

1 **A highly active phosphate-insensitive phosphatase is widely distributed in nature**

2

3

4 Ian D.E.A. Lidbury^{1*}, David J. Scanlan², Andrew R. J. Murphy², Joseph A. Christie-Oleza³, Maria
5 M. Aguilo-Ferretjans³, Andrew Hitchcock⁴, Tim Daniell¹

6 ¹ Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK

7 ² School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK

8 ³ University of the Balearic Islands, Palma, Spain

9 ⁴ Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK

10

11 **Abstract (250 max)**

12 The regeneration of bioavailable phosphate from immobilised organophosphorus represents
13 a key process in the global phosphorus cycle and is facilitated by enzymes known as
14 phosphatases. Most bacteria possess at least one of three major phosphatases, known as
15 PhoA, PhoX and PhoD, whose activity is optimal under alkaline conditions. The production
16 and activity of these three phosphatase families is negatively regulated by phosphate
17 availability and thus these enzymes play a major role in scavenging phosphorus only during
18 times of phosphate scarcity. Here, we reveal a previously overlooked phosphate-insensitive
19 phosphatase, PafA, prevalent in *Bacteroidetes*, which is highly abundant in nature and
20 represents a major route for the remineralisation of phosphate in the environment. Using
21 *Flavobacterium johnsoniae* as the model, we reveal PafA is highly active towards
22 phosphomonoesters. Unlike other major phosphatases, PafA is fully functional in the
23 presence of its metabolic product, phosphate, and is essential for growth on phosphorylated
24 carbohydrates as a sole carbon source. PafA, which is constitutively produced under all
25 growth conditions tested, rapidly remineralises phosphomonoesters producing significant
26 quantities of bioavailable phosphate that can cross feed into neighbouring cells. *pafA* is both
27 abundant and highly expressed in the global ocean and abundant in plant rhizospheres,
28 highlighting a new and important enzyme in the global phosphorus cycle with applied
29 implications for agriculture as well as biogeochemical cycling. We speculate PafA expands the
30 metabolic niche of *Bacteroidetes* by enabling utilisation of abundant organophosphorus
31 substrates in the presence of excess phosphate, when other microbes are rendered
32 incapable.

33 **Significance statement (120 max)**

34 Phosphorus is an essential element for all life on Earth. Global primary production, and thus
35 the ability for oceans and soils to drawdown atmospheric carbon dioxide, is in part controlled
36 by the availability of inorganic phosphate. Likewise, global food production is also reliant on
37 adequate supplies of phosphorus to both plants and animals. A major fraction of the total
38 phosphorus pool exists as organic phosphorus, which requires mineralisation to phosphate
39 prior to incorporation into cellular biomolecules. This important process is performed by
40 enzymes known as phosphatases. Here, we reveal that the unique bacterial phosphatase,
41 PafA, is a key player in the global phosphorus cycle and presents a major route for the
42 regeneration of bioavailable phosphate required for both primary and secondary production.

43

44

45 **Background**

46 Both terrestrial and aquatic biological production is regulated by the availability of
47 phosphorus (P) with consequences for global food production, biodiversity, and drawdown of
48 atmospheric CO₂^{1,2}. Thus, the global P cycle plays a vital role in sustaining human existence
49 both presently and going into the future. P limitation is predicted to constrain the stimulation
50 of land plant biomass in response to elevated atmospheric CO₂^{2,3}. Likewise, most of the global
51 ocean is P deplete, which can either lead to growth limiting or Pi stress conditions, reducing
52 phytoplankton production⁴. In terrestrial and marine biomes, a large fraction of the total P
53 pool consists of organic compounds, such as phosphomono-, phosphodi-, and phosphotri-
54 esters, phosphonates, and phytic acid⁵⁻⁷. Remineralisation of organic P into inorganic
55 phosphate (Pi), by either a primary producer or associated microorganisms, enhances
56 production through alleviation of P starvation^{4, 8, 9}. However, the environmental distribution
57 of organic P mineralising enzymes and the relative contribution of distinct microbial taxa
58 towards this process is limited^{4,10}. This reduces our ability to predict the influence of
59 anthropogenic-driven global change on marine and soil P cycling, its interaction with the
60 global carbon (C) cycle, and the development of sustainable agricultural tools promoting more
61 efficient crop and animal production.

62 Bacteria, like all organisms on Earth, require P for survival, growth and reproduction.
63 Their preferred source of exogenous P is Pi. However, in the environment Pi is frequently
64 found at very low or growth limiting concentrations. Common to bacteria is the ability to

65 overcome environmental Pi scarcity through expression of various genes encoding Pi-stress
66 response proteins¹¹. This includes the Pi-dependent production of periplasmic or outer
67 membrane bound enzymes called phosphatases, which cleave off the Pi moiety from various
68 organic P compounds. Typically, phosphatases target either organic phosphomonoesters,
69 such as sugar phosphates, or phosphodiesters, such as DNA and phospholipids. Phosphatases
70 can be separated into different classes based on their substrate range (promiscuous or
71 specific), substrate preference (phosphomono-, phosphodi-, and phosphotri-esterases) and
72 their pH optimum (acid or alkaline)¹⁰⁻¹³. The most common class of bacterial phosphatases
73 are promiscuous alkaline phosphomonoesterases (PMEs), which can be further separated
74 into three major families, PhoA, PhoD and PhoX¹⁴⁻¹⁶. In addition, there is a growing body of
75 evidence that these alkaline PMEs are also active against phosphodi- and phosphotri-esters
76 broadening the role of these enzymes^{17,18}. The unifying function of these enzymes is the
77 production of Pi during times of Pi-depletion and consequently their regulation and enzyme
78 activity are inhibited by ambient concentrations of inorganic Pi¹⁹⁻²². A unique but
79 understudied fourth class of promiscuous bacterial alkaline PME also exists²³ and was recently
80 shown to be highly prevalent in the genomes of *Bacteroidetes*²⁴. Unlike PhoA, PhoD and PhoX,
81 this enzyme, referred to as PafA, is not repressed by Pi at either the regulatory or enzyme
82 activity level^{18,23}. Therefore, whilst the metabolic role of PafA is unknown, the regulatory and
83 biochemical data suggests its function is greater than scavenging Pi during times of Pi-
84 limitation.

85 In marine, ocean, and soil microbiomes, members of the phylum *Bacteroidetes* are
86 major degraders of plant and algal glycans occupying a functional niche focused on the
87 degradation of high molecular weight organic polymers²⁵⁻²⁷. Recently, plant associated
88 *Bacteroidetes* have been shown to play a major role in suppressing plant disease and there is
89 a growing interest in their ability to augment plant nutrition^{24,28-30}. A defining genomic
90 signature of *Bacteroidetes* is the possession of specialised outer membrane transporters,
91 commonly referred to as SusCD (archetypal transporter is the C and D components of the
92 Starch Utilisation System), that facilitate the uptake of large polymers as nutrition³¹. This is
93 coincident with the apparent lack of ATP-binding cassette (ABC) transporters required for the
94 active transport of smaller molecules. Therefore, in addition to specialising in the degradation
95 of HMW polymers, *Bacteroidetes* must possess fundamentally different molecular
96 mechanisms to capture nutrients in comparison to other bacterial taxa. Members of the

97 Bacteroidetes phylum, predominantly *Flavobacteraceae* and *Sphingobacteraceae*, are heavily
98 enriched in the plant microbiome relative to their abundance in surrounding bulk soil
99 communities. In the rhizosphere and root endosphere, *Bacteroidetes* can represent over half
100 of the total microbial community. Thus, this phylum must be competitive for various growth
101 limiting nutrients such as C, N and P despite an apparent lack of transport systems required
102 for nutrient acquisition.

103 Recently, we discovered plant-associated *Flavobacterium* spp. possess remarkable
104 potential to mobilise organic P²⁴. This included the synthesis of numerous
105 phosphomonoesterases (PMEs) and phosphodiesterases (PDEs) and the induction of novel P-
106 regulated gene clusters, some of which harboured SusCD-like transporters, termed
107 Phosphate Utilisation System (PusCD). In addition, numerous *Flavobacterium* spp, especially
108 plant-associated strains, lacked the high affinity phosphate ABC transporter, strengthening
109 the hypothesis that this phylum have divergent mechanisms for nutrient acquisition. Another
110 key characteristic of soil *Bacteroidetes* was the constitutive production of PME activity even
111 in the presence of excess exogenous Pi. Through protein fractionation using *Flavobacterium*
112 *johsoniae* as the model, PafA was identified as the likely candidate for this unusual PME
113 activity²⁴, which agrees with previous enzyme kinetic studies on this PME²³.

114 Here, by utilising bacterial genetics we aimed to identify the contribution of various
115 predicted PMEs towards PME activity using *F. johsoniae* as the model. We also tested the
116 hypothesis that the Pi-irrepressible PME, PafA, has a primary role other than Pi scavenging
117 during growth limiting P conditions. We discovered PafA identified in soil *Bacteroidetes* is
118 highly active and in the absence of an ABC transport system is essential for growth on sugar
119 phosphate phosphomonoesters as a sole C and energy source.

120

121 **Results**

122 ***Flavobacterium* PafA is a highly active phosphomonoesterase**

123 The model bacterium *F. johsoniae* DSM2064 (DSM2064) produces four alkaline PMEs
124 (encoded by *fjoh_0023*, *fjoh_3187*, *fjoh_3249*, *fjoh_2478*) that are related to previously
125 characterised PMEs (Fig. 1a)²⁴. The first (encoded by *fjoh_2478*) is a lipoprotein distantly
126 related to PhoX, which was abundantly secreted in response to Pi-depletion. Two periplasmic
127 PMEs (encoded by *fjoh_3187* and *fjoh_3249*) were related to PhoA. The last, (encoded by
128 *fjoh_0023*) is a Pi-irrepressible phosphatase PafA²³. PafA is an unusual PME that has the pfam

129 domain 01663, typically associated with phosphodiesterase activity, and does indeed
130 mineralise both phosphomono- and phosphodiesters¹⁸. Indeed, PafA is most closely related
131 to PhoD (Fig. 1a), an enzyme that is primarily a phosphodiesterase^{20,32}, whilst the Pi-
132 irrepressible phosphatase identified in *Zymomonas mobilis*, labelled as a PhoD³³, is also most
133 closely related to *Bacteroidetes* PafA (Fig.1a). Two of these *Flavobacterium* PMEs, encoded
134 by *fjoh_0023* and *fjoh_3187*, were enriched in protein fractions expressing high PME
135 activity²⁴.

136 To investigate the relative activity of these *Flavobacterium* PMEs and directly compare
137 them with the classical PhoX (*Pseudomonas putida*) and PhoA (*Escherichia coli*), we cloned
138 their respective genes into a heterologous host (*Pseudomonas putida* BIRD-1), lacking a
139 functional PME ($\Delta phoX::Gm$ -BIRD-1) to remove its innate PME activity³⁴. All PMEs were under
140 the control of the native *phoX* promoter encoded on the broad host range plasmid
141 pBBR1MCS-km. This promoter was previously shown to be regulated in a PhoBR-dependent
142 manner¹⁹, but PhoX peptides were still detected under Pi-replete conditions, suggesting some
143 residual level of *phoX* expression. The various complemented $\Delta phoX^{\text{BIRD}}::Gm$ strains were
144 grown overnight in either a complex medium (Fig. 1b) or a minimal medium containing a
145 growth limiting concentration of Pi (50 μM) (Fig. 1c). PME assays were performed using
146 culture suspensions or by resuspending cells in a buffer at three pH conditions (5.4, 7.4, 9.4).
147 Cells producing well-known PMEs, *i.e.* the native *P. putida* BIRD-1 PhoX (+pBX $phoX^{\text{BIRD}}$) or *E.*
148 *coli* PhoA (+pBX $phoA^{\text{Ec}}$), both restored PME activity in the *Pseudomonas* mutant (Fig. 1b). Cells
149 producing the *Flavobacterium* PhoA homologs, encoded by *fjoh_3249* (+pBX $phoA^{\text{Fj}}$) or
150 *fjoh_3187* (+pBX $phoA^{\text{Fj}}$) also restored PME activity, confirming their function as PMEs.
151 Notably, cells producing PafA (+pBX $pafA^{\text{Fj}}$), encoded by *fjoh_0023*, had significantly greater
152 activity when grown in either growth medium, especially the complex medium (Fig. 1B).
153 Therefore even under Pi-replete growth conditions, when synthesis of PafA is low this enzyme
154 is capable of rapidly mineralising organophosphorus (Fig. 1b). Indeed, both liquid cultures and
155 surface-attached colonies demonstrated phosphate-dependent inhibition of $phoX^{\text{BIRD}}$ or
156 $phoA^{\text{Ec}}$ PME activity (Fig. 1b & Fig. S1). Cells complemented with *fjoh_2478* (+pBX $phoX^{\text{Fj}}$) failed
157 to produce any detectable activity, which we attribute to differences between *Pseudomonas*
158 (Type II secretion system) and *Flavobacterium* (Type IV secretion system) lipoprotein export
159 mechanisms, leading to a non-functional polypeptide.
160

161 **PafA significantly contributes towards PME activity in *F. johnsoniae* DSM2064**

162 Next, we examined the contribution of these PMEs towards activity in the original
163 strain DSM2064. As expected²⁴, wild type cells produced both constitutive and elevated
164 inducible PME activity (Fig. 2). Interestingly, mutation of *pafA* (*fjoh_0023*) significantly
165 reduced constitutive and inducible PME activity, revealing this gene plays a major role under
166 both growth conditions. We hypothesised that a gene (*fjoh_0074*) encoding a constitutively
167 produced lipoprotein, predicted to be a member of the
168 endonuclease/exonuclease/phosphatase superfamily (InterPro#; PR005135), may make a
169 minor contribution to PME activity under Pi-replete growth conditions. However, mutation of
170 this gene had no apparent effect on the observable PME activity in DSM2064. Mutation of
171 *fjoh_2478* ($\Delta phoX$), encoding the distinct PhoX-like lipoprotein (Fig. 1a), reduced inducible
172 PME activity in DSM2064. Likewise, a double mutant ($\Delta fjoh_3249:\Delta fjoh_3187$) defective for
173 the two *phoA*-like ($\Delta A1:\Delta A2$) genes also reduced inducible PME activity. Through generation
174 of a quadruple knockout PME mutant, $\Delta fjoh_0074:\Delta fjoh_2478:\Delta fjoh_3249:\Delta fjoh_3187$
175 (Δ quad), and a quintuple knockout PME mutant,
176 $\Delta fjoh_0074:\Delta fjoh_2478:\Delta fjoh_3249:\Delta fjoh_3187:\Delta pafA$ (Δ quad: $\Delta pafA$), we confirmed that 1)
177 *pafA* contributes to >95% of the constitutive and approximately half the inducible PME
178 activity and 2) *fjoh_2478* (*phoX*), *fjoh_3249* (*phoA1*) and *fjoh_3187* (*phoA2*) are responsible
179 for the additional inducible PME activity expressed in response to Pi-depletion.
180 Complementation of the quintuple PME mutant with its native *pafA* (+pY:*pafA*) duly restored
181 PME activity to that comparable with the quadruple PME mutant, confirming the above
182 results. Finally, mutation of *pafA* (*fjoh_0023*) in the $\Delta phoX$ background, creating a double
183 mutant strain ($\Delta fjoh_2478:\Delta fjoh_0023$), further confirmed a role for *fjoh_2478* in inducible
184 PME activity (Abs_{405/600 nm h⁻¹}: $\Delta pafA = 21\pm/-2.8$; $\Delta pafA:\Delta phoX = 9.6\pm1.2$). Together,
185 DSM2064 possess four PMEs that contribute towards PME activity against the artificial
186 substrate *pNPP*. There is also evidence from the quintuple mutant that another unidentified
187 PME has a very minor contribution towards PME activity.

188

189 **PafA enables utilisation of organic P substrates as both a P and a C source**

190 To determine the functional role of PafA in organic P mineralisation, we screened the
191 parental wild type and selected PME mutant strains of DSM2064 (Fig. 3) on a range of organic

192 P substrates as the sole P source (300 μ M). Wild type growth on organic P substrates was
193 comparable to growth on Pi whilst growth of the quintuple PME mutant was severely
194 inhibited (Fig. 3a). In agreement with the very low but observable level of PME activity in the
195 quintuple PME mutant, a small but detectable amount of growth did occur relative to the no
196 P control. The *pafA* complemented quintuple PME mutant (+pY:*pafA*) fully restored the wild
197 type phenotype (Fig. 3a), indicating PafA alone can facilitate utilisation of organic P as a sole
198 P source despite its relatively low level of expression²⁴. A double mutant, defective for *pafA*
199 and *phoX*²⁰⁶⁴ (Δ *fjoh_2478*: Δ *fjoh_0023>) had significantly reduced and variable rates when
200 organic P was the substrate indicating the two *phoA*-like homologs play a minor role in growth
201 on these organic P substrates.*

202 Next, we investigated whether PafA provides a novel mechanism for growth on
203 organic P substrates as a sole C, P, and energy source. To do this, 5 mM of various organic P
204 substrates were supplied as the sole C and P source (Fig. 3b). In addition, glycerol 3-phosphate
205 and glucose 6-phosphate were provided as a sole C source but also supplemented with Pi
206 (1mM) to inhibit expression of inducible PMEs. The wild type efficiently utilised
207 phosphorylated carbohydrates (mannose 6-phosphate, fructose 6-phosphate and glucose 6-
208 phosphate) as a sole C and P source, grew slowly on phosphocholine (PC), but could not utilise
209 glycerol 3-phosphate. The addition of exogenous Pi (inhibiting expression and activity of
210 inducible PMEs) did not affect growth, suggesting PafA was the major enzyme required for
211 this phenotype. Indeed, the *pafA* single mutant and quintuple PME mutant failed to grow on
212 these organic substrates as a sole C source and complementation of the quintuple PME
213 mutant with *pafA* fully restored the wild type phenotype, confirming the essential role of *pafA*
214 in the utilisation of organic P substrates as a sole C and energy source.

215

216 **Organic P mineralisation by *Flavobacterium* facilitates cross feeding of bioavailable P**

217 To determine the ecological consequences of Pi-independent organic P mineralisation
218 in DSM2064, we grew the quintuple PME mutant, impaired in its ability to utilise various
219 organic P substrates (Fig. 3), in co-culture with the parental wild type using various organic P
220 substrates as the sole P source (300 μ M). To achieve a semi-continuous growth pattern, after
221 24-48 h growth each culture line was twice inoculated (2% v/v) into fresh medium containing
222 the same organic P substrate. The control treatment, using Pi as a sole P source resulted in
223 comparable growth between the quintuple PME mutant and wild type (Fig. 4a) and thus a

224 similar ratio between the two strains (Fig. 4b). When phosphorylated carbohydrates, such as
225 fructose 6-phosphate or glucose 6-phosphate were supplied as the sole P source, the mutant
226 also grew at a comparable rate to the wild type, with strains maintaining a 1:1 ratio. However,
227 when phosphocholine or the phosphodiester-containing lipid phosphatidylinositol were the
228 sole P source the mutant was significantly outcompeted by the wild type (PI = 31.4 ± 9 -fold, PC
229 = 15.9 ± 6 -fold). This would suggest that for *Flavobacterium*, different organophosphorus
230 compounds may be mineralised at distinct locations, i.e. extracellular or periplasmic, resulting
231 in inefficient versus efficient acquisition, respectively.

232 Next, to investigate whether growth on phosphorylated carbohydrates as a sole C and
233 energy source would result in the accumulation of excess Pi in the medium, we grew the wild
234 type in minimal medium supplemented with glucose 6-phosphate (2mM) and glucose (5mM).
235 This achieved a low C:P ratio (21:1), well below cell stoichiometric requirements (106:1), that
236 should facilitate accumulation of Pi in response to continual Pi-independent mineralisation by
237 PafA. We also established a control treatment containing glucose (10 mM) and Pi (25 μ M)
238 that would create Pi-deplete growth conditions (C:P, 2400:1) and thus cause complete
239 consumption of exogenous Pi. After overnight growth, cells were removed via filtration and
240 the conditioned medium (CM) was mixed (50:50% v/v) with fresh medium (FM) containing 10
241 mM glucose and no added P source (Fig. 4c). Each cell-free growth medium was then either
242 inoculated with the wild type, the quintuple PME mutant or the $\Delta phoX::Gm$ -BIRD-1 mutant.
243 Control treatments using only FM supplemented with either glucose 6-phosphate or Pi and
244 an additional positive control with Pi supplemented to all growth condition-strain
245 combinations were established. Cultures with no added bacterial inoculant had no growth,
246 confirming cells were successfully removed from the initial conditioned medium (Fig. 4d). All
247 positive control cultures supplemented with Pi all grew for both FM and CM treatments
248 (bottom half Fig. 4d). For FM cultures, all strains failed to grow in the absence of Pi and only
249 wild type DSM2064 grew in the presence of glucose 6-phosphate whilst the quintuple PME
250 mutant or the *P. putida* mutant did not. No growth was observed for any strain using CM
251 originally containing 25 μ M Pi whilst all three strains grew in CM originally containing 2mM
252 glucose 6-phosphate. Together, these data clearly demonstrate mineralisation of organic P
253 independently of cellular P requirements and production of bioavailable Pi for other
254 organisms.

255

256 **PafA facilitates the rapid mineralisation of organic P substrates**

257 Finally, to quantify the contribution of PafA and other PMEs towards the mineralisation
258 of organic P, the concentration of exogenous Pi in the culture supernatant was quantified
259 during growth on organic P. DSM2064 wild type and the various PME mutants ($\Delta pafA$,
260 $\Delta pafA:\Delta phoX$, or quintuple PME) were individually grown on glucose 5 mM supplemented
261 with either 2 mM glycerol phosphate and phosphocholine (50:50 mix); or 2 mM
262 phosphorylated carbohydrates (50:50 mix G6P:F6P) as well as a Pi control (500 μ M). After 25
263 h, cultures were further supplemented with another 5 mM glucose. All four DSM2064
264 genotypes grew at comparable growth rates, although the quintuple PME mutant showed
265 impaired growth on organic P relative to the wild type, as expected (Fig. 5). We attribute this
266 growth to the higher concentration of organic P that likely resulted in a higher trace
267 contamination of Pi. Indeed, detectable concentrations of Pi (14-24 μ M) were detected at T0
268 in cultures supplemented with organic P only. After 5 h, all cultures showed minimal growth.
269 However, wild type cultures grown in the presence of PG:PC or F6P:G6P had already
270 accumulated 384 \pm 53 μ M and 564 \pm 17 μ M of exogenous Pi, respectively by this time (Fig. 5).
271 All three PME mutant strains lacking a functional PafA showed no significant release of
272 remineralised Pi. After 25 h growth, wild type cultures accumulated >1 mM Pi, whilst no Pi
273 was detected in the quintuple PME mutant. The $\Delta pafA$ mutant possessing a functional PhoX
274 did produce significantly more Pi in the presence of F6P:G6P compared to PG:PC, unlike the
275 $\Delta pafA:\Delta phoX$ double mutant that lacks a functional PhoX. This observation may explain why
276 phosphorylated carbohydrates cross feed into non-utilisers, unlike phosphocholine or
277 phosphatidylinositol, that appear to be more efficiently utilised (Fig. 4). In summary, these
278 data reveal PafA plays a major role in the mineralisation of organic P and presents a rapid
279 route for production of exogenous bioavailable Pi.

280

281 **PafA diversity and occurrence in *Bacteroidetes* and non-*Bacteroidetes* bacteria**

282 Whilst the majority of inducible PMEs are predominantly found in the genomes of
283 plant-associated *Bacteroidetes*, the occurrence of PafA in bacteria related to this phylum is
284 more widespread²⁴. To further investigate the environmental distribution of PafA, we
285 scrutinised various marine (TARA Oceans), rhizosphere (Oil Seed Rape and Wheat) and gut
286 (rumen and human) metagenomes (total n = 357). We combined the retrieved environmental

287 sequences with the PafA sequences previously identified in our *Bacteroidetes* isolate genome
288 bank ($n = 468$)²⁴. Only sequences possessing the key residues^{18,24} required for PME activity
289 were retained (Environmental $n=1314$; isolate $n=423$). Phylogenetic analysis revealed the
290 existence of several polyphyletic subclades, as evidenced by the occurrence of two distinct
291 PafA homologs found in the model soil bacterium *Chitinophaga pinensis* (Cp1 and Cp2 in Fig.
292 6a), that were partially resolved by their environmental origin (isolate or metagenome). To
293 confirm the function of the *pafA* homologs within these branches, we cloned both *C. pinensis*
294 genes encoding Cp1 and Cp2 into the same expression vector and heterologous host system.
295 Both were functional Pi-insensitive PMEs (Fig S2) and could mineralise naturally-occurring
296 organic P molecules (Fig. 6b).

297 Sequences related to soil/plant associated *Flavobacterium* PafA represented a small
298 fraction of the overall PafA diversity, and few environmental sequences were retrieved from
299 the soil/rhizosphere MGs associated with the two crop species. A large proportion of diversity
300 belonged to marine *Flavobacteriia* (predominantly the family *Flavobacteriaceae*) including
301 numerous sequences captured from the TARA oceans dataset. Screening four marine
302 *Bacteroidetes* and three marine *Alphaproteobacteria* showed that possession of *pafA*
303 correlated with Pi-insensitive PME activity, i.e. all four marine *pafA*-encoding Bacteroidetes
304 showed high PME activity even in high P medium whereas all three none *pafA*-encoding
305 *Alphaproteobacteria* had their PME activity inhibited in such Pi-rich medium (Table 1). All gut
306 related PafA sequences clustered closely with isolates related to *Bacteroidales*, including
307 *Prevotella* spp. The previously characterised PafA from *Elizabethkingia meningoseptica* was
308 in a cluster associated with *Chryseobacterium* sequences more closely related to
309 *Sphingobacteraceae* sequences rather than *Flavobacteraceae* (Fig. 6a). These data suggest
310 PafA may have undergone some level of environmental adaptation after its first appearance.
311

312 **PafA and PhoA are highly prevalent in the global ocean**

313 We next compared the abundance, expression, and associated phylogeny of the genes
314 encoding the three major classes of bacterial alkaline PMEs (PhoA, PhoD, PhoX) and PafA in
315 the global ocean. Unexpectedly, both *pafA* and *phoA* were more prevalent and more
316 transcribed than *phoX* at numerous oceanic sites, particularly those in polar and temperate
317 regions of the ocean (Fig. 6c). For example, across the Arctic Ocean and Southern Ocean, *pafA*
318 and *phoA* transcription was over 10-fold greater than *phoX* (Fig. S3). As expected, most *pafA*

319 sequences were related to *Bacteroidetes*. We also found an unexpected abundance of *phoD*
320 sequences across most oceanic sites, the majority of which were related to marine
321 *Gammaproteobacteria*. Given these unexpected results that contradict previous work²¹, we
322 also analysed the TARA Oceans database using the latter authors bioinformatics pipeline. This
323 revealed that BLASTP analysis dramatically underestimated the prevalence of *phoA* (Table S3)
324 by failing to capture the full diversity of *phoA* sequences present in the global ocean (Fig. S4
325 and S5). *phoX* was significantly more abundant than *pafA* in the Mediterranean Sea and
326 regions of the North Atlantic Ocean (Fig. S3), typified by very low concentrations of Pi³⁵.
327 Indeed, in these regions, all three classical PMEs were more prevalent and transcribed at
328 significantly higher levels than *pafA* (Fig. S3). Regression analysis confirmed global *phoX*
329 prevalence ($R^2 = 0.1804$, $p < 0.001$) and transcription ($R^2 = 0.05137$, $p < 0.01$) was negatively
330 correlated with standing stock concentrations of Pi (Fig. S6). On the other hand, global *pafA*
331 prevalence ($R^2 = 0.1296$, $p < 0.001$) and transcription ($R^2 = 0.05432$, $p < 0.01$) was positively
332 correlated with Pi, demonstrating the Pi-independent functional role of this enzyme. In
333 contrast, *phoD* and *phoX* gene abundance and expression were both negatively correlated.
334 *phoA* prevalence did not correlate with Pi ($R^2 = 0.0028$, $p = 0.24$) though transcription was
335 positively correlated with Pi ($R^2 = 0.06746$, $p < 0.001$). In summary, *pafA* and *Flavobacteriia*-
336 like *phoA* sequences are diverse and widespread in nature including soil, gut and ocean
337 microbiomes with PafA representing a major new enzyme in the global P cycle.

338

339 **Discussion**

340 We report a unique class of alkaline phosphatase, termed PafA, is abundant in nature
341 and enables the rapid mineralisation of various organic P substrates independently of
342 exogenous Pi concentration. Despite *Flavobacterium* spp. possessing numerous PMEs, PafA
343 was essential for growth on phosphorylated carbohydrates as a sole C or sole C and P source,
344 revealing functional diversification of PafA compared to other well-known phosphatases¹⁹⁻
345 ^{22,36}. These findings also explain why regulation of PafA production and enzyme activity are
346 Pi-insensitive^{18,23,24}. Pi-insensitive mineralisation of specific reduced organophosphorus
347 compounds (phosphonates) is widespread in the global ocean and represents a major route
348 for regenerating the Pi required for marine primary production^{37,38}. Despite relatively low
349 expression of *pafA* in *Flavobacterium* spp. during Pi-replete or Pi-deplete growth conditions²⁴,
350 we show this enzyme possesses superior activity towards the artificial substrate *pNPP* in

351 comparison with *PhoX* or *PhoA* and rapidly converts various natural organic P substrates into
352 bioavailable Pi independently of growth status. Thus, we reveal another Pi-insensitive
353 mechanism for the rapid conversion of organic P into bio-available P, which may explain why
354 PME activity is detected and operational in Pi-replete oceanic regions^{4,39,40}. Significantly, *pafA*
355 is present in the genomes of *Bacteroidetes*, who frequently associate with phytoplankton and
356 sinking particles^{41,42}, and is expressed at levels comparable to and even exceeding other well-
357 known phosphatases, such as *phoX*.

358 Traditionally, *phoX* was considered the most abundant phosphatase in the ocean¹⁴,
359 and that iron limitation may affect this enzyme's efficacy and limit microbial Pi
360 mineralisation⁴³. However, divergent *phoA* homologs, that do not require iron for catalytic
361 activity¹⁸, are also prevalent in the global ocean¹⁷. Our comprehensive comparative analysis
362 of the four major bacterial alkaline phosphatases in the global ocean revealed an unexpected
363 distribution and diversity of these P cycling genes which significantly alters the paradigm
364 around marine P cycling and the major players that are involved. Indeed, PafA homologs were
365 also found in the genomes of abundant oligotrophic soil and marine bacteria related to
366 *Acidobacteria*, *Candidatus Lindowbacteria*, *Verrucomicrobia*, *Gemmatimonadetes* and
367 *Planctomycetes* and future research should ascertain their activity and sensitivity towards Pi
368 to improve our understanding of global P cycling. Whilst extrapolation from lab cultures can
369 be misleading, the difference between *phoX* and *pafA* expression profiles across the global
370 ocean further strengthens the idea that PafA has a functional role greater than that of
371 scavenging P, i.e. a role in C-utilisation^{19,21}. In addition, transcriptional profiles for *phoA* also
372 suggests the function of this enzyme may have also diversified, unlike *phoX*. In agreement,
373 the transcriptomic and proteomic data in our previous study²⁴ and experimental data
374 presented here show no essential role for either *F. johnsoniae* *phoA* homolog in P scavenging.
375 Given *pafA* and *phoA* can also mineralise phosphodiesters and phosphotriesters^{17, 18}, these
376 enzymes may play a large and previously unrecognised role in environmental P cycling.

377 *Bacteroidetes* are major organic polymer degraders that are typically associated with
378 algal, plant and animal related niches and their success in diverse environments is driven
379 through their ability to coexist through divergent C acquisition strategies^{26, 44}. Our data reveals
380 another unique strategy for scavenging organic C from various phosphorylated molecules that
381 are abundant in nature^{5, 45}. In ocean and plant microbiomes, this metabolism may provide a
382 competitive advantage for C-acquisition when residual Pi levels inhibit enzyme activity

383 rendering these molecules inaccessible. In animals, nutritional utilisation of phosphorylated
384 carbohydrates and other organic P substrates, as well as simple sugars, plays a significant role
385 in various pathogen-host interactions with uptake of these nutrients typically requiring the
386 presence of specialised transporters⁴⁶⁻⁴⁹. This often precludes the requirement for
387 extracellular phosphatases that are otherwise not expressed or inhibited by exogenous
388 Pi^{14,19,20,22,23}. *Bacteroidetes* are unique among bacteria lacking most ATP-binding cassette
389 (ABC) transporters required for the uptake of organic molecules. Therefore, we speculate
390 PafA may have evolved early in this lineage to compensate for their lack of ABC transport
391 systems which would explain the ubiquitous occurrence of this enzyme across this phylum
392 and why it is not associated with any particular environmental niche, unlike other
393 *Bacteroidetes* PMEs²⁴. Importantly, preferential use of phosphorylated carbohydrates as C
394 and energy sources and subsequent release of mineralised Pi may drive P flux in systems
395 dominated by *Bacteroidetes* and their role in environmental P cycling maybe comparable to
396 their role in C cycling^{4,26,31}.

397 Various PMEs are commercially utilised in agriculture to improve the nutritional value
398 of animal grain feed and interest in their application as enzymes in releasing bioavailable Pi
399 in soils in growing^{50,51}. A major limitation of PMEs is either their substrate specificity and/or
400 their inhibition by exogenous Pi. The evidence that *Flavobacterium* PafA possesses
401 extraordinarily high activity towards both artificial and natural organic P substrates and is
402 easily expressed in a heterologous host is significant. PafA presents an exciting enzyme for
403 biotechnological application, particularly for improving the nutritional value of animal and
404 plant feed, as well as avenues aimed at developing sustainable agriculture and reducing our
405 reliance on unsustainable chemical P fertilisers^{1,6}. Given other plant associated
406 *Flavobacterium* spp. also express comparable or greater PME activity in the presence of
407 exogenous Pi²⁴, it is likely that PafA in these strains also possesses high activity. Given all
408 homologs share common key residues, further investigation should ascertain the structure-
409 function relationships responsible for the apparent differences in PME activity between
410 various PafA homologs investigated here with the aim of enhancing their activity for
411 commercial application.

412 In summary, this study resolved the contribution of seemingly redundant PMEs
413 towards growth on organic P substrates as sole C, P and energy sources in plant associated
414 *Flavobacterium* spp. The emergence of PafA as a highly active Pi-insensitive enzyme

415 facilitating the rapid mineralisation of bio-available Pi that is widespread in nature signifies a
416 major enzyme in the global P cycle.

417

418 Materials and Methods

419 Growth and maintenance of bacterial strains

420 *Flavobacterium johnsoniae* DSM2064 (UW101) was purchased from the Deutsche Sammlung
421 von Mikroorganismen und Zellkulturen (DSMZ). The *Pseudomonas putida* BIRD-1 *phoX*
422 knockout mutant was previously generated in³⁴. The marine *Bacteroidetes* spp., *Algoriphagus*
423 *machiponganensis* PR1 (DSM24695) and *Formosa agariphila* KMM 3901 (DSM15362) were
424 purchased from the DSMZ collection, whereas *Polaribacter* sp. MED152 and *Gramella forsetii*
425 KT0803 were kindly obtained from Prof Pinhassi and Dr Wulf, respectively. The Roseobacter
426 strains were historically obtained from the DSMZ collection. *F. johnsoniae* and *P. putida*
427 genotypes were routinely maintained on casitone yeast extract medium (CYE)⁵² containing
428 casitone (4 g L⁻¹), yeast extract (1.25 g L⁻¹), MgCl₂ (350 mg L⁻¹) and 20 g L⁻¹ agar or lysogeny broth
429 (LB) containing 15 g L⁻¹ agar, respectively. For various growth experiments and phosphatase
430 assays, *F. johnsoniae* was grown in a minimal A medium adapted from¹⁹. This medium
431 contained glucose 5-20 mM, NaCl 200 mg L⁻¹, NH₄Cl 450 mg L⁻¹, CaCl₂ 200 mg L⁻¹, KCl mg L⁻¹
432 MgCl₂ 450 mg L⁻¹, FeCl₂ 10 mg L⁻¹, MnCl₂ 10 mg L⁻¹, 20mM Bis/Tris buffer pH 7.2. KH₂PO₄ added
433 to a final concentration ranging from 50 μM to 1 mM. For *P. putida* genotypes, glucose was
434 replaced with sodium succinate (final concentration 15 mM). Marine *Bacteroidetes* and
435 Roseobacter strains were grown in Difco Marine Broth 2216 (Fischer Scientific) and incubated
436 at 28°C.

437 The organic P substrates fructose 6-phosphate, glucose 6-phosphate, glycerol
438 phosphate, sodium phosphorylcholine, sn-Glycerol 3-phosphate bis(cyclohexylammonium),
439 phosphocholine chloride calcium salt tetrahydrate and L-α-Phosphatidylinositol (~50% TLC)
440 from Glycine max (soybean) ~50% (TLC) were also purchased from Sigma-Aldrich, Merck. For
441 various growth experiments using organic P substrates as a sole P source 200-500 μM was
442 added to the minimal medium. For growth experiments using organic P substrates as a sole C
443 source or sole C and P source, 2-3 mM was added to the minimal medium.

444 For Pi mineralisation experiments generating conditioned medium, glucose (5 mM)
445 and either 1 mM glucose 6-phosphate or 100 μM Pi was used. After overnight growth,
446 supernatants were collected after removing cells by centrifugation (10,000 x g) and filtration

447 through a PES membrane (0.22 μ m pore size). Spent medium was mixed with fresh medium
448 containing 5 mM glucose (50:50% v/v) and half of the subsequent culture lines were
449 supplemented with 250 μ M Pi (positive control).

450

451 **Construction of *Flavobacterium* mutants**

452 To construct the various PME mutants in DSM2064, the method developed by⁵³ was used. A
453 full list of primers used in this study can be found in Table S14. Briefly, two 1-1.6 kb regions
454 flanking each gene were cloned into plasmid pYT313 using the HiFi assembly Kit (New England
455 Biosciences). Sequence integrity was checked via sequencing. The resulting plasmids were
456 transformed into the donor strain *Escherichia coli* λ S17-1 (S17-1) and mobilised into
457 *Flavobacterium* via conjugation (overnight at 30°C). 5 ml overnight cultures were used to
458 inoculate (25% v/v) fresh 5 ml CYE or LB media and incubated for 8 h. A 200 μ L donor: recipient
459 suspension (1:1) was plated onto CYE containing erythromycin (100 μ g mL⁻¹). Colonies were
460 re-streaked onto CYE erythromycin plates to remove any background wild type. Single
461 homologous recombination events were confirmed by PCR prior to overnight growth in CYE
462 followed by plating onto CYE containing 10% (w/v) sucrose to select for a second
463 recombination event. To identify a double homologous recombination mutant, colonies were
464 re-grown on CYE containing 10% (w/v) sucrose and CYE containing erythromycin 100 μ g mL⁻¹.
465 Erythromycin sensitive colonies were screened for a double homologous recombination
466 event by PCR targeting a region deleted in the mutant.

467

468 **Construction of *Pseudomonas putida* BIRD-1 strains**

469 To complement the *Pseudomonas* sp. BIRD1 Δ phoX mutant with various *Bacteroidetes*
470 phosphatases, the promoter for the native *phoX*:BIRD-1, was cloned into a broad-host range
471 plasmid, pBBR1MCS-km, using methods outlined in³⁴. The various *Flavobacterium* PMEs were
472 subsequently cloned downstream of this promoter using the HiFi assembly kit (New England
473 Biosciences). For PafA homologs found in *Chitinophaga pinensis* DSM2588 (CP1, 644962876;
474 CP2, 644963845), the open reading frame of each gene was chemically synthesised
475 (Integrated DNA Technologies, gBlocks gene fragment service) with *Hind*III and *Xba*I
476 restriction sites added at the 5' and 3' ends, respectively. IMG gene accession numbers are
477 given in parentheses. After digestion of fragment and plasmid, ligation was performed using

478 T4 DNA ligase (Promega). Plasmids were mobilised into the *ΔphoX* mutant via electroporation
479 using a voltage of 18 kV cm^{-1} or by bi-parental mating with the donor strain S17-1. For
480 electroporation, cells were immediately added to LB and incubated for 2-3 h prior to selection
481 on LB supplemented with 50 $\mu\text{g mL}^{-1}$ kanamycin. For conjugative plasmid transfer, S17-1 and
482 *P. putida* (*ΔphoX::Gm*) were grown overnight in LB broth (0.5 ml) and resuspended in 0.1 ml
483 fresh medium. Strains were mixed and spotted onto LB agar and incubated for 5 h. Cells were
484 scraped from solid medium and resuspended in 1 ml Tris HCL buffer (pH 7.4). A 1:10 serial
485 dilution was established and plated onto LB supplemented with 50 $\mu\text{g mL}^{-1}$ kanamycin and 10
486 $\mu\text{g mL}^{-1}$ gentamicin to counter select against S17-1. Colonies were screened by PCR for the
487 presence of the plasmid.

488

489 **Quantification of alkaline phosphatase activity**

490 The protocol was adapted from²⁴, where volumes were adjusted for compatibility with a
491 microtiter plate reader (Tecan SPARK 10M). Cell cultures (n = 3) for both Pi-replete and Pi-
492 deplete growth conditions were directly incubated (30°C at 160 rpm) with 10 mM (final
493 concentration) *para*-nitrophenyl phosphate (pNPP) or resuspended in a Tris-HCl buffer
494 adjusted to pH 5.4, 7.4 or 9.4 prior to pNPP incubations. All reactions were incubated at 28°C
495 on a rotary shaker (230 rpm). The reaction was stopped using 2 mM (final concentration)
496 NaOH once a colour change was detected, and reactions were still operating in a linear
497 manner. Reactions were spent when absorbance (405nm) reached >4 and all reactions were
498 stopped when 5-25% of substrate was consumed, typically within 2–60 min. For each strain
499 and growth condition, A405nm measurements were corrected by subtracting A405nm
500 measurements for reactions immediately stopped with NaOH. Normalisation against the
501 culture optical density (OD600) was performed and the rate was calculated and expressed
502 h^{-1} .

503

504 **Quantification of exogenous phosphate**

505 To quantify Pi mineralisation in the presence of organic P, cells were grown in a minimal
506 medium supplemented with glucose (5 mM) and 2 mM of either glycerol phosphate and
507 sodium phosphorylcholine (50:50% mix) or fructose 6-phosphate and glucose 6-phosphate
508 (50:50% mix). A control using 500 μM Pi was also established. To quantify exogenous Pi, cells

509 were removed from culture aliquots via centrifugation (10000 x g for 5 min), and Pi
510 concentrations in the supernatants were determined according to the method of Chen *et al.*⁵⁴
511 and further modified here for compatibility with a microtiter plate reader. Briefly, 100 µL
512 supernatant was added to 100 µL of dH₂O:6N sulfuric acid:2.5% w/v ammonium
513 molybdate:10% w/v ascorbic acid (2:1:1:1). For each individual assay, absolute quantification
514 of Pi was achieved using a standard curve of known Pi concentrations (0, 7.8125, 15.625,
515 31.25, 62.5, 125, 250, 500 µM). This enabled a reduced incubation at 37°C (30-45 min).
516 Absorbance was measured at 820nm. Each *F. johnsoniae* strain, wild type plus three PME
517 mutants, were grown under the different treatments in duplicate cultures with duplicate
518 technical replicates for growth and Pi concentrations taken for each culture (n=4 total).
519

520 **Bioinformatics analyses**

521 The online platform Integrated Microbial Genomes & Microbiomes server at the Joint
522 Genome Institute (IMG/JGI) was used to perform most comparative genomics analyses
523 described in this study. Genomes and metagenomes were stored in Genome sets and for
524 PafA, BLASTP searches (Min. similarity 30%, E-value e⁻⁵⁰) were set up using the 'jobs function'.
525 The diversity, richness, gene and transcript abundance of each phosphatase, PhoA, PhoD,
526 PhoX and PafA in seawater was determined by searching the TARA ocean metagenome (OM-
527 RGC_v2_metaG) and metatranscriptome (OM-RGC_v2_metaT) via the Ocean Gene Atlas web
528 interface, using the hmmsearch function (stringency 1E⁻⁶⁰). profile Hidden Markov Models
529 (pHMM) for PhoA (PF00245), PhoX (PF05787) and PhoD (PF PF09423), were downloaded from
530 <https://pfam.xfam.org/>. For PafA, a pHMM was manually curated by aligning sequences using
531 MUSCLE identified in various *Bacteroidetes* isolates and pHMM using the hmmbuild function
532 in hmmer 3.3 (<http://hmmer.org>). Sequence abundances were expressed as the average
533 percentage of genomes containing a gene copy or transcript by dividing the percentage of
534 total mapped reads by the median abundance (as a percentage of total mapped reads) of 10
535 single-copy marker genes⁵⁵ for both MG and MT.

536 To determine the phylogeny of PafA, sequences were aligned using MUSCLE and
537 manually inspected for the possession of key residues using MEGAX. Sequences possessing
538 any point mutations were removed from the multiple alignment. Phylogenetic reconstruction
539 was performed using IQ-Tree using the parameters -m TEST -bb 1000 -alrt 1000. Evolutionary

540 distances were inferred using maximum-likelihood analysis. Relationships were visualised
541 using the online platform the Interactive Tree of Life viewer (<https://itol.embl.de/>).
542 All statistical analyses and data visualisation were performed using the *ggplot2*, *ggfortify*,
543 *tidyR*, *plyr*, *serration*, *rcolourbrewer* packages in Rstudio (1.2.5033).

544

545 **Acknowledgements**

546 This study was funded by the Biotechnology and Biological Sciences Research Council (BBSRC)
547 under project code BB/T009152/1 linked to a Discovery Fellowship (IL) and a Rank Prize Fund
548 New Lecturer Award.

549

550 **Competing Interests**

551 The authors declare no competing interests.

552

553 **References**

- 554 1. Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: Global food security and
555 food for thought. *Global Environmental Change* 19, 292-305 (2009).
- 556 2. Goll, D.S. *et al.* Nutrient limitation reduces land carbon uptake in simulations with a
557 model of combined carbon, nitrogen and phosphorus cycling. *Biogeosciences* 9, 3547-
558 3569 (2012).
- 559 3. Terrer, C. *et al.* Nitrogen and phosphorus constrain the CO₂ fertilization of global plant
560 biomass. *Nat Climate Change* 9, 684-689 (2019).
- 561 4. Duhamel, S. *et al.* Phosphorus as an integral component of global marine
562 biogeochemistry. *Nat Geoscience* 14, 359-368 (2021).
- 563 5. Haygarth, P.M., Harrison, A. F., Turner, B. L. On the history and future of soil organic
564 phosphorus research: a critique across three generations. *Euro J Soil Sci* 69, 86-94 (2018)
- 565 7. Turner, B. L., Papházy, M. J., Haygarth, P. M., McKelvie, I. D. Inositol phosphates in the
566 environment. *Phil Trans Royal Soc B: Biol Sci* 357, 449-469 (2002)
- 567 8. Phoenix, G. K., Johnson, D. A., Muddimer, S. P., Leake, J. R., Cameron, D. D. Niche
568 differentiation and plasticity in soil phosphorus acquisition among co-occurring plants.
569 *Nat Plants* 6, 349-354 (2020)
- 570 9. Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J., Scanlan, D. J. Nutrient recycling
571 facilitates long-term stability of marine microbial phototroph–heterotroph interactions.
572 *Nat Microbiol* 2, 17100 (2017)
- 573 10. Lidbury, I.D.E.A. *et al.* The 'known' genetic potential for microbial communities to
574 degrade organic phosphorus is reduced in low-pH soils. *MicrobiologyOpen* 6, e00474
575 (2017).
- 576 11. Santos-Benito, F. The Pho regulon: a huge regulatory network in bacteria. *Front Microbiol*
577 6, 402 (2015).

578 12. Gandhi, U. N. & Chandra, B. S. A comparative analysis of three classes of bacterial non
579 specific acid phosphatases and archaeal phosphoesterases: evolutionary perspective.
580 *Acta Informatica Medica* 20, 167-173 (2012).

581 13. Lim, B. L., Yeung, P., Cheng, C., Hill, J. E. Distribution and diversity of phytate-mineralizing
582 bacteria. *ISME J* 1, 321-330 (2007).

583 14. Sebastian, M., Ammerman, J. W. The alkaline phosphatase PhoX is more widely
584 distributed in marine bacteria than the classical PhoA. *ISME J* 3, 563-572 (2009).

585 15. Fraser, T., Lynch, D. H., Entz, M. H., Dunfield, K. E. Linking alkaline phosphatase activity
586 with bacterial *phoD* gene abundance in soil from a long-term management trial.
587 *Geoderma* 257–258, 115-122 (2015).

588 16. Tan, H. *et al.* Long-term phosphorus fertilisation increased the diversity of the total
589 bacterial community and the *phoD* phosphorus mineraliser group in pasture soils. *Biol
590 Fert Soil* 49, 661-672 (2013).

591 17. Srivastava, A. *et al.* Enzyme promiscuity in natural environments: alkaline phosphatase in
592 the ocean. *ISME J*, (2021).

593 18. Sundén, F., *et al.* Mechanistic and evolutionary insights from comparative enzymology of
594 phosphomonoesterases and phosphodiesterases across the alkaline phosphatase
595 superfamily. *J Am Chem Soci* 138, 14273-14287 (2016).

596 19. I. D. E. A. Lidbury, A. R. J. Murphy, D. J. Scanlan, G. D. Bending, A. M. E. Jones, J. D. Moore,
597 A. Goodall, J. P. Hammond, E. M. H. Wellington, Comparative genomic, proteomic and
598 exoproteomic analyses of three *Pseudomonas* strains reveals novel insights into the
599 phosphorus scavenging capabilities of soil bacteria. *Environmental Microbiology*, n/a-n/a
600 (2016)10.1111/1462-2920.13390.

601 20. Antelmann, H., Scharf, C. & Hecker, M. Phosphate starvation-inducible proteins of
602 *Bacillus subtilis*: Proteomics and transcriptional analysis. *J Bacteriol* 182, 4478-4490
603 (2000).

604 21. Sebastian, M., Ammerman, J. W. Role of the phosphatase PhoX in the phosphorus
605 metabolism of the marine bacterium *Ruegeria pomeroyi* DSS-3. *Environ Microbiol Reports*
606 3, 535-542 (2011).

607 22. Fuszard, M. A., Wright, P. C., Biggs, C. A. Comparative quantitative proteomics of
608 *Prochlorococcus* ecotypes to a decrease in environmental phosphate concentrations.
609 *Aqua Biosystems*, (2012).

610 23. Berlitti, F., Passariello, C., Selan, L., Thaller, M. C., Rossolini, G. M. The *Chryseobacterium*
611 *meningosepticum* PafA enzyme: prototype of a new enzyme family of prokaryotic
612 phosphate-irrepressible alkaline phosphatases? *Microbiology* 147, 2831-2839 (2001).

613 24. Lidbury, I. D. E. A. *et al* Niche-adaptation in plant-associated Bacteroidetes favours
614 specialisation in organic phosphorus mineralisation. *ISME J* 15, 1040-1055 (2021).

615 25. Kolton, M., Erlacher, A., Berg, G. & Cytryn, E. The *Flavobacterium* genus in the plant
616 holobiont: Ecological, physiological, and applicative insights. In *Microbial Models: From*
617 *Environmental to Industrial Sustainability* (ed. Castro-Sowinski, S.) pp 189-207 (Springer
618 Singapore, Singapore, 2016).

619 26. Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M. & Michel, G. Environmental and gut
620 *Bacteroidetes*: The food connection. *Front Microbiol* 2, 93 (2011).

621 27. J. Larsbrink, L. S. McKee, in *Advances in Applied Microbiology*, G. M. Gadd, S. Sariaslani,
622 Eds. (Academic Press, 2020), vol. 110, pp. 63-98.

623 28. Nishioka, T. *et al.* Microbial basis of *Fusarium* wilt suppression by *Allium* cultivation.
624 *Scientific Reports* 9, 1715 (2019).

625 29. Carrión, V. J. *et al.* Pathogen-induced activation of disease-suppressive functions in the
626 endophytic root microbiome. *Science* **366**, 606 (2019).

627 30. Kwak, M.-J. *et al.* Rhizosphere microbiome structure alters to enable wilt resistance in
628 tomato. *Nat Biotech* **36**, 1100 (2018).

629 31. Martens, E.C., Koropatkin, N.M., Smith, T.J. & Gordon, J.I. Complex glycan catabolism by
630 the human gut microbiota: The *Bacteroidetes* Sus-like paradigm. *J Biol Chem* **284**, 24673-
631 24677 (2009).

632 32. Monds, R.D., Newell, P.D., Schwartzman, J.A. & O'Toole, G.A. Conservation of the Pho
633 regulon in *Pseudomonas fluorescens* Pf0-1. *Appl Environ Microbiol* **72**, 1910-1924 (2006).

634 33. Gomez, P. F., & Ingram, L. O. Cloning, sequencing and characterization of the alkaline
635 phosphatase gene (*phoD*) from *Zymomonas mobilis*. *FEMS Microbiol Lett* **125**, 237-245
636 (1995).

637 34. Lidbury, I.D.E.A. *et al.* Identification of extracellular glycerophosphodiesterases in
638 *Pseudomonas* and their role in soil organic phosphorus remineralisation. *Scientific
639 Reports* **7**, 2179-2179 (2017).

640 35. Sosa, O. A., Repeta, D. J., DeLong, E. F., Ashkezari, M. D., Karl, D. M. Phosphate-limited
641 ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase
642 pathway for phosphonate degradation. *Environ Microbiol* **21**, 2402-2414 (2019).

643 36. Brickman, E., & Beckwith, J. Analysis of the regulation of *Escherichia coli* alkaline
644 phosphatase synthesis using deletions and φ 80 transducing phages. *J Mol Biol* **96**, 307-
645 316 (1975).

646 37. Chin, J. P., Quinn, J. P., McGrath, J. W. Phosphate insensitive aminophosphonate
647 mineralisation within oceanic nutrient cycles. *ISME J* **12**, 973-980 (2018).

648 38. Murphy, A. R. J. *et al.* Transporter characterisation reveals aminoethylphosphonate
649 mineralisation as a key step in the marine phosphorus redox cycle. *Nat Comms* **12**, 4554
650 (2021).

651 39. Davis, C. E., Mahaffey, C. Elevated alkaline phosphatase activity in a phosphate-replete
652 environment: Influence of sinking particles. *Limnol Ocean* **62**, 2389-2403 (2017).

653 40. Duhamel, S. Björkman, K. M., Van Wambeke, F., Moutin, T., Karl, D. M. Characterization
654 of alkaline phosphatase activity in the North and South Pacific Subtropical Gyres:
655 Implications for phosphorus cycling. *Limnol Ocean* **56**, 1244-1254 (2011).

656 41. Fernandez-Gomez, B. *et al.* Ecology of marine *Bacteroidetes*: a comparative genomics
657 approach. *The ISME Journal* **7**, 1026-1037 (2013).

658 42. Teeling, H. *et al.* Substrate-controlled succession of marine bacterioplankton populations
659 induced by a phytoplankton bloom. *Science* **336**, 608 (2012).

660 43. Yong, S. C. *et al.* A complex iron-calcium cofactor catalyzing phosphotransfer chemistry.
661 *Science* **345**, 1170-1173 (2014).

662 44. McKee, L. S., La Rosa, S. L., Westereng, B., Eijsink, V. G., Pope, P. B., J. Larsbrink,
663 Polysaccharide degradation by the *Bacteroidetes*: mechanisms and nomenclature.
664 *Environ Microbiol Reps* (2021).

665 45. Scanlan, D. J. *et al.* Ecological genomics of marine picocyanobacteria. *Microbiol Mol Biol
666 Rev* **73**, 249-299 (2009).

667 46. Lemieux, M. J., Huang, Y., Wang, D.-N. Glycerol-3-phosphate transporter of *Escherichia
668 coli*: Structure, function and regulation. *Res Microbiol* **155**, 623-629 (2004).

669 47. B. *et al.* Active transport of phosphorylated carbohydrates promotes intestinal
670 colonization and transmission of a bacterial pathogen. *PLOS Pathogens* **11**, e1005107
671 (2015).

672 48. Sun, Z. *et al.* Blocking phosphatidylcholine utilization in *Pseudomonas aeruginosa* via
673 mutagenesis of fatty acid, glycerol and choline degradation pathways, confirms the
674 importance of this nutrient source *in vivo*. *PLoS ONE* **9**, e103778 (2014).

675 49. Kalscheuer, R., Weinrick, B., Veeraraghavan U., Besra, U., Jacobs, W. R. Trehalose-
676 recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of
677 *Mycobacterium tuberculosis*. *Proc Nat Acad Sci* **107**, 21761 (2010).

678 50. Jatuwong, K. *et al.* Bioprocess for production, characteristics, and biotechnological
679 applications of fungal phytases. *Front Microbiol* **11**, (2020).

680 51. Jain, J., Sapna, J., Singh, B. Characteristics and biotechnological applications of bacterial
681 phytases. *Process Biochem* **51**, 159-169 (2016).

682 52. McBride, M.J. & Kempf, M.J. Development of techniques for the genetic manipulation of
683 the gliding bacterium *Cytophaga johnsonae*. *J Bacteriol* **178**, 583 (1996).

684 53. Zhu, Y. *et al.* Genetic analyses unravel the crucial role of a horizontally acquired alginase
685 lyase for brown algal biomass degradation by *Zobellia galactanivorans*. *Environ Microbiol*
686 **19**, 2164-2181 (2017).

687 54. Chen, P. S., Toribara, T. Y., Warner, H. Microdetermination of phosphorus. *Analytical
688 Chem* **28**, 1756-1758 (1956).

689 55. Milanese, A. *et al.* Microbial abundance, activity and population genomic profiling with
690 mOTUs2. *Nat Comms* **10**, 1014 (2019).

691

692

693 **Table 1.** Phosphomonoesterase (PME) activity produced by marine bacteria grown overnight
694 (n=3) in marine Broth (complex medium, phosphate-replete), obtained through addition of
695 the artificial substrate *para*-nitrophenyl phosphate (10mM).

Strain	Phylum	Class	PME activity (405/600nm h ⁻¹)
<i>Roseobacter denitrificans</i> OCh 114	<i>Proteobacteria</i>	<i>Alphaproteobacteria</i>	0.033 ±0.044
<i>Ruegeria pomeroyi</i> DSS-3	<i>Proteobacteria</i>	<i>Alphaproteobacteria</i>	0.001 ±0.019
<i>Dinoroseobacter shibae</i> DFL-12	<i>Proteobacteria</i>	<i>Alphaproteobacteria</i>	0.055 ±0.057
<i>Algoriphagus machiponganensis</i> PR1 [†]	<i>Bacteroidetes</i>	<i>Cytophagia</i>	3.214 ±0.069
<i>Formosa agariphila</i> KMM 3901 [†]	<i>Bacteroidetes</i>	<i>Flavobacteriia</i>	2.335 ±0.089
<i>Polaribacter</i> sp. MED152 [†]	<i>Bacteroidetes</i>	<i>Flavobacteriia</i>	1.510 ±0.043
<i>Gramella forsetii</i> KT0803 [†]	<i>Bacteroidetes</i>	<i>Flavobacteriia</i>	0.509 ±0.070*

*Poor growth and cell aggregation in culture medium

696 [†]Possession of *pafA* in the genome

697

698 **Figure 1. (a) Phylogeny and phosphomonoesterase (PME) activity for members of the major**
699 **bacterial alkaline phosphatase families.** Un-rooted phylogenetic tree comparing PhoD, PhoX,
700 PhoA with PafA homologs. Tree topology and branch lengths were calculated by maximum
701 likelihood using the Blosum62+F+G4 model of evolution for amino acid sequences based on
702 875 sites (595 parsimony-informative) in IQ-TREE software. A consensus tree was generated
703 using 1000 bootstraps. Abbreviations: *F. joh*, *Flavobacterium johnsoniae*; *C. pin*, *Chitinophaga*
704 *pinensis*; *E. men* *Elizabethkingia meningoseptica*; *R. pom*, *Ruegeria pomeroyi*; *B sub*, *Bacillus*
705 *subtilis*; *P. flu*, *Pseudomonas fluorescens*, *P. put*, *Pseudomonas putida*, *Z. mob*, *Zymomonas*
706 *mobilis*; *S. mel*, *Sinorhizobium meliloti*; *A. med*, *Alteromonas mediterranea* (b) PME activity
707 for a *Pseudomonas putida* $\Delta phoX::Gm$ mutant complemented with various PMEs from *P.*
708 *putida* BIRD (+pBXphoX^{BIRD}), *Escherichia coli* (+pBXphoA^{E_C}), and *F. johnsoniae* (e.g. +pBXpafA^{F_J})709 was recorded in cell cultures grown overnight (n=3) in complex medium (upper panel) or
710 minimal medium established phosphate-deplete (Low Pi) growth conditions (lower panel).
711 PME activity was obtained through addition of the artificial substrate *para*-nitrophenyl
712 phosphate (10mM) under four conditions: the original growth medium (GM) or by
713 resuspending cells in a buffer adjusted to three pH values. Values presented are the mean of
714 biological triplicates and error bars denote standard deviation.

715

716 **Figure 2. Phosphomonoesterase (PME) activity in various *F. johnsoniae* genotypes.** PME
717 activity was recorded in cell cultures (n=3) grown overnight under phosphate-replete (High
718 Pi) or phosphate-deplete (Low Pi) growth conditions. Activity was obtained through addition
719 of the artificial substrate *para*-nitrophenol phosphate (10mM). Values presented are the
720 mean of biological triplicates and error bars denote standard deviation. Abbreviations: WT,
721 wild type; A1:A2, double *phoA* mutant; quad, quadruple mutant; quad:pafA, quintuple
722 mutant; +pY:pafA, quintuple mutant complemented with *pafA*; X:pafA, *phoX pafA* double
723 mutant.

724

725 **Figure 3. Growth of *F. johnsoniae* DSM2064 on various organic P substrates as a sole P and**
726 **C source.** (a) The wild type (WT), $\Delta fjh_2478:\Delta fjh_0023$ ($\Delta X:\Delta pafA$) double mutant,
727 quintuple mutant (M5) and complemented quintuple mutant with *pafA* (M5+pafA) were
728 grown (n=3) on various P substrates (200 μ M) in addition to a no P control. (b) The WT,
729 *fjh_0023* ($\Delta pafA$) single mutant, M5 and M5+pafA were also grown (n=3) on various P

730 substrates (3 mM) as the sole C source. Results presented are mean values and error bars
731 denote standard deviation. Abbreviations: F6P, fructose 6-phosphate; G6P, glucose 6-
732 phosphate; M6P, mannose 6-phosphate; PC, phosphorylcholine; PG, phosphoglycerol; Pi
733 phosphate; No P, negative control.

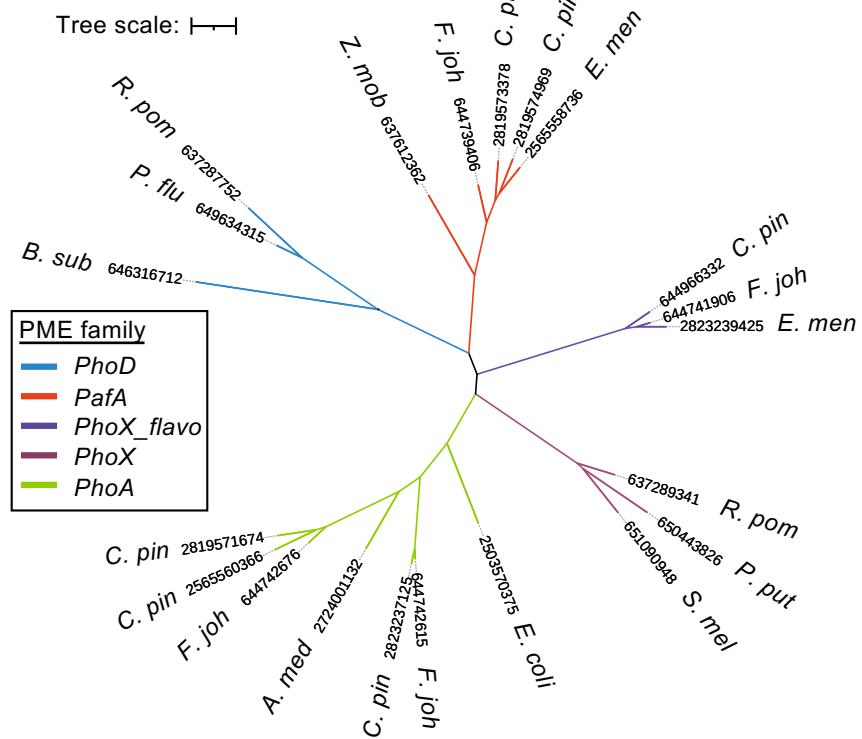
734

735 **Figure 4. Co-culture growth experiments using organic P growth substrates as the sole P**
736 **source.** *F. johnsoniae* wild type and quintuple mutant were grown in competition for the
737 organic P substrates fructose 6-phosphate (F6P), glucose 6-phosphate (G6P),
738 phosphorylcholine (PC) and the phospholipid, phosphatidylinositol, and inorganic phosphate
739 (PO₄) as the sole P source. **(a)** Enumeration of the growth of each strain was calculated by
740 obtaining colony forming units and **(b)** the fitness of the mutant relative to the wild type was
741 determined by plotting the difference in counts. Cultures were grown in triplicate (individual
742 data points displayed) and box whiskers represent the mean, first and third quartiles and
743 upper and lower interquartile ranges. **(c)** Schematic for the generation of conditioned
744 medium (CM) and screening for the accumulation of mineralised phosphate in the growth
745 medium including removal of wild type cells after initial growth and exhaustion of carbon and
746 energy. **(d)** Growth of either wild type *F. johnsoniae* (WT:2064), the quintuple PME mutant
747 (M5:2064) or *phoX:Gm-BIRD-1* (X:BIRD) on CM or fresh medium containing either organic
748 phosphorus or phosphate. Values represent OD₆₀₀ of cultures and the shading is a visual
749 representation of growth; blue: red scale equals low to high growth.

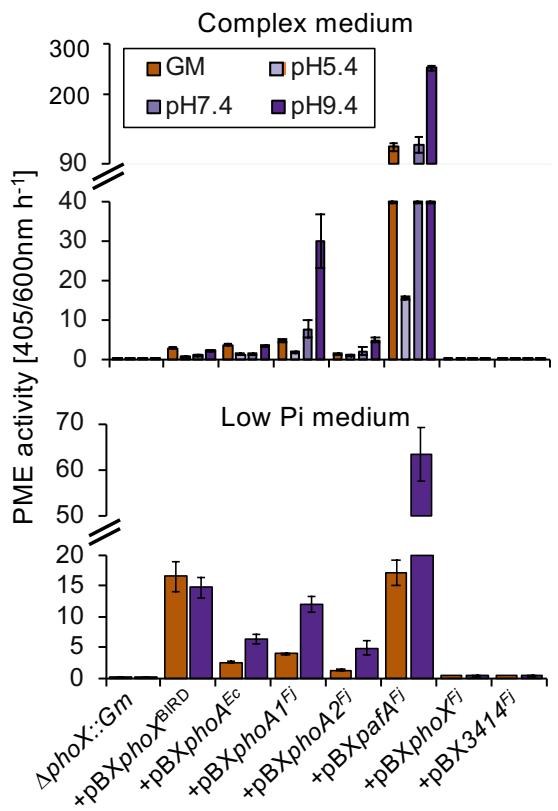
750

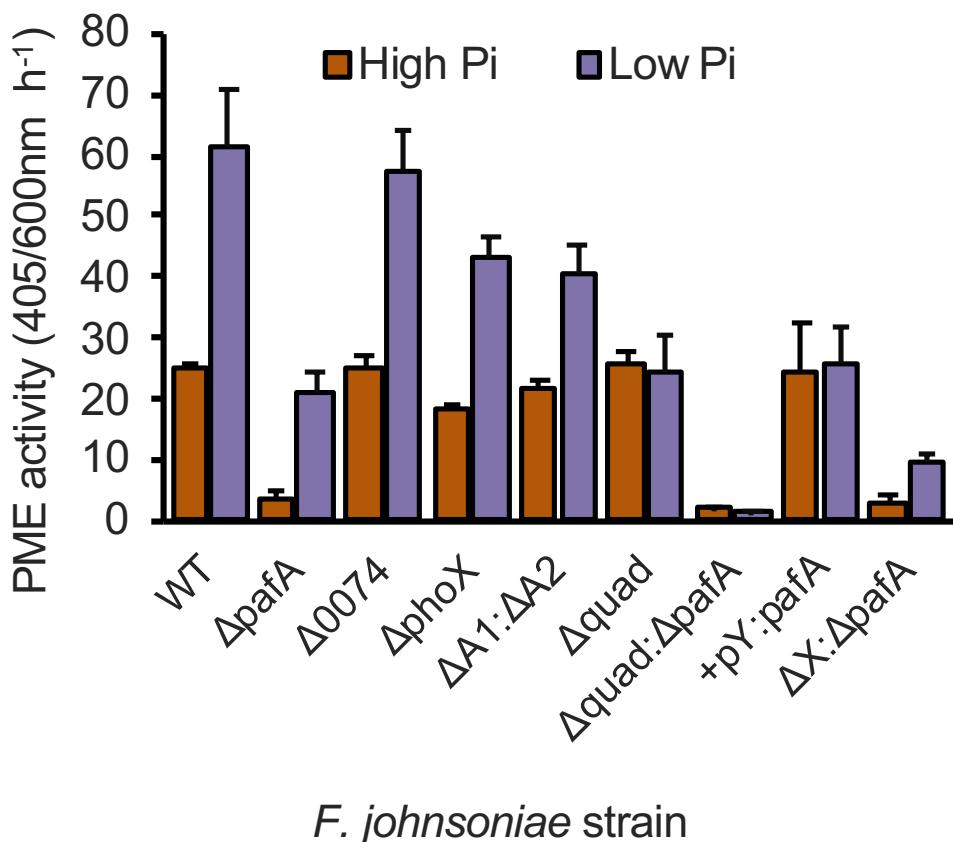
751 **Figure 5. Organic P mineralisation and Pi export rates in various *F. johnsoniae* DSM2064**
752 **genotypes.** Wild type and three PME mutants were grown in the presence of glucose (5 mM)
753 and an organic P substrate mix (2 mM). After 25 h, an additional 5 mM glucose was
754 supplemented to all cultures. Growth (upper panel) and Pi accumulation (lower panel) were
755 quantified over time. Data points represents the mean of duplicate cultures sampled in
756 duplicate (n=4) and error bars denote the standard deviation. Abbreviations: Pi, phosphate;
757 PG:PC, phosphoglycerol-phosphocholine mix; F6P:G6P, fructose 6-phosphate-glucose 6-
758 phosphate mix; M5, quintuple PME mutant.

759

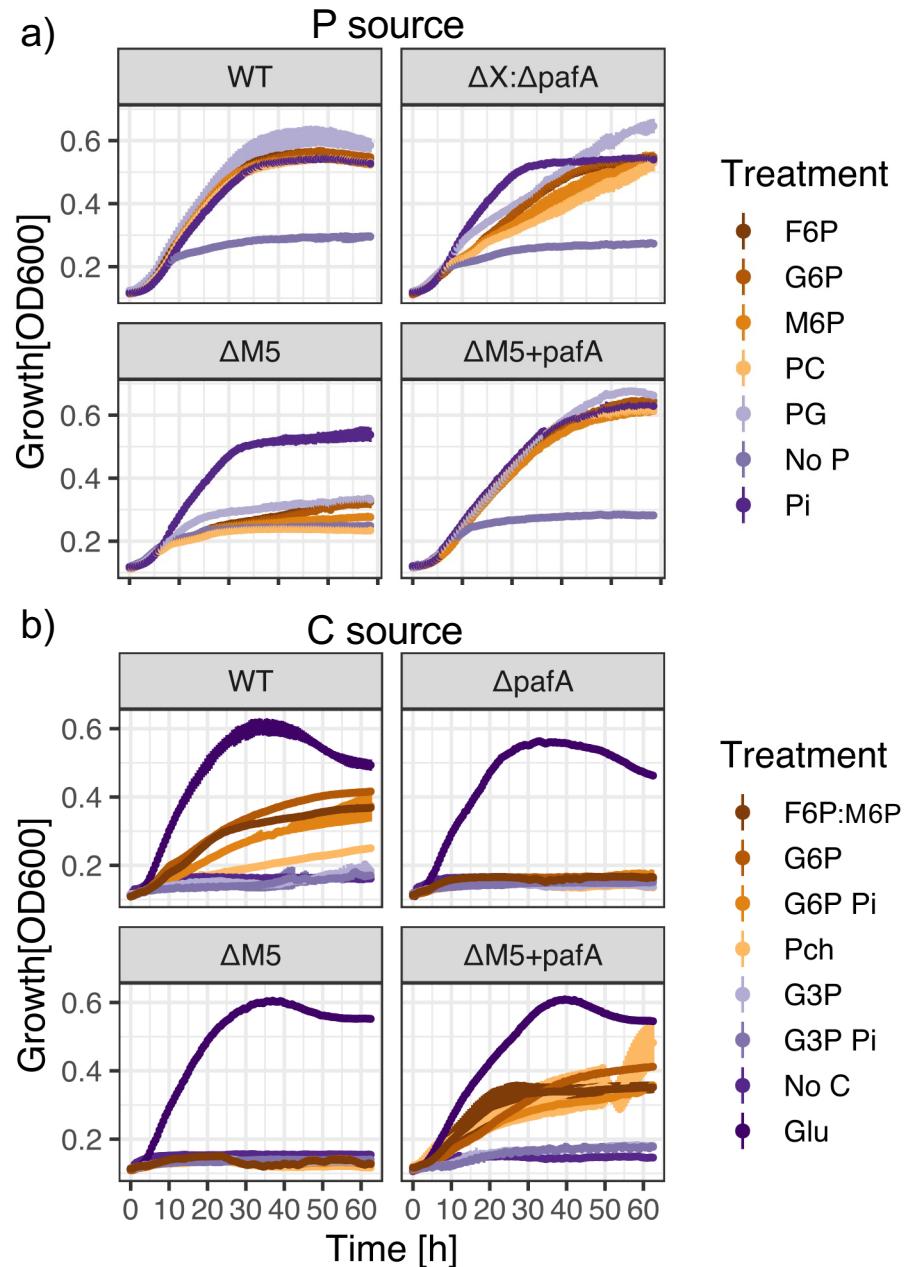

760 **Figure 6. Environmental diversity of PafA and other alkaline PMEs in soil, gut and ocean**
761 **microbiomes.** **(a)** PafA diversity in genome-sequenced isolates and environmental

762 metagenomes (outer ring denotes origin). PafA sequences related to each class of
763 Bacteroidetes are coloured. Branches corresponding to the genus *Flavobacterium* are
764 highlighted green. Black stars represent PafA homologs cloned into the heterologous host *P.*
765 *putida*. The red star denotes the characterised PafA found in *Elizabethkingia meningoseptica*.
766 **(b)** Distribution of the four major alkaline PMEs in the global ocean based on the TARA Oceans
767 dataset. The area of each pie chart represents the normalised gene abundance, expressed as
768 the % of bacteria possessing a given PME (see legend for scaling), at each sampling site and
769 the contributing taxa.

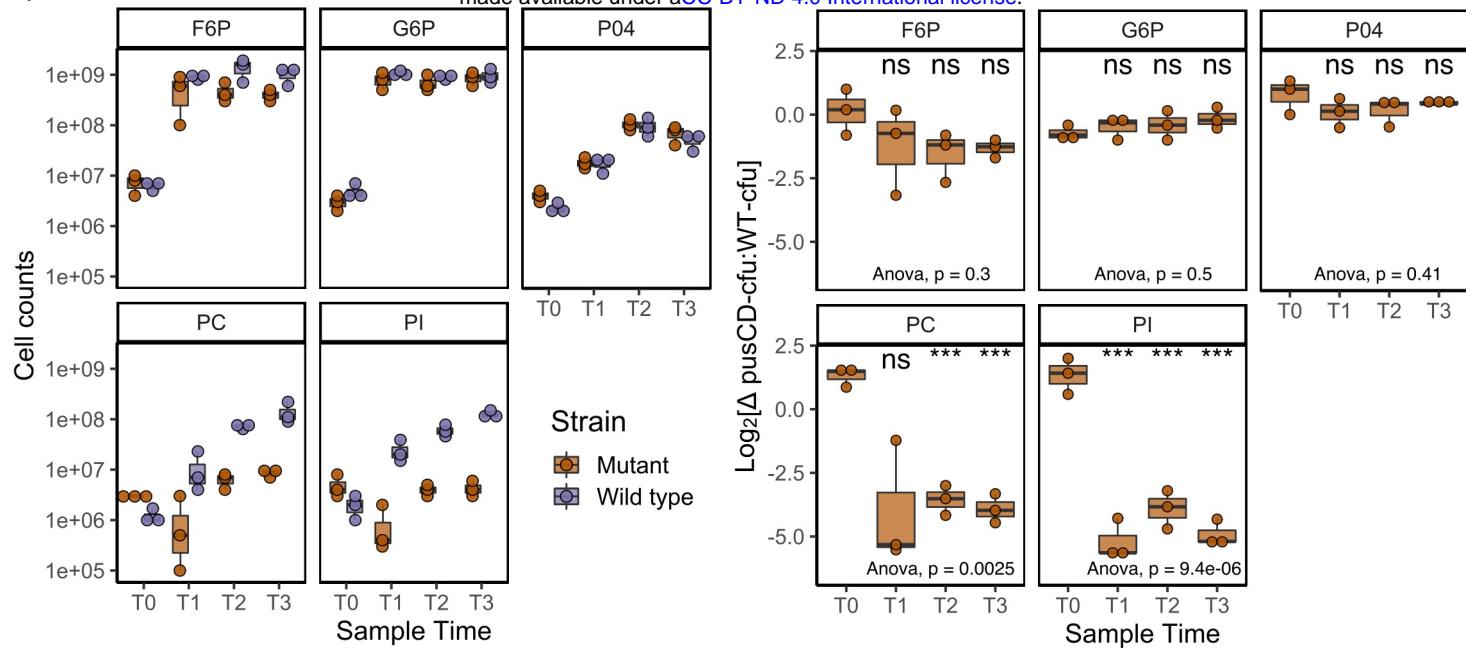

770

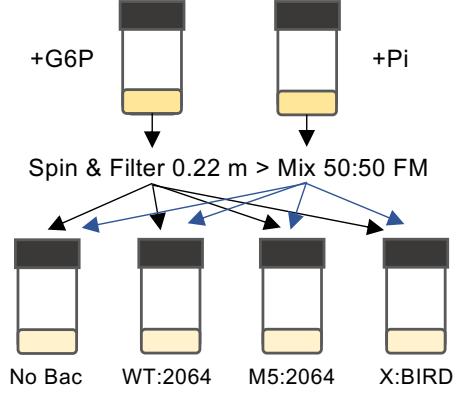

771

a)

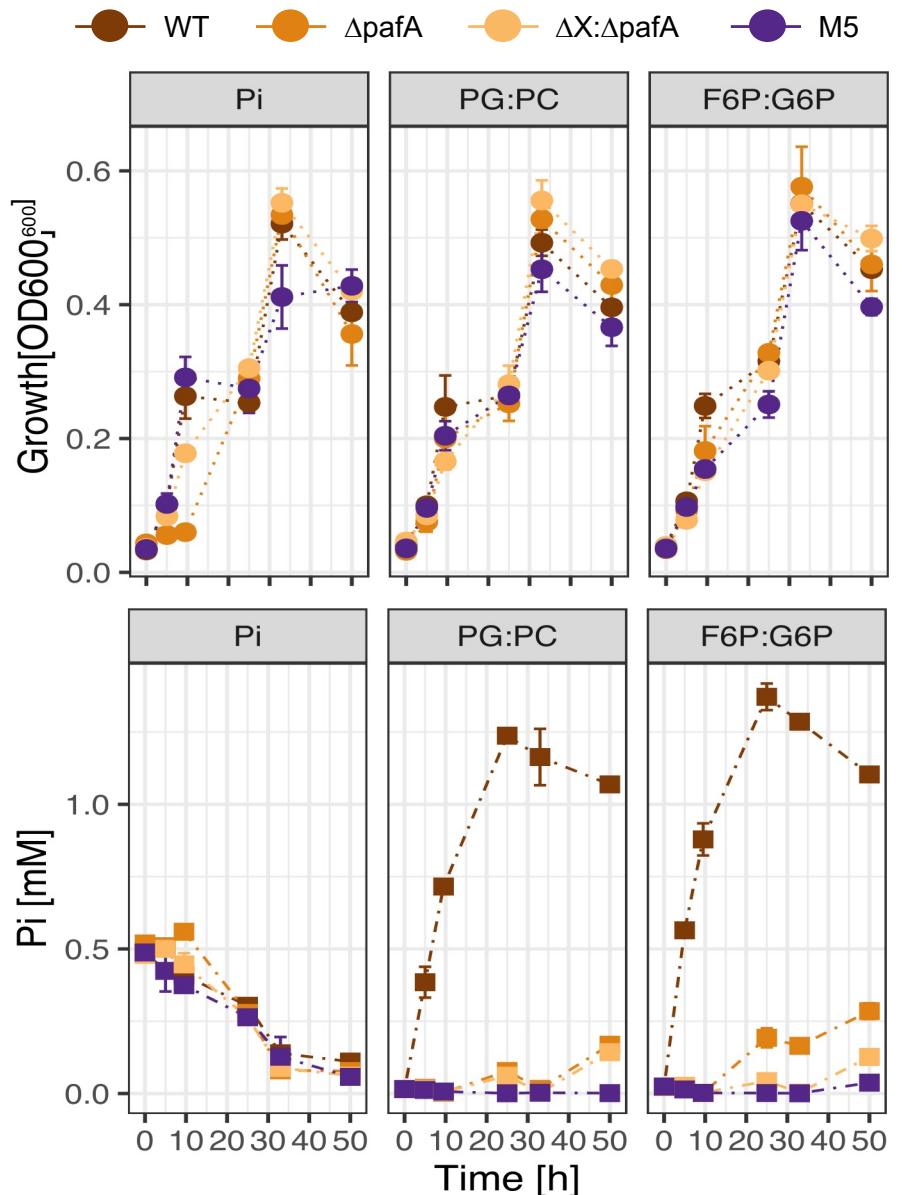


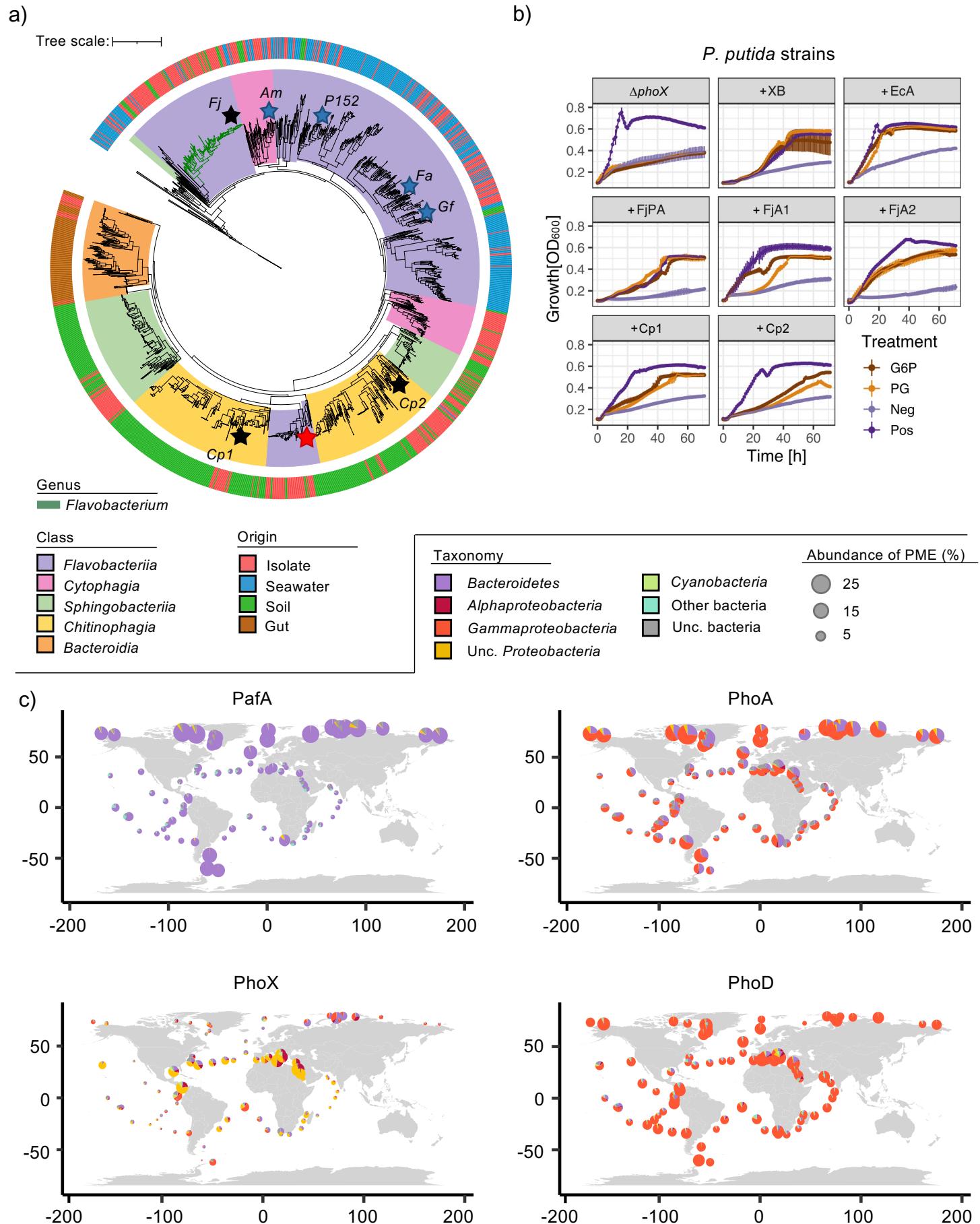
b)




F. johnsoniae strain

a)




c)

d)

P suppl	Strain	CM			CM			CM			FM			FM		
		Pi	CM	CM	Pi	CM	CM	CM	Pi	CM	Pi	CM	Pi	CM	Pi	CM
No Pi	No bac	-0.027	-0.018	-0.028	-0.03	-0.036	-0.039	-0.039	-0.041	-0.039	-0.04	-0.038	-0.04			
No Pi	2064:WT	-0.016	-0.024	-0.022	0.184	0.197	0.207	0.027	0.026	0.031	0.2066	0.195	0.197			
No Pi	2064:M5	0.013	-0.008	-0.013	0.197	0.182	0.189	0.025	0.018	0.017	0.045	0.035	0.035			
No Pi	BIRD:X	-0.004	-0.006	0.003	0.329	0.381	0.355	-0.007	-0.003	-0.009	0.001	-0.001	-0.003			
Pi added	No bac	-0.041	-0.043	-0.041	-0.032	-0.038	-0.037	-0.042	-0.041	-0.04	-0.04	-0.04	-0.04			
Pi added	2064:WT	0.204	0.189	0.197	0.182	0.195	0.192	0.191	0.189	0.19	0.204	0.206	0.221			
Pi added	2064:M5	0.2	0.198	0.187	0.172	0.174	0.198	0.2	0.207	0.199	0.201	0.209	0.197			
Pi added	BIRD:X	0.413	0.405	0.364	0.366	0.395	0.389	0.348	0.351	0.34	0.348	0.346	0.341			

Supplementary Information

Lidbury et al., 2021

A highly active phosphate-insensitive phosphatase is widely distributed in nature

Ian D.E.A. Lidbury^{1*}, David J. Scanlan², Andrew R. J. Murphy², Joseph A. Christie-Oleza³, Maria M. Aguiló-Ferretjans³, Andrew Hitchcock⁴, Tim Daniell¹

¹ Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK

² School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK

³ University of the Balearic Islands, Palma, Spain

⁴ Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK

Corresponding author: I.lidbury@sheffield.ac.uk

Supplementary Tables

Table S1. List of primers used for mutagenesis of *Flavobacterium johnsoniae* DSM2064

Primer	Sequence 5'-3'	Function
KO2064_3187_A_F	GCAGCGAAAAATTGGGGATCCTGCATTCA GGTTTCATTAGCG	For primer region A – PhoA2
KO2064_3187_A_R	TTCCGGGACCAAAGTTCCAGTGCTCATTCCGTC	Rev primer region A – PhoA2
KO2064_3187_BF	TGAGCACTGGAACTTGGTCCCAGAAGTGAAC	For primer region B – PhoA2
KO2064_3187_BR	ATTACGCCAAGCTGCATGCCTGCACGCAACAGA TCAGGTTG	Rev primer region B – PhoA2
KO2064_3249_A_F	AGCAGGGTTATGCAGCGAAAAATTGGGGACA ATGCCAGCGATGACATC	For primer region A – PhoA1
KO2064_3249_A_R	CGGAACTGCTGTATGGATGTGTATTCCCTGCGCC	Rev primer region A – PhoA1
KO2064_3249_BF	GCAGGAATACACATCCATACAGCAGTCCGGTTC	For primer region B – PhoA1
KO2064_3249_BR	CTATGACCATGATTACGCCAAGCTTGATGCTTTC CATCTGCCAACAC	Rev primer region B – PhoA1
KO2064_3250_A_F	GCAGCGAAAAATTGGGGATCCTGGATGCGG TTGACAAAGC	For primer region A – SusCD2
KO2064_3250_A_R	CAAGACCAGCACGTTGTCTAATGCCTGCTC	Rev primer region A – SusCD2
KO2064_3250_BF	GCATTAGACAAAACGTGCTGGTCTTGGAGATC	For primer region B – SusCD2
KO2064_3250_BR	ATTACGCCAAGCTGCATGCCTGCAGGCCGGAGT AGCATCTGTAATATTC	Rev primer region B – SusCD2
KO2064_2478_A_F	ATTACGCCAAGCTGCATGCCTGCAGCCCTGCAG ATATGATGG	For primer region A – PhoX
KO2064_2478_A_R	GTATGAGGGTGAATGTGAAGTAAATCGATGCT TG	Rev primer region A – PhoX
KO2064_2478_BF	ATTTTACTTCACATTACCCCTCATACCTGGC	For primer region B – PhoX
KO2064_2478_BR	GCAGCGAAAAATTGGGGATCCTCGGTTTG GAATAACTTGGC	Rev primer region B – PhoX
KO2064_0023_A_F	gcagcgaaaaattcgggggatcctaAGAGCTCATATCG ACGG	For primer region A – PafA_Fj
KO2064_0023_A_R	ccggaacatgggtGGACGTTGTGCACTC	Rev primer region A – PafA_Fj
KO2064_0023_BF	acaacaacgtccACCATGTTCCGGCTATTTTC	For primer region B – PafA_Fj
KO2064_0023_BR	attacgccaagcttgcatgcctgcaCTGAAGTTGCCGGTC GTATG	Rev primer region B – PafA_Fj
KO2064_0074_A_F	GTTATGCAGCGAAAAATTGGGGATCCTAGA ATACGAACCGGAAGC	For primer region A – 0074
KO2064_0074_A_R	TGAAGGTCTACAAATTCCATTGAATCCTGACC	Rev primer region A – 0074
KO2064_0074_BF	CAGGATTCAAATGGAATTGTAGACCTTCACGCG	For primer region B – 0074
KO2064_0074_BR	CCATGATTACGCCAAGCTGCATGCCTGCATACC GGGGCTTTGTTGG	Rev primer region B – 0074

Compl_pcP0023F	tgccggaaaaattcggggTGTGGGAGAGTATGTCG TC	For primer for PafA_Fj complementation – 5' end of promoter
Compl_pcP0023F	agtccggccgcgtctagagTTATTCTTATTATCTAAA ACTTCAGTCATAAC	Rev primer for PafA_Fj complementation – 3' end of fj_0023

Table S2. List of strains used and generated in this study:

Strain	Description <i>fjoh_0023</i>	Reference
<i>F. johnsoniae</i> DSM2064	Wild type strain	DSMZ
<i>P. putida</i> BIRD-1	Wild type strain	(3)
<i>Polaribacter</i> sp. MED152	Wild type marine <i>Flavobacteriia</i> (<i>Bacteroidetes</i>)	(4)
<i>Gramella forsetii</i> KT0803	Wild type marine <i>Flavobacteriia</i> (<i>Bacteroidetes</i>)	(5)
<i>Formosa agariphila</i> KMM 3901	Wild type marine <i>Flavobacteriia</i> (<i>Bacteroidetes</i>)	(6)
<i>Algoriphagus machipongonensis</i> PR1	Wild type marine <i>Cytophagia</i> (<i>Bacteroidetes</i>)	(7)
<i>Ruegeria pomeroyi</i> DSS-3	Wild type marine <i>Rhodobacteraceae</i> (<i>Alphaproteobacteria</i>)	DSMZ
<i>Dinoroseobacter shibae</i> DFL-12	Wild type marine <i>Rhodobacteraceae</i> (<i>Alphaproteobacteria</i>)	DSMZ
<i>Roseobacter denitrificans</i> OCh 114	Wild type marine <i>Rhodobacteraceae</i> (<i>Alphaproteobacteria</i>)	DSMZ
$\Delta phoX::Gm$	Mutant strain fo <i>P. putida</i> with <i>PPUBIRD1_1093</i> <i>phoX</i> mutated	(8)
$\Delta phoX::Gm +pBX:phoX^{BIRD}$	$\Delta phoX::Gm$ complemented with pBBR1MCS-km containing the <i>phoX</i> promoter (+pBX) and its native <i>phoX</i>	(8)
$\Delta phoX::Gm +pBX:phoA^{Ec}$	$\Delta phoX::Gm$ complemented with +pBX containing the <i>E. coli</i> <i>phoA</i>	This study
$\Delta phoX::Gm +pBX:phoA1^{Fj}$	$\Delta phoX::Gm$ complemented with +pBX containing <i>fjoh_3249</i> (<i>phoA1</i>)	This study
$\Delta phoX::Gm +pBX:phoA2^{Fj}$	$\Delta phoX::Gm$ complemented with +pBX containing <i>fjoh_3187</i> (<i>phoA2</i>)	This study
$\Delta phoX::Gm +pBX:phoX^{Fj}$	$\Delta phoX::Gm$ complemented with +pBX containing <i>fjoh_2478</i> (<i>phoX</i>)	This study
$\Delta phoX::Gm +pBX:pafA^{Fj}$	$\Delta phoX::Gm$ complemented with +pBX containing <i>fjoh_0023</i> (<i>pafA</i>)	This study
<i>phoX::Gm +pBX: pafA^{Fj}</i>	$\Delta phoX::Gm$ complemented with +pBX containing <i>Cpin_0724</i> (<i>pafA1</i>)	This study
$\Delta phoX::Gm +pBX:pafA^{Fj}$	$\Delta phoX::Gm$ complemented with +pBX containing <i>Cpin_1665</i> (<i>pafA2</i>)	This study
$\Delta pafA$	<i>F. johnsoniae</i> with <i>fjoh_0023</i> (<i>pafA</i>) mutated	This study
$\Delta phoX^{Fj}$	<i>F. johnsoniae</i> with <i>fjoh_2478</i> (<i>pafA</i>) mutated	This study
$\Delta 0074$	<i>F. johnsoniae</i> with <i>fjoh_0074</i> (<i>pafA</i>) mutated	This study
$\Delta phoA1:\Delta phoA2$	<i>F. johnsoniae</i> with <i>fjoh_3187</i> (<i>phoA2</i>) and <i>fjoh_3249</i> (<i>phoA2</i>) mutated	This study
Quad ($\Delta phoA1:\Delta phoA2:\Delta phoX^{Fj}:\Delta 0074$)	<i>F. johnsoniae</i> with <i>fjoh_0074</i> , <i>fjoh_2478</i> , <i>fjoh_3187</i> (<i>phoA2</i>) and <i>fjoh_3249</i> (<i>phoA2</i>) mutated	This study
M5 ($\Delta phoA1:\Delta phoA2:\Delta phoX^{Fj}:\Delta 0074:\Delta pafA$)	<i>F. johnsoniae</i> with <i>fjoh_0023</i> , <i>fjoh_0074</i> , <i>fjoh_2478</i> , <i>fjoh_3187</i> (<i>phoA2</i>) and <i>fjoh_3249</i> (<i>phoA2</i>) mutated	This study
M5 +pCP:pafA	M5 +pCP11 containing <i>fjoh_0023</i> and its native promoter	This study

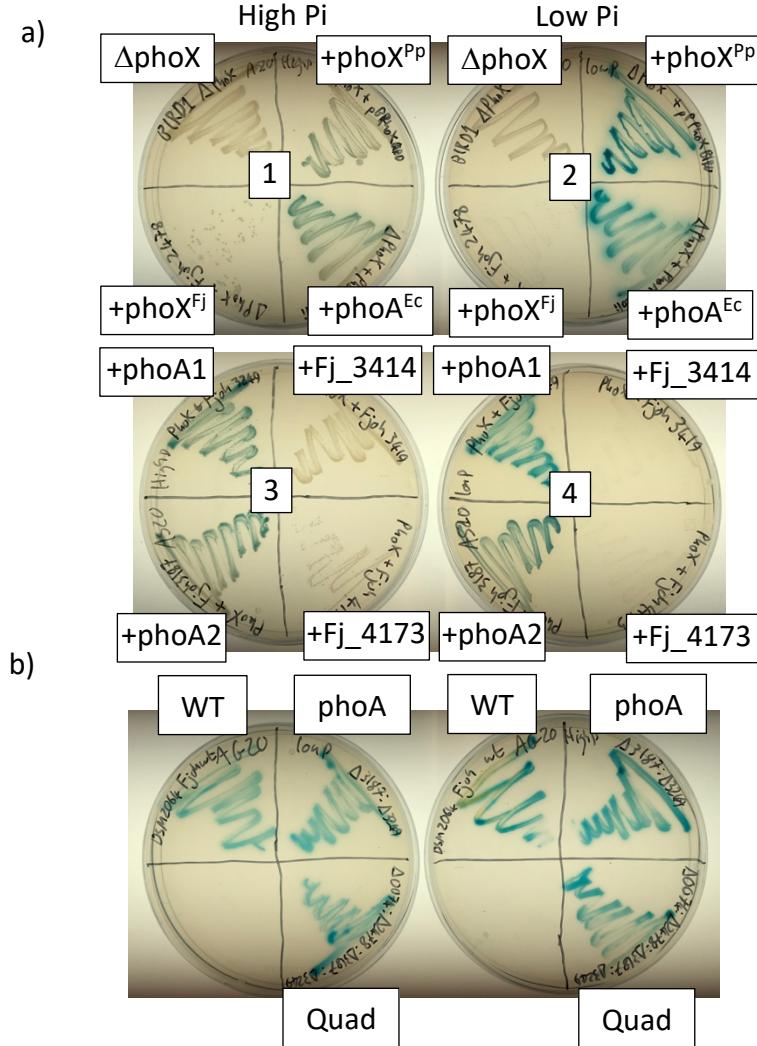
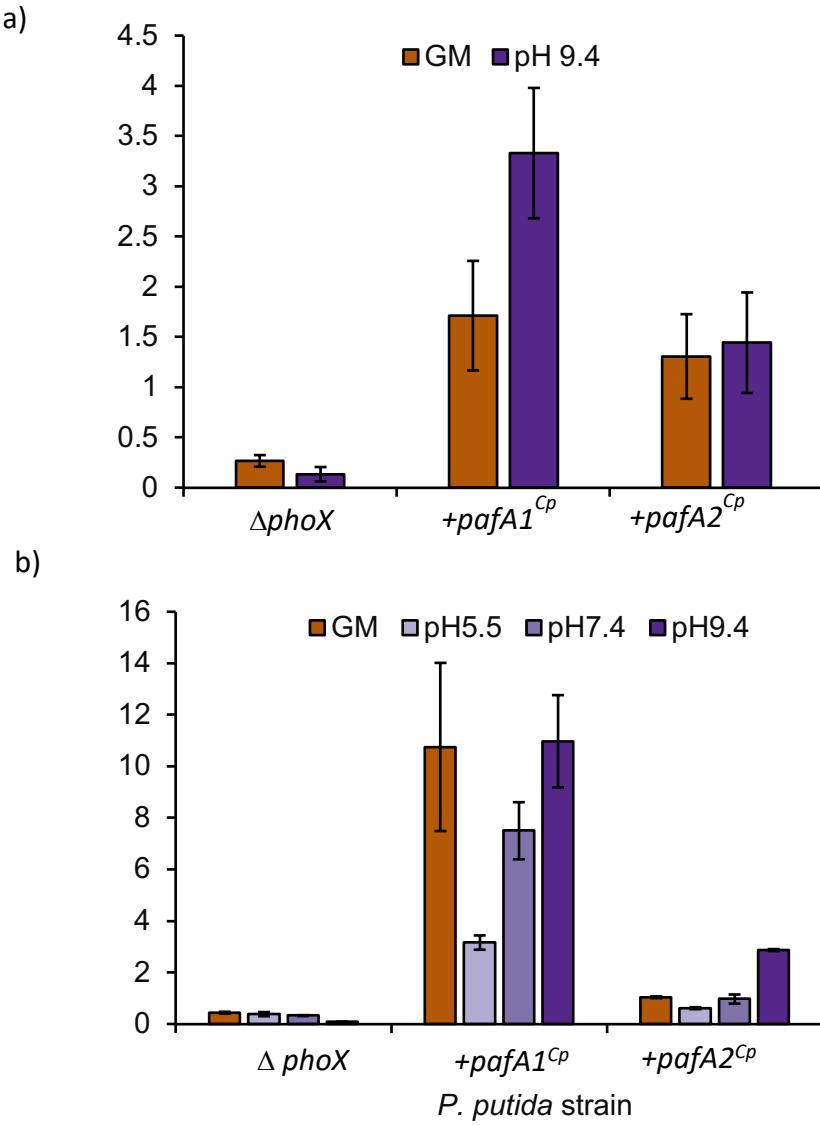
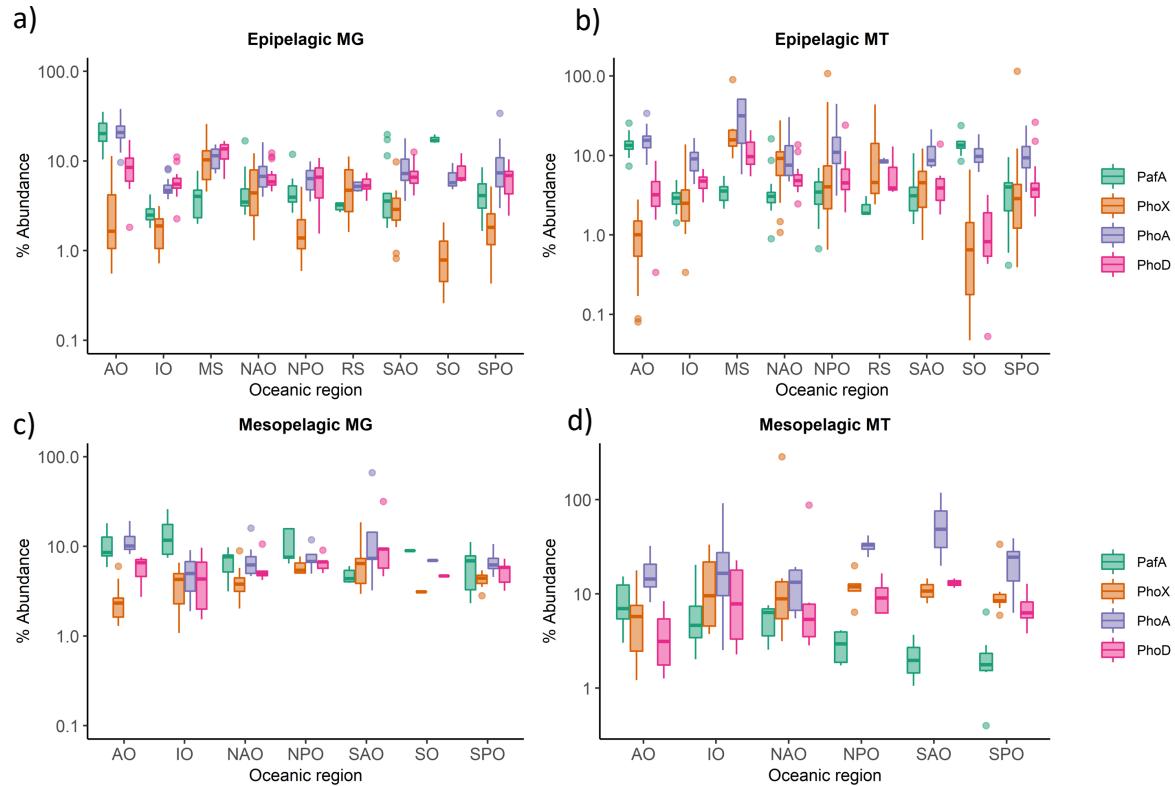
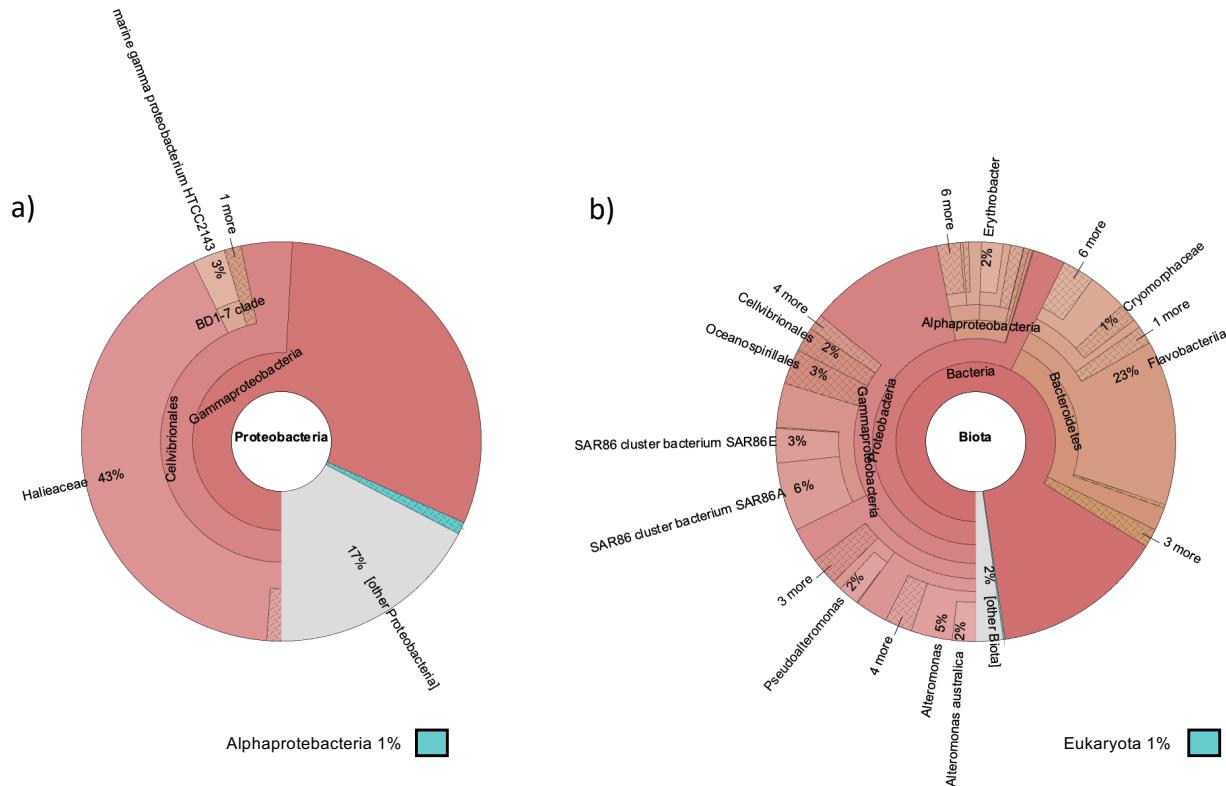


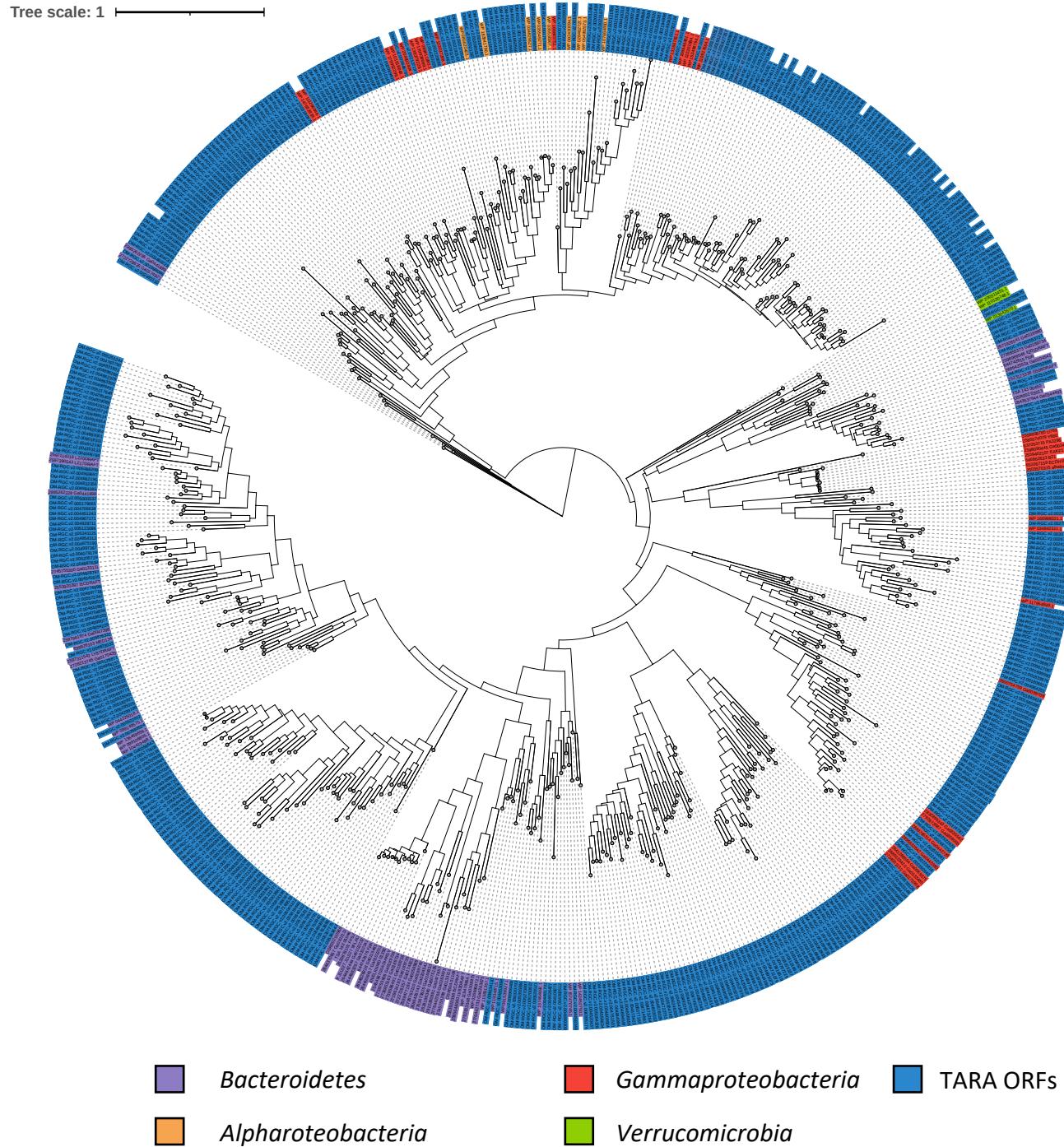
Table S3. Search-algorithm comparison of *phoX* and *phoA* gene abundance in the TARA Oceans dataset. For BLASTP searches, the same query sequences and search parameters as Sebastien et al. (2009) were used.


Phosphatase	No. of hits	No. of hits	Abundance value	Abundance value
	BLASTP	hmmer	BLASTP	hmmer
<i>phoA</i>	51	947	1020	26114
<i>phoX</i>	409	687	8951	17135

All searches were performed using a stringency e^{-60} .


Supplementary Figures


Figure S1. Qualitative plate assay for phosphomonoesterase acitivity. (a) Alkaline phosphatase plate assay using the *Pseudomonas putida* BIRD-1 ΔphoX mutant (top left, plates 1 & 2). 5-Bromo-4-chloro-3-indolyl phosphate (BCIP), more commonly known as XP, was used as the substrate. The phoX mutant exhibited zero activity indicated by a lack of blue colour which is created when XP is cleaved. Complementation with the native *P. putida* BIRD-1 (+ phoX^{Pp}) restored the wild type phenotype. Heterologous expression of the two PhoA-like homologs (Fjoh_3187, bottom left P3 & 4 and Fjoh_3249, top left P3 & 4), also restored APase activity confirming their function. Neither Fjoh_3414 nor Fjoh_4173 restored any phenotype. Interestingly, Fjoh_2478, the PhoX-like homolog, did not restore the phenotype. However, growth in this complemented mutant was inhibited which suggests that expression and subsequent export of the lipoprotein may be affected. Plates were left overnight at 30°C. **(b)** Alkaline phosphatase plate assay using the various *F. johnsoniae* APase mutants. Both the double phoA mutant and the quadruple mutant still displayed observable APase activity under Pi replete and Pi deplete growth conditions (top left, plates 1 & 2). 5-Bromo-4-chloro-3-indolyl phosphate (BCIP), more commonly known as XP, was used as the substrate. Abbreviations: WT, wild type; phoA , $\Delta\text{phoA1}:\Delta\text{phoA2}$; Quad, $\Delta\text{phoA1}:\Delta\text{phoA2}:\Delta\text{phoX}:\Delta\text{fjoh}_0074$.


Figure S2. Heterologous phosphomonoesterase (PME) activity in the *P. putida* null mutant. Cell expressing two distinct *pafA* homologs found in the genome of *Chitinophaga pinensis* ($+pafA1^{cp}$ $+pafA2^{cp}$) were grown overnight in complex medium (a) or minimal medium (b) established phosphate-deplete (Low Pi) growth conditions. PME activity was obtained through addition of the artificial substrate *para*-nitrophenyl phosphate (10mM). Values presented are the mean of biological triplicates and error bars denote standard deviation. Abbreviations: GM, growth medium

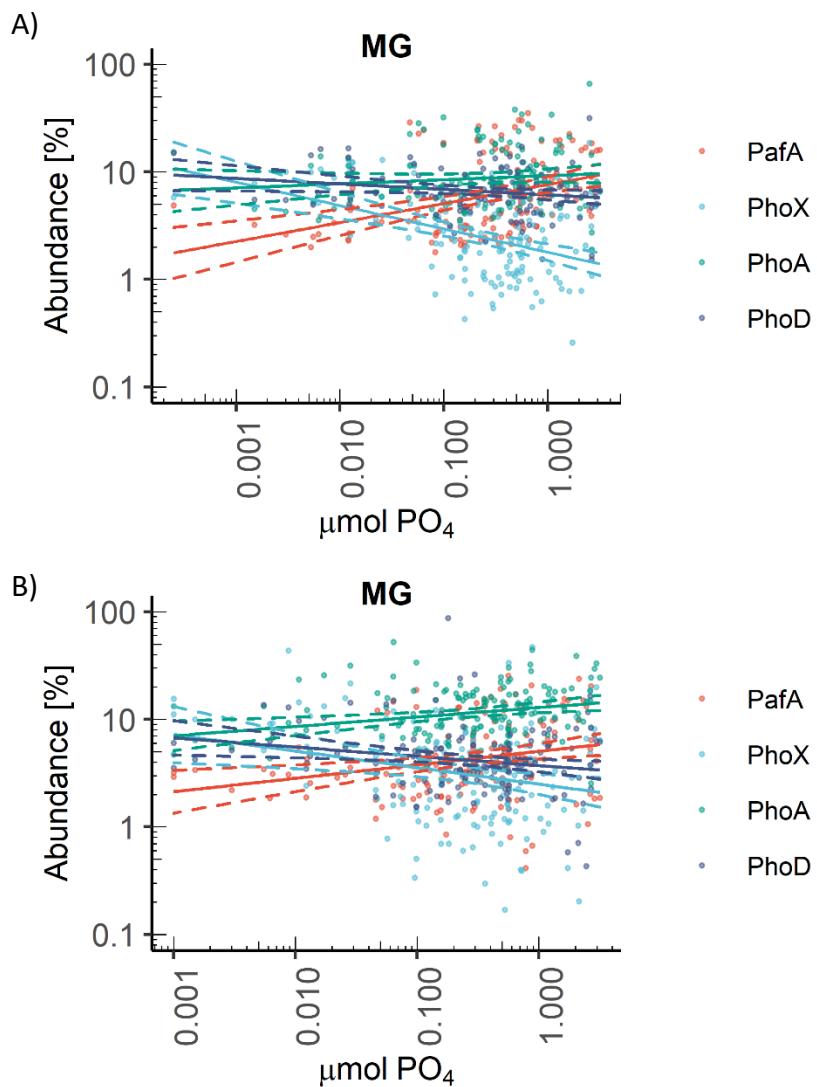

Figure S3. Distribution and expression of phosphatase genes across specific regions of the global ocean. Abundance (Log₁₀ abundance [gene or transcript] relative to the median abundance [gene or transcript] of 10 single copy core genes) of *pafA*, *phoX*, *phoA*, *phoD* in marine epipelagic (a, b) and mesopelagic (c, d) waters, split by metagenome (MG) (a, c) and metatranscriptome (b, d). Data are represented as boxplots, where the middle line is the median and the upper and lower hinges correspond to the first and third quartiles. The upper whisker extends from the upper hinge to the largest value that is no more than 1.5×IQR (inter-quartile range) from the upper hinge, and the lower whisker extends from the lower hinge to the smallest value that is no further than 1.5×IQR from the lower hinge. Data beyond the ends of the whiskers are outlier points that are plotted individually.

Figure S4. Taxonomic classification of PhoA homologs retrieved from the global ocean. The TARA Oceans OM-RGCv2+G metagenome dataset was scrutinised using either BLASTP (a) or hmmer (b) search algorithms. Both stringency values were set at e^{-60} .

Figure S5. Phylogeny of PhoA homologs retrieved from the TARA oceans dataset. Tree topology and branch lengths were calculated by maximum likelihood using the Blosum62+F+G4 model of evolution for amino acid sequences based on 900 sites in IQ-TREE software. A consensus tree was generated using 1000 bootstraps. TARA ORFs are coloured navy blue. Sequences retrieved from isolate genomes (IMG gene numbers or NCBI 11accessions provided) were also included and colours represent taxonomy (see legend).

Figure S6. Relationship between gene and transcript abundance of *pafA*, *phoX*, *phoA*, *phoD* and standing stock phosphate concentrations in the global ocean. Phosphatase abundance, analysed by linear regression of Log_{10} gene abundance and standing stock phosphate (PO_4) concentrations, in the epipelagic MG (a) and mesopelagic MG (b). 95% confidence intervals are shown by dashed lines.

References

1. Y. Zhu, F. Thomas, R. Larocque, N. Li, D. Duffieux, L. Cladière, F. Souchaud, G. Michel, M. J. McBride, Genetic analyses unravel the crucial role of a horizontally acquired alginic lyase for brown algal biomass degradation by *Zobellia galactanivorans*. *Environmental Microbiology* **19**, 2164-2181 (2017).
2. M. E. Kovach, P. H. Elzer, D. Steven Hill, G. T. Robertson, M. A. Farris, R. M. Roop II, K. M. Peterson, Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene* **166**, 175-176 (1995).
3. A. Roca, P. Pizarro-Tobías, Z. Udaondo, M. Fernández, M. A. Matilla, M. A. Molina-Henares, L. Molina, A. Segura, E. Duque, J.-L. Ramos, Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium *Pseudomonas putida* BIRD-1. *Environmental Microbiology* **15**, 780-794 (2013).
4. J. M. González, B. Fernández-Gómez, A. Fernández-Guerra, L. Gómez-Consarnau, O. Sánchez, M. Coll-Lladó, J. del Campo, L. Escudero, R. Rodríguez-Martínez, L. Alonso-Sáez, M. Latasa, I. Paulsen, O. Nedashkowskaya, I. Lekunberri, J. Pinhassi, C. Pedrós-Alió, Genome analysis of the proteorhodopsin-containing marine bacterium *Polaribacter* sp. MED152 (Flavobacteria). *Proceedings of the National Academy of Sciences USA* **105**, 8724 (2008).
5. H. Eilers, J. Pernthaler, J. Peplies, F. O. Glöckner, G. Gerdts, R. Amann, Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton. *Applied and Environmental Microbiology* **67**, 5134-5142 (2001).
6. A. J. Mann, R. L. Hahnke, S. Huang, J. Werner, P. Xing, T. Barbeyron, B. Huettel, K. Stüber, R. Reinhardt, J. Harder, F. O. Glöckner, R. I. Amann, H. Teeling, The genome of the alga-associated marine flavobacterium *Formosa agariphila* KMM 3901T reveals a broad potential for degradation of algal polysaccharides. *Applied and Environmental Microbiology* **79**, 6813-6822 (2013).
7. R. A. Alegado, J. D. Grabenstatter, R. Zuzow, A. Morris, S. Y. Huang, R. E. Summons, N. King, *Algiphagus machiponganensis* sp. nov., co-isolated with a colonial choanoflagellate. *International Journal of Systematic and Evolutionary Microbiology* **63**, 163-168 (2013).
8. I. D. E. A. Lidbury, A. R. J. Murphy, T. D. Fraser, G. D. Bending, A. M. E. Jones, J. D. Moore, A. Goodall, M. Tibbett, J. P. Hammond, D. J. Scanlan, E. M. H. Wellington, Identification of extracellular glycerophosphodiesterases in *Pseudomonas* and their role in soil organic phosphorus remineralisation. *Scientific reports* **7**, 2179-2179 (2017).