guinea pig	Alexa Fluor488
IBA1	Rabbit	Wako	019-19741	1:50	Goat anti-Rabbit	Alexa Fluor568
CD3	Mouse IgG1	Agilent	M7254	1:20	Goat anti-MS IgG1	Alexa Fluor568
CD4	Rabbit	Abcam	Ab133616	1:10	Goat anti-Rabbit	Alexa Fluor488
Granzyme	Mouse IgG2a	Agilent	M7235	1:50	Permanent Red (Agilent K0640)	
Dapi		Invitrogen	D1306	1:20,000		

639 Queen St. W Suite 401
Toronto ON M5V 2B7 Canada
www.biorender.com

Confirmation of Publication and Licensing Rights

August 25th, 2021
Science Suite Inc.


Subscription: Student Plan Promo (Legacy)
Agreement number: IA22VLXDAV
Journal name: PLOS Pathogens

To whom this may concern,

This document is to confirm that **Alex Melton** has been granted a license to use the BioRender content, including icons, templates and other original artwork, appearing in the attached completed graphic pursuant to BioRender's Academic License Terms. This license permits BioRender content to be sublicensed for use in journal publications.

All rights and ownership of BioRender content are reserved by BioRender. All completed graphics must be accompanied by the following citation: "Created with BioRender.com".

BioRender content included in the completed graphic is not licensed for any commercial uses beyond publication in a journal. For any commercial use of this figure, users may, if allowed, recreate it in BioRender under an Industry BioRender Plan.

For any questions regarding this document, or other questions about publishing with BioRender refer to our [BioRender Publication Guide](#), or contact BioRender Support at support@biorender.com.