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ABSTRACT

Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global
health. New antibacterial strategies are urgently needed, and the development of antibiotic
adjuvants that either neutralize resistance proteins or compromise the integrity of the cell
envelope is of ever-growing interest. Most available adjuvants are only effective against
specific resistance proteins. Here we demonstrate that disruption of cell envelope protein
homeostasis simultaneously compromises several classes of resistance determinants. In
particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates
diverse B-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we
show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to
existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment,
substantially increases the survival of Galleria mellonella larvae infected with multidrug-
resistant Pseudomonas aeruginosa. This work lays the foundation for the development of
novel antibiotic adjuvants that function as broad-acting resistance breakers.

IMPACT STATEMENT: Disruption of disulfide bond formation sensitizes resistant Gram-
negative bacteria expressing p-lactamases and mobile colistin resistance enzymes to currently
available antibiotics.
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INTRODUCTION

Antimicrobial resistance (AMR) is one of the most important public health concerns of our
time (1). With few new antibiotics in the pharmaceutical pipeline and multidrug-resistant
bacterial strains continuously emerging, it is more important than ever to develop novel
antibacterial strategies and find alternative ways to break resistance. While the development
of new treatments for Gram-negative bacteria is considered critical by the WHO (2),
identifying novel approaches to target these organisms is particularly challenging due to their
unique double-membrane permeability barrier and the vast range of AMR determinants they
produce. For this reason, rather than targeting cytoplasmic processes, antimicrobial strategies
that inhibit cell-envelope components or impair the activity of resistance determinants are
being increasingly pursued (3-7).

The Gram-negative cell envelope is home to many different AMR determinants, with -
lactamase enzymes currently posing a seemingly insurmountable problem. More than 6,500
unique enzymes capable of degrading B-lactam compounds have been identified to date
(Supplementary Table 1). Despite the development of more advanced B-lactam antibiotics,
for example the carbapenems and monobactams, resistance has continued to emerge through
the evolution of many broad-acting B-lactamases (8). This constant emergence of resistance
not only threatens B-lactams, the most commonly prescribed antibiotics worldwide (9, 10),
but also increases the use of last-resort agents, like the polymyxin antibiotic colistin, for the
treatment of multidrug-resistant infections (11). As a result, resistance to colistin is on the
rise, due in part to the alarming spread of novel cell-envelope colistin resistance
determinants. These proteins, called mobile colistin resistance (MCR) enzymes, represent the
only mobilizable mechanism of polymyxin resistance reported to date (12). Since their
discovery in 2015, ten families of MCR proteins have been identified and these enzymes are
quickly becoming a major threat to the longevity of colistin (13). Alongside B-lactamases and
MCR enzymes, Resistance-Nodulation-Division (RND) efflux pumps further enrich the
repertoire of AMR determinants in the cell envelope. These multi-protein assemblies span the
periplasm and remove many antibiotics (14, 15) rendering Gram-negative bacteria inherently
resistant to important antimicrobials.

Inhibition of AMR determinants has traditionally been achieved through the development of
antibiotic adjuvants. These molecules impair the function of resistance proteins and are used
in combination with existing antibiotics to eliminate challenging infections (4). Whilst this
approach has proven successful and has led to the deployment of several B-lactamase
inhibitors that are used clinically (4), it has so far not been able to simultaneously
incapacitate different classes of AMR determinants. This is because antibiotic adjuvants bind
to the active site of a resistance enzyme and thus are only effective against specific protein
families. To disrupt AMR more broadly, new strategies have to be developed that target the
biogenesis or stability, rather than the activity, of resistance determinants. In this way, the
formation of multiple resistance proteins can be inhibited at once, instead of developing
specific compounds that inactivate individual AMR enzymes after they are already in place.

In extracytoplasmic environments protein stability largely relies on the formation of disulfide
bonds between cysteine residues (16, 17). Notably, in the cell envelope of Gram-negative
bacteria this process is performed by a single pathway, the DSB system, and more
specifically by a single protein, the thiol oxidase DsbA (18-22). DsbA has been shown to
assist the folding of hundreds of proteins in the periplasm (21, 23, 24) (Figure 1A), including
a vast range of virulence factors (25, 26). As such, inhibition of DSB proteins has been
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proposed as a promising broad-acting strategy to target bacterial pathogenesis without
impairing bacterial viability (19, 25-27). Nonetheless, the comntribution of oxidative protein
folding to AMR has never been examined. Since several cell envelope AMR determinants
contain multiple cysteines (18, 28), we hypothesized that interfering with the function of
DsbA, would not only compromise bacterial virulence (27), but might also offer a broad
approach to break resistance across different mechanisms by affecting the stability of
resistance proteins. Here we test this hypothesis by investigating the contribution of disulfide
bond formation to three of the most important resistance mechanisms in the cell envelope of
Enterobacteria: the breakdown of B-lactam antibiotics by p-lactamases, polymyxin resistance
arising from the production of MCR enzymes and intrinsic resistance to multiple antibiotic
classes due to RND efflux pumps. We find that all these resistance mechanisms depend on
DsbA, albeit to a different extent, and we demonstrate that when DsbA activity is chemically
inhibited, resistance can be abrogated for several clinically important enzymes. Our findings
prove that it is possible to simultaneously incapacitate multiple classes of AMR determinants
and therefore are promising for the development of next-generation therapeutic approaches.
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RESULTS
The activity of multiple cell envelope resistance proteins is dependent on DsbA

DsbA has been shown to assist the folding of numerous periplasmic and surface-exposed
proteins in Gram-negative bacteria (Figure 1A) (25-27). As many AMR determinants also
transit through the periplasm, we postulated that inactivation of the DSB system may affect
their folding, and therefore impair their function. To test this, we first focused on resistance
proteins that are present in the cell envelope and contain two or more cysteine residues, since
they may depend on the formation of disulfide bonds for their stability and folding (18, 28).
We selected a panel of twelve clinically important B-lactamases from different Ambler
classes (classes A, B and D), most of which are encoded on plasmids (Table 1). The chosen
enzymes represent different protein structures, belong to discrete phylogenetic families
(Supplementary Table 1) and have distinct hydrolytic activities ranging from the degradation
of penicillins and first, second and third generation cephalosporins (extended spectrum -
lactamases, ESBLS) to the inactivation of last-resort B-lactams (carbapenemases). In addition
to P-lactamases, we selected five representative phosphoethanolamine transferases from
throughout the MCR phylogeny (Figure 1 - figure supplement 1) to gain a comprehensive
overview of the contribution of DsbA to the activity of these colistin-resistance determinants.

We expressed our panel of 17 discrete resistance enzymes in an Escherichia coli K-12 strain
(E. coli MC1000) and its isogenic dsbA mutant (E. coli MC1000 dsbA) and recorded
minimum inhibitory concentration (MIC) values for B-lactam or polymyxin antibiotics, as
appropriate. We found that the absence of DsbA resulted in a substantial decrease in MIC
values (>2-fold cutoff) for all but one of the tested B-lactamases (Figure 1B, Figure 1 - figure
supplement 2, Supplementary Table 2). For the p-lactamase that seemed unaffected by the
absence of DsbA, SHV-27, we performed the same experiment under temperature stress
conditions (at 43 °C rather than 37 °C). Under these conditions the lack of DsbA also resulted
in a noticeable drop in the cefuroxime MIC value (Figure 1 - figure supplement 3). A similar
effect has been described for TEM-1, whereby its disulfide bond becomes important for
enzyme function under stress conditions (temperature or pH stress) (29). As SHV-27 has the
narrowest hydrolytic spectrum out of all the enzymes tested, this result suggests that there
could be a correlation between the hydrolytic spectrum of the B-lactamase and its dependence
on DsbA for conferring resistance. In the case of colistin MICs, we did not implement a >2-
fold cutoff for observed decreases in MIC values as we did for strains expressing -
lactamases. Polymyxin antibiotics have a very narrow therapeutic window, and there is
significant overlap between therapeutic and toxic plasma concentrations of colistin (30, 31).
Since patients that depend on colistin treatment are often severely ill, have multiple co-
morbidities and are at high risk of acute kidney injury due to colistin toxicity, any reduction
in the dose of colistin needed to achieve therapeutic activity would be extremely valuable
(32). Expression of MCR enzymes in our wild-type E. coli K-12 strain resulted in colistin
resistance (MIC of 3 pg/mL or higher), while the strain harboring the empty vector was
sensitive to colistin (MIC of 1 ug/mL). In almost all tested cases, the absence of DsbA caused
re-sensitization of the strains, as defined by the EUCAST breakpoint (E. coli strains with an
MIC of 2 ug/mL or below are classified as susceptible) (Figure 1C), indicating that DsbA is
important for MCR function. Taking into consideration the challenges when using colistin
therapeutically (30-32), we conclude that deletion of dsbA led to clinically meaningful
decreases in colistin MIC values for tested MCR enzymes (Figure 1C), thus the role of DsbA
in MCR function should be further investigated.
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Wild-type MIC values could be restored for all tested cysteine-containing enzymes by
complementation of dsbA (Figure 1 - figure supplements 4 and 5). Moreover, since DsbA
acts on its substrates post-translationally, we performed a series of control experiments
designed to assess whether the recorded effects were specific to the interaction of the
resistance proteins with DsbA, and not a result of a general inability of the dsbA mutant strain
to resist antibiotic stress. We observed no decreases in MIC values for the aminoglycoside
antibiotic gentamicin, which is not affected by the activity of the tested enzymes (Figure 1B,
Figure 1 - figure supplement 6). Furthermore, the B-lactam MIC values of strains harboring
the empty-vector alone, or a plasmid encoding L2-1 (Figure 1B), a B-lactamase containing
three cysteine residues, but no disulfide bond (PDB ID: 107E), remained unchanged. Finally,
to rule out the possibility that deletion of dsbA caused changes in cell envelope integrity that
might confound our results, we measured the permeability of the outer and inner membrane
of the dsbA mutant. To assess the permeability of the outer membrane, we used the
fluorescent dye 1-N-phenylnaphthylamine (NPN) and complemented our results with
vancomycin MIC assays (Figure 1 - figure supplement 7A). To test the integrity of the entire
cell envelope, we used the fluorescent dye propidium iodide (PI), as well as the B-
galactosidase substrate chlorophenyl red-p-D-galactopyranoside (CPRG) (Figure 1 - figure
supplement 7B). All four assays confirmed that the cell envelope integrity of the dsbA mutant
is comparable to the parental strain (Figure 1 - figure supplement 7). Together, these results
indicate that many cell envelope AMR determinants that contain more than one cysteine
residue are substrates of DsbA and that the process of disulfide bond formation is important
for their activity.

Unlike B-lactamases and MCR enzymes, none of the components of the six E. coli RND
efflux pumps contain periplasmic cysteine residues (33), and thus they are not substrates of
the DSB system. Nonetheless, as DsbA assists the folding of approximately 300
extracytoplasmic proteins, and plays a central role in maintaining the homeostasis of the cell
envelope proteome (21, 23, 24), we wanted to assess whether changes in periplasmic
proteostasis that occur in its absence could indirectly influence efflux pump function. To do
this we determined the MIC values of three antibiotics that are RND efflux pump substrates
using E. coli MG1655, a model strain for efflux studies, its dsbA mutant, and a mutant
lacking acrA, an essential component of the major E. coli RND pump AcrAB-TolC. MIC
values for the dsbA mutant were lower than for the parental strain for all tested substrate
antibiotics, but remained unchanged for the non-substrate gentamicin (Figure 1D). This
indicates that the MG1655 dsbA strain is generally able to resist antibiotic stress as efficiently
as its parent, and that the recorded decreases in MIC values are specific to defects in efflux
pump function in the absence of DsbA. As expected for a gene deletion of a pump
component, the acrA mutant had substantially lower MIC values for effluxed antibiotics
(Figure 1D). At the same time, even though gentamicin is not effluxed by AcrAB-TolC (34),
the gentamicin MIC of the acrA mutant is two-fold lower than that of E. coli MG1655, in
agreement with the fact that one of minor RND pump in E. coli, the aminoglycoside pump
AcrD, is entirely reliant on AcrA for its function (35-37). As before, the observed phenotype
could be reversed by complementation of dsbA (Figure 1 - figure supplement 8) and the
recorded effects were not due to changes in membrane permeability (Figure 1 - figure
supplement 9). Chloramphenicol is the only antibiotic from the tested efflux pump substrates
that has a EUCAST breakpoint for Gram-negative bacteria (E. coli strains with an MIC of 8
ug/mL or below are classified as sensitive). It is notable that the MIC drop for this pump
substrate (Figure 1D), caused by deletion of dsbA, sensitized the E. coli MG1655 dsbA strain
to chloramphenicol (Figure 1E). Since mutations in marR that derepress MarA and cause
constitutive expression of AcrAB (38, 39) are observed in clinical isolates with increased
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efflux (40), we constructed an E. coli MG1655 marR mutant to test the robustness of the
observed decrease in the chloramphenicol MIC in the absence of DsbA. We found that the
chloramphenicol MIC for the dsbA marR mutant remained below the EUCAST breakpoint
(Figure 1E), even when efflux pump components were overexpressed (Figure 1 - figure
supplement 10).

Overall, the effect of DsbA absence on efflux pump efficiency is less substantial than that
measured for a mutant lacking acrA (2-3-fold decrease in MIC versus 5-16-fold decrease,
respectively) (Figure 1D). Nonetheless, the recorded decreases in MIC values are robust
(Figure 1DE) and in agreement with previous studies reporting that deletion of dsbA
increases the sensitivity of E. coli to dyes like acridine orange and pyronin Y (18), which are
known substrates of AcrAB-TolC. While it is unlikely that the decreases in MIC values for
effluxed antibiotics in the absence of DsbA are of clinical significance, it is interesting to
explore the mechanistic relationship between DsbA and efflux pumps further, because there
are very few examples of DsbA being important for the function of extra-cytoplasmic
proteins independently of its disulfide bond forming capacity (41, 42).

Altered periplasmic proteostasis due to the absence of DsbA results in degradation or
misfolding of cysteine-containing resistance determinants and sub-optimal function of efflux
pumps

To understand the underlying mechanisms that result in the decreased MIC values observed
for the dsbA mutant strains, we assessed the protein levels of a representative subset of f3-
lactamases (GES-1, L1-1, KPC-3, FRI-1, OXA-4, OXA-10, OXA-198) and all tested MCR
enzymes by immunoblotting. When expressed in the dsbA mutant, all Ambler class A and B
B-lactamases (Table 1), except GES-1 which we were not able to visualize by
immunoblotting, exhibited drastically reduced protein levels whilst the amount of the control
enzyme L2-1 remained unaffected (Figure 2A). This suggests that when these enzymes lack
their disulfide bond, they are unstable and ultimately degraded. We did not detect any
decrease in protein amounts for Ambler class D enzymes (Table 1, Figure 2B). However, the
hydrolytic activity of these 3-lactamases was significantly lower in the dsbA mutant (Figure
2C), suggesting a folding defect that leads to loss of function.

Like with class A and B B-lactamases, MCR enzymes were undetectable when expressed in a
dsbA mutant (Figure 3A) suggesting that their stability is severely compromised when they
lack their disulfide bonds. We further confirmed this by directly monitoring the lipid A
profile of all MCR-expressing strains where deletion of dsbA resulted in colistin MIC values
of 2 pug/mL or lower (i.e., strains expressing MCR-3, -4, -5 and -8, Figure 1C) using MALDI-
TOF mass spectrometry (Figure 3BC). MCR activity leads to the addition of
phosphoethanolamine to the lipid A portion of bacterial lipopolysaccharide (LPS), resulting
in reduced binding of colistin to LPS and, thus, resistance. In E. coli the major lipid A peak
detected by mass spectrometry is present at m/z 1796.2 (Figure 3B, first spectrum) and it
corresponds to hexa-acyl diphosphoryl lipid A (native lipid A). The lipid A profile of E. coli
MC1000 dsbA was identical to that of the parental strain (Figure 3B, second spectrum). In the
presence of MCR enzymes two additional peaks were observed, at m/z 1821.2 and 1919.2
(Figure 3B, third spectrum). The peak at m/z 1919.2 corresponds to the addition of a
phosphoethanolamine moiety to the phosphate group at position 1 of native lipid A, and the
peak at m/z 1821.2 corresponds to the addition of a phosphoethanolamine moiety to the 4°
phosphate of native lipid A and the concomitant loss of the phosphate group at position 1
(43). For dsbA mutants expressing MCR-3, -5 and -8 (Figure 3C), the peaks at m/z 1821.2
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and m/z 1919.2 could no longer be detected, whilst the native lipid A peak at m/z 1796.2
remained unchanged (Figure 3B, fourth spectrum); dsbA mutants expressing MCR-4 retain
some basal lipid A-modifying activity, nonetheless this is not sufficient for this strain to
efficiently evade colistin treatment (Figure 1C). Together these data suggest that in the
absence of DsbA, MCR enzymes are unstable (Figure 3A) and therefore no longer able to
efficiently catalyze the addition of phosphoethanolamine to native lipid A (Figure 3BC); as a
result, they cannot confer resistance to colistin (Figure 1C).

As RND efflux pump proteins do not contain any disulfide bonds, the decreases in MIC
values for pump substrates in the absence of dsbA (Figure 1D) are likely mediated by
additional cell-envelope components. The protease DegP, previously found to be a DsbA
substrate (20), seemed a promising candidate for linking DsbA to efflux pump function.
DegP degrades a range of misfolded extracytoplasmic proteins including, but not limited to,
subunits of higher order protein complexes and proteins lacking their native disulfide bonds
(44). We hypothesized that in a dsbA mutant the substrate burden on DegP would be
dramatically increased, whilst DegP itself would not function optimally due to absence of its
disulfide bond (45). Consequently, protein turn over in the cell envelope would not occur
efficiently. Since the essential RND efflux pump component AcrA needs to be cleared by
DegP when it becomes misfolded or nonfunctional (46), we expected that the reduced DegP
efficiency in a dsbA mutant would result in accumulation of nonfunctional AcrA in the
periplasm, which would then interfere with pump function. In agreement with our hypothesis,
we found that in the absence of DsbA degradation of DegP occurred, reducing the pool of
active enzyme (Figure 4A) (45). In addition, AcrA accumulated to the same extent in a dsbA
and a degP mutant (Figure 4B), suggesting that in both these strains AcrA was not efficiently
cleared. Finally, no accumulation was detected for the outer-membrane protein TolC, which
is not a DegP substrate (Figure 4C) (47). Thus, in the absence of DsbA, inefficient DegP-
mediated periplasmic proteostasis impacts RND efflux pump function (Figure 1D) through
the accumulation of AcrA that should have been degraded and removed from the cell
envelope.

The data presented above validate our initial hypothesis. The absence of DsbA affects the
stability and folding of cysteine-containing resistance proteins and in most cases leads to
drastically reduced protein levels for the tested enzymes. As a result, and in agreement with
the recorded decreases in MIC values (Figure 1BC), these folding defects impede the ability
of AMR determinants to confer resistance (Figure 4B). At the same time, changes in cell
envelope protein homeostasis have a clear effect on protein function in this compartment, as
demonstrated by the fact that prevention of disulfide bond formation indirectly impairs the
efficiency of the AcrAB-TolC efflux pump (Figure 1DE and 4D).

Sensitization of clinical isolates to existing antibiotics can be achieved by chemical inhibition
of DsbA activity

DsbA is essential for the folding of many virulence factors. As such, inhibition of the DSB
system has been proposed as a promising anti-virulence strategy (25-27) and efforts have
been made to develop inhibitors for DsbA (48, 49), its redox partner DsbB (Figure 1A) (50)
or both (51). These studies have made the first steps towards the production of chemical
compounds that inhibit the function of the DSB proteins, providing us with a laboratory tool
to test our approach against AMR.
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4,5-dichloro-2-(2-chlorobenzyl)pyridazin-3-one, termed “compound 12” in Landeta et al.
(50) is a potent laboratory inhibitor of E. coli DsbB and its analogues from closely related
organisms. Using this molecule, we could chemically inhibit the function of the DSB system.
We first tested the motility of E. coli MC1000 in the presence of the inhibitor and found that
cells were significantly less motile (Figure 5AB), consistent with the fact that impairing DSB
function prevents the formation of the flagellar P-ring component Flgl (52, 53). Furthermore,
we directly assessed the redox state of DsbA in the presence of “compound 12” to probe
whether it was being re-oxidized by DsbB, a necessary step that occurs after each round of
oxidative protein folding and allows DsbA to remain active (Figure 1A). Under normal
growth conditions, DsbA was in its active oxidized form in the bacterial periplasm (i.e., C30
and C33 form a disulfide bond), showing that it was efficiently regenerated by DsbB (54)
(Figure 5C). By contrast, addition of the inhibitor to growing E. coli MC1000 cells resulted
in accumulation of inactive reduced DsbA, thus confirming that DsbB function was impeded
(Figure 5C).

After testing the efficacy of the DsbB inhibitor, we proceeded to examine whether chemical
inhibition of the DSB system could be used to broadly impair the function of AMR
determinants. We determined MIC values for the latest generation fB-lactam that each -
lactamase can hydrolyze, or colistin, for our panel of E. coli MC1000 strains and found that
addition of the compound during MIC testing phenocopied the effects of a dsbA deletion on
B-lactamase and MCR activity (Figure 5DE, Figure 5 - figure supplement 1). The observed
effects are not a result of altered cell growth, as addition of the compound does not affect the
growth profile of the bacteria (Figure 5 - figure supplement 2A), in agreement with the fact
that deletion of dsbA does not affect cell viability (Figure 5 - figure supplement 2B).
Furthermore, the changes in the recorded MIC values are due solely to inhibition of the DSB
system as no additive effects on MIC values were observed when the dsbA mutant harboring
a B-lactamase or mcr gene was exposed to the compound (Figure 5 - figure supplement 3).

Having shown that the DSB system is a tractable target in the context of AMR, we examined
the effect of chemical inhibition on several species of 3-lactamase-expressing Enterobacteria
(Supplementary Table 3). DSB system inhibition in a clinical isolate of Klebsiella
pneumoniae expressing KPC-2 sensitized the strain to imipenem as defined by EUCAST
breakpoints (Figure 6A). The efficiency of this double treatment is evident from scanning
electron micrographs of the tested strains (Figure 6B). Addition of either the DSB system
inhibitor or imipenem alone does not cause any changes in the morphology of K. pneumoniae
cells, which remain healthy and dividing (Figure 6B, top row). By contrast, the combination
of the inhibitor with imipenem (added at a sub-MIC final concentration of 6 pg/mL), led to
dramatic changes in the appearance of the cells, whose integrity was entirely compromised
(Figure 6B, bottom row). Furthermore, E. coli and Citrobacter freundii isolates expressing
KPC-2, including multidrug-resistant strains, also showed clinically relevant decreases in
their MIC values for imipenem that resulted in sensitization when their DSB system was
chemically inhibited (Figure 6C). For an Enterobacter cloacae isolate expressing FRI-1,
chemical inhibition of DsbA caused a reduction in the aztreonam MIC value by over 180
pg/mL, resulting in intermediate resistance as defined by EUCAST breakpoints (Figure 6D).
Along with B-lactamase-expressing strains, we also tested the effect of DsbA inhibition on
MCR-producing clinical isolates. We found that combination of the DSB system inhibitor
with colistin led to reduction of the colistin MIC and sensitization of MCR-1-expressing E.
coli (Figure 6E). In agreement with this, SEM images of this strain after combination
treatment using sub-MIC amounts of colistin (final concentration of 2 pg/mL) revealed
drastic changes in morphology, whereby cells blebbed intensely or their contents leaked out
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(Figure 6F). We tested four more clinical E. coli isolates producing diverse MCR enzymes
and found that also for these strains DSB system inhibition allowed sensitization to colistin
(Figure 6G, Figure 6 - figure supplement 1). At the same time, we were able to show that
DSB system inhibition in E. coli CNR1790 (i.e., the clinical isolate expressing both MCR-1
and the ESBL TEM-15 that was sensitized to colistin in Figure 6E), led to a decrease in its
ceftazidime MIC, resulting in intermediate resistance (Figure 6H). While we did not test the
dependence of TEM enzymes on DsbA in our panel of E. coli K-12 strains, we chose to test
the effects of DSB system inhibition on E. coli CNR1790 because we posited that the
disulfide bond in TEM-15 may be important for its function, based on the fact that TEM-1
has been shown to be reliant on its disulfide under stress conditions (29). Validation of our
hypothesis provides evidence that DsbA inhibition can improve the resistance profile of the
same isolate both for B-lactam (Figure 6H) and polymyxin (Figure 6E) antibiotics. Together,
these results, obtained using multiple clinical strains from several bacterial species, provide
further validation of the significance of our data from heterologously expressed [-lactamase
and MCR enzymes in E. coli K-12 strains (Figure 1BC), and showcase the potential of this
approach for clinical applications.

To determine if our approach for Enterobacteria would be appropriate for other multidrug-
resistant pathogens we tested it on Pseudomonas aeruginosa. This bacterium has two DsbB
analogues which are functionally redundant (55). The chemical inhibitor used in this study
has been shown to be effective against DsbB1, but less effective against DsbB2 of P.
aeruginosa PA14 (50), making it unsuitable for MIC assays on P. aeruginosa clinical
isolates. Nonetheless, deletion of dsbAl in a multidrug-resistant P. aeruginosa clinical isolate
expressing OXA-198 (PA43417), led to sensitization of this strain to the antipseudomonal -
lactam piperacillin (Figure 7A). In addition, we deleted dsbAl in the multidrug-resistant P.
aeruginosa PAel91 strain that produces OXA-19, a member of the OXA-10 phylogenetic
family (Supplementary Table 1) and the most disseminated OXA enzyme in clinical strains
(56). In this case, absence of DsbA caused a drastic reduction in the ceftazidime MIC value
by over 220 pug/mL, and sensitized the strain to aztreonam (Figure 7B). These results suggest
that targeting disulfide bond formation could be useful for the sensitization of many more
clinically important Gram-negative species.

Finally, to test our approach in an infection context we performed in vivo survival assays
using the wax moth model Galleria mellonella (Figure 7C). Larvae were infected with the P.
aeruginosa PAe191 clinical isolate producing OXA-19, and its dsbAl mutant, and infections
were treated once with ceftazidime at a final concentration below the EUCAST breakpoint,
as appropriate. No larvae survived 18 hours post infection with P. aeruginosa PAe191, even
when treatment with ceftazidime was performed (Figure 7C, blue and red survival curves).
Deletion of dsbAl resulted in 80% mortality of the larvae at 50 hours post infection (Figure
7C, light blue survival curve); this increase in survival compared to larvae infected with P.
aeruginosa PAel191 is due to the fact that absence of the principal DsbA protein likely affects
the virulence of the pathogen (57). Nonetheless, treatment of the dsbAl mutant with
ceftazidime resulted in a significant increase in survival (17% mortality) compared to the
untreated condition 50 hours post infection (Figure 7C, compare the light blue and pink
survival curves). This improvement in survival is even more noticeable if one compares the
survival of larvae treated with ceftazidime after infection with P. aeruginosa PAe191 versus
infection with P. aeruginosa PAel91 dsbAl (Figure 7C, compare the red and pink survival
curves). Since OXA-19, in this case produced by a multi-drug resistant clinical strain
(Supplementary Table 3, Figure 7B), is a broad-spectrum [-lactamase that cannot be
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414  neutralized by classical B-lactamase inhibitors (Table 1), these results further highlight the
415  promise of our approach for future clinical applications.
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DISCUSSION

This work is one of the first reports of a strategy capable of simultaneously impairing
multiple types of AMR determinants by compromising the function of a single target. By
inhibiting DsbA, a non-essential cell envelope protein which is unique to bacteria, we can
inactivate diverse resistance enzymes and sensitize critically important pathogens to multiple
classes of existing antibiotics. This proof of principle will hopefully further incentivize the
development of DsbA inhibitors and open new avenues towards the inception of novel
adjuvants that will help reverse AMR in Gram-negative organisms.

We have shown that targeting DsbA incapacitates broad-spectrum B-lactamases from three of
the four Ambler classes (class A, B and D, Figure 1B). This includes enzymes that are not
susceptible to classical B-lactamase inhibitors (Table 1), such as members of the KPC and
OXA families, as well as metallo-B-lactamases like L1-1 from the often pan-resistant
organism Stenotrophomonas maltophilia. The function of these proteins is impaired without a
small molecule binding to their active site, unlike the currently-used B-lactamase inhibitors
which often generate resistance (4). As DsbA dependence is conserved within phylogenetic
groups (Figure 1 - figure supplement 2), based on the number of enzymes belonging to the
same phylogenetic family as the B-lactamases tested in this study (Supplementary Table 1),
we anticipate that a total of 195 discrete enzymes rely on DsbA for their stability and
function, 84 of which cannot be inhibited by classical adjuvant approaches. DsbA is widely
conserved (25), thus targeting the DSB system should not only compromise p-lactamases in
Enterobacteria but, as demonstrated by our experiments using P. aeruginosa clinical isolates
(Figure 7), could also be a promising avenue for impairing the function of AMR determinants
expressed by other highly-resistant Gram-negative organisms. As such, together with the fact
that approximately 56% of the B-lactamase phylogenetic families found in pathogens and
organisms capable of causing opportunistic infections contain enzymes with two or more
cysteines (Supplementary Table 1), we expect many more clinically relevant -lactamases,
beyond those already tested in this study, to depend on DsbA.

MCR enzymes are rapidly becoming a grave threat to the use of colistin (13), a drug of last
resort often needed for the treatment of multidrug-resistant infections (11). Currently,
experimental inhibitors of these proteins are sparse and poorly characterized (58), and only
one existing compound, the antirheumatic drug auranofin, seems to successfully impair MCR
enzymes (through displacement of their zinc cofactor) (59). As all MCR members contain
multiple disulfide bonds, inhibition of the DSB system provides a broadly applicable solution
for reversing MCR-mediated colistin resistance (Figure 1C, 5E and 6EFG) that would likely
extend to novel MCR proteins that may emerge in the future. Since the decrease in colistin
MIC values upon dsbA deletion (Figure 1C) or DsbB inhibition (Figure 5E and 6EFG) is
modest, this phenotype cannot be used in future screens aiming to identify DsbA inhibitors,
because such applications require a larger than 4-fold decrease in recorded MIC values to
reliably identify promising hits. Nonetheless, our findings in this study clearly demonstrate
that absence of DsbA results in degradation of MCR enzymes and abrogation of their
function (Figure 3), which, in turn, leads to sensitization of all tested E. coli clinical isolates
to colistin (Figure 6EFG). This adds to other efforts aiming to reduce the colistin MIC of
polymyxin resistant strains (60, 61). As such, if a clinically useful DsbA inhibitor were to
become available, it would be valuable to test its efficacy against large panels of MCR-
expressing clinical strains, as it might offer a new way to bypass MCR-mediated colistin
resistance.
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No clinically applicable efflux pump inhibitors have been identified to date (62) despite many
efforts to use these macromolecular assemblies as targets against intrinsic resistance. While
deletion of dsbA sensitizes the tested E. coli strain to chloramphenicol (Figure 1E), the
overall effects of DsbA absence on efflux function are modest (Figure 1D). That said, our
results regarding the relationship between DsbA-mediated proteostasis and pump function
(Figure 4A-C) highlight the importance of other cell envelope proteins responsible for protein
homeostasis, like DegP, for bacterial efflux. Since the cell envelope contains multiple protein
folding catalysts (16), it would be worth investigating if other redox proteins, chaperones or
proteases could be targeted to indirectly compromise efflux pumps.

More generally, our findings demonstrate that cell envelope proteostasis pathways have
significant, yet untapped, potential for the development of novel antibacterial strategies. The
example of the DSB system presented here is particularly telling. This pathway, initially
considered merely a housekeeping system (63), plays a major role in clinically relevant
bacterial niche adaptation. In addition to assisting the folding of 40% of the cell-envelope
proteome (23, 24), the DSB system is essential for virulence (25, 26), has a key role in the
formation and awakening of bacterial persister cells (64) and, as seen in this work, is required
for bacterial survival in the presence of widely used antibiotic compounds. As shown in our
in vivo experiments (Figure 7C), targeting such a system in Gram-negative pathogens could
lead to adjuvant approaches that inactivate AMR determinants whilst simultaneously
incapacitating an arsenal of virulence factors. Therefore, this study not only lays the
groundwork for future clinical applications, such as the development of broad-acting
antibiotic adjuvants, but also serves as a paradigm for exploiting other accessible cell
envelope proteostasis processes for the design of next-generation therapeutics.
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MATERIALS AND METHODS

Reagents and bacterial growth conditions. Unless otherwise stated, chemicals and reagents
were acquired from Sigma Aldrich, growth media were purchased from Oxoid and antibiotics
were obtained from Melford Laboratories. Lysogeny broth (LB) (10 g/L NaCl) and agar
(1.5% w/v) were used for routine growth of all organisms at 37 °C with shaking at 220 RPM,
as appropriate. Unless otherwise stated, Mueller-Hinton (MH) broth and agar (1.5% w/v)
were used for Minimum Inhibitory Concentration (MIC) assays. Growth media were
supplemented with the following, as required: 0.25 mM Isopropyl p-D-1-
thiogalactopyranoside (IPTG) (for strains harboring -lactamase-encoding pDM1 plasmids),
0.5 mM IPTG (for strains harboring MCR-encoding pDMI1 plasmids), 12.5 pg/mL
tetracycline, 100 pg/mL ampicillin, 50 pg/mL kanamycin, 10 pg/mL gentamicin, 33 pg/mL
chloramphenicol, 50 ug/mL streptomycin (for cloning purposes), and 2000-5000 pg/mL
streptomycin (for the construction of Pseudomonas aeruginosa mutants).

Construction of plasmids and bacterial strains. Bacterial strains and plasmids used in this
study are listed in the Key Resources Table and in Supplementary Tables 4 and 5,
respectively. Oligonucleotides used in this study are listed in Supplementary Table 6. DNA
manipulations were conducted using standard methods. KOD Hot Start DNA polymerase
(Merck) was used for all PCR reactions according to the manufacturer’s instructions,
oligonucleotides were synthesized by Sigma Aldrich and restriction enzymes were purchased
from New England Biolabs. All DNA constructs were sequenced and confirmed to be correct
before use.

Genes for B-lactamase and MCR enzymes were amplified from genomic DNA extracted from
clinical isolates (Supplementary Table 7) with the exception of mcr-3 and mcr-8, which were
synthesized by GeneArt Gene Synthesis (ThermoFisher Scientific). B-lactamase and MCR
genes were cloned into the IPTG-inducible plasmid pDM1 using primers P1-P36. pDM1
(GenBank accession number MN128719) was constructed from the pl5A-ori plasmid
pACYC184 (65) to contain the Lac repressor, the Ptac promoter, an optimized ribosome
binding site and a multiple cloning site (Ndel, Sacl, Pstl, Kpnl, Xhol and Xmal) inserted into
the Ncol restriction site of pACYC184. All Strepll-tag fusions of p-lactamase and MCR
enzymes (constructed using primers P1, P3, P9, P11, P13, P15, P17, P21, P23, P25, P27,
P29, P37, P38 and P41-P50) have a C-terminal Strepll tag (GSAWSHPQFEK) except for
OXA-4, where an N-terminal Strepll tag was inserted between the periplasmic signal
sequence and the body of the protein using the primer pairs P7/P40, P9/P39 and P7/P8.
Plasmids encoding ges-1, kpc-3 and mcr-3.2 were obtained by performing QuickChange
mutagenesis on pDM1 constructs encoding ges-5, kpc-2 and mcr-3, respectively (primers
P31-P36).

E. coli gene mutants were constructed using a modified lambda-Red recombination method,
as previously described (66) (primers P53-P62). To complement the dsbA mutant, a DNA
fragment consisting of dsbA preceded by the Ptac promoter was inserted into the Notl/Xhol
sites of pGRG25 (primers P51/P52) and was reintroduced into the E. coli chromosome at the
attTn7 site, as previously described (67). The dsbAl mutants of the P. aeruginosa PA43417
and P. aeruginosa PAel91 clinical isolates were constructed by allelic exchange, as
previously described (68). Briefly, the dsbAl gene area of P. aeruginosa PA43417 and P.
aeruginosa PAel191 (including the dsbAl gene and 600 bp on either side of this gene) was
amplified (primers P63/P64) and the obtained DNA was sequenced to allow for accurate
primer design for the ensuing cloning step. Subsequently, 500-bp DNA fragments upstream
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and downstream of the dsbAl gene were amplified using P. aeruginosa PA43417 genomic
DNA (primers P65/P66 (upstream) and P67/P68 (downstream)). A fragment containing both
regions was obtained by overlapping PCR (primers P65/P68) and inserted into the
Xbal/BamHI sites of pKNG101. The suicide vector pKNG101 (69) is not replicative in P.
aeruginosa; it was maintained in E. coli CC118\pir and mobilized into P. aeruginosa
PA43417 and P. aeruginosa PAel191 by triparental conjugation.

MIC assays. Unless otherwise stated, antibiotic MIC assays were carried out in accordance
with the EUCAST recommendations using ETEST strips (BioMérieux). Briefly, overnight
cultures of each strain to be tested were standardized to ODegoo 0.063 in 0.85% NaCl
(equivalent to McFarland standard 0.5) and distributed evenly across the surface of MH agar
plates. ETEST strips were placed on the surface of the plates, evenly spaced, and the plates
were incubated for 18-24 hours at 37 °C. MICs were read according to the manufacturer’s
instructions. f-lactam MICs were also determined using the Broth Microdilution (BMD)
method, as required. Briefly, a series of antibiotic concentrations was prepared by two-fold
serial dilution in MH broth in a clear-bottomed 96-well microtiter plate (Corning). When
used, tazobactam was included at a fixed concentration of 4 pg/mL in every well, in
accordance with the EUCAST guidelines. The strain to be tested was added to the wells at
approximately 5 x 10% colony forming units (CFU) per well and plates were incubated for 18-
24 hours at 37 °C. The MIC was defined as the lowest antibiotic concentration with no
visible bacterial growth in the wells. Vancomycin MICs were determined using the BMD
method, as above. All colistin sulphate MIC assays were performed using the BMD method
as described above except that instead of two-fold serial dilutions, the following
concentrations of colistin (Acros Organics) were prepared individually in MH broth: 8
pg/mL, 7 pg/mL, 6 pg/mL, 5.5 pg/mL, 5 pg/mL, 4.5 pg/mL, 4 pg/mL, 3.5 pg/mL, 3 pg/mL,
2.5 ng/mL, 2 ng/mL, 1.5 pg/mL, 1 pg/mL, 0.5 pg/mL.

The covalent DsbB inhibitor 4,5-dichloro-2-(2-chlorobenzyl)pyridazin-3-one (50) was used
to chemically impair the function of the DSB system. Inactivation of DsbB results in
abrogation of DsbA function (54) only in media free of small-molecule oxidants (52).
Therefore, MIC assays involving chemical inhibition of the DSB system were performed
using M63 broth (15.1 mM (NH4)2SO4, 100 mM KH2POs, 1.8 mM FeS0,4.7H0, adjusted to
pH 7.2 with KOH) and agar (1.5% wi/v) supplemented with 1 mM MgSOQOa, 0.02% wi/v
glucose, 0.005% w/v thiamine, 31 uM FeClz.6H20, 6.2 uM ZnCl,, 0.76 puM CuCl2.2H0,
1.62 uM H3BOs, 0.081 uM MnCl2.4H20, 84.5 mg/L alanine, 19.5 mg/L arginine, 91 mg/L
aspartic acid, 65 mg/L glutamic acid, 78 mg/L glycine, 6.5 mg/L histidine, 26 mg/L
isoleucine, 52 mg/L leucine, 56.34 mg/L lysine, 19.5 mg/L methionine, 26 mg/L
phenylalanine, 26 mg/L proline, 26 mg/L serine, 6.5 mg/L threonine, 19.5 mg/L tyrosine,
56.34 mg/L valine, 26 mg/L tryptophan, 26 mg/L asparagine and 26 mg/L glutamine. CaCl,
was also added at a final concentration of 0.223 mM for colistin sulfate MIC assays. Either
DMSO (vehicle control) or the covalent DsbB inhibitor 4,5-dichloro-2-(2-
chlorobenzyl)pyridazin-3-one (final concentration of 50 uM) (Enamine) (50) were added to
the M63 medium, as required. The strain to be tested was added at an inoculum that
recapitulated the MH medium MIC values obtained for that strain.

SDS-PAGE analysis and immunoblotting. Samples for immunoblotting were prepared as
follows. Strains to be tested were grown on LB or MH agar plates as lawns in the same
manner as for MIC assays described above. Bacteria were collected using an inoculating loop
and resuspended in 0.85% NaCl or LB to ODsoo 2.0 (except for strains expressing OXA-4,
where ODsoo 6.0 was used). For strains expressing B-lactamase enzymes, the cell suspensions
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were spun at 10,000 x g for 10 minutes and bacterial pellets were lysed by addition of
BugBuster Master Mix (Merck Millipore) for 25 minutes at room temperature with gentle
agitation. Subsequently, lysates were spun at 10,000 x g for 10 minutes at 4 °C and the
supernatant was added to 4 x Laemmli buffer. For strains expressing MCR enzymes cell
suspensions were directly added to 4 x Laemmli buffer, while for E. coli MG1655 and its
mutants, cells were lysed as above and lysates were added to 4 x Laemmli buffer. All
samples were boiled for 5 minutes before separation by SDS-PAGE.

Unless otherwise stated, SDS-PAGE analysis was carried out using 10% BisTris NuPAGE
gels (ThermoFisher Scientific) using MES/SDS running buffer prepared according to the
manufacturer’s instructions and including pre-stained protein markers (SeeBlue Plus 2,
ThermoFisher Scientific). Proteins were transferred to Amersham Protran nitrocellulose
membranes (0.45 um pore size, GE Life Sciences) using a Trans-Blot Turbo transfer system
(Bio-Rad) before blocking in 3% w/v Bovine Serum Albumin (BSA)/TBS-T (0.1 % viv
Tween 20) or 5% w/v skimmed milk/TBS-T and addition of primary and secondary
antibodies. The following primary antibodies were used in this study: Strep-Tactin-HRP
conjugate (Iba Lifesciences) (dilution 1:3,000 in 3 w/v % BSA/TBS-T), Strep-Tactin-AP
conjugate (Iba Lifesciences) (dilution 1:3,000 in 3 w/v % BSA/TBS-T), rabbit anti-DsbA
antibody (dilution 1:1,000 in 5 w/v % skimmed milk/TBS-T), rabbit anti-AcrA antibody
(dilution 1:10,000 in 5 w/v % skimmed milk/TBS-T), rabbit anti-TolC antibody (dilution
1:5,000 in 5 w/v % skimmed milk/TBS-T), rabbit anti-HtrAl (DegP) antibody (Abcam)
(dilution 1:1,000 in 5 w/v % skimmed milk/TBS-T) and mouse anti-DnaK 8E2/2 antibody
(Enzo Life Sciences) (dilution 1:10,000 in 5% wi/v skimmed milk/TBS-T). The following
secondary antibodies were used in this study: goat anti-rabbit IgG-AP conjugate (Sigma
Aldrich) (dilution 1:6,000 in 5% w/v skimmed milk/TBS-T), goat anti-rabbit 1gG-HRP
conjugate (Sigma Aldrich) (dilution 1:6,000 in 5% w/v skimmed milk/TBS-T), goat anti-
mouse IgG-AP conjugate (Sigma Aldrich) (dilution 1:6,000 in 5% wi/v skimmed milk/TBS-
T) and goat anti-mouse 1gG-HRP conjugate (Sigma Aldrich) (dilution 1:6,000 in 5% wi/v
skimmed milk/TBS-T). Membranes were washed three times for 5 minutes with TBS-T prior
to development. Development for AP conjugates was carried out using a SigmaFast
BCIP/NBT tablet, while HRP conjugates were visualized with the Novex ECL HRP
chemiluminescent substrate reagent kit (ThermoFisher Scientific) or the Immobilon
Crescendo chemiluminescent reagent (Merck) using a Gel Doc XR+ Imager (Bio-Rad).

p-lactam hydrolysis assay. B-lactam hydrolysis measurements were carried out using the
chromogenic B-lactam nitrocefin (Abcam). Briefly, overnight cultures of strains to be tested
were centrifugated, pellets were weighed and resuspended in 150 pL of 100 mM sodium
phosphate buffer (pH 7.0) per 1 mg of wet-cell pellet, and cells were lysed by sonication. For
strains harboring pDM1, pDM1-blai21, pDM1-blaoxa-10 and pDM1-blages1, lysates
corresponding to 0.34 mg of bacterial pellet were transferred into clear-bottomed 96-well
microtiter plates (Corning). For strains harboring pDM1-blaoxa-s+ and pDM1-blaoxa-19s,
lysates corresponding to 0.2 mg and 0.014 mg of bacterial pellet were used, respectively. In
all cases, nitrocefin was added at a final concentration of 400 uM and the final reaction
volume was made up to 100 pL using 100 mM sodium phosphate buffer (pH 7.0). Nitrocefin
hydrolysis was monitored at 25 °C by recording absorbance at 490 nm at 60-second intervals
for 15 minutes using an Infinite M200 Pro microplate reader (Tecan). The amount of
nitrocefin hydrolyzed by each lysate in 15 minutes was calculated using a standard curve
generated by acid hydrolysis of nitrocefin standards.
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NPN uptake assay. 1-N-phenylnaphthylamine (NPN) (Acros Organics) uptake assays were
performed as described by Helander & Mattila-Sandholm (70). Briefly, mid-log phase
cultures of strains to be tested were diluted to ODesoo 0.5 in 5 mM HEPES (pH 7.2) before
transfer to clear-bottomed 96-well microtiter plates (Corning) and addition of NPN at a final
concentration of 10 puM. Colistin sulphate (Acros Organics) was included at a final
concentration of 0.5 pg/mL, as required. Immediately after the addition of NPN, fluorescence
was measured at 60-second intervals for 10 minutes using an Infinite M200 Pro microplate
reader (Tecan); the excitation wavelength was set to 355 nm and emission was recorded at
405 nm.

PI uptake assay. Exponentially-growing (ODeoo 0.4) E. coli strains harboring pUltraGFP-GM
(71) were diluted to ODsno 0.1 in phosphate buffered saline (PBS) (pH 7.4) and cecropin A
was added to a final concentration of 20 uM, as required. Cell suspensions were incubated at
room temperature for 30 minutes before centrifugation and resuspension of the pellets in
PBS. Propidium iodide (PI) was then added at a final concentration of 3 uM. Suspensions
were incubated for 10 minutes at room temperature and analyzed on a two-laser, four color
BD FACSCalibur flow cytometer (BD Biosciences). 50,000 events were collected for each
sample and data were analyzed using FlowJo v.10.0.6 (Treestar).

CPRG hydrolysis assay. The cell envelope integrity of bacterial strains used in this study and
of their dsbA mutants, was tested by measuring the hydrolysis of the B-galactosidase substrate
chlorophenyl red-B-D-galactopyranoside (CPRG) by cytoplasmic LacZ, as previously
described (72). Briefly, exponentially growing (ODsoo 0.4) E. coli MC1000 harboring
pCB112 or MG1655, as well as their dshA mutants, were diluted to 1:10° in MH broth and
plated on MH agar containing CPRG and IPTG at final concentrations of 20 ug/mL and 50
uM, respectively. Plates were incubated at 37°C for 18 hours, were photographed, and
images were analyzed using Adobe Photoshop CS4 extended v.11.0 (Adobe) as follows.
Images were converted to CMYK color space format, colonies were manually selected using
consistent tolerance (26, anti-alias, contiguous) and edge refinement (32 px, 100% contrast),
and the magenta color was quantified for each image and normalized for the area occupied by
each colony.

MALDI-TOF Mass spectrometry. Lipid A profiles of strains to be tested were determined
using intact bacteria, as previously described (73). The peak for E. coli native lipid A is
detected at m/z 1796.2, whereas the lipid A profiles of strains expressing functional MCR
enzymes have two additional peaks, at m/z 1821.2 and 1919.2. These peaks result from
MCR-mediated modification of native lipid A through addition of phosphoethanolamine
moieties (43). The ratio of modified to unmodified lipid A was calculated by summing the
intensities of the peaks at m/z 1821.2 and 1919.2 and dividing this value by the intensity of
the native lipid A peak at m/z 1796.2.

Motility assay. 500 pL of overnight culture of each strain to be tested were centrifuged and
the pellets were washed three times in M63 broth before resuspension in the same medium to
achieve a final volume of 25 pL. Bacterial motility was assessed by growth in M63 medium
containing 0.25% w/v agar supplemented as described above. DMSO (vehicle control) or the
covalent DsbB inhibitor 4,5-dichloro-2-(2-chlorobenzyl)pyridazin-3-one (final concentration
of 50 uM) (Enamine) were added to the medium, as required. 1 puL of the washed cell
suspension was inoculated into the center of a 90 mm diameter agar plate, just below the
surface of the semi-solid medium. Plates were incubated at 37 °C in a humidified
environment for 16-18 hours and growth halo diameters were measured.
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AMS labelling. Bacterial strains to be tested were grown for 18 hours in M63 broth
supplemented as described above. DMSO (vehicle control) or the covalent DsbB inhibitor
4,5-dichloro-2-(2-chlorobenzyl)pyridazin-3-one (final concentration of 50 puM) (Enamine)
were added to the medium, as required. Cultures were standardized to ODeoo 2.0 in M63
broth, spun at 10,000 x g for 10 minutes and bacterial pellets lysed by addition of BugBuster
Master Mix (Merck Millipore) for 25 minutes at room temperature with gentle agitation.
Subsequently, lysates were spun at 10,000 x g for 10 minutes at 4 °C prior to reaction with 4-
acetamido-4"-maleimidyl-stilbene-2,2"-disulfonic acid (AMS) (ThermoFisher Scientific).
AMS alkylation was performed by vortexing the lysates in 15 mM AMS, 50 mM Tris-HCI,
3% w/v SDS and 3 mM EDTA (pH 8.0) for 30 minutes at 25 °C, followed by incubation at
37 °C for 10 minutes. SDS-PAGE analysis and immunoblotting was carried out as described
above, except that 12% BisTris NUPAGE gels (ThermoFisher Scientific) and MOPS/SDS
running buffer were used. DsbA was detected using a rabbit anti-DsbA primary antibody and
an AP-conjugated secondary antibody, as described above.

Bacterial growth assays. To assess the effect of DSB system inhibition of the growth of E.
coli, overnight cultures of the strains to be tested were centrifuged and the pellets were
washed three times in M63 broth before transfer to clear-bottomed 96-well microtiter plates
(Corning) at approximately 5 x 10" CFU/well (starting ODsoo ~ 0.03). M63 broth
supplemented as described above was used as a growth medium. DMSO (vehicle control) or
the covalent DsbB inhibitor 4,5-dichloro-2-(2-chlorobenzyl)pyridazin-3-one  (final
concentration of 50 uM) (Enamine) were added to the medium, as required. Plates were
incubated at 37 °C with orbital shaking (amplitude 3 mm, equivalent to ~ 220 RPM) and
ODesoo was measured at 900-second intervals for 18 hours using an Infinite M200 Pro
microplate reader (Tecan). The same experimental setup was also used for recording growth
curves of E. coli strains and their isogenic mutants, except that overnight cultures of the
strains to be tested were diluted 1:100 into clear-bottomed 96-well microtiter plates (Corning)
(starting ODeoo ~ 0.01) and that LB was used as the growth medium.

Galleria mellonella survival assay. The wax moth model Galleria mellonella was used for in
vivo survival assays (74). Individual G. mellonella larvae were randomly allocated to
experimental groups; no masking was used. Overnight cultures of the strains to be tested
were standardized to ODegoo 1.0, suspensions were centrifuged and the pellets were washed
three times in PBS and serially diluted. 10 pl of the 1:10 dilution of each bacterial suspension
was injected into the last right abdominal proleg of 30 G. mellonella larvae per condition; an
additional ten larvae were injected with PBS as negative control. Immediately after infection,
larvae were injected with 4 pl of ceftazidime to a final concentration of 7.5 pug/ml in the last
left abdominal proleg. The larvae mortality was monitored for 50 hours. Death was scored
when larvae turned black due to melanization, and did not respond to physical stimulation.

SEM imaging. Bacterial strains to be tested were grown for 18 hours in MH broth; the
covalent DsbB inhibitor 4,5-dichloro-2-(2-chlorobenzyl)pyridazin-3-one (final concentration
of 50 uM) (Enamine) was added to the medium, as required. Cells were centrifuged, the
pellets were washed three times in M63 broth, and cell suspensions were diluted 1:500 into
the same medium supplemented as described above; the covalent DsbB inhibitor (final
concentration of 50 uM) and/or antibiotics (final concentrations of 6 pg/mL and 2 pg/mL of
imipenem and colistin, respectively) were added to the cultures, as required. After 1 hour of
incubation as described above, 25 ul of each culture was spotted onto positively charged
glass microscope slides and allowed to air-dry. Cells were then fixed with glutaraldehyde
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(2.5% v/v in PBS) for 30 min at room temperature and the slide was washed five times in
PBS. Subsequently, each sample was dehydrated using increasing concentrations of ethanol
(5% vlv, 10% viv, 20% v/v, 30% v/v, 50% v/v, 70% v/v, 90% v/v (applied three times) and
100% v/v), with each wash being carried out by application and immediate removal of the
washing solution, before a 7 nm coat of platinum/palladium was applied using a Cressington
208 benchtop sputter coater. Images were obtained on a Zeiss Supra 40V Scanning Electron
Microscope at 5.00 kV and with 26,000 x magnification.

Statistical analysis of experimental data. The total numbers of performed biological
experiments and technical repeats are mentioned in the figure legend of each display item.
Biological replication refers to completely independent repetition of an experiment using
different biological and chemical materials. Technical replication refers to independent data
recordings using the same biological sample. For MIC assays, all recorded values are
displayed in the relevant graphs; for MIC assays where three or more biological experiments
were performed, the bars indicate the median value, while for assays where two biological
experiments were performed the bars indicate the most conservative of the two values (i.e.,
for increasing trends, the value representing the smallest increase and for decreasing trends,
the value representing the smallest decrease). For all other assays, statistical analysis was
performed in GraphPad Prism v8.0.2 using an unpaired T-test with Welch’s correction, a
one-way ANOVA with correction for multiple comparisons, or a Mantel-Cox logrank test, as
appropriate. Statistical significance was defined as p < 0.05. Outliers were defined as any
technical repeat >2 SD away from the average of the other technical repeats within the same
biological experiment. Such data were excluded and all remaining data were included in the
analysis. Detailed information for each figure is provided below:

Figure 2C: unpaired T-test with Welch’s correction; n=3; 3.621 degrees of freedom, t-
value=0.302, p=0.7792 (non-significance) (for pDML1 strains); 3.735 degrees of freedom, t-
value=0.4677, p=0.666 (non-significance) (for pDM1-blaL2.1 strains); 2.273 degrees of
freedom, t-value=5.069, p=0.0281 (significance) (for pDM1-blages.1 strains); 2.011 degrees
of freedom, t-value=6.825, p=0.0205 (significance) (for pDM1-blaoxa-s strains); 2.005
degrees of freedom, t-value=6.811, p=0.0208 (significance) (for pDM1-blaoxa-10 strains);
2.025 degrees of freedom, t-value=5.629, p=0.0293 (significance) (for pDM1-blaoxa-198
strains)

Figure 3C: one-way ANOVA with Tukey’s multiple comparison test; n=4; 24 degrees of
freedom; F value=21.00; p=0.000000000066 (for pDM1-mcr-3 strains), p=0.0004 (for
pDM1-mcr-4 strains), p=0.000000000066 (for pDM1-mcr-5 strains), p=0.00066 (for pDM1-
mcr-8 strains)

Figure 5B: one-way ANOVA with Bonferroni’s multiple comparison test; n=3; 6 degrees of
freedom; F value=1878; p=0.000000002 (significance)

Figure 7C: Mantel-Cox test; n=30; p=<0.0001 (significance) (P. aeruginosa versus P.
aeruginosa dsbAl), p>0.9999 (non-significance) (P. aeruginosa vs P. aeruginosa treated
with ceftazidime), p=<0.0001 (significance) (P. aeruginosa treated with ceftazidime versus
P. aeruginosa dsbA1l), p=<0.0001 (significance) (P. aeruginosa dsbAl versus P. aeruginosa
dsbAl treated with ceftazidime)

Figure 1 - figure supplement 7A(left graph): one-way ANOVA with Bonferroni’s multiple
comparison test; n=3; 6 degrees of freedom; F value=39.22; p=0.0007 (significance), p=0.99
(non-significance)

Figure 1 - figure supplement 7B (left graph): one-way ANOVA with Bonferroni’s multiple
comparison test; n=3; 6 degrees of freedom; F value=61.84; p=0.0002 (significance), p=0.99
(non-significance)
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Figure 1 - figure supplement 7B (right graph): unpaired T-test with Welch’s correction, n=3;
4 degrees of freedom; t-value=0.1136, p=0.9150 (non-significance)

Figure 1 - figure supplement 9A (left graph): one-way ANOVA with Bonferroni’s multiple
comparison test; n=3; 6 degrees of freedom; F value=261.4; p=0.00000055 (significance),
p=0.0639 (non-significance)

Figure 1 - figure supplement 9B (left graph): one-way ANOVA with Bonferroni’s multiple
comparison test; n=3; 6 degrees of freedom; F value=77.49; p=0.0001 (significance),
p=0.9999 (non-significance)

Figure 1 - figure supplement 9B (right graph): unpaired T-test with Welch’s correction, n=3;
4 degrees of freedom; t-value=0.02647, p=0.9801 (non-significance)

Bioinformatics. The following bioinformatics analyses were performed in this study. Short
scripts and pipelines were written in Perl (version 5.18.2) and executed on macQOS Sierra
10.12.5.

S-lactamase enzymes. All available protein sequences of B-lactamases were downloaded from
http://www.bldb.eu (75) (5 August 2021). Sequences were clustered using the ucluster
software with a 90% identity threshold and the cluster_fast option (USEARCH v.7.0 (76));
the centroid of each cluster was used as a cluster identifier for every sequence. All sequences
were searched for the presence of cysteine residues using a Perl script. Proteins with two or
more cysteines after the first 30 amino acids of their primary sequence were considered
potential substrates of the DSB system for organisms where oxidative protein folding is
carried out by DsbA and provided that translocation of the -lactamase outside the cytoplasm
is performed by the Sec system. The first 30 amino acids of each sequence were excluded to
avoid considering cysteines that are part of the signal sequence mediating the translocation of
these enzymes outside the cytoplasm. The results of the analysis can be found in
Supplementary Table 1.

MCR enzymes. E. coli MCR-1 (AKF16168.1) was used as a query in a blastp 2.2.28+ (77)
search limited to Proteobacteria on the NCBI Reference Sequence (RefSeq) proteome
database (21 April 2019) (evalue < 10e-5). 17,503 hit sequences were retrieved and clustered
using the ucluster software with a 70% identity threshold and the cluster_fast option
(USEARCH v.7.0 (76)). All centroid sequences were retrieved and clustered again with a
20% identity threshold and the cluster_fast option. Centroid sequences of all clusters
comprising more than five sequences (809 sequences retrieved) along with the sequences of
the five MCR enzymes tested in this study were aligned using MUSCLE (78). Sequences
which were obviously divergent or truncated were manually eliminated and a phylogenetic
tree was built from a final alignment comprising 781 sequences using FastTree 2.1.7 with the
wag substitution matrix and default parameters (79). The assignment of each protein
sequence to a specific group was done using hmmsearch (HMMER v.3.1b2) (80) with
Hidden Markov Models built from confirmed sequences of MCR-like and EptA-like proteins.

Data availability. All data generated during this study that support the findings are included

in the manuscript or in the Supplementary Information. All materials are available from the
corresponding author upon request.
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TABLES

Table 1. Overview of the B-lactamase enzymes investigated in this study. Enzymes GES-1, -2
and -11 as well as KPC-2 and -3 belong to the same phylogenetic cluster (GES-42 and KPC-
44, respectively, see Supplementary Table 1). All other tested enzymes belong to distinct
phylogenetic clusters (Supplementary Table 1). The “Cysteine positions” column states the
positions of cysteine residues after position 30 and hence, does not include amino acids that
would be part of the periplasmic signal sequence. All B-lactamase enzymes except L2-1
(shaded in grey; PDB ID: 107E) have one disulfide bond. The “Mobile” column refers to the
genetic location of the f-lactamase gene; “yes” indicates that the gene of interest is located on
a plasmid, while “no” refers to chromosomally-encoded enzymes. All tested enzymes have a
broad hydrolytic spectrum and are either Extended Spectrum p-Lactamases (ESBLs) or
carbapenemases. The “Inhibition” column refers to classical inhibitor susceptibility i.e.,
susceptibility to inhibition by clavulanic acid, tazobactam or sulbactam.

Ambler Cysteine

Enzyme ’ - ‘ Mobile ‘ Spectrum Inhibition
class positions
L2-1 A C82 C136 C233 no ESBL yes
GES-1 A C63 C233 yes ESBL yes
GES-2 A C63 C233 yes ESBL yes
GES-11 A C63 C233 yes Carbapenemase | yes
SHV-27 A C73 C119 no ESBL yes
OXA-4 D C43 C63 yes ESBL yes
OXA-10 D C44 C51 yes ESBL no (81)
OXA-198 D C116 C119 yes Carbapenemase | no (82)
FRI-1 A C68 C238 yes Carbapenemase | no (83)
L1-1 B3 C239 C267 no Carbapenemase | no (84)
KPC-2 A C68 C237 yes Carbapenemase | no (85)
KPC-3 A C68 C237 yes Carbapenemase | no (85)
SME-1 A C72 C242 no Carbapenemase | yes
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Figure 1. Several antimicrobial resistance mechanisms depend on disulfide bond
formation. (A) DsbA introduces disulfide bonds into extracytoplasmic proteins containing
two or more cysteine residues. After each round of oxidative protein folding, DsbA is
regenerated by the quinone (Q)-containing protein DsbB, which in turn transfers the reducing
equivalents to the respiratory chain (RC) (63). DsbA substrates (in dark blue) are distributed
throughout the extracytoplasmic space of Gram-negative bacteria. Disulfides are introduced
to 1) soluble periplasmic proteins (e.g. alkaline phosphatase, p-lactamases (18)), 2)
periplasmic domains of inner-membrane proteins (e.g LptA-like enzymes (28)), 3)
periplasmic domains of outer-membrane proteins (e.g. RcsF (19)), 4) outer-membrane
proteins (e.g. OmpA, LptD (19, 25)), 5) secreted proteins (e.g. toxins or enzymes (25)), 6-9)
protein components of macromolecular assemblies like secretion systems, pili or flagella (25)
(e.g. 6) GspD, 7) EscC, 8) BfpA, 9) Flgl); all examples are E. coli proteins with the exception
of LptA. (B) B-lactam MIC values for E. coli MC1000 expressing diverse disulfide-bond-
containing [3-lactamases (Ambler classes A, B and D) are substantially reduced in the absence
of DsbA (MIC fold changes: >2, fold change of 2 is indicated by the black dotted lines); no
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effect is observed for SHV-27, which is further discussed in Figure 1 - figure supplement 3.
DsbA dependence is conserved within phylogenetic groups (see Figure 1 - figure supplement
2). No changes in MIC values are observed for the aminoglycoside antibiotic gentamicin
(white bars) confirming that absence of DsbA does not compromise the general ability of this
strain to resist antibiotic stress. No changes in MIC values are observed for strains harboring
the empty vector control (pDM1) or those expressing the class A B-lactamase L2-1, which
contains three cysteines but no disulfide bond (top row). Graphs show MIC fold changes for
B-lactamase-expressing E. coli MC1000 and its dsbA mutant from three biological
experiments each conducted as a single technical repeat; the MIC values used to generate this
panel are presented in Supplementary Table 2. (C) Colistin MIC values for E. coli MC1000
expressing diverse MCR enzymes (Figure 1 - figure supplement 1) are reduced in the absence
of DsbA. Graphs show MIC values (png/mL) from four biological experiments, each
conducted in technical quadruplicate, to demonstrate the robustness of the observed effects.
Gentamicin control data are presented in Figure 1 - figure supplement 6. (D) Deletion of
dsbA reduces the erythromycin, chloramphenicol and nalidixic acid MIC values for E. coli
MG1655, but no effects are detected for the non-substrate antibiotic gentamicin. The
essential pump component AcrA serves as a positive control. Graphs show MIC values
(ng/mL) from three biological experiments, each conducted as a single technical repeat. (E)
Deletion of dsbA sensitizes the efflux-active E. coli MG1655 strain to chloramphenicol; the
data presented in the blue and light blue bars were also used to generate part of panel (D).
Sensitization is also observed for the dsbA mutant of the deregulated E. coli MG1655 marR
strain (chloramphenicol MIC of 6 pg/mL). The graph shows MIC values (pg/ml) from 2
biological experiments, each conducted as a single technical repeat.
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926  Figure 1 - figure supplement 1. Phylogenetic analysis of MCR- and EptA-like enzymes
927 found in Proteobacteria. A phylogenetic tree was built based on the alignment of 781
928  sequences from Proteobacteria. The assignment of each sequence to a specific group was
929  done using Hidden Markov Models built from confirmed sequences of MCR- and EptA-like
930 proteins; EptA-like enzymes are chromosomally encoded phosphoethanolamine transferases
931 that belong to the same extended protein superfamily as MCR enzymes (86). The different
932  MCR groups are broadly indicated in different colors, however it should be noted that there is
933  significant overlap between groups. Open circles mark the enzymes tested in this study which
934  are distributed throughout the MCR phylogeny.
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Figure 1 - figure supplement 2. DsbA dependence is conserved within phylogenetic
groups of disulfide-bond-containing B-lactamases. p-lactam MIC values for E. coli
MC1000 expressing disulfide-bond-containing p-lactamases belonging to the same
phylogenetic family (Supplementary Table 1) are substantially reduced in the absence of
DsbA for all tested members of each family (MIC fold changes: >2, fold change of 2 is
indicated by the black dotted lines). No changes in MIC values are observed for the
aminoglycoside antibiotic gentamicin (white bars) confirming that absence of DsbA does not
compromise the general ability of this strain to resist antibiotic stress. (A) GES p-lactamase
enzymes GES-1, -2, and -11; the data for GES-1 presented here are also shown as part of
Figure 1B. (B) KPC B-lactamase enzymes KPC-3 and -2; the data for KPC-3 presented here
are also shown as part of Figure 1B. Graphs show MIC fold changes for B-lactamase-
expressing E. coli MC1000 and its dsbA mutant from three biological experiments each
conducted as a single technical repeat; the MIC values used to generate this figure are
presented in Supplementary Table 2.
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Figure 1 - figure supplement 3. SHV-27 function is dependent on DsbA at temperatures
higher than 37 °C. The ESBL SHV-27 differs from the canonical SHV-1 enzyme by a single
amino acid substitution (D156G) (87). At 37 °C deletion of dsbA does not affect the
cefuroxime MIC for E. coli MC1000 harboring pDM1-blashv-27. However, at 43 °C the
cefuroxime MIC for E. coli MC1000 dsbA harboring pDM1-blasnyv-27 is notably reduced. The
graph shows MIC values (ug/mL) and is representative of three biological experiments, each
conducted as a single technical repeat.
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Figure 1 - figure supplement 4. Complementation of dsbA restores the B-lactam MIC
values for E. coli MC1000 dsbA expressing p-lactamases. Re-insertion of dsbA at the
attTn7 site of the chromosome restores the B-lactam MIC values for E. coli MC1000 dsbA
harboring (A) pDM1-blages-1 (ceftazidime MIC), (B) pDM1-blaoxa-s (cefuroxime MIC), (C)
pDM1-blaoxa-10 (aztreonam MIC), (D) pDM1-blaoxa-198 (imipenem MIC), (E) pDM1-blaLi-1
(ceftazidime MIC), (F) pDM1-blarri-1 (aztreonam MIC) and (G) pDM1-blakpc-3 (ceftazidime
MIC). Graphs show MIC values (ug/mL) from two biological experiments, each conducted
as a single technical repeat.
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Figure 1 - figure supplement 5. Complementation of dsbA restores the colistin MIC
values for E. coli MC1000 dsbA expressing MCR enzymes. Re-insertion of dsbA at the
attTn7 site of the chromosome restores the colistin MIC values for E. coli MC1000 dsbA
harboring (A) pDM1-mcr-1 (B) pDM1-mcr-3 (C) pDM1-mcr-4 (D) pDM1-mcr-5 (E) pDM1-
mcr-8. Graphs show MIC values (ug/mL) from four biological experiments, each conducted
in technical quadruplicate, to demonstrate the robustness of the observed effects.
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983  Figure 1 - figure supplement 6. Gentamicin MIC values for E. coli MC1000 strains
984  expressing MCR enzymes. Deletion of dsbA does not affect the gentamicin MIC values for
985 E. coli MC1000 strains expressing MCR enzymes, confirming that absence of DsbA does not
986 compromise the general ability of this strain to resist antibiotic stress. Graphs show MIC
987  values (ug/mL) from two biological experiments, each conducted as a single technical repeat.
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Figure 1 - figure supplement 7. Deletion of dsbA has no effect on membrane
permeability in E. coli MC1000. (A) Outer membrane integrity assays. (left) The bacterial
outer membrane acts as a selective permeability barrier to hydrophobic molecules. Deletion
of dsbA has no effect on the outer membrane integrity of E. coli MC1000, as the hydrophobic
fluorescent dye NPN crosses the outer membrane of E. coli MC1000 and its dsbA mutant to
the same extent. Conversely, exposure to the outer-membrane-permeabilizing antibiotic
colistin results in a significant increase in NPN uptake. (right) Outer membrane porins of
Gram-negative bacteria are too small to allow the passage of large glycopeptides, such as
vancomycin, and therefore increase in vancomycin susceptibility in E. coli indicates outer
membrane defects. Deletion of dsbA has no effect on the outer membrane integrity of E. coli
MC1000, as vancomycin MIC values for both strains do not present major differences. (B)
Cell envelope integrity assays. (left) PI is a cationic hydrophilic dye that fluoresces upon
intercalation with nucleic acids. Under normal conditions Pl freely crosses the outer
membrane but is unable to cross the inner membrane. Deletion of dsbA does not result in
damage to the bacterial inner membrane, as no difference in basal Pl uptake is seen between
E. coli MC1000 and its dsbA mutant. Both strains harbor pUltraGFP-GM (71) for superfolder
GFP (sfGFP) expression, and fluorescence was used to distinguish live from dead cells.
Addition of the inner-membrane-permeabilizing antimicrobial peptide cecropin A (88) to E.
coli MC1000 induces robust inner-membrane permeabilization in the sfGFP-positive
population indicating that the inner membrane becomes compromised. (right) CPRG is
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1011  excluded from the cytoplasm by the cell envelope, and therefore its hydrolysis by the
1012  cytosolic [B-galactosidase is prevented. If both the inner and outer membranes are
1013  compromised, release of B-galactosidase results in CPRG breakdown and the appearance of
1014  red color. The red coloration of E. coli MC1000 dsbA colonies was comparable to those of
1015  the parent strain, showing that the cell envelope is not compromised in the mutant strain. E.
1016  coli MC1000 does not express the cytosolic B-galactosidase LacZ (89), so for this assay the
1017  MC1000 strains harbor pCB112 (72), which expresses LacZ exogenously. For NPN and Pl
1018  assays, n=3 (each conducted in technical triplicate), graph shows means +SD, significance is
1019 indicated by *** = p < 0.001, ns = non-significant. For vancomycin and CPRG hydrolysis
1020  assays, n=3 (each conducted as a single technical triplicate). For CPRG hydrolysis assays,
1021  graph shows means + SD, ns = non-significant.

31


https://doi.org/10.1101/2021.08.27.457985
http://creativecommons.org/licenses/by-nc-nd/4.0/

1022
1023

1024
1025
1026
1027
1028
1029

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.27.457985; this version posted August 28, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

—_— j —
) E )
E Ed E
128 =16 38
~ 64 o -
o 32 = 8 O
= 5 =4
c 16 S 4 T
c 8 c o
> 1] w2
g 4 < 2 o
e 2 £ X
g ! 0 I g1 0 T =1 n T
b 8§53 5 2353 2 8833
B °T%T o B ©TT o 88T
nw K~ ww M~ 0w~
Z v c = bw e = VW c
°2E 22 % °e2k
=0 ® =0 ® =0
= = s

Figure 1 - figure supplement 8. Complementation of dsbA restores efflux-pump
substrate MIC values for E. coli MG1655 dsbA. Re-insertion of dsbA at the attTn7 site of
the chromosome restores (A) erythromycin, (B) chloramphenicol and (C) nalidixic acid MIC
values for MG1655 dsbA. Graphs show MIC values (ug/mL) from two biological
experiments, each conducted as a single technical repeat.
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Figure 1 - figure supplement 9. Deletion of dsbA has no effect on membrane
permeability in E. coli MG1655. (A) Outer membrane integrity assays. (left) The bacterial
outer membrane acts as a selective permeability barrier to hydrophobic molecules. Deletion
of dsbA has no effect on the outer membrane integrity of E. coli MG1655, as the hydrophobic
fluorescent dye NPN crosses the outer membrane of E. coli MG1655 and its dsbA mutant to
the same extent. Conversely, exposure to the outer-membrane-permeabilizing antibiotic
colistin results in a significant increase in NPN uptake. (right) Outer membrane porins of
Gram-negative bacteria are too small to allow the passage of large glycopeptides, such as
vancomycin, and therefore increased vancomycin susceptibility in E. coli indicates outer
membrane defects. Deletion of dsbA has no effect on the outer membrane integrity of E. coli
MG1655, as vancomycin MIC values for both strains do not present major differences. (B)
Cell envelope integrity assays. (left) Pl is a cationic hydrophilic dye that fluoresces upon
intercalation with nucleic acids. Under normal conditions Pl freely crosses the outer
membrane but is unable to cross the inner membrane. Deletion of dsbA does not result in
damage to the bacterial inner membrane, as no difference in basal Pl uptake is seen between
E. coli MG1655 and its dsbA mutant. Both strains harbor pUltraGFP-GM (71) for superfolder
GFP (sfGFP) expression, and fluorescence was used to distinguish live from dead cells.
Addition of the inner-membrane-permeabilizing antimicrobial peptide cecropin A (88) to E.
coli MG1655 induces robust inner-membrane permeabilization in the sfGFP-positive
population indicating that the inner membrane becomes compromised. (right) CPRG is
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1053  excluded from the cytoplasm by the cell envelope, and therefore its hydrolysis by the
1054  cytosolic P-galactosidase is prevented. If both the inner and outer membranes are
1055  compromised, release of B-galactosidase results in CPRG breakdown and the appearance of
1056  red color. The red coloration of E. coli MG1655 dsbA colonies was comparable to those of
1057  the parent strain, showing that the cell envelope is not compromised in the mutant strain. For
1058 NPN and PI assays, n=3 (each conducted in technical triplicate), graph shows means +SD,
1059  significance is indicated by *** = p < 0.001, ns = non-significant. For vancomycin and
1060 CPRG hydrolysis assays, n=3 (each conducted as a single technical repeat). For CPRG
1061  hydrolysis assays, graph shows means = SD, ns = non-significant.

34


https://doi.org/10.1101/2021.08.27.457985
http://creativecommons.org/licenses/by-nc-nd/4.0/

1062
1063

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.27.457985; this version posted August 28, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

M 1 2 3

- 5 -

38 1
anti-AcrA

281
98

— = | anti-DnaK
62

1. 8
2. g marR
3. = acrA

Figure 1 - figure supplement 10. Deletion of marR results in increased expression of the
AcrAB pump (lane 2) compared to the parental strain (lane 1) even though the
chloramphenicol MIC for both strains is the same (Figure 1E). E. coli MG1655 has an
already high level of efflux activity and therefore deletion of marR does not result in a drastic
change in the observed chloramphenicol MIC value. Expression of the AcrAB pump was
assessed using an anti-AcrA primary antibody and an HRP-conjugated secondary antibody.
E. coli MG1655 acrA was used as a negative control for AcrA detection (lane 3); the red
arrow indicates the position of the AcrA band. A representative blot from two biological
experiments, each conducted as a single technical repeat, is shown; molecular weight markers
(M) are shown on the left and DnaK was used as a loading control.
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Figure 2. B-lactamase enzymes from most classes become unstable in the absence of
DsbA. (A) Protein levels of disulfide-bond-containing Ambler class A and B B-lactamases
are drastically reduced when these enzymes are expressed in E. coli MC1000 dsbA; the
amount of the control enzyme L2-1 is unaffected. (B) Protein levels of Class D disulfide-
bond-containing B-lactamases are unaffected by the absence of DsbA. OXA-4 is detected as
two bands at ~ 28 kDa. For panels (A) and (B) protein levels of Strepll-tagged p-lactamases
were assessed using a Strep-Tactin-AP conjugate or a Strep-Tactin-HRP conjugate. A
representative blot from three biological experiments, each conducted as a single technical
repeat, is shown; molecular weight markers (M) are on the left, DnaK was used as a loading
control and solid black lines indicate where the membrane was cut. (C) The hydrolytic
activities of the tested Class D B-lactamases and of the Class A enzyme GES-1, which could
not be detected by immunoblotting, are significantly reduced in the absence of DsbA. The
hydrolytic activities of strains harboring the empty vector or expressing the control enzyme
L2-1 show no dependence on DsbA. n=3 (each conducted in technical duplicate), table shows
means +SD, significance is indicated by * = p < 0.05, ns = non-significant.
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1096  Figure 3. MCR enzymes become unstable in the absence of DsbA. (A) The amounts of
1097 MCR proteins are drastically reduced when they are expressed in E. coli MC1000 dsbA; the
1098 red arrow indicates the position of the MCR-specific bands. Protein levels of Strepll-tagged
1099 MCR enzymes were assessed using a Strep-Tactin-AP conjugate. A representative blot from
1100 three biological experiments, each conducted as a single technical repeat, is shown;
1101  molecular weight markers (M) are on the left, DnaK was used as a loading control and solid
1102  black lines indicate where the membrane was cut. (B) The ability of MCR enzymes to
1103  transfer phoshoethanolamine to the lipid A portion of LPS is either entirely abrogated or
1104  significantly reduced in the absence of DsbA. This panel shows representative MALDI-TOF
1105  mass spectra of unmodified and MCR-modified lipid A in the presence and absence of DsbA.
1106  In E. coli MC1000 and MC1000 dsbA the major peak for native lipid A peak is detected at
1107 m/z 1796.2 (first and second spectrum, respectively). In the presence of MCR enzymes (E.
1108  coli MC1000 expressing MCR-3 is shown as a representative example), two additional peaks
1109  are observed, at m/z 1821.2 and 1919.2 (third spectrum). For dsbA mutants expressing MCR
1110  enzymes (E. coli MC1000 dsbA expressing MCR-3 is shown), these additional peaks are not
1111  present, whilst the native lipid A peak at m/z 1796.2 remains unchanged (fourth spectrum).
1112  Mass spectra are representative of the data generated from four biological experiments, each
1113  conducted as a technical duplicate. (C) Quantification of the intensities of the lipid A peaks
1114  recorded by MALDI-TOF mass spectrometry for all tested MCR-expressing strains. n=4
1115 (each conducted in technical duplicate), table shows means +SD, significance is indicated by
1116  ***=p<0.001 or **** = p < 0.0001.
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Figure 4. (A, B, C) RND efflux pump function is impaired in the absence of DsbA due to
accumulation of unfolded AcrA resulting from insufficient DegP activity. (A) In the
absence of DsbA the pool of active DegP is reduced. In E. coli MG1655 (lane 1), DegP is
detected as a single band, corresponding to the intact active enzyme. In E. coli MG1655 dsbA
(lane 2), an additional lower molecular weight band of equal intensity is present, indicating
that DegP is degraded in the absence of its disulfide bond (20, 45). DegP protein levels were
assessed using an anti-DegP primary antibody and an HRP-conjugated secondary antibody.
E. coli MG1655 degP was used as a negative control for DegP detection (lane 3); the red
arrow indicates the position of intact DegP. (B) The RND pump component AcrA
accumulates to the same extent in the E. coli MG1655 dsbA and degP strains, indicating that
in both strains protein clearance is affected. AcrA protein levels were assessed using an anti-
AcrA primary antibody and an HRP-conjugated secondary antibody. E. coli MG1655 acrA
was used as a negative control for AcrA detection; the red arrow indicates the position of the
AcrA band. (C) TolC, the outer-membrane channel of the AcrAB pump, does not accumulate
in a dsbA or a degP mutant. TolC is not a DegP substrate (47), hence similar TolC protein
levels are detected in E. coli MG1655 (lane 1) and its dsbA (lane 2) and degP (lane 3)
mutants. TolC protein levels were assessed using an anti-TolC primary antibody and an HRP-
conjugated secondary antibody. E. coli MG1655 tolC was used as a negative control for TolC
detection (lane 4); the red arrow indicates the position of the bands originating from TolC.
For all panels a representative blot from three biological experiments, each conducted as a
single technical repeat, is shown; molecular weight markers (M) are on the left, DnaK was

38


https://doi.org/10.1101/2021.08.27.457985
http://creativecommons.org/licenses/by-nc-nd/4.0/

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.27.457985; this version posted August 28, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

used as a loading control and solid black lines indicate where the membrane was cut. (D)
Impairing disulfide bond formation in the cell envelope simultaneously affects three
distinct classes of AMR determinants. (Left) When DsbA is present, i.e., when disulfide
bond formation occurs, degradation of B-lactam antibiotics by B-lactamases (marked “bla”),
modification of lipid A by MCR proteins and active efflux of RND pump substrates lead to
resistance. The major E. coli RND efflux pump AcrAB-TolC is depicted in this schematic as
a characteristic example. (Right) In the absence of DsbA, i.e., when the process of disulfide
bond formation is impaired, most cysteine-containing -lactamases as well as MCR proteins
are unstable and degrade, making bacteria susceptible to B-lactams and colistin, respectively.
Absence of DsbA also affects proteostasis in the cell envelope which results in reduced
clearance of nonfunctional AcrA-like proteins (termed “AcrA™ and depicted in dark red
color) by periplasmic proteases. Insufficient clearance of these damaged AcrA components
from the pump complex makes efflux less effective.
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1157  Figure 5. Chemical inhibition of the DSB system impedes DsbA function in E. coli
1158 MC1000 and phenocopies the p-lactam and colistin MIC changes that were observed
1159  using a dsbA mutant. (A) Chemical inhibition of the DSB system impedes flagellar motility
1160 in E. coli MC1000. A functional DSB system is necessary for flagellar motility in E. coli
1161  because folding of the P-ring component FIgl requires DsbA-mediated disulfide bond
1162  formation (52). In the absence of DsbA, or upon addition of a chemical inhibitor of the DSB
1163  system, the motility of E. coli MC1000 is significantly impeded. Representative images of
1164  motility plates are shown. (B) Quantification of the growth halo diameters in the motility
1165  assays shown in panel (A). n=3 (each conducted as a single technical repeat), graph shows
1166  means £SD, significance is indicated by **** = p < 0.0001. (C) Chemical inhibition of the
1167  DSB system impedes DsbA re-oxidation in E. coli MC1000. Addition of the reducing agent
1168 DTT to E. coli MC1000 bacterial lysates allows the detection of DsbA in its reduced form
1169  (DsbAred) during immunoblotting; this redox state of the protein, when labelled with the
1170  cysteine-reactive compound AMS, shows a 1 kDa size difference (lane 2) compared to
1171  oxidized DsbA as found in AMS-labelled but not reduced lysates of E. coli MC1000 (lane 3).
1172  Addition of a small-molecule inhibitor of DsbB to growing E. coli MC1000 cells also results
1173  in accumulation of reduced DsbA (lane 4). E. coli MC1000 dsbA was used as a negative
1174  control for DsbA detection (lane 1). A representative blot from two biological experiments,
1175  each conducted as a single technical repeat, is shown; DsbA was visualized using an anti-
1176  DsbA primary antibody and an AP-conjugated secondary antibody. Molecular weight
1177  markers (M) are shown on the left. (D) MIC experiments using representative [-lactam
1178  antibiotics show that chemical inhibition of the DSB system reduces the MIC values for E.
1179  coli MC1000 expressing disulfide-bond-containing B-lactamases in a similar manner to the
1180  deletion of dsbA (compare with Figure 1B). Graphs show MIC fold changes (i.e., MC1000
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MIC (ug/mL) / MC1000 + DSB system inhibitor MIC (ug/mL)) for B-lactamase-expressing
E. coli MC1000 with and without addition of a DSB system inhibitor to the culture medium
from two biological experiments, each conducted as a single technical repeat. Black dotted
lines indicate an MIC fold change of 2. The aminoglycoside antibiotic gentamicin serves as a
control for all strains; gentamicin MIC values (white bars) are unaffected by chemical
inhibition of the DSB system (MIC fold changes: < 2). No changes in MIC values (MIC fold
changes: < 2) are observed for strains harboring the empty vector control (pDM1) or
expressing the class A B-lactamase L2-1, which contains three cysteines but no disulfide
bond (PDB ID: 107E) (top row). The MIC values used to generate this panel are presented in
Supplementary Table 2. (E) Colistin MIC experiments show that chemical inhibition of the
DSB system reduces the MIC values for E. coli MC1000 expressing MCR enzymes in a
similar manner to the deletion of dsbA (compare with Figure 1C). Colistin MIC values for
strains harboring the empty vector control (pDM1) are unaffected by chemical inhibition of
the DSB system. Graphs show MIC values (ug/mL) from four biological experiments, each
conducted in technical quadruplicate, to demonstrate the robustness of the observed effects.
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Figure 5 - figure supplement 1. Gentamicin MIC values for E. coli MC1000 strains
expressing MCR enzymes. Chemical inhibition of the DSB system does not affect the
gentamicin MIC values for E. coli MC1000 strains expressing MCR enzymes, confirming
that inactivation of DsbA does not compromise the general ability of this strain to resist
antibiotic stress. Graphs show MIC values (pg/mL) from two biological experiments, each
conducted as a single technical repeat.

42


https://doi.org/10.1101/2021.08.27.457985
http://creativecommons.org/licenses/by-nc-nd/4.0/

1205
1206

1207
1208
1209
1210
1211
1212
1213

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.27.457985; this version posted August 28, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A
0.8-
0.64
(=]
3
O 0.4 — MC1000
o MC1000 + DSB
0.24 system inhibition
0.0 1 1 ] 1 1 1 1 1 1 1
DA P PR P I I PR PR
NP F o @ SV PP
Time (min.)
B
1.24
1.0
§ 0.8-
8 0.6 — MC1000
0.4- MC1000 dsbA
0.24
0-0 ] 1 ) 1 ) 1 ) ] ] 1
V0 NP POV Q O
KVl o0 W0 AV X L, P 0d

Time (min.)

Figure 5 - figure supplement 2. Chemical inhibition of the DSB system or deletion of
dsbA does not compromise the growth of E. coli MC1000. Growth curves of (A) E. coli
MC1000 with and without chemical inhibition of the DSB system and (B) E. coli MC1000
and its dsbA mutant show that bacterial growth remains unaffected by the DSB system
inhibitor compound used in this study, or by the absence of DsbA. n=3 (each conducted as a
technical triplicate), solid lines indicate mean values, shaded areas indicate SD.
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1217  Figure 5 - figure supplement 3. Changes in MIC values observed using the DSB system
1218 inhibitor are due solely to inhibition of the DSB system. (A) E. coli MC1000 harboring
1219 pDM1-blakpec-3 has an imipenem MIC value of 24 pug/mL. Upon chemical inhibition of the
1220 DSB system the imipenem MIC for this strain drops to 4 pg/mL, and accordingly the
1221  imipenem MIC for E. coli MC1000 dsbA harboring pDM1-blakpcs is 2 pug/mL. The
1222  imipenem MIC for E. coli MC1000 dsbA harboring pDM1-blakec-s when exposed to the
1223  chemical inhibitor of the DSB system is also 2 upg/mL, indicating that the chemical
1224  compound used in this study does not have any off-target effects and only affects the function
1225  of the DSB system proteins. (B) Chemical inhibition of the DSB system does not lead to any
1226  cumulative effects when tested on an E. coli MC1000 strain expressing MCR-5. The colistin
1227  MIC for E. coli MC1000 harboring pDM1-mcr-5 is 3 pg/mL and it drops to 1 ug/mL when
1228  the DSB system is chemically inhibited or dsbA is deleted. The same drop in colistin MIC is
1229  observed when the E. coli MC1000 dsbA strain harboring pDM1-mcr-5 is exposed to the
1230  chemical inhibitor of the DSB system. Data shown in both panels are from two biological
1231  experiments, each conducted as a single technical repeat.
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Figure 6. Chemical inhibition of the DSB system sensitizes multidrug-resistant clinical
isolates to currently available antibiotics. (A) Addition of a small-molecule inhibitor of
DsbB results in sensitization of a Klebsiella pneumoniae clinical isolate to imipenem. (B)
Chemical inhibition of the DSB system in the presence of imipenem (final concentration of 6
ug/mL) results in drastic changes in cell morphology for the K. pneumoniae clinical isolate
used in panel (A), while bacteria remain unaffected by single treatments (DSB inhibitor or
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imipenem). Images show representative scanning electron micrographs of untreated cells (top
row, left), cells treated with the DSB inhibitor (top row, middle), cells treated with imipenem
(top row, right), and cells treated with both the DSB inhibitor and imipenem (bottom row).
Scale bars are at 400 nm. (C) Addition of a small-molecule inhibitor of DsbB results in
sensitization of E. coli and Citrobacter freundii clinical isolates to imipenem. (D) Chemical
inhibition of the DSB system of an Enterobacter cloacae clinical isolate harboring blarri-1
results in reduction of the aztreonam MIC value by over 180 pg/mL, resulting in intermediate
resistance as defined by EUCAST. For panels (A), (C) and (D) graphs show MIC values
(ug/ml) from two biological experiments, each conducted as a single technical repeat. (E)
Application of the same chemical inhibitor to a colistin-resistant clinical E. coli isolate
expressing MCR-1 results in sensitization to colistin. (F) Chemical inhibition of the DSB
system in the presence of colistin (final concentration of 2 ug/mL) results in drastic changes
in cell morphology for the E. coli clinical isolate used in panel (E), while bacteria remain
unaffected by single treatments (DSB inhibitor or colistin). Images show representative
scanning electron micrographs of untreated cells (top row, left), cells treated with the DSB
inhibitor (top row, middle), cells treated with colistin (top row, right), and cells treated with
both the DSB inhibitor and colistin (bottom row). Scale bars are at 400 nm. (G) Chemical
inhibition of the DSB system results in sensitization of four additional colistin-resistant E.
coli strains expressing MCR enzymes. For panels (E) and (G) graphs show MIC values
(ng/mL) from four biological experiments, each conducted in technical quadruplicate, to
demonstrate the robustness of the observed effects. (H) Use of the DSB system inhibitor on
the same clinical E. coli isolate tested in panel (E), results in intermediate resistance for
ceftazidime as defined by EUCAST. The graph shows MIC values (ug/ml) from 2 biological
experiments, each conducted as a single technical repeat. For panels (A), (C), (D), (E) and
(G), MIC values determined using Mueller-Hinton agar (MHA) in accordance with the
EUCAST guidelines (dark blue bars) are comparable to the values obtained using defined
media (M63 agar, white bars); use of growth media lacking small-molecule oxidants is
required for the DSB system inhibitor to be effective. For all panels, red dotted lines indicate
the EUCAST clinical breakpoint for each antibiotic, and purple dotted lines indicate the
EUCAST threshold for intermediate resistance.
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pDM1-mcr-3.2

Colistin MIC (ng/mL)

MC1000
MC1000 dsbA

Figure 6 - figure supplement 1. Deletion of dsbA results in reduced MIC values for E.
coli MC1000 expressing MCR-3.2. When cloned into pDM1 and expressed in E. coli
MC1000, MCR-3.2 confers colistin resistance as expected (MIC of 3.0-3.5 pg/ml). Deletion
of dsbA reduces the colistin MIC values for E. coli MC1000 expressing MCR-3.2 (MIC <2
ug/mL). Graphs show MIC values (pg/mL) from four biological experiments, each conducted
in technical quadruplicate, to demonstrate the robustness of the observed effects.
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1283  Figure 7. Absence of the principal DsbA analogue (DsbA1l) from P. aeruginosa clinical
1284  isolates expressing OXA enzymes sensitizes them to existing p-lactam antibiotics and
1285 dramatically increases the survival of infected G. mellonella larvae that undergo
1286  antibiotic treatment. (A) Absence of DsbALl sensitizes the P. aeruginosa PA43417 clinical
1287  isolate expressing OXA-198 to the first-line antibiotic piperacillin. (B) Absence of DsbA1l
1288  sensitizes the P. aeruginosa PAel91 clinical isolate expressing OXA-19 to aztreonam and
1289  results in reduction of the ceftazidime MIC value by over 220 pug/mL. For panels (A) and (B)
1290  the graphs show MIC values (pg/ml) from 2 biological experiments, each conducted as a
1291  single technical repeat; red dotted lines indicate the EUCAST clinical breakpoint for each
1292  antibiotic. (C) 100% of the G. mellonella larvae infected with P. aeruginosa PAe191 (blue
1293  curve) or infected with P. aeruginosa PAel191 and treated with 7.5 pg/mL ceftazidime (red
1294  curve) die 18 hours post infection, and only 20% of the larvae infected with P. aeruginosa
1295 PAel91 dsbAl (light blue curve) survive 50 hours post infection. Treatment of larvae
1296 infected with P. aeruginosa PAel191 dsbAl with 7.5 pg/mL ceftazidime (pink curve) results
1297  in 83% survival, 50 hours post infection. The graph shows Kaplan-Meier survival curves of
1298 infected G. mellonella larvae after different treatment applications; horizontal lines represent
1299  the percentage of larvae surviving after application of each treatment at the indicated time
1300  point (a total of 30 larvae were used for each curve).
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KEY RESOURCES TABLE

Reagent type (species) or

Source or

56

Designation Identifiers Additional information
resource reference

F~endAl ginV44 thi-1 recAl relAl
Genetic reagent DH5a (90) gyrA96 deoR nupG purB20 i
(Escherichia coli) @80dlacZAM15 A(lacZY A-

argF)U169 hsdR17(rk mk*) A~
Genetic reagent . araD A(ara, leu) AlacZ74 phoA20 i
(Escherichia coli) CClLI8Apir (92) galK thi-1 rspE rpoB argE recAl Apir
Genetic reagent HB101 (92) SUPE44 hsdS20 recAl3 ara-14 proA2 |
(Escherichia coli) lacY1 galK2 rpsL20 xyl-5 mtl-1
Genetic reagent araD139 A(ara, leu)7697 AlacX74 i
(Escherichia coli) MC1000 (89) galU galK strA
Genetic reagent B R i
(Escherichia coli) MC1000 dsbA (21) dsbA::aphA, Kan
Genetic reagent MC1000 dsbA . B . R i
(Escherichia coli) attTn7: Ptac-dsbA This study dsbA::aphA attTn7::dsbA, Kan
Genetic reagent I
(Escherichia coli) MG1655 (93) K-12 F A" ilvG™ rfb-50 rph-1 -
Genetic reagent . .. R )
(Escherichia coli) MG1655 dsbA This study dsbA::aphA, Kan
Genetic reagent MG1655 dsbA . B . R i
(Escherichia coli) attTn7: Ptac-dsbA This study dsbA::aphA attTn7::dsbA, Kan
Genetic reagent .
(Escherichia coli) MG1655 acrA This study acrA -
Genetic reagent .
(Escherichia coli) MG1655 tolC This study tolC -
Genetic reagent . .. R )
(Escherichia coli) MG1655 degP This study degP::strAB, Str
Genetic reagent | MG1655 marR This study marR::accC, Gent® -
(Escherichia coli)
Genetic reagent MG1655 dsbA marR This study dsbA::aphA marR::accC, Kan®, Gent® | -
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(Escherichia coli)

Strain, strain background
(Escherichia coli)

Strain, strain background
(Escherichia coli)

Strain, strain background
(Escherichia coli)

Strain, strain background
(Escherichia coli)

Strain, strain background
(Escherichia coli)

Strain, strain background
(Escherichia coli)

Strain, strain background
(Escherichia coli)

Strain, strain background
(Klebsiella pneumoniae)
Strain, strain background
(Citrobacter freundii)
Strain, strain background
(Enterobacter cloacae)
Strain, strain background
(Pseudomonas aeruginosa)
Genetic reagent (Pseudomonas
aeruginosa)

Strain, strain background
(Pseudomonas aeruginosa)
Genetic reagent (Pseudomonas
aeruginosa)

Recombinant DNA reagent

Recombinant DNA reagent

BM16
LIL-1
CNR1790
CNR20140385
WI2 (ST1288)
27841 (ST744)
1144230 (ST641)
ST234

BM19

DUB

PA43417
PA43417
PAe191

PAe191

pDM1 (plasmid)
pDM1-blaiz-1 (plasmid)

(94)
(94)
(43)
(43)
(95)
(96)
(97)
(98)
(94)
(83)
(82)
This study
(56)
This study

Lab stock
This study

blarem-1p blakpc-2
blartem-1 blaoxa-9 blakec-2
blatem-15 mer-1
blaoxa-2s mer-1
blaoxa-4s blakpc-2s mer-1
blacTx-m-s5 mcr-3.2
blacmy-2 mcr-5

blaskv-27 blakpc-2
blakpc-2

blarri-1

blaoxa-198

dsbAl blaoxa-19s
blaoxa-19

dsbA1l blaoxa-19

GenBank MN128719

57

Human clinical strain
Human clinical strain
Human clinical strain
Human clinical strain
Human clinical strain
Environmental strain from livestock
Human clinical strain
Human clinical strain
Human clinical strain
Human clinical strain
Human clinical strain
Human clinical strain
Human clinical strain

Human clinical strain

pDML1 vector, p15A ori, Ptac promoter,
MCS, TetR
blai2-1 cloned into pDM1, TetR
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Recombinant DNA reagent
Recombinant DNA reagent
Recombinant DNA reagent
Recombinant DNA reagent
Recombinant DNA reagent
Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent
Recombinant DNA reagent
Recombinant DNA reagent
Recombinant DNA reagent
Recombinant DNA reagent
Recombinant DNA reagent
Recombinant DNA reagent
Recombinant DNA reagent
Recombinant DNA reagent
Recombinant DNA reagent
Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

pDM1-blages-1 (plasmid)
pDM1-blaces-2 (plasmid)
pDM1-blages-11 (plasmid)
pDM1-blasnv-27 (plasmid)
pDM1-blaoxa-4 (plasmid)
pDM1-blaoxa-10 (plasmid)
pDM1-blaoxa-19s
(plasmid)

pDM1-blarri-1 (plasmid)
pDM1-blaii1 (plasmid)
pDM1-blakpc-2 (plasmid)
pDM1-blakpc-3 (plasmid)
pDM1-blasme-1 (plasmid)
pDM1-mcr-1 (plasmid)
pDM1-mcr-3 (plasmid)
pDM1-mcr-3.2 (plasmid)
pDM1-mcr-4 (plasmid)
pDM1-mcr-5 (plasmid)
pDM1-mcr-8 (plasmid)
pDM1-bla2.1-Strepll
(plasmid)

pDM1-blaces-1-Strepll
(plasmid)

pDM1-Strepll-blaoxa-4
(plasmid)

pDM1-blaoxa-10-Strepll
(plasmid)

pDM1-blaoxa-19s-Strepl|
(plasmid)

This study
This study
This study
This study
This study
This study

This study

This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study

This study

This study

This study

This study

This study
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blages-1 cloned into pDM1, TetR
blaces-2 cloned into pDM1, TetR
blages-11 cloned into pDM1, Tet?
blaswv-27 cloned into pDM1, TetR
blaoxa-4 cloned into pDM1, Tet®
blaoxa-10 cloned into pDM1, TetR

blaoxa-19s cloned into pDM1, Tet®

blarri-1 cloned into pDM1, TetR

blaL1-1 cloned into pDM1, TetR
blakpc-2 cloned into pDM1, Tet?
blakpc-3 cloned into pDM1, Tet?
blasme-1 cloned into pDM1, Tet?
mcr-1 cloned into pDM1, TetR

mcr-3 cloned into pDM1, TetR?
mcr-3.2 cloned into pDM1, Tet?
mcr-4 cloned into pDM1, TetR

mcr-5 cloned into pDM1, TetR

mcr-8 cloned into pDM1, TetR

bla.>-1 encoding L2-1 with a C-terminal
Strepl| tag cloned into pDM1, TetR
blaces-1 encoding GES-1 with a C-
terminal Strepll tag cloned into pDM1,
Tet®

blaoxa-4 encoding OXA-4 with an N-
terminal Strepll tag cloned into pDM1,
Tet®

blaoxa-10 encoding OXA-10 with a C-
terminal Strepll tag cloned into pDML,
Tet®

blaoxa-198 encoding OXA-198 with a C-
terminal Strepll tag cloned into pDM1,
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Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

pDM1-blarr-1-Strepll
(plasmid)
pDM1-blay1.1-Strepll
(plasmid)

pDM1-blakpc-s-Strepll
(plasmid)

pDM1-mcr-1-Strepll
(plasmid)

pDM1-mcr-3-Strepll
(plasmid)

pDM1-mcr-4-Strepl|
(plasmid)

pDM1-mcr-5-Strepll
(plasmid)

pDM1-mcr-8-Streplli
(plasmid)

pGRG25 (plasmid)

pGRG25-Ptac::dsbA
(plasmid)

pSLTS (plasmid)

This study

This study

This study

This study

This study

This study

This study

This study

(67)

This study

(66)

59

Tet?

blarri-1 encoding FRI-1 with a C-terminal
Strepll tag cloned into pDM1, Tet?
blaL1-1 encoding L1-1 with a C-terminal
Strepll tag cloned into pDM1, Tet?
blakec-3 encoding KPC-3 with a C-
terminal Strepll tag cloned into pDM1,
Tet®

blamcr-1 encoding MCR-1 with a C-
terminal Strepll tag cloned into pDM1,
Tet®

blamcr-3 encoding MCR-3 with a C-
terminal Strepll tag cloned into pDML1,
Tet®

blamcr-4 encoding MCR-4 with a C-
terminal Strepll tag cloned into pDM1,
Tet®

blamcr-s encoding MCR-5 with a C-
terminal Strepll tag cloned into pDML1,
Tet®

blamcr-s encoding MCR-8 with a C-
terminal Strepll tag cloned into pDM1,
Tet®

Encodes a Tn7 transposon and tnsABCD
under the control of ParaB,
thermosensitive pSC101 ori, AmpR
Ptac::dsbA fragment cloned within the
Tn7 of pGRG25; when inserted into the
chromosome and the plasmid cured, the
strain expresses DsbA upon IPTG
induction, AmpR

Thermosensitive pSC101ori, ParaB for A-
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Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent

Recombinant DNA reagent
Recombinant DNA reagent

Recombinant DNA reagent

Chemical compound, drug
Chemical compound, drug
Chemical compound, drug
Chemical compound, drug

Chemical compound, drug

Chemical compound, drug

Chemical compound, drug

pUltraGFP-GM (plasmid)

pKD4 (plasmid)

pCB112 (plasmid)

pKNG101 (plasmid)

pKNG101-dsbAl
(plasmid)

pRK®600 (plasmid)
pPMA-T mcr-3 (plasmid)

pMK-T mcr-8 (plasmid)

Ampicillin
Piperacillin
Cefuroxime
Ceftazidime

Imipenem

Aztreonam

Kanamycin

(71)

(99)

(72)

(69)

This study

(100)
This study

This study

Melford
Melford
Melford
Melford
Cambridge
Bioscience
Cambridge
Bioscience
Gibco

A40040-10.0
P55100-1.0
C56300-1.0
C59200-5.0

CAY16039-100 mg

CAY19784-100 mg
11815032

60

Red, PtetR for I-Scel, AmpR

Constitutive sfGFP expression from a
strong Biofab promoter, p15A ori,
(template for the accC cassette), Gent®
Conditional oriRy ori, (template for the
aphA cassette), AmpR

Inducible lacZ expression under the
control of the Pi,c promoter, pBR322 ori,
CamR

Gene replacement suicide vector, oriR6K,
oriTRK2, sacB, (template for the strAB
cassette), Str®

PCR fragment containing the regions
upstream and downstream P. aeruginosa
dsbAl cloned in pKNG101; when inserted
into the chromosome the strain is a
merodiploid for dsbA1 mutant, Str®
Helper plasmid, ColE1 ori, mobRK2,
traRK2, CamR

GeneArt® cloning vector containing mcr-
3, ColE1 ori, (template for mer-3), AmpR
GeneArt® cloning vector containing mcr-
8, ColE1 ori, (template for mer-8), Kan®
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Chemical compound, drug

Chemical compound, drug

Chemical compound, drug

Chemical compound, drug
Chemical compound, drug

Chemical compound, drug
Chemical compound, drug

Chemical compound, drug

Chemical compound, drug

Chemical compound, drug

Chemical compound, drug
Commercial assay, kit

Commercial assay, kit

Commercial assay, kit

Commercial assay, kit

Commercial assay, kit
Commercial assay, kit
Commercial assay, kit

Gentamicin

Streptomycin

Tetracycline

Colistin sulphate
Tazobactam

Isopropyl p-D-1-
thiogalactopyranoside
(IPTG)

KOD Hotstart DNA
Polymerase

Nitrocefin
1-N-phenylnaphthylamine
(NPN)

4-acetamido-4°-
maleimidyl-stilbene-2,2"-
disulfonic acid (AMS)
4,5-dichloro-2-(2-
chlorobenzyl)pyridazin-3-
one

BugBuster Mastermix
Novex ECL HRP
chemiluminescent
substrate reagent kit
SigmaFast BCIP/NBT
tablets

Immobilon Crescendo
chemiluminescent reagent
ETEST - Amoxicillin
ETEST - Cefuroxime
ETEST - Ceftazidime

VWR
ACROS
Organics
Duchefa
Biochemie
Sigma
Sigma

Melford

Sigma

Abcam
Acros
Organics

ThermoFisher
Scientific

Enamine

Sigma
ThermoFisher
Scientific
Sigma

Sigma

Biomerieux
Biomerieux
Biomerieux

A1492.0025
AC612240500

T0150.0025

C4461-1G
T2820-10MG

156000-25.0
71086-3

ab145625-25mg
147160250

A485

EN300-173996
71456-3

WP20005

B5655-25TAB

WBLURO0100

412242
412304
412292

61
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Commercial assay, kit
Commercial assay, kit
Commercial assay, kit
Commercial assay, kit
Commercial assay, kit
Commercial assay, kit
Commercial assay, kit
Commercial assay, kit
Commercial assay, kit

Antibody

Antibody
Antibody
Antibody
Antibody
Antibody

Antibody

Antibody

Antibody

Antibody

ETEST - Imipenem
ETEST - Aztreonam
ETEST - Gentamicin
ETEST - Erythromycin
ETEST - Chloramphenicol
ETEST - Nalidixic acid
ETEST - Ciprofloxacin
ETEST - Nitrofurantoin
ETEST - Trimethoprim
Strep-Tactin-HRP
conjugate (mouse
monoclonal)
Strep-Tactin-AP conjugate
(mouse monoclonal)
anti-DsbA

(rabbit polyclonal)
anti-AcrA

(rabbit polyclonal)
anti-TolC

(rabbit polyclonal)
anti-HtrA1 (DegP)
(rabbit polyclonal)
anti-DnaK 8E2/2
(mouse monoclonal)
anti-rabbit 1gG-AP
conjugate (goat
polyclonal)

anti-rabbit IgG-HRP
conjugate (goat
polyclonal)

anti-mouse 1gG-AP
conjugate (goat

Biomerieux
Biomerieux
Biomerieux
Biomerieux
Biomerieux
Biomerieux
Biomerieux
Biomerieux
Biomerieux

Iba
Lifesciences

Iba
Lifesciences

Beckwith lab
Koronakis lab
Koronakis lab

Abcam

Enzo Life
Sciences

Sigma

Sigma

Sigma

412373
412258
412367
412333
412308
516540
412310
530440
412482

NC9523094

NC0485490

ab231195

ADI-SPA-880-D

A3687-.25ML

A0545-1ML

A3688-.25ML

62

1:3,000 in 3 w/v % BSA/TBS-T

1:3,000 in 3 w/v % BSA/TBS-T

1:1,000 in 5 wiv % skimmed milk/TBS-T

1:10,000 in 5 w/v % skimmed milk/TBS-
T

1:5,000 in 5 w/v % skimmed milk/TBS-T
1:1,000 in 5 w/v % skimmed milk/TBS-T

1:10,000 in 5% wi/v skimmed milk/TBS-T

1:6,000 in 5% w/v skimmed milk/TBS-T

1:6,000 in 5% w/v skimmed milk/TBS-T

1:6,000 in 5% w/v skimmed milk/TBS-T
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polyclonal)
anti-mouse 1lgG-HRP

Antibody conjugate (goat Sigma A4416-.5ML 1:6,000 in 5% w/v skimmed milk/TBS-T
polyclonal)

Software, algorithm FlowJo Tree Star - version 10.0.6

Software, algorithm Adobe Photoshop CS4 Adobe - extended version 11.0

Software, algorithm Prism GraphPad - version 8.0.2

Software, algorithm blastp (77) - version 2.2.28+

Software, algorithm USEARCH (76) - version 7.0

Software, algorithm MUSCLE (78) - -

Software, algorithm FastTree (79) - version 2.1.7

Software, algorithm HMMER (80) - version 3.1b2
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