

1 **A vimentin-targeting oral compound with host-directed antiviral and**
2 **anti-inflammatory actions addresses multiple features of COVID-19**
3 **and related diseases**

4

5 Zhizhen Li,^a Jianping Wu,^{b,c} Ji Zhou,^d Baoshi Yuan,^a Jiqiao Chen,^e Wanchen Wu,^f Lian
6 Mo,^g Zhipeng Qu,^{a*} Fei Zhou,^a Yingying Dong,^a Kai Huang,^a Zhiwei Liu,^a Tao Wang,^a
7 Deebie Symmes,^g Jingliang Gu,^f Eiketsu Sho,^e Jingping Zhang,^d Ruihuan Chen,^{c,g}# Ying
8 Xu^a#

9

10 ^a Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic
11 Resource Center, Medical School of Soochow University; Suzhou, Jiangsu, China

12 ^b Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing; Jiangsu,
13 China

14 ^c Luoda Biosciences, Inc.; Chuzhou, Anhui, China

15 ^d Institute of Biology and Medical Sciences, Medical School of Soochow University;
16 Suzhou, Jiangsu, China

17 ^e KCI Biotech (Suzhou) Inc.; Suzhou, Jiangsu, China

18 ^f Joinn Laboratories (Suzhou), Co., Ltd.; Suzhou, Jiangsu, China

19 ^g Aluda Pharmaceuticals, Inc.; Menlo Park, California, USA

20

21 **RUNNING TITLE:** Targeting vimentin in COVID-19 and beyond

22

23

24 #Address correspondence to Ruihuan Chen, ruihuan@aludapharm.com, or Ying Xu,
25 yingxu@suda.edu.cn.

26 *Present address: Zhipeng Qu, Vazyme Biotech Co.Ltd, Nanjing, Jiangsu, China.

27 Zhizhen Li, Jianping Wu, Ji Zhou and Baoshi Yuan contributed equally to this work.

28 Author order was determined on the basis of affiliation.

29

30 This manuscript has 248 words in the Abstract, 4817 words and 7 figures in the Main
31 text, 57 references, 6 Supplementary figures and 3507 words in Materials and Methods.

32

33

34 **ABSTRACT**

35 Damage in COVID-19 results from both the SARS-CoV-2 virus and its triggered
36 overreactive host immune responses. Therapeutic agents that focus solely on reducing
37 viral load or hyperinflammation fail to provide satisfying outcomes in all cases. Although
38 viral and cellular factors have been extensively profiled to identify potential anti-COVID
39 targets, new drugs with significant efficacy remain to be developed. Here, we report the
40 potent preclinical efficacy of ALD-R491, a vimentin-targeting small molecule compound,
41 in treating COVID-19 through its host-directed antiviral and anti-inflammatory actions.

42 We found that by altering the physical properties of vimentin filaments, ALD-491
43 affected general cellular processes as well as specific cellular functions relevant to
44 SARS-CoV-2 infection. Specifically, ALD-R491 reduced endocytosis, endosomal
45 trafficking, and exosomal release, thus impeding the entry and egress of the virus;

46 increased the microcidal capacity of macrophages, thus facilitating the pathogen
47 clearance; and enhanced the activity of regulatory T cells, therefore suppressing the
48 overreactive immune responses. In cultured cells, ALD-R491 potently inhibited the
49 SARS-CoV-2 spike protein and human ACE2-mediated pseudoviral infection. In aged
50 mice with ongoing, productive SARS-CoV-2 infection, ALD-R491 reduced disease
51 symptoms as well as lung damage. In rats, ALD-R491 also reduced bleomycin-induced
52 lung injury and fibrosis. Our results indicate a unique mechanism and significant
53 therapeutic potential for ALD-R491 against COVID-19. We anticipate that ALD-R491, an
54 oral, fast-acting, and non-toxic agent targeting the cellular protein with multipart actions,
55 will be convenient, safe, and broadly effective, regardless of viral mutations, for patients
56 with early- or late-stage disease, post-COVID complications and other related diseases.

57

58 **IMPORTANCE** With the Delta variant currently fueling a resurgence of new infections in
59 the fully-vaccinated population, developing an effective therapeutic drug is especially
60 critical and urgent in fighting COVID-19. In contrast to the many efforts to repurpose
61 existing drugs or address only one aspect of COVID-19, we are developing a novel
62 agent with first-in-class mechanism-of-actions that address both the viral infection and
63 the overactive immune system in the pathogenesis of the disease. Unlike virus-directed
64 therapeutics that may lose efficacy due to viral mutations and immunosuppressants that
65 require ideal timing to be effective, this agent, with its unique host-directed antiviral and
66 anti-inflammatory actions, can work against all variants of the virus, be effective during
67 all stages of the disease, and even resolve post-disease damage and complications. A

68 further development of the compound will provide an important tool in the fight against
69 COVID-19, its complications, as well as future outbreaks of new viruses.

70

71 **KEY WORDS** COVID-19, small molecule, vimentin, host-directed antiviral, anti-
72 inflammation

73

74 **INTRODUCTION**

75 Vaccines against SARS-CoV-2 have been rapidly developed and rolled out to
76 contain the COVID-19 pandemic, however the infection-blocking immunity induced by
77 vaccination has been shown to wane quickly, even though disease-reducing immunity
78 may be long-lived (1). Vaccination primarily generates IgG antibodies that circulate in
79 the blood, not IgA antibodies in the mucosa of the respiratory tract which are a critical
80 component of the mucosal immunity that prevents SARS-CoV-2 from initiating its
81 infection (2, 3). The spike mRNA-based vaccination induces strong, persistent antibody
82 responses but accompanied by a limited or absent T-cell response (4, 5). In addition,
83 the virus has now demonstrated an ability to rapidly mutate during its transmission and
84 to generate mutants that not only provide enhanced infectivity, but also an acquired
85 ability to escape from therapeutic antibodies and those induced by infection or
86 vaccination. Several Variants of Concern (VOCs) have emerged within a short period of
87 time, especially the Delta variant (6, 7) that is currently fueling a resurgence of new

88 infection in fully vaccinated population. This virus appears to present a persistent
89 problem despite vaccines, and therefore effective therapeutics are critically needed.

90 To date, most therapeutic interventions have been focused either on stopping
91 viral infection or reducing virus-induced hyper-inflammation. Antiviral approaches can
92 be virus-directed or host-directed. Virus-directed approaches include blocking viral entry,
93 preventing maturation of viral proteins, and disrupting the viral RNA-synthesis
94 machinery. All face challenges from the rapid viral mutations that could make them
95 ineffective over time. In addition, these types of agents must be given early during an
96 infection to be effective, as viral load has been shown to peak on or before symptom
97 onset (8) with very few infectious viruses present in the upper respiratory tract 10 days
98 after the onset of symptoms, even without treatment (9). A delayed or longer anti-viral
99 treatment in the course of COVID-19 has been shown to lead a worse outcome (10),
100 because it is the overactivated host immune system, not the virus itself, that is driving
101 the progression and the development of serious complications. However,
102 immunomodulators have shown minimal effects and corticosteroids, moderate effects
103 only if given at the right timing, otherwise worsening the disease. Host-directed antiviral
104 approaches have attracted attention because targeting host proteins offers broad-
105 spectrum anti-viral actions that are hard for virus to evade through mutation. The host
106 proteins that interact with SARS-CoV-2 have been extensively profiled and a large
107 quantity of existing compounds have been screened for potential antiviral activities (11-
108 15). So far, however, no repurposed antiviral drugs addressing these host factors have
109 shown significant efficacy in clinical trials(16).

110 An ideal anti-COVID agent would be able to both eliminate the virus and restore
111 balance to the immune system. Several existing drugs, such as hydroxychloroquine,
112 colchicine, and ivermectin that exhibit some degree of synergistic antiviral and anti-
113 inflammatory actions, have been repurposed to treat COVID-19, however, the results
114 have been controversial or inconclusive. Whether applied in early disease to prevent
115 progression, or in late stage to reduce morbidity and mortality, therapeutics with new
116 mechanisms are urgently needed to tackle the multifaceted and inter-related nature of
117 pathogenesis in SARS-CoV2 infection.

118 Vimentin, an evolutionarily very conserved intermediate filament protein with
119 diverse functions in health and disease (17), has been proposed as a host-directed
120 therapeutic target for COVID-19 (18, 19). Vimentin facilitates viral infection by serving
121 as a co-receptor and a component of the cellular transportation machinery for viral entry,
122 trafficking and egress (20). Vimentin is also specifically involved in inflammatory
123 responses, where it forms a superstructure inside regulatory T cells that mechanically
124 regulate the switch of the cells between active and inactive status (21), and provides a
125 scaffold structure that enables the NLRP3 inflammasome to assemble, activate, and
126 contribute to inflammation and lung injury (22). Targeting vimentin is unlikely to
127 generate mechanism-based toxicities because the protein has been widely recognized
128 to be non-essential from embryonic development to adulthood after the first work in
129 early 1990s demonstrated that mice lacking vimentin developed and reproduced without
130 an obvious phenotype (23).

131 We synthesized a series of small molecule compounds that can bind to vimentin
132 (24). The lead compound ALD-R491 has shown many favorable safety features: it is

133 fast-acting, fully reversible, has no cytotoxicity, and causes no change in the protein
134 levels of vimentin and other proteins of major signaling pathways (25). In this study, we
135 explored the effects of ALD-R491 on vimentin structure and function, general cellular
136 processes and specific cellular functions relevant to SARS-CoV-2 infection, and
137 evaluated the compound *in vitro* and *in vivo* for its antiviral and anti-inflammatory effects.
138 The constellation of effects we observed strongly supports this oral small molecule
139 compound as a promising host-directed therapeutic agent with novel mechanisms to
140 address multiple pathological processes of COVID-19.

141 **RESULTS**

142 **ALD-R491 reduces the dynamism of vimentin filaments and inhibits endocytosis,
143 endosomal trafficking and exosomal release**

144 To understand the impact of the compound-binding on the target protein, we first
145 examined the distribution of vimentin intermediate filaments (IF) in live cells. Confocal
146 immunofluorescence imaging showed a dynamic reorganization of intracellular vimentin
147 network responding to ALD-R491 treatment. In the control cells, the vimentin IF formed
148 bundle-like structures parallel to the longitudinal axis of the cell, with a richer presence
149 in the cell peripheral region and at the far end of cell than in the central region. In ALD-
150 R491-treated cells, the vimentin IF retracted from the periphery with no structural
151 changes visible at low doses but with an intricate, honeycomb-like reticulated structure
152 formed in the perinuclear region at high doses (**Fig. 1A**). This alteration was specific to

153 vimentin, because the proteins of the same type-III IF family, GFAP and desmin,
154 showed no structural changes to ALD-R491 treatment. (**Fig. S1A**).

155 We next sought to determine how the altered organization of vimentin IF would
156 relate to a change in the physical properties of ALD-R491-bound vimentin filament. We
157 utilized the fluorescence recovery after photo-bleaching (FRAP) technique to quantify
158 the two-dimensional lateral diffusion of vimentin-GFP in the cells treated with the
159 compound or the solvent control. We found that the time required for fluorescence
160 recovery in the photo-bleached region was significantly longer in the ALD-R491 treated
161 cells (**Fig. 1B, 1C**), indicating that the ALD-R491-bound vimentin protein had become
162 less mobile or had a compromised dynamism.

163 Vimentin is involved in the trafficking of membrane and intracellular vesicles, so
164 we hypothesized that a decrease in mobility or dynamism would impact subcellular
165 processes related to material transportation. To test this, we used a liposome-mediated
166 plasmid transfection method. To separate the effect on endocytosis from that on
167 endosomal trafficking, we treated the cells with ALD-R491 during three different time
168 periods (**Fig. 1D-E**). When present during the entire transfection process (full time) that
169 impacts both endocytosis and trafficking, ALD-R491 reduced the levels of GFP reporter
170 up to 50%, with an EC₅₀ of 0.036 μ M and EC₉₀ of 0.19 μ M. At 0.3 μ M ALD-R491
171 reached its maximum effect of 50% inhibition (treated full time), and the inhibition rates
172 of ALD-R491 on endocytosis (treated before transfection) and endosomal trafficking
173 (treated after transfection) were 18% and 35% respectively (**Fig. 1E**). These results
174 indicate that endocytosis and endosomal trafficking were very sensitive to ALD-R491

175 however neither of cellular processes was completely blocked by the compound, with
176 endosomal trafficking impacted more than endocytosis.

177 Exosomes originate from the endocytic pathway and are released via the fusion
178 of a multivesicular body (MVB) with cell membrane (26). Using a reporter system as
179 well as a classic exosome purification method, we found that ALD-R491 inhibited
180 exosome release from Huh7 cells in a dose dependent manner (**Fig. 1F**). Like the
181 effects observed on endocytosis and endosomal trafficking, the maximal rates of
182 inhibition on exosome release were plateaued at around 50% of non-drug levels. These
183 data indicate that by altering the mechanical properties (“dynamism”) of vimentin
184 filaments, ALD-R491 reduced multiple cellular processes that are related to viral entry,
185 trafficking and egress.

186

187 **Figure 1**

188

189 **Fig. 1. Effects of ALD-R491 on vimentin filaments and sub-cellular processes.** -
190 changes in intracellular organization and physical property of vimentin filament and
191 reductions in endocytosis, endosomal trafficking and exosomal release. **A.** ALD-R491
192 induced the reorganization of vimentin intermediate filament network. **B-C.** ALD-R491
193 compromised the mobility of vimentin filaments. **B.** Quantitative measurement; **C.** Image
194 presentation. Two-tailed T Test. * p<0.05, ** p<0.01, *** p<0.001. **D-E.** Dose-responsive
195 inhibition on endocytosis and endosomal trafficking. **D.** Fluorescence intensity over time;
196 **E.** Dose-responsive reduction in GFP levels. **F.** Exosome release blockade. Left bar

197 graph: the luciferase activity in the culture supernatant was quantified; Right: the
198 purified exosomes were quantified by nanoparticle tracking analysis.

199

200 **ALD-R491 blocks SARS-CoV2 spike protein-ACE2-mediated pseudoviral infection**

201 Targeting the initial steps of infection, such as viral entry and de-coating, is an
202 attractive antiviral approach, particularly for a host-directed antiviral mechanism with the
203 objective of blocking virus-host cell interactions. SARS-CoV-2 gains access into cells
204 through endocytosis after the engagement of its spike protein with cell membrane
205 proteins. Angiotensin-converting enzyme 2 (ACE2) is the receptor for the spike protein
206 and is responsible for the initiation of infection, although other host factors such as
207 TMPRSS-2 and neuropilin-1 may facilitate the viral entry process. We tested the
208 antiviral activity of ALD-R491 by using a lentivirus pseudotyped with the human SARS-
209 CoV-2 spike protein to infect HEK293 cells overexpressing human ACE2 protein.
210 Because the pseudovirus expresses both GFP and luciferase, the infection efficiency
211 can be continuously tracked by live imaging of fluorescence and quantified at the
212 endpoint by measuring luciferase activity. Exposure of the cells to ALD-R491 resulted in
213 a dramatic reduction in the pseudoviral infection at all dose levels during the whole
214 infection process (**Fig. 2A-B, Fig. S2 A-B**), and generated no cytotoxicity even at the
215 highest concentration tested (CC₅₀ >10 μ M) (**Fig. 2C**). We conclude therefore that this
216 antiviral effect was largely due to a blockade of viral entry rather than subsequent steps
217 after endocytosis because no antiviral activity was observed when the compound was
218 given 2 h after the viral infection. Regardless of the level of viral load present, ALD-

219 R491 strongly and dose-dependently inhibited pseudoviral infection, with IC50s of 13.5,
220 34.7 and 64.9 nM for the infections at MOI of 0.5, 5 and 50, respectively (**Fig. 2D-E**).
221 Clearly, ALD-R491 was highly selective (> 154 at MOI of 50) and potent at blocking the
222 spike protein-ACE2-mediated viral entry, the first step of SARS-CoV2 infection. Unlike
223 virus-directed approaches aimed at blocking the binding of the spike protein with ACE2
224 receptor, which include anti-spike protein antibodies that may become futile as the
225 epitope of spike protein continues to mutate, our host-directed approach blocks the
226 cellular process that is used by the virus. As long as endocytosis remains the route for
227 their cellular entry, the compound would be equally effective for all variants.

228

229 **Figure 2**

230

231 **Fig 2. ALD-R491 blocked Spike protein-ACE2 mediated viral entry *in vitro*. A.**
232 Fluorescence intensity of the GFP reporter gene expression. The HEK cells were
233 infected by the GFP-expressing lentiviral-based pseudovirus and measured for
234 fluorescence intensity every 2 h over the course of the experiment. The cells were
235 treated with ALD-R491 from 2 h before the infection till the end of the experiment (Left,
236 Full time), for only 2 h before the infection with the removal of the compound upon the
237 infection (Center, Before infection) and from 2 h after the infection till the end of the
238 experiment (Right, After infection). **B.** Dose-dependent GFP levels at 48 h after infection
239 presented. **C.** No cytotoxicity associated with ALD-R491. **D-E.** At the end of the
240 experiment, luciferase activities were measured from the cell lysates. The figures show
241 the inhibition rates of ALD-R491 at different concentrations on the infection by the

242 pseudovirus at the multiple of infection (MOI) of 0.5, 5 and 50 respectively. Exposure of
243 cells to ALD-R491: **D.** Full time; **E.** Before infection. IC₅₀ and its 95% CI shown in the
244 figures.

245

246 **ALD-R491 enhances macrophage's pathogen-killing efficiency**

247 Monocytes and macrophages are the most important innate immune cells in the
248 host defense against infections from pathogens, including viruses, fungi, and bacteria.
249 At the early stages of an infection, the innate immune system, in particular macrophage
250 M1, is as the first line of defense that prevents pathogens that have entered the tissues
251 from further dissemination. In addition to triggering an immune response and producing
252 proinflammatory cytokines, macrophages effectively phagocytose these pathogens,
253 directly destroying them inside the phagosome or lysosome. SARS-CoV2 can interrupt
254 phagolysosome function and even hijack the phagolysosome to egress from infected
255 cells (27). The SARS-CoV-2 virus has been found alive inside monocytes and
256 macrophages (28, 29), suggesting an impaired function of these cells for pathogen
257 clearance, and a problematic reservoir site that supports lingering infection. The key
258 actor for macrophage microbicidal activity is NADPH oxidase in the phagosomes which
259 produces reactive oxygen species (ROS). NADPH oxidase is a membrane-associated
260 enzyme consisting of multiple subunits. Vimentin is known to bind with p47Phox, a
261 subunit of NADPH oxidase. The association with vimentin makes the p47phox subunit
262 separated from the enzyme complex of NADPH oxidase, restraining the enzyme activity
263 thereby limiting ROS production and consequently reducing the pathogen-killing
264 efficiency of cells (30). In the mouse peritoneal macrophages, we found that p47Phox

265 was abundantly present in the cell periphery next to the cell membrane and colocalized
266 with vimentin. The vimentin-binding action of ALD-R491 caused a dissociation of
267 vimentin from p47Phox thereby increased the presence of p47Phox in the cytosol (**Fig.**
268 **3A-B, Fig. S3**), increased the production of ROS (**Fig. 3C**) and reduced the number of
269 **Salmonella** survived in the macrophages by about 30% (**Fig. 3D**). These results
270 suggest a potential of ALD-R491 to increase the pathogen-killing capacity of
271 macrophages. As viral evasion of host immune surveillance is believed to play a major
272 role in disease severity and persistence, the enhanced microcidal function of
273 macrophage by ALD-R491 could reduce the ability for SARS-CoV2 to survive once
274 inside the macrophage, thereby decreasing the chance of viral persistence and
275 preventing the escalation of inflammation and development of long-haul symptoms.

276

277

Figure 3

278

279 **Fig 3. Effects of ALD-R491 on macrophages *in vitro*. A-B.** ALD-R491 dissociated
280 vimentin from p47Phox of NADPH oxidase in mouse peritoneal macrophages: **A.**
281 Representative Images of macrophages with or without ALD-R491 treatment; **B.**
282 Quantitation of p47phox dissociated from vimentin from 3 independent experiments. **C.**
283 ALD-R491 increased cellular production of reactive oxygen species from Raw246.7
284 cells. from three independent experiments. **D.** ALD-R491 reduced the numbers of live
285 **Salmonella** inside Raw246.7 cells, from six independent experiments. Two tailed T Test.
286 * p<0.05, ** p<0.01.

287

288 **ALD-R491 directly activates regulatory T cells**

289 In cases where the innate immunity fails to clear the pathogen, the adaptive
290 immunity is then mobilized against the infection. Although this will help control infection,
291 the overactive immune response is the most important contributor to morbidity and
292 mortality in severe COVID-19. Among all immune cells, regulatory T cells (Tregs) are
293 the key enforcers of immune homeostasis, marshalling many other immune cells in
294 concert to keeping inflammation in check. They prevent host tissues from damage from
295 the pathogen-triggered excessive antimicrobial immune responses and promote healing
296 to repair epithelial damage, and other tissue damage throughout the body. In severe
297 COVID-19 patients, the levels of peripheral Tregs were found to be remarkably reduced
298 (31-34), which has led to a call for Treg cell-based therapy (35) and clinical trial
299 (NCT04468971) of infusions of Treg cells. Vimentin has been previously identified as
300 forming the 'mechanical' restraint structure inside regulatory T cells that regulate their
301 switch between active and inactive status. Specifically, inside Tregs, the asymmetric
302 partitioning of vimentin forms the distal pole complex (DPC), keeping the
303 immunosuppressive molecules away from the immunological synapse that gets formed
304 between Tregs and antigen-presenting cells, thereby restraining the function of Treg
305 cells (Fig. S3B) (21). We hypothesized that ALD-R491 would interrupt the DPC's
306 structural integrity and directly activate Tregs to increase their dampening and balancing
307 actions, thereby addressing and potentially solving the cytokine storm of COVID. In
308 cultured mouse Treg cells treated with ALD-R491 for a short period of time (2 h),

309 concentrations as low as 0.01 μ M resulted in a significantly decreased proportion of
310 inactive Treg cells that had intact DPC (**Fig. 4A-B**). When disassembled, DPC would
311 release the immunosuppressive molecules, activating Treg cells. Indeed, Treg
312 suppression assay *in vitro* showed an increased Treg activity in the presence of ALD-
313 R491 at a low concentration of 0.1 μ M (**Fig. 4C, Fig. S4**). These results indicated that
314 the highly ordered DPC structure was very sensitive to ALD-R491 and Treg cells
315 required very low concentrations of the compound to be activated.

316

317 **Figure 4**

318

319 **Fig 4. Effects of ALD-R491 on regulatory T cells *in vitro*. A.** ALD-R491
320 disassembled the distal pole complex (DPC) of mouse regulatory T cells.
321 Representative images of Treg cells with or without ALD-R491 treatment; **B.**
322 Quantitative analysis of Treg cells with disassembled DPC, from three independent
323 experiments. **C.** Quantitative measurement of Treg cell activity, from three independent
324 experiments. Two tailed T Test. * $p<0.05$, ** $p<0.01$, *** $p<0.001$.

325

326 **Orally administered ALD-R491 shows therapeutic efficacy against SARS-CoV2**
327 **infection in aged mice**

328 Both macrophages and Tregs are highly heterogeneous and plastic, and their
329 functions *in vivo* are largely context dependent. We focused on whether their enhanced

330 functions by ALD-R491 observed *in vitro* would translate into therapeutic benefit against
331 COVID-19 *in vivo*. To evaluate whether the oral compound would have exposure in the
332 lung tissue at levels sufficient to be effective, we first measured the distribution of ALD-
333 R491 in tissues after oral administration. In rats gavaged with ALD-R491 at 30 mg/kg,
334 the compound was rapidly distributed in various tissues, with the highest exposure in
335 the gastrointestinal tissues as expected, enriched exposures in other tissues including
336 the lung and lymph nodes, and minimal exposure in the blood (**Fig. 5A**). The compound
337 concentrations in the lung tissue 6 h after oral dosing maintained at levels as high as
338 1 μ M, which was a concentration more than sufficient for efficacy based on its effective
339 concentrations *in vitro* (< 0.1 μ M in multiple assays). These data provided the rationale
340 for dose selection and supported a daily dosing treatment regimen.

341 Next, we tested the compound in a mouse-adapted SARS-CoV-2 MA model, in
342 which the mutated SARS-CoV-2 virus can replicate in the upper and lower airways of
343 both young adult and aged BALB/c mice. The model generates more severe disease in
344 aged mice, reproducing the age-related increase in disease severity observed in
345 humans (36). In this study, we utilized aged mice (11 to 12 months) to best mimic the
346 most severe viral infection in the most vulnerable population in humans. The compound
347 was orally administered prophylactically and therapeutically.

348 Prophylactic treatment had no effects under the study execution (**Fig. S5A-F**),
349 however therapeutic treatment showed significant efficacy in multiple measurements.
350 Under the therapeutic protocol, the aged mice were administered the compound orally
351 one day after the SARS-CoV2 infection for 3 of the 5 study days on D1, D2 and D4 and
352 then sacrificed on D5. Therapeutic effects were observed more prominently in the

353 medium dose group of 10 mg/kg, as evidenced by reduced body weight loss over the
354 course of the experiment (**Fig. 5B**), lower lung congestion as assessed macroscopically
355 at the necropsy (**Fig. 5C**), milder lung tissue injury (**Fig. 5D**) and less diffuse alveolar
356 damage (**Fig. 5E**) as evaluated microscopically in the histological examination. The lung
357 tissues from mice in both the 10 and 30 mg/kg groups showed less inflammation and
358 better-preserved alveolar structures (**Fig. 5F**). The viral loads in the lung tissues at the
359 end of the study at D5 were at low levels with no difference among groups (**Fig. S5F**).
360 The low viral titers at D5 were expected because in this model without treatment, the
361 viral loads in the lung were shown to peak at D2 and to decrease significantly by D4
362 (36). The viral titer at D5 in this study therefore was less meaningful in terms of antiviral
363 efficacy since the virus in the surviving mice had been largely cleared regardless of
364 treatment. The therapeutic efficacy seen *in vivo*, particularly given that only 3 doses
365 were able to be administered relative to a 5-day course due to site constraints during
366 the pandemic, was very significant both in its endpoints and in its short treatment
367 regimen started after productive viral infection. With its dual actions of host-directed
368 antiviral and antiinflammation, ALD-R491 represents a unique promising oral agent that
369 is worth further investigation as a therapeutic against COVID.

370

371 **Figure 5**

372

373 **Fig 5. ALD-R491 tissue exposure in rats and therapeutic efficacy against SARS-**
374 **CoV-2 infection in aged mice. A.** ALD-R491 concentrations were measured in the
375 indicated tissues of female rats 1 hr, 2 hrs and 6 hrs after oral administration of the

376 compound. **B-F.** Therapeutic efficacy of ALD-R491 in aged mice Balb/c mice infected
377 with SARS-CoV-2 M10. Body weights were measured daily over the course of study.
378 Macroscopic and microscopic presentations of the lung at necropsy and in
379 histopathology examination were blindly evaluated by a board-certified pathologist. The
380 scores were compared between the Infected Vehicle group vs. individual treatment
381 groups. Two tailed T Test, * p<0.05, ** p<0.01. **B.** Body weight change. **C.** Lung
382 congestion scores on Day 5. **D.** ATS Acute Lung Injuries (ALI) scored by the method of
383 Matute-Bello (2011). **E.** The diffuse alveolar damage (DAD) scored by the method of
384 Schmidt (2018). **F.** Schematic presentation of the experimental protocol and
385 representative images selected from mice with the ALI and DAD scores close to the
386 scores of their group averages.

387

388 **Efficacy of ALD-R491 in treating and preventing lung injury and fibrosis in a rat**
389 **model**

390 With the therapeutic efficacy demonstrated in a COVID animal model, we wanted
391 to further evaluate whether the compound of multiple functions could be used to treat or
392 prevent lung injury, and the injury associated lung fibrosis. In COVID- 19 patients with
393 pneumonia or requiring intensive care, 42% or over 60% of them developed acute
394 respiratory distress syndrome (ARDS) (37). Interstitial and intra-alveolar fibrosis are
395 hallmarks of ARDS at advanced stages. Up to 25% of ARDS survivors develop
396 physiologic evidence of lung fibrosis within six months. With the continuing rate of
397 SARS-CoV-2 infection worldwide and the increasing populations of long hauler patients,

398 an increase in lung fibrosis is expected in post-COVID patients. Antifibrotic therapies
399 have been proposed for treating severe COVID-19 patients and preventing fibrosis after
400 SARS-CoV-2 infection (38), however the available anti-fibrotic drugs are not well-
401 tolerated and would present especially high risk to COVID-19 patients. Vimentin is the
402 major intermediate filament in fibroblasts, the cell type directly responsible for excessive
403 collagen production and fibrosis. The roles of vimentin in tissue injury and fibrosis have
404 been well-established in the literature. Citrullinated vimentin mediates development and
405 progression of lung fibrosis (39). Vimentin KO or inhibiting vimentin has been shown to
406 decrease collagen production (40), reduce lung injury and protect the lung from
407 developing fibrosis (22, 41).

408 We tested the vimentin binding compound ALD-R491 in rats with bleomycin-
409 induced lung fibrosis models, using prophylactic as well as therapeutic protocols. In
410 both protocols, ALD-R491 significantly ameliorated lung tissue injury and lung fibrosis.
411 Bleomycin directly injected via intra-trachea into to the unilateral lung caused massive
412 lung injury and severe lung fibrosis. Compared with the positive control treatment with
413 BIBF1120 (Nintedanib), a multiple tyrosine kinase inhibitor marketed as a first line
414 treatment for lung fibrosis, the treatment with ALD-R491 showed significantly improved
415 body weight (**Fig. 6A**), indicating a superior safety profile of ALD-R491. Both therapeutic
416 and prophylactic treatment using ALD-R491 reduced bronchial and arteriole injury in the
417 fibrotic core (**Fig. 6B, 6D**) and the fibrotic border (**Fig. 6E, Fig. S6A**), reduced damage
418 and fibrosis in alveoli (**Fig. S6B, Fig. 6C, 6F**). Interestingly, careful examination
419 revealed that the Masson's trichrome images for samples with comparable Ashcroft
420 scores exhibited a remarkable difference in connective tissue staining between

421 BIBF1120 and ALD-R491 groups, i.e., ALD-R491 group had a much less intense blue
422 color (stains for fibrosis) than the BIBF1120 group had (**Fig. 6C**). This result indicates
423 that, when assigned comparable Ashcroft scores, the lung tissues from ALD-R491-
424 treated animals had less fibers than the lung tissues from BIBF1120-treated animals, so
425 the Ashcroft scoring on lung fibrosis for ALD-R491 failed to capture this improvement in
426 visible histopathology (less blue) because it falls outside the density rubric of the
427 Ashcroft scoring matrix (scores only density, not color). This discrepancy was further
428 confirmed by collagen-I IHC staining, which showed the actual reduction in fibrosis
429 measured by collagen-I deposition was more significant than that by Ashcroft score in
430 the lung of mice treated by ALD-R491. Compared with vehicle control, both ALD-R491
431 and BIBF1120 reduced collagen-I deposition in the lung fibrosis core, with the reduction
432 of collagen more significant in ALD-R491 group than in BIBF1120 group (**Fig. 6G, Fig.**
433 **S6C**). This was consistent with the markable difference in amounts of fibers (blue color)
434 seen by Masson's staining but not reflected by Ashcroft scores (**Fig. 6C**). Although
435 Ashcroft scoring underestimated the efficacy of ALD-R491 in reducing fibrosis, the
436 results from all the evaluation criteria indicate that ALD-R491 has a superior safety
437 profile and a therapeutic potential not only in ameliorating lung injury but also in
438 preventing and treating lung fibrosis, all of which is directly relevant to use in COVID-19
439 and its complications.

440

441 **Figure 6**

442

443 **Fig. 6.** Efficacy of ALD-R491 in treating and preventing lung damage and fibrosis. **A.**
444 Body weight change. Percentage of body weight change was calculated based on the
445 body weight measured on the day when ALD-R491 treatment started. *p <0.05, **p
446 <0.01, ***p<0.001 vs. Model vehicle. **B.** Images for Bronchial and arteriole injury in
447 fibrotic core **C.** Images for alveolar fibrosis. The left lungs were stained with Masson's
448 trichrome. Blue color: collagen, light red or pink color: cytoplasm, dark brown: cell nuclei.
449 **C.** Bronchial and arteriole injury in fibrotic core. **D-F.** Semi-quantitative scoring of lung
450 injury and fibrosis. Scores for each treatment group were compared with the scores for
451 the model vehicle group. Two-tailed T-test: *p<0.05; **p<0.01; ***p<0.001. n=9. **D.**
452 Bronchial and arteriole injury in fibrotic core. **E.** Bronchial and arteriole injury in fibrotic
453 border. **F.** Lung fibrosis. The Masson's trichrome stained lung sections were scored
454 according to Ashcraft scoring criteria. **G.** Quantitative measurement of Collagen-1
455 positive areas in lung fibrotic tissue section. Percentages of Collagen-positive area for
456 each treatment group were compared with that for the model vehicle group. Two-tailed
457 T-test: *p<0.05; **p<0.01; ***p<0.001. n=9.

458

459 **DISCUSSION**

460 To address the multifaceted pathogenesis of SARS-CoV2 infection, we are
461 developing a new therapeutic agent with both antiviral and anti-inflammatory action by
462 binding to vimentin (**Fig. 7**). This first-in-class mechanism of action is fundamentally
463 different from that of any existing pipeline agent, or any repurposed drug (13, 42).
464 Importantly, the antiviral mechanisms of ALD-R491 create multiple novel actions against

465 viral infection: first, a blockade of spike protein and ACE2-mediated endocytosis and of
466 endosomal trafficking and exosomal release, which are the cellular processes that are
467 unlikely to be evaded by the virus even with mutations; and second, an enhanced ability
468 of macrophages to kill pathogens, which is critical both for containing the viral spread at
469 early stages and for clearing persistent viral presence after the acute phase of infection.
470 The anti-inflammatory mechanisms of ALD-R491 could also create multiple actions that
471 are novel and different from existing agents, and highly sought for their specific potential
472 against the hyperinflammation of COVID-19: a direct Treg activation, as shown in this
473 study; and a potential inhibition on NLRP3 inflammasome activation, as previous study
474 suggested [22]. The therapeutic effects of the compound on the aged mice with a full-
475 blown, ongoing SARS-CoV2 infections is not only a proxy for its efficacy against severe
476 disease, but also informs its use in the elderly and fragile, two groups of COVID-19
477 patients with the most concerning unmet need. The therapeutic and preventive effects
478 of the compound on lung injury and fibrosis make it also applicable to patients with post-
479 COVID complications. With oral administration, ALD-R491 can be conveniently dosed
480 and broadly accessible to non-hospitalized patients , a population that is growing rapidly
481 as this first pandemic matures.

482

483 **Figure 7**

484

485 **Fig. 7. Schematic presentation of actions of ALD-R491 in COVID-19. Left**, shows
486 the subcellular events in a cell being infected by a SARS-CoV-2 virus and the host-
487 directed antiviral actions of ALD-R491. **Right**, shows the anti-inflammatory actions of

488 ALD-R491. Both suppressing NLRP3 inflammasome and activating Tregs would
489 dampen cytokine storm and subsequent tissue damage. Curved blue arrows and the
490 shadowed oval area highlight SARS-CoV-2 infection processes. Straight blue arrows
491 indicate positive regulation and red blunt-ended arrows, negative regulation. Treg:
492 Regulatory T cell; NLRP3: NLR family pyrin domain containing 3 inflammasome; VWF:
493 Von Willebrand factor; *: action of vimentin described in literature but not tested in this
494 study.

495

496 These remarkable actions can take place because the pathogenesis of SARS-
497 CoV-2 infection involves multiple cellular processes in various types of cells where
498 vimentin is abundantly expressed, including the pulmonary alveolar epithelial cells (AT1
499 and AT2 cells), vascular endothelial cells, fibroblasts, macrophages and regulatory T
500 cells (43, 44).

501 The binding of ALD-R491 to vimentin altered the organization and dynamism of
502 the filaments (**Fig. 1A, 1B**), which impacted multiple cellular processes in the cells (**Fig.**
503 **1D-F**), leading to a blockade of the initial steps of SARS-CoV-2. Vimentin can function
504 as an attachment receptor on the cell surface and assist membrane and vesicle
505 transport at both anterograde and retrograde directions inside the cell (45, 46). It
506 appears to be widely hijacked by viruses for facilitating their infection, as seen with both
507 SARS-CoV (47) and SARS-CoV2 (48). Our study showed that ALD-R491 potently
508 inhibited Spike protein-ACE2 mediated viral entry through a blockade of endocytosis,
509 the first step of the viral infection (**Fig. 2**). It has been demonstrated that newly
510 assembled SARS-CoV2 particles in the host cell, rather than budding to exit, egress

511 from the cells by fusing multiple vesicle body (MVB)-like structure with the cell
512 membrane, resembling exosomal or lysosomal release pathways (27, 49). Our study
513 showed that vimentin regulated exosomal pathways (25) and that ALD-R491 dose-
514 dependently inhibited exosome release (**Fig. 1F**), which could lead to a blockade of the
515 viral egress. All these actions contribute to a multi-part host-directed antiviral
516 mechanism that offers a multi-part blockage of the transportation machinery hijacked by
517 viruses for productive infection. As the compound acts on cellular processes not the
518 virus itself, it therefore applies to all the SARS viruses regardless of strains or mutations,
519 which is especially advantageous because of the rapid evolution of current SARS-CoV-
520 2 and the potential for future outbreak of other coronaviruses.

521 ALD-R491's ability to enhance microcidal activity of macrophages is critical not
522 only for controlling the infection but also for reducing the virus-triggered escalation in
523 inflammation. Monocytes and macrophages are phagocytotic innate immune cells
524 present in the circulation and in the tissues respectively, serving as the first line of
525 defense upon encountering pathogens. Macrophage infiltration in alveoli is a hallmark of
526 COVID-19 (44). Alveolar macrophages express the ACE2 and TMPRSS2 genes that
527 help the cells recognize and internalize SARS-CoV-2. The positive and negative
528 transcripts of SARS-CoV2 have been detected or enriched in alveolar macrophages,
529 monocytes and peripheral blood mononuclear cells (PBMCs) in COVID-19 patients (29,
530 43), suggesting the existence of live SARS-CoV2 in the monocytes and macrophages.
531 The S1 protein of SARS-CoV-2 has been found persistently present in CD16+
532 monocytes of post-COVID patients for more than a year (50), suggesting the failure of
533 monocytes to clear the virus. It remains to be investigated whether monocytes and

534 macrophages can support active replication of SARS-CoV2, as has been reported for
535 SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV).
536 Regardless, monocytes and macrophages may still serve as a permissive system
537 and/or as a viral reservoir, both of which are known to enable virus to spread to other
538 tissues or anchor specifically within the pulmonary parenchyma (51-53), especially
539 when there is a long duration between the onset of symptoms and the development of
540 respiratory failure (6–12 days), or a prolonged course (several months or longer) of
541 syndromes in COVID long-haulers (54). Compromised ability of monocytes and
542 macrophages to clear pathogens in COVID patients might lead to the persistence of the
543 virus inside the cells, escalating a proinflammatory response during the acute phase,
544 and recurring injuries and lingering symptoms in the post-acute phase. Enhancing the
545 ability of macrophages to clear pathogens (**Fig. 3A-B, Fig. S3**), ALD-R491 could
546 therefore be one of ALD-R491's most distinct, significant, and unique therapeutic
547 benefits in patients with COVID as well as with post-COVID syndromes.

548 Direct Treg activation a unique feature of ALD-R491 (**Fig. 4, Fig. S4**). The
549 binding of ALD-R491 to vimentin physically disassembles DPC, therefore, directly
550 activates Tregs. This activation occurs rapidly (less than 2 h), unlike other Treg
551 activating mechanisms that require changes in signaling pathway or gene expression,
552 which are indirect and slow acting in nature. For COVID-19 with its rapid disease
553 progression, prompt intervention appears to be especially important, which makes the
554 fast-acting ALD-R491 advantageous. In addition, Treg activation via vimentin targeting
555 was shown not to alter homeostasis of Tregs (55) and therefore would not cause
556 general immunosuppression, which makes it fundamentally different from the use of

557 steroids. Separated from its immune-related functions, Treg activation has been shown
558 to have a major direct and non-redundant role in tissue repair and maintenance (56).
559 Through directly activating Tregs and other mechanisms, ALD-R491 could not only
560 dampen the overactive immune system without compromising its antiviral response, but
561 also prevent tissues from damage and facilitate their repair. Reduced tissue injury by
562 ALD-R491 has been consistently observed in our studies across different animal
563 models (**Fig. 5-6**).

564 Anti-fibrosis activity of ALD-R491 is a further additive to a complete view of its
565 impact on COVID-19. Lung pathologies from COVID-19 patients and computed
566 tomography scans of the chest in post-COVID-19 patients showed a significant increase
567 in fibrosis score (44). Fibroblasts are the primary mesenchymal cells in lung tissues.
568 Overactivation of fibroblasts is the direct cause of lung fibrosis. Alveolar fibroblasts in
569 acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) exhibit a
570 persistent activated phenotype with enhanced migratory and collagen-1 production
571 capacities. Vimentin is the major intermediate filament protein in fibroblasts, promoting
572 the motility and invasiveness of cell and the production of collagen [40]. Targeting
573 vimentin has been shown effective in reducing lung fibrosis (22, 41). As lung fibrosis
574 can develop and persist in patients that have recovered from severe COVID-19 (57), the
575 antifibrotic activity of ALD-R491 (**Fig. 6**) should provide additional values against
576 COVID-19 and its complications.

577 In summary, the vimentin binding compound ALD-R491 impacts multiple cellular
578 processes as well as various types of cells that are involved in the pathogenesis of
579 COVID-19. Its multi-part host-directed antiviral and anti-inflammatory actions and its

580 broad preclinical efficacy and make the compound a promising drug candidate worth
581 further development and exploration for the treatment of COVID-19 and other related
582 diseases.

583

584

585 MATERIALS AND METHODS

586 The compound

587 The vimentin-binding compound used in this study was ALD-R491, (E) - 1 - (4 -
588 fluorophenyl) - 3 - (4 - (4 - (morpholine - 1 - yl) - 6 - styryl - 1, 3, 5 - triazinyl - 2 - amino)
589 phenyl) urea. It has a molecular formula of C₂₈H₂₆FN₇O₂ and a purity of > 98%. The
590 compound was synthesized at Bellen Chemistry Co, Ltd., analyzed at Porton Pharma
591 Solutions, Ltd., and provided by Luoda Biosciences, Inc and Aluda Pharmaceuticals, Inc.

592

593 Endocytosis and endosomal trafficking

594 HEK293T cells were purchased from The Cell Bank of Type Culture Collection of
595 Chinese Academy of Sciences (Shanghai); plasmid pMAX-GFP, from Lonza;
596 transfection agent LipoMAX, from Invitrogen. The cells were grown in 96-well plate to
597 approximately 70% confluence after overnight culture and transfected in 6 replicates
598 with pMAX-GFP plasmid DNA (0.6 µg per well) using LipoMAX according to the
599 manufacturer's instruction. The media were changed at 4 h post transfection, then the
600 culture plates were placed in Incucyte System (Essen Bioscience) for live cell imaging
601 under a 10x objective lens. Fluorescence intensity (GFP signals) in each well was
602 captured once every 2 h continuously till the end of experiment.

603

604 **Exosomal release**

605 **Quantification of exosome release using ExoHTPTM platform:** Supernatant
606 (around 98 μ l) was collected from each well of the cultured cells , then centrifugated at
607 300 g for 10 min to remove cells, at 2,000 g for 20 min and 10,000g for 30 min, to
608 remove apoptotic bodies and large extracellular vesicles. Exosomes were isolated from
609 these processed supernatants with ExoEZ™ Exosome Isolation Kit (#ExoCC50, Evomic
610 Science's, Sunnyvale, CA), according to the manufacturer's instructions. Luciferase
611 activity in 50 μ l of exosome suspension was measured with Promega Renilla Luciferase
612 Assay kit (#E2810, Madison, WI) in TECAN Infinite M100 (TECAN, San Jose, USA).

613 **Measurement of nanoparticle size, concentration, and distribution with**
614 **nanoparticle tracking analysis (NTA):** Overnight cultured Huh7NC12 at 70%
615 confluence were treated for 2 days with media consisting of DMSO and the indicated
616 concentrations of compounds, respectively. Then, culture supernatants were collected,
617 centrifugated at 300 g for 10 min, 2,000g for 20 min, to remove cells and cell debris,
618 apoptotic bodies (Pellet 1), and 10,000g for 30 min, to remove large extracellular
619 vesicles (Pellet 2). Exosomes were isolated from these processed supernatants by
620 ultracentrifugation (100,000 g for 90 min) (Pellet 3). The isolated exosomes from 5 ml or
621 10 ml of supernatants (Pellet 3) were suspended in 1 ml PBS, visualized on the
622 NanoSight 300 (NanoSight Ltd, Amesbury, UK). The analysis setting was kept constant
623 between samples. The size and number of nanoparticles were calculated.

624

625 **Pseudoviral infection**

626 HEK293T/hACE2 cells, Pseudovirus-2019-nCoV-GFP-IRES-LUC and control
627 Pseudovirus-GFP-IRES LUC were purchased from FUBIO (Suzhou). The cells were
628 seeded into 96-well plate at 1x10E4 cells per well, cultured till 40% confluence and
629 mock-infected or infected with the pseudovirus (2x10E7 TFU/mL) at MOI 0.5, 5 and 50,
630 respectively. The cells were exposed to NH4Cl as positive control, DMSO as negative
631 control, and ALD-R491 at concentrations of 0.01, 0.0316, 0.1, 0.316, 1, 3.16, 10 μ M for
632 a period from 2 h right before the infection to the start of the infection (Before infection),
633 or for the whole experiment period from 2 h before the infection to the end of the
634 experiment (Full time), or for a period from 2 h after the start of the infection to the end
635 of the experiment (After infection). About 12 h after the infection, the virus-containing
636 media were removed and replaced with each fresh conditional medium, then, the
637 culture plates were placed in Incucyte System (Essen Bioscience) for live cell imaging
638 under a 10x objective lens. Fluorescence intensity (GFP signal) in each well was
639 captured once every 2 h continuously for 48 h, then the cells were measured for
640 luminescence signal by BioTek Synergy 4 plate reader. The viability of mock-infected
641 cells treated with ALD-R491 at different concentrations were measured by MTT assay
642 kit (Beyotime). Each treatment condition was performed in triplicates (n=3).
643

644 **Monocyte / macrophage functions**

645 **The killing of *Salmonella* by Raw264.7 cells:** The cells in a 24-well plate were
646 incubated with ALD-R491 at 1 μ M for 2 h. The cells were counted, then added with
647 *Salmonella typhimurium* (SL1344) to make the ratio of cells to *Salmonella* 1:10. The
648 culture was gently shaken then centrifuged at 1,000 rpm for 5 min. The cells were

649 incubated in an incubator for 30 min, washed 3 times with PBS, then cultured for 1 h in
650 DMEM medium containing gentamicin at 50 µg/ml. The cells were then lysed with 1%
651 triton X-100, and the lysates were serially diluted and plated on SS plates for 24 h. The
652 bacteria colonies were counted. Six independent experiments were performed.

653 **Preparation of Mouse Peritoneal Macrophages:** Mice were intraperitoneally
654 injected with 1 ml of 4% Brewer's modified thioglycolate medium Brewer Modified (BD
655 company, USA). Four days later, the mice were sacrificed with cervical dislocation,
656 soaked in 75% alcohol for 3 min, The abdominal skin was cut open and made the
657 peritoneum fully exposed. The peritoneum was lifted with ophthalmic forceps, injected
658 with 8 ml of pre-cooled PBS into the abdominal cavity. The mouse abdomen was gently
659 massaged for 5 min, and the fluid was withdrawn from the abdominal cavity with a
660 syringe, transferred into a 15 ml centrifuge tube, centrifuged at 4 °C, 1,000 rpm for 10
661 min. The pelleted cells were resuspended with RPMI 1640 medium and inoculated in a
662 24-well plate containing round slides. After culturing in an incubator for 2 h, the cells
663 were washed with PBS three times and replaced with a new medium.

664 **Dissociation of p47phox and vimentin by ALD-R491 in macrophages:** The
665 peritoneal macrophages were incubated in the presence of LPS (5 µg/ml) overnight,
666 and then treated with ALD-R491 (1 µM) for 2 h, fixed with 1% PFA for 10 min, and
667 washed with PBS for three times, permeabilized with 0.2% Triton X-100 for 10 min,
668 washed with PBS for three times, blocked with serum for 30 min and washed with PBS
669 again for three times. The cells were incubated overnight at 4 °C with the anti-p47phox
670 primary antibody (Santa Cruz, sc-17844) and the anti-vimentin primary antibody (Santa
671 Cruz, sc-5565). After washed for three times with PBS, the cells were incubated with the

672 secondary antibody for 1 h in the dark at room temperature. The cells were further
673 stained with DAPI for nuclei, washed with PBS for three times and then mounted. The
674 cells were examined under a confocal microscope and images were taken from three
675 separate fields. Cells with p47phox at locations near cell membrane or/and in the
676 cytoplasm away from cell membrane were counted. The number of the cells with
677 p47phox in the cytoplasm away from the cell periphery was counted from samples
678 treated DMSO or ALD-R491 and percentages of cells with cytoplasmic p47phox were
679 calculated. Three independent experiments were performed.

680 **Cellular ROS measurement:** Raw264.7 cells were seeded into a 12-well plate
681 and cultured till 90% confluence, then added with ALD-R491 at different concentrations
682 and incubated for another 2 h. DCFH-DA (Beyotime, S0033S) was diluted 1:1,000 with
683 serum-free culture medium to the final concentration of 10 μ M, then added to the 12-
684 well plate and incubated for 30 min. The cells were washed twice with PBS, harvested
685 after digestion, and transferred into a 96-well plate. The fluorescence intensity was
686 measured in a microplate reader using the excitation wavelength of 488 nm and the
687 emission wavelength of 525 nm.

688

689 **Treg activation**

690 **Preparation of CD4+CD25+/- cells:** CD4+ T cells were isolated from spleen of
691 Balb/c mice (6-8 weeks) by microbeads according to the manufacturer's instructions.
692 Briefly, single-cell suspension from mouse spleen were incubated with anti-CD4-biotin
693 antibody (Biolegend, 100508) then streptavidin-microBeads (Miltenyi, 130-048-102).
694 Labeled CD4+ cells were positively isolated by LS column and QuadroMACS Separator.

695 Then the CD4+ T cells were stained with anti-CD4-APC (Biolegend, 100412) and anti-
696 CD25- PerCP-CY5.5 (BD, 551071) flow cytometry antibodies. Conventional T cell
697 populations (Tcon, CD4+CD25-) and regulatory T cell populations (Treg, CD4+CD25+)
698 were isolated by BD FACSaria III System.

699 **Distal pole complex in Treg cell:** The isolated Treg cells (CD4+CD25+) were
700 incubated in RPMI complete culture medium with DMSO or ALD-R491 for 2 h at 37°C.
701 Then the treated Treg cells were collected for Immunofluorescence assay. Briefly, the
702 Treg cells were fixed for 30 min in 4% PFA and permeabilized for 5 min with 0.2% Triton
703 X-100 in PBS. The permeabilized cells were blocked with 3% BSA for 1 h, incubated
704 with anti-Vimentin primary antibody (Proteintech, 10366-1-AP, 1:200) overnight at 4°C.
705 Then, the cells were incubated with AF488 labeled secondary antibody
706 (SouthernBiotech, 4050-30, 1:500), followed by incubation with DAPI (Roche,
707 10236276001). Each sample was imaged on Nikon A1 confocal microscope for at least
708 three separate fields.

709 **Treg function assay:** To assess Tregs suppressive function, Tcons were
710 labeled with CFSE (Invitrogen, 65-0850-84) and then co-cultured with Tregs (pretreated
711 with or without ALD-R491) in different ratios in 96-well plate for 3 days. T cells were
712 activated by coated-CD3 antibody (Biolegend, 100302) and diluted-CD28 antibody
713 (Biolegend, 102102) with or without ALD-R491. After 3 days, cells were collected for
714 FACS analysis on BD FACS Canto II. FACS data were analyzed using FlowJo software
715 (TreeStar). The inhibition of Treg cells on Tcon activation was quantified. Three
716 independent experiments were performed.

717

718 **Tissue distribution in rats**

719 **Animals and housing:** Sprague-Dawley rats of SPF grades at ages of 6 to 8
720 weeks were purchased from Beijing Vital River Laboratory Animal Technology Co. Ltd.,
721 with animal certificate No. of SCXK (Jing) 2016-0006 and with animal quality certificate
722 No.1100112011030349 and No.1100112011030350. Animals were housed in the
723 animal facility at Joinn Laboratories (Suzhou) with 5 or less rats per gender in each
724 polycarbonate cage and in an environmentally monitored, well-ventilated room (SPF
725 grade) maintained at a temperature of 20 to 26 °C and a relative humidity of 40% to
726 70%. Fluorescent lighting was provided illumination approximately a 12-hr light/dark
727 cycle per day. Total of 18 rats (9/gender) were used in the study. Only data from 9
728 female animals (3 animals per time point) are presented.

729 **Experiment procedures, data acquisition and analysis:** The 9 female rats in 3
730 groups with body weights from 195 to 214 g were orally administered ALD-R491 at 30
731 mg/10 ml/kg. At 1, 2, and 6 h after drug administration, one group of the animals were
732 anesthetized and then euthanized using abdominal aorta exsanguinations, and their
733 blood and tissue samples were taken. The concentrations of ALD-R491 in rat plasma,
734 tissue, feces, urine, and bile samples were analyzed by the validated LC-MS/MS
735 methods with the LLOQ (Lower Limit of Quantification) concentrations of 0.500 ng/mL
736 for plasma, 0.500 ng/mL (equal to 25.0 ng/g after conversion) for tissue. The
737 concentration value below LLOQ was set as 0 for the purpose of calculation. Software
738 of LabSolutions (Version 6.81 SP1) from SHIMADZU Company was used for outputting
739 raw chromatograms and generating concentration and accuracy results of the plasma
740 samples. WinNonlin was used for distribution data statistical analysis (including mean,

741 SD, and %CV) of plasma and tissues concentrations. Microsoft Office Excel (2007) was
742 used for tissue concentration column graphs.

743

744 **SARS-CoV-2 M10 infection in aged mice**

745 **Animals and housing:** Aged (11- to 12-month-old) female BALB/c mice were
746 obtained from Envigo (retired breeders). The animals were housed in the animal facility
747 at University of North Carolina, Chapel Hill, with 5 mice in each cage with food and
748 water provided ad libitum, with a 12 h/12 h light/dark cycle. The animals were
749 acclimated for 7 days in the BSL-3 facility prior to any experimentation

750 **Virus and model establishment:** Baric laboratory generated the stock of SARS-
751 CoV-2 MA10, a mouse-adapted virulent mutant created from a recombinantly derived
752 synthesized sequence of the Washington strain. The virus was maintained at low
753 passage (P2-P3) to prevent the accumulation of additional potentially confounding
754 mutations. Mice were anesthetized i.p. with a combination of 50 mg/kg Ketamine and 15
755 mg/kg Xylazine in 50 µl, then infected i.n. with 10^3 PFU of sequence- and titer-verified
756 SARS-CoV-2 MA10 in 50 µl of DMEM diluted in PBS to the inoculation dosage

757 **Experiment groups and treatment regimens:** Eighty animals were used in this
758 study., Ten animals per group were randomly assigned in 1 mock-infected vehicle
759 treatment group and 7 virus (10^3 PFU SARS-CoV-2 MA10)-infected groups treated p.o.
760 via oral gavage respectively with vehicle and ALD-R491 at 3, 10 and 30 mg/kg in
761 prophylactic protocol (dosing at -15, -5, +24, +48, +72, +96 h post infection) or
762 therapeutic protocol (dosing at +24, +48, +96 h post infection).

763 **Procedure and endpoint:** Daily clinical evaluation and scoring were performed
764 including body weight and symptom. The animals that survived anesthesia were carried
765 to the experimental endpoint. As the mice were continuing to lose weight at all doses
766 and in both treatment arms and the disease scores were increasing, all animals were
767 euthanized at 5 days post-infection. Euthanasia was performed by inhalational
768 isoflurane (drop method) and thoracotomy, with removal of vital organs (lungs). Lung
769 tissue was taken for assessments of titer, RNA, and histology. Serum was taken for
770 downstream analysis.

771 **Histopathological examination of the lung:** Lung specimens were fixed in
772 formalin and stained with hematoxylin and eosin for histological assessments. Lung
773 samples were scored by a board-certified veterinary pathologist for acute lung injury
774 (ALI) and diffuse alveolar damage (DAD). The ATS ALI score is a weighted composite
775 score based on the Matute-Bello rubric and considers neutrophils in the alveolar space,
776 neutrophils in the interstitium, hyaline membrane formation, protein in airspaces, and
777 alveolar septal thickening. All lung specimens were submitted for scoring; the
778 pathologist scored all specimens that were deemed suitable. Thus, at least 6 lungs were
779 scored in all conditions.

780 **Statistical analyses** were performed by Kruskal-Wallis test (Titer), One-way
781 ANOVA (Congestion score) or two tailed T Test (Weight loss, ATS ALI and DAD scores).

782

783 **Bleomycin-induced lung injury and fibrosis in rats**

784 **Animals and housing:** Forty-five male SD rats of SPF grade were purchased
785 from Beijing Vital River Laboratory Animal Technology Co., Ltd. with the company

786 certificate No.: SCXX (Jing) 2012-001 and the animal use certificate No.
787 33000800003683. The animals were housed in the Animal House Facility of the KCI
788 Biotech (Suzhou) Inc. at a temperature of 20 to 26°C and a relative humidity of 40% to
789 70%. Fluorescent lighting was provided illumination approximately a 12 h light/dark
790 cycle per day. The experimental protocol was reviewed and approved by the
791 Institutional Animal Care and Use Committee (IACUC) at KCI Biotech Inc. All
792 experimental procedures were conducted in conformity with the institutional guidelines
793 issued by KCI Biotech Inc.

794 **Model Establishment:** This study was carried out in strict accordance with the
795 SOP institutional guidelines for the care and use of laboratory animals. The rats were
796 anesthetized by intraperitoneal injection of pentobarbital sodium at dose of 50mg/kg.
797 The skin in the neck area was disinfected, then the skin layers were carefully incised to
798 have the trachea exposed. Bleomycin (BLM) was directly injected into left main
799 bronchus at a dose of 3mg/kg body weight in volume of 1.0 ml/kg via a cannula. After
800 the skin layers were closed, the animals were placed on an electric heat pad at 37 °C
801 until they woke up from anesthesia before returning to holding cages with free access to
802 water and diet.

803 **Experiment Groups and treatment regimen:** The modeled rats were randomly
804 assigned into 5 groups (n=9 per group), treated p.o. via oral gavage respectively with
805 vehicle at 5 ml/kg/day, with BIBF1120 at 100 mg/kg/d prophylactically (q.d., from Day 1
806 to Day 21) or therapeutically (q.d., from Day 8 to Day 21), and with ALD-R491 at 100
807 mg/kg/d prophylactically (q.d., from Day 1 to Day 21) or therapeutically (q.d., from Day 8
808 to Day 21). One day after the last dosing (Day 22), all animals were euthanized

809 according to the standard SOP at KCI Biotech. The animals were perfused systemically
810 with ice-cold saline, their left lungs were harvested and perfuse-fixed with 10%
811 formaldehyde solution (3ml of each lung), then processed for pathological analysis.

812 **Histopathological examination of the left lungs:** The whole left lung was dehydrated
813 and embedded in paraffin wax. The sections were cut at a thickness of 4um and
814 processed for H&E and Masson's Trichrome staining. All the procedures were
815 performed according to KCI pathology SOPs. Whole slides were then scanned by
816 Hamamatsu NanoZoomer Digital Pathology S210 slide scanner after staining.

817 Bronchiole and pulmonary arteriole damage and inflammatory cell infiltration in
818 fibrosis core and fibrosis boarder areas were scored with H&E-stained slides.

819 Criteria for grading the damage of terminal bronchiole wall were: score 0 for
820 normal structure; score 1 for normal structure with less than 1/2 of the terminal
821 bronchiole wall area injury and characterized by bronchial epithelial cells damage and
822 epithelium regeneration, wall edema, medium layer of the mucosal muscle degeneration
823 or regeneration; score 2 for structure with more than 1/2 of the terminal bronchiole wall
824 area injured and characterized by bronchial epithelial cells damage and epithelium
825 regeneration, wall edema, medium layer of the mucosal muscle degeneration or
826 regeneration; score 3 for structure with more than 1/2 area of the terminal bronchiole
827 wall injured and characterized by bronchial epithelial cells damage and epithelium
828 regeneration, wall edema, medium layer of the mucosal muscle degeneration or
829 regeneration, granulomas formation or fibrosis.

830 Criteria for grading inflammatory cell infiltration in the terminal bronchiole wall
831 were: score 0 for normal structure with no inflammatory cells infiltration; score 1 for a

832 few scattered but localized inflammatory cell infiltration (less than 10 cells per field) in
833 the outer wall of the terminal bronchiole; score 2 for numerous scattered inflammatory
834 cell infiltration that was focal or diffuse, affecting less than 1/2 of the total area of the
835 terminal bronchiole wall; .score 3 for diffuse infiltration of inflammatory cells that affected
836 more than 1/2 of the total area of the terminal bronchiole wall and extended to the inner
837 and the medium layers of basement membrane.

838 Criteria for grading the damage of pulmonary small arteries wall were: score 0 for
839 the clear and complete structure of pulmonary small arteries; score 1 for partially
840 exfoliated endothelial cells; score 2 for exfoliated endothelial cells with degeneration,
841 regeneration or small focal necrosis in the medium layer of smooth muscle; score 3 for
842 exfoliated endothelial cells with degeneration, regeneration or small focal necrosis and
843 formation of granulomas or fibrosis.

844 Criteria for grading inflammatory cell infiltration in the pulmonary arteriole were:
845 score 0 normal structure of pulmonary small arteries; score 1 for a few scattered and
846 localized inflammatory cell infiltration (less than 10 cells per field) in the outer wall of
847 pulmonary small arteries; score 2 for numerous scattered inflammatory cell infiltration,
848 affecting less than 1/2 of the total area of outer wall of pulmonary small arteries; score 3
849 for diffuse infiltration of inflammatory cells that affected more than 1/2 of the total area of
850 1/2 area of the pulmonary small artery wall and extended to the medium layer of the
851 basement membrane.

852 BLM-induced left lung injury and fibrosis were evaluated with Masson Trichrome
853 stained slides using Ashcroft scoring matrix. The criteria were: score 0 for the normal
854 structure with no fibrotic lesion in alveolar septum; score 1 for the isolated and simple

855 pulmonary fibrosis in alveolar septum (alveolar walls thicker than triple of
856 that for a normal lung), and little exudate and no fibrosis material in major alveolar areas;
857 score 2 for the clear fibrosis change in alveolar septum (alveolar walls thicker than triple
858 of that for a normal lung) with formation of small nodules that were not connected, and
859 little exudate and no fibrosis material in major alveolar areas; score 3 for the formation
860 early stage fibrosis forms in all alveoli in alveolar septum (alveolar walls thicker than
861 triple of that for a normal lung), and little exudate and no fibrosis material in major
862 alveolar areas; score 4 for the lung fibrosis with alveolar septum still visible, and the
863 formation of
864 isolated fibrosis nodules in alveolar areas ($\leq 10\%$ at high magnification); score 5 for the
865 lung fibrosis with alveolar septum still visible, the formation of integrated fibrosis nodule
866 in alveolar areas ($>10\%$ and $\leq 50\%$ at high magnification), and the lung structure
867 substantially impaired but still existed; score 6 for the seen but barely alveolar septum
868 existed, and the formation of integrated fibrosis nodule in alveolar areas ($>50\%$ at high
869 magnification), and the lung structure barely existed; score 7 for the disappeared
870 alveolar septum, and the pulmonary alveoli and interstitial fibrosis proliferation seen but
871 still with vacuole structures; score 8 for the disappeared alveolar septum, and the
872 pulmonary alveoli and interstitial fibrosis proliferation seen at high magnification.
873 **immunohistochemistry (IHC) for Collagen-I:** The IHC staining was processed
874 according to the standard IHC protocol at KCI Biotech. Anti-collagen-I antibody (Abcam,
875 Cat# ab34710) was used. The stained slides were then scanned by Hamamatsu
876 NanoZoomer Digital Pathology S210 slide scanner and analyzed using the software to

877 calculate the positive staining area/analysis area (%) or positive staining cells per unit
878 area.

879 **Statistical analyses:** Statistical analysis was performed using Graphpad prism 6.0
880 software. Descriptive results were expressed as mean \pm sem or mean \pm sd. Statistical
881 comparisons were performed using t-test, one-way analysis of variance or two-way
882 analysis of variance test. $p < 0.05$ was considered as statistically significant.

883

884

885 **ACKNOWLEDGMENTS:**

886 **Funding:** This work was partially supported by grants from the Ministry of Science and
887 Technology of China (2018YFA0801100 to YX), from the Priority Academic Program
888 Development of the Jiangsu Higher Education Institutes (PAPD) and National Center for
889 International Research (2017B01012 to YX), and from Luoda Biosciences, Inc.
890 (LD20150701 to JW). Aluda Pharmaceuticals, Inc. has utilized the non-clinical and pre-
891 clinical services program offered by the National Institute of Allergy and Infectious
892 Diseases, NIH, USA.

893

894 **Author contributions:** RC conceived the studies; YX and RC designed the studies; YX
895 and RC supervised and ZL, JW, JZ, LM, BY, ZQ, FZ, YD, KH, ZWL and TW performed
896 the in vitro studies. ZL, JW, JZ and BY contributed equally to this work. ZL, BY, YD
897 performed transfection and pseudoviral infection experiments. JW, LM performed
898 exosomes experiments and pilot Treg experiments. ZL, KH performed macrophage
899 experiments. ZL and KH performed Salmonella killing assays in R. Huang's lab at

900 Soochow University. FZ performed immunofluorescence experiments. ZQ performed
901 the FRAP experiments. ZWL performed cell preparation from animals for *in vitro* studies.
902 JPZ supervised and JZ performed Treg cell experiments. ES supervised and JC
903 performed the lung fibrosis *in vivo* studies, JG supervised and WW and performed *in*
904 *vivo* drug tissue distribution studies, DS managed the SARS-CoV2 *in vivo* project that
905 was performed in R. Baric's lab at University of North Carolina. RC wrote the
906 manuscript. All authors read, edited and approved the final version of the manuscript.

907

908 **Competing interests:** Patents and pending patents on ALD-R491, its related
909 compounds and their uses are held by Aluda Pharmaceuticals, Inc. and Luoda
910 Biosciences, Inc. RC is an employee of Aluda Pharmaceuticals, Inc., a shareholder and
911 the appointed legal representative of Luoda Biosciences, Inc.; LM and DS hold shares
912 of Aluda Pharmaceuticals, Inc. All other authors declare no competing financial interests.

913

914 **Materials & Correspondence:** Correspondence and material requests should be
915 addressed to Ruihuan Chen at ruihuan@aludapharm.com, or Yong Xu at
916 yingxu@suda.edu.cn. All data are available in the main text or the supplementary
917 materials. The compound ALD-R491 is available under a materials transfer agreement.

918

919 **REFERENCES**

920 1. Lavine JS, Bjornstad ON, Antia R. 2021. Immunological characteristics govern
921 the transition of COVID-19 to endemicity. *Science* 371:741-745.

922 2. Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. 2020. Mucosal Immunity in
923 COVID-19: A Neglected but Critical Aspect of SARS-CoV-2 Infection. *Front
924 Immunol* 11:611337.

925 3. Froberg J, Diavatopoulos DA. 2021. Mucosal immunity to severe acute
926 respiratory syndrome coronavirus 2 infection. *Curr Opin Infect Dis* 34:181-186.

927 4. Turner JS, O'Halloran JA, Kalaidina E, Kim W, Schmitz AJ, Zhou JQ, Lei T,
928 Thapa M, Chen RE, Case JB, Amanat F, Rauseo AM, Haile A, Xie X, Klebert MK,
929 Suessen T, Middleton WD, Shi PY, Krammer F, Teeffey SA, Diamond MS, Presti
930 RM, Ellebedy AH. 2021. SARS-CoV-2 mRNA vaccines induce persistent human
931 germinal centre responses. *Nature* 596:109-113.

932 5. Reynolds CJ, Pade C, Gibbons JM, Butler DK, Otter AD, Menacho K, Fontana M,
933 Smit A, Sackville-West JE, Cutino-Moguel T, Maini MK, Chain B, Noursadeghi M,
934 Network UKCIC, Brooks T, Semper A, Manisty C, Treibel TA, Moon JC,
935 Investigators UKC, Valdes AM, McKnight A, Altmann DM, Boyton R. 2021. Prior
936 SARS-CoV-2 infection rescues B and T cell responses to variants after first
937 vaccine dose. *Science* 372:1418-1423.

938 6. Hoffmann M, Hofmann-Winkler H, Kruger N, Kempf A, Nehlmeier I, Graichen L,
939 Arora P, Sidarovich A, Moldenhauer AS, Winkler MS, Schulz S, Jack HM,
940 Stankov MV, Behrens GMN, Pohlmann S. 2021. SARS-CoV-2 variant B.1.617 is
941 resistant to bamlanivimab and evades antibodies induced by infection and
942 vaccination. *Cell Rep* 36:109415.

943 7. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM,
944 Planchais C, Porrot F, Robillard N, Puech J, Prot M, Gallais F, Gantner P, Velay
945 A, Le Guen J, Kassis-Chikhani N, Edriss D, Belec L, Seve A, Courtellemont L,
946 Pere H, Hocqueloux L, Fafi-Kremer S, Prazuck T, Mouquet H, Bruel T, Simon-
947 Lorie E, Rey FA, Schwartz O. 2021. Reduced sensitivity of SARS-CoV-2
948 variant Delta to antibody neutralization. *Nature* 596:276-280.

949 8. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, Lau YC, Wong JY, Guan Y, Tan
950 X, Mo X, Chen Y, Liao B, Chen W, Hu F, Zhang Q, Zhong M, Wu Y, Zhao L,
951 Zhang F, Cowling BJ, Li F, Leung GM. 2020. Temporal dynamics in viral
952 shedding and transmissibility of COVID-19. *Nat Med* 26:672-675.

953 9. Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA,
954 Niemeyer D, Jones TC, Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brunink S,
955 Schneider J, Ehmann R, Zwirglmaier K, Drosten C, Wendtner C. 2020.
956 Virological assessment of hospitalized patients with COVID-2019. *Nature*
957 581:465-469.

958 10. Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montejano R, Spinner CD,
959 Galli M, Ahn MY, Nahass RG, Chen YS, SenGupta D, Hyland RH, Osinusi AO,
960 Cao H, Blair C, Wei X, Gaggar A, Brainard DM, Towner WJ, Munoz J, Mullane
961 KM, Marty FM, Tashima KT, Diaz G, Subramanian A, Investigators G-U-. 2020.
962 Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. *N Engl J Med*
963 383:1827-1837.

964 11. Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M,
965 Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E,

966 Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E,
967 Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-
968 Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y,
969 Dugourd A, Valdeolivas A, Patil T, Li Q, Huttenhain R, Cakir M, Muralidharan M,
970 Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP,
971 Gaulton A, Manners EJ, et al. 2020. The Global Phosphorylation Landscape of
972 SARS-CoV-2 Infection. *Cell* 182:685-712 e19.

973 12. Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, Jureka AS,
974 Obernier K, Guo JZ, Batra J, Kaake RM, Weckstein AR, Owens TW, Gupta M,
975 Pourmal S, Titus EW, Cakir M, Soucheray M, McGregor M, Cakir Z, Jang G,
976 O'Meara MJ, Tummino TA, Zhang Z, Foussard H, Rojc A, Zhou Y, Kuchenov D,
977 Huttenhain R, Xu J, Eckhardt M, Swaney DL, Fabius JM, Ummadi M,
978 Tutuncuoglu B, Rathore U, Modak M, Haas P, Haas KM, Naing ZZC, Pulido EH,
979 Shi Y, Barrio-Hernandez I, Memon D, Petsalaki E, Dunham A, Marrero MC,
980 Burke D, Koh C, Vallet T, et al. 2020. Comparative host-coronavirus protein
981 interaction networks reveal pan-viral disease mechanisms. *Science*
982 370:eabe9403..

983 13. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ,
984 Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Huttenhain R, Kaake RM,
985 Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M,
986 Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett
987 MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A,
988 Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby

989 IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D,
990 Hernandez-Armenta C, et al. 2020. A SARS-CoV-2 protein interaction map
991 reveals targets for drug repurposing. *Nature* 583:459-468.

992 14. Riva L, Yuan S, Yin X, Martin-Sancho L, Matsunaga N, Pache L, Burgstaller-
993 Muehlbacher S, De Jesus PD, Teriete P, Hull MV, Chang MW, Chan JF, Cao J,
994 Poon VK, Herbert KM, Cheng K, Nguyen TH, Rubanov A, Pu Y, Nguyen C, Choi
995 A, Rathnasinghe R, Schotsaert M, Miorin L, Dejosez M, Zwaka TP, Sit KY,
996 Martinez-Sobrido L, Liu WC, White KM, Chapman ME, Lendy EK, Glynne RJ,
997 Albrecht R, Ruppin E, Mesecar AD, Johnson JR, Benner C, Sun R, Schultz PG,
998 Su AI, Garcia-Sastre A, Chatterjee AK, Yuen KY, Chanda SK. 2020. Discovery of
999 SARS-CoV-2 antiviral drugs through large-scale compound repurposing. *Nature*
1000 586:113-119.

1001 15. Wang R, Simoneau CR, Kulsuptrakul J, Bouhaddou M, Travisano KA, Hayashi
1002 JM, Carlson-Steumer J, Zengel JR, Richards CM, Fozouni P, Oki J, Rodriguez
1003 L, Joehnk B, Walcott K, Holden K, Sil A, Carette JE, Krogan NJ, Ott M, Puschnik
1004 AS. 2021. Genetic Screens Identify Host Factors for SARS-CoV-2 and Common
1005 Cold Coronaviruses. *Cell* 184:106-119 e14.

1006 16. WHO Solidarity Trial Consortium; Pan H, Peto R, Henao-Restrepo AM, Preziosi
1007 MP, Sathiyamoorthy V, Abdool Karim Q, Alejandria MM, Hernandez Garcia C,
1008 Kieny MP, Malekzadeh R, Murthy S, Reddy KS, Roses Periago M, Abi Hanna P,
1009 Ader F, Al-Bader AM, Alhasawi A, Allum E, Alotaibi A, Alvarez-Moreno CA,
1010 Appadoo S, Asiri A, Aukrust P, Barratt-Due A, Bellani S, Branca M, Cappel-
1011 Porter HBC, Cerrato N, Chow TS, Como N, Eustace J, Garcia PJ, Godbole S,

1012 Gotuzzo E, Griskevicius L, Hamra R, Hassan M, Hassany M, Hutton D,

1013 Irmansyah I, Jancoriene L, Kirwan J, Kumar S, Lennon P, Lopardo G, Lydon P,

1014 Magrini N, Maguire T, Manevska S, et al. 2021. Repurposed Antiviral Drugs for

1015 Covid-19 - Interim WHO Solidarity Trial Results. *N Engl J Med* 384:497-511.

1016 17. Danielsson F, Peterson MK, Caldeira Araujo H, Lautenschlager F, Gad AKB.

1017 2018. Vimentin Diversity in Health and Disease. *Cells* 7:147.

1018 18. Li Z, Paulin D, Lacolley P, Coletti D, Agbulut O. 2020. Vimentin as a target for the

1019 treatment of COVID-19. *BMJ Open Respir Res* 7: e000623.

1020 19. Ramos I, Stamatakis K, Oeste CL, Perez-Sala D. 2020. Vimentin as a

1021 Multifaceted Player and Potential Therapeutic Target in Viral Infections. *Int J Mol*

1022 *Sci* 21: 4675.

1023 20. Zhang Y, Wen Z, Shi X, Liu YJ, Eriksson JE, Jiu Y. 2020. The diverse roles and

1024 dynamic rearrangement of vimentin during viral infection. *J Cell Sci* 134:

1025 jcs250597.

1026 21. McDonald-Hyman C, Muller JT, Loschi M, Thangavelu G, Saha A, Kumari S,

1027 Reichenbach DK, Smith MJ, Zhang G, Koehn BH, Lin J, Mitchell JS, Fife BT,

1028 Panoskaltsis-Mortari A, Feser CJ, Kirchmeier AK, Osborn MJ, Hippen KL,

1029 Kelekar A, Serody JS, Turka LA, Munn DH, Chi H, Neubert TA, Dustin ML,

1030 Blazar BR. 2018. The vimentin intermediate filament network restrains regulatory

1031 T cell suppression of graft-versus-host disease. *J Clin Invest* 128:4604-4621.

1032 22. dos Santos G, Rogel MR, Baker MA, Troken JR, Urich D, Morales-Nebreda L,

1033 Sennello JA, Kutuzov MA, Sitikov A, Davis JM, Lam AP, Cheresh P, Kamp D,

1034 Shumaker DK, Budinger GR, Ridge KM. 2015. Vimentin regulates activation of
1035 the NLRP3 inflammasome. *Nat Commun* 6:6574.

1036 23. Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C. 1994.
1037 Mice lacking vimentin develop and reproduce without an obvious phenotype. *Cell*
1038 79:679-94.

1039 24. Zhang L, Qu Z, Wu J, Yao S, Zhang Q, Zhang T, Mo L, Yao Q, Xu Y, Chen R.
1040 2021. SARs of a novel series of s-triazine compounds targeting vimentin to
1041 induce methuotic phenotype. *Eur J Med Chem* 214:113188.

1042 25. Wu JX, Qian; Liu, Yanjun; Gao, Yanan; Qu, Zhipeng; Mo, Lian; Xu, Ying; Chen,
1043 Ruihuan; Shi, Liyun. 2021. A Small Vimentin-Binding Molecule Blocks Cancer
1044 Exosome Release and Reduces Cancer Cell Mobility. *Frontiers in Pharmacology*
1045 12.

1046 26. Kalluri R, LeBleu VS. 2020. The biology, function, and biomedical applications of
1047 exosomes. *Science* 367:eaau6977.

1048 27. Ghosh S, Dellibovi-Ragheb TA, Kerviel A, Pak E, Qiu Q, Fisher M, Takvorian PM,
1049 Bleck C, Hsu VW, Fehr AR, Perlman S, Achar SR, Straus MR, Whittaker GR, de
1050 Haan CAM, Kehrl J, Altan-Bonnet G, Altan-Bonnet N. 2020. beta-Coronaviruses
1051 Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway. *Cell*
1052 183:1520-1535 e14.

1053 28. Boumaza A, Gay L, Mezouar S, Bestion E, Diallo AB, Michel M, Desnues B,
1054 Raoult D, La Scola B, Halfon P, Vitte J, Olive D, Mege JL. 2021. Monocytes and
1055 macrophages, targets of SARS-CoV-2: the clue for Covid-19 immunoparalysis. *J*
1056 *Infect Dis* 224:395-406.

1057 29. Grant RA, Morales-Nebreda L, Markov NS, Swaminathan S, Querrey M, Guzman
1058 ER, Abbott DA, Donnelly HK, Donayre A, Goldberg IA, Klug ZM, Borkowski N, Lu
1059 Z, Kihshen H, Politanska Y, Sichizya L, Kang M, Shilatifard A, Qi C, Lomasney
1060 JW, Argento AC, Kruser JM, Malsin ES, Pickens CO, Smith SB, Walter JM,
1061 Pawlowski AE, Schneider D, Nannapaneni P, Abdala-Valencia H, Bharat A,
1062 Gottardi CJ, Budinger GRS, Misharin AV, Singer BD, Wunderink RG,
1063 Investigators NSS. 2021. Circuits between infected macrophages and T cells in
1064 SARS-CoV-2 pneumonia. *Nature* 590:635-641.

1065 30. Mor-Vaknin N, Legendre M, Yu Y, Serezani CH, Garg SK, Jatzek A, Swanson
1066 MD, Gonzalez-Hernandez MJ, Teitz-Tennenbaum S, Punturieri A, Engleberg NC,
1067 Banerjee R, Peters-Golden M, Kao JY, Markovitz DM. 2013. Murine colitis is
1068 mediated by vimentin. *Sci Rep* 3:1045.

1069 31. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W,
1070 Tian DS. 2020. Dysregulation of Immune Response in Patients With Coronavirus
1071 2019 (COVID-19) in Wuhan, China. *Clin Infect Dis* 71:762-768.

1072 32. Sadeghi A, Tahmasebi S, Mahmood A, Kuznetsova M, Valizadeh H, Taghizadieh
1073 A, Nazemiyeh M, Aghebati-Maleki L, Jadidi-Niaragh F, Abbaspour-Aghdam S,
1074 Roshangar L, Mikaeili H, Ahmadi M. 2021. Th17 and Treg cells function in
1075 SARS-CoV2 patients compared with healthy controls. *J Cell Physiol* 236:2829-
1076 2839.

1077 33. Wang Y, Zheng J, Islam MS, Yang Y, Hu Y, Chen X. 2021. The role of
1078 CD4(+)FoxP3(+) regulatory T cells in the immunopathogenesis of COVID-19:
1079 implications for treatment. *Int J Biol Sci* 17:1507-1520.

1080 34. Rahimzadeh M, Naderi N. 2021. Toward an understanding of regulatory T cells in
1081 COVID-19: A systematic review. *J Med Virol* 93:4167-4181.

1082 35. Stephen-Victor E, Das M, Karnam A, Pitard B, Gautier JF, Bayry J. 2020.
1083 Potential of regulatory T-cell-based therapies in the management of severe
1084 COVID-19. *Eur Respir J* 56:2002182.

1085 36. Dinnon KH, 3rd, Leist SR, Schafer A, Edwards CE, Martinez DR, Montgomery
1086 SA, West A, Yount BL, Jr., Hou YJ, Adams LE, Gully KL, Brown AJ, Huang E,
1087 Bryant MD, Choong IC, Glenn JS, Gralinski LE, Sheahan TP, Baric RS. 2020. A
1088 mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures.
1089 *Nature* 586:560-566.

1090 37. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C,
1091 Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu
1092 L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. 2020. Risk Factors Associated With
1093 Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus
1094 Disease 2019 Pneumonia in Wuhan, China. *JAMA Intern Med* 180:934-943.

1095 38. George PM, Wells AU, Jenkins RG. 2020. Pulmonary fibrosis and COVID-19: the
1096 potential role for antifibrotic therapy. *Lancet Respir Med* 8:807-815.

1097 39. Li FJ, Surolia R, Li H, Wang Z, Liu G, Kulkarni T, Massicano AVF, Mobley JA,
1098 Mondal S, de Andrade JA, Coonrod SA, Thompson PR, Wille K, Lapi SE, Athar
1099 M, Thannickal VJ, Carter AB, Antony VB. 2021. Citrullinated vimentin mediates
1100 development and progression of lung fibrosis. *Sci Transl Med* 13:eaba2927.

1101 40. Challa AA, Stefanovic B. 2011. A novel role of vimentin filaments: binding and
1102 stabilization of collagen mRNAs. *Mol Cell Biol* 31:3773-89.

1103 41. Surolia R, Li FJ, Wang Z, Li H, Dsouza K, Thomas V, Mirov S, Perez-Sala D,
1104 Athar M, Thannickal VJ, Antony VB. 2019. Vimentin intermediate filament
1105 assembly regulates fibroblast invasion in fibrogenic lung injury. *JCI Insight*
1106 4:e123253.

1107 42. Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. 2020. Drug
1108 repurposing approach to fight COVID-19. *Pharmacol Rep* 72:1479-1508.

1109 43. Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe A,
1110 Abbondanza D, Fleming SJ, Subramanian A, Montoro DT, Jagadeesh KA, Dey
1111 KK, Sen P, Slyper M, Pita-Juarez YH, Phillips D, Biermann J, Bloom-Ackermann
1112 Z, Barkas N, Ganna A, Gomez J, Melms JC, Katsyv I, Normandin E, Naderi P,
1113 Popov YV, Raju SS, Niezen S, Tsai LT, Siddle KJ, Sud M, Tran VM, Vellarikkal
1114 SK, Wang Y, Amir-Zilberstein L, Atri DS, Beechem J, Brook OR, Chen J, Divakar
1115 P, Dorceus P, Engreitz JM, Essene A, Fitzgerald DM, Fropf R, Gazal S, Gould J,
1116 Grzyb J, Harvey T, Hecht J, et al. 2021. COVID-19 tissue atlases reveal SARS-
1117 CoV-2 pathology and cellular targets. *Nature* 595:107-113.

1118 44. Rendeiro AF, Ravichandran H, Bram Y, Chandar V, Kim J, Meydan C, Park J,
1119 Foox J, Hether T, Warren S, Kim Y, Reeves J, Salvatore S, Mason CE, Swanson
1120 EC, Borczuk AC, Elemento O, Schwartz RE. 2021. The spatial landscape of lung
1121 pathology during COVID-19 progression. *Nature* 593:564-569.

1122 45. Hookway C, Ding L, Davidson MW, Rappoport JZ, Danuser G, Gelfand VI. 2015.
1123 Microtubule-dependent transport and dynamics of vimentin intermediate
1124 filaments. *Mol Biol Cell* 26:1675-86.

1125 46. Styers ML, Kowalczyk AP, Faundez V. 2005. Intermediate filaments and
1126 vesicular membrane traffic: the odd couple's first dance? *Traffic* 6:359-65.

1127 47. Yu YT, Chien SC, Chen IY, Lai CT, Tsay YG, Chang SC, Chang MF. 2016.
1128 Surface vimentin is critical for the cell entry of SARS-CoV. *J Biomed Sci* 23:14.

1129 48. Suprewicz L, Swoger M, Gupta S, Piktel E, Byfield FJ, Iwamoto DV, Germann
1130 DA, Reszec J, Marcinczyk N, Janmey P, Schwarz JM, Bucki R, Patteson A. 2021.
1131 Vimentin binds to SARS-CoV-2 spike protein and antibodies targeting
1132 extracellular vimentin block in vitro uptake of SARS-CoV-2 virus-like particles.
1133 bioRxiv doi:10.1101/2021.01.08.425793.

1134 49. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B,
1135 Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen
1136 XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX,
1137 Wang YY, Xiao GF, Shi ZL. 2020. A pneumonia outbreak associated with a new
1138 coronavirus of probable bat origin. *Nature* 579:270-273.

1139 50. Patterson BK, Francisco EB, Yogendra, R, Emily Long E, Pise A, Rodrigues H,
1140 Hall E, Herrera M, Parikh P, Guevara-Coto J, Triche T, Scott P, Hekmati S,
1141 Maglinte D, Chang X, Rodriguez R, Mora J. 2021. Persistence of SARS CoV-2
1142 S1 Protein in CD16+ Monocytes in Post-Acute Sequelae of COVID-19 (PASC)
1143 Up to 15 Months Post-Infection. bioRxiv doi:
1144 <https://doi.org/10.1101/2021.06.25.449905>.

1145 51. Abassi Z, Knaney Y, Karram T, Heyman SN. 2020. The Lung Macrophage in
1146 SARS-CoV-2 Infection: A Friend or a Foe? *Front Immunol* 11:1312.

1147 52. Nikitina E, Larionova I, Choinzonov E, Kzhyshkowska J. 2018. Monocytes and
1148 Macrophages as Viral Targets and Reservoirs. *Int J Mol Sci* 19:2821.

1149 53. Park MD. 2020. Macrophages: a Trojan horse in COVID-19? *Nat Rev Immunol*
1150 20:351.

1151 54. Marshall M. 2020. The lasting misery of coronavirus long-haulers. *Nature*
1152 585:339-341.

1153 55. Prigge A, Ma R, Coates B, Ridge KM. 2020. Deletion of Vimentin in Regulatory T
1154 Cells Augments Suppression Without Altering Homeostasis. *Am J Respir Crit*
1155 *Care Med* 201:A5565.

1156 56. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, Treuting PM,
1157 Rudensky AY. 2015. A Distinct Function of Regulatory T Cells in Tissue
1158 Protection. *Cell* 162:1078-89.

1159 57. Fabbri L, Moss S, Khan F, Chi W, Xia J, Robinson K, Smyth A, Jenkins G,
1160 Stewart I. 2021. Post-viral parenchymal lung disease of COVID-19 and viral
1161 pneumonitis: A systematic review and meta-analysis. *medRxiv*
1162 doi:<https://doi.org/10.1101/2021.03.15.21253593>.

1163

1164

1165 **SUPPLEMENTARY FIGURE LEGENDS**

1166 **Fig. S1. ALD-R491 has no effect on other type III intermediate filaments. Left.** No
1167 structural changes in GFAP in human glioma U87 cells treated with or without the

1168 compound ALD-R491. Right. No structural changes in desmin in human osteosarcoma
1169 U2OS cells treated with or without the compound ALD-R491.

1170

1171 **Fig. S2. ALD-R491 blocked Spike protein-ACE2 mediated viral entry in vitro.**
1172 **Upper.** Time course of the GFP reporter gene expression in the ACE2-overexpressing
1173 HEK293 cells infected with the SARS-CoV spike protein-pseudotyped-lentivirus at MOI
1174 of 5. **Lower.** Dose-dependent reduction of the GFP expression at the time point of 48
1175 hrs post viral infection.

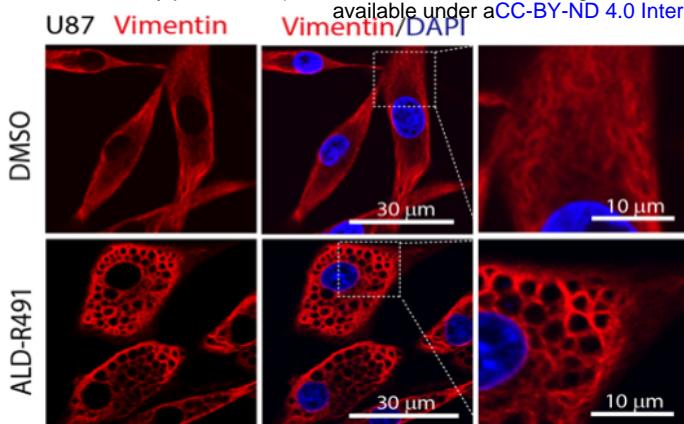
1176

1177 **Fig. S3. Schematic presentation of effects of ALD-R491 on macrophage.** ALD-
1178 R491. The binding of ALD-R491 to vimentin releases p47phox, leading to the activation
1179 of NADPH oxidase in the phagosome, and therefore an increase of pathogen-killing
1180 capacity of macrophage.

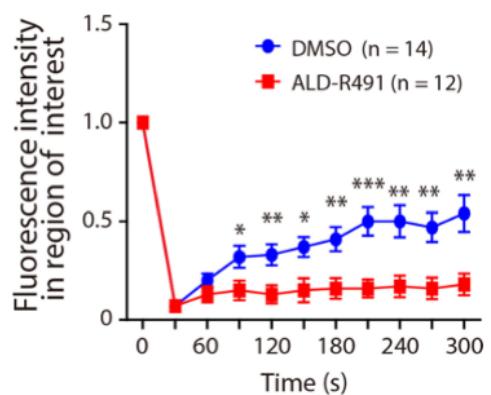
1181

1182 **Fig. S4. Schematic presentation of effects of ALD-R491 on Treg cell.** The binding of
1183 ALD-R491 to vimentin disrupts the distal pole complex of Treg cell, consequently, allow
1184 the suppressive molecules move to the immunological synapse, through which Treg cell
1185 is directly activated.

1186

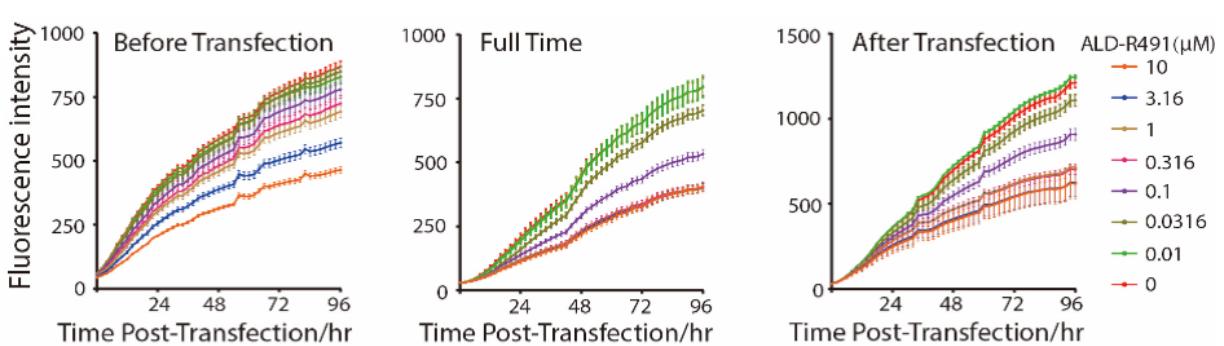

1187 **Fig. S5. Prophylactic treatment with ALD-R491 had no effect on the aged mice**
1188 **with SARS-CoV2 M10 infection.** **A.** Body weights were measured daily over the
1189 course of study. Body weight changes were calculated based on the body weight prior
1190 to the infection. **B.** Lung congestion was evaluated on Day 5. **C.** ATS Acute Lung
1191 Injuries (ALI) were scored by the method of Matute-Bello (2011). **D.** The diffuse

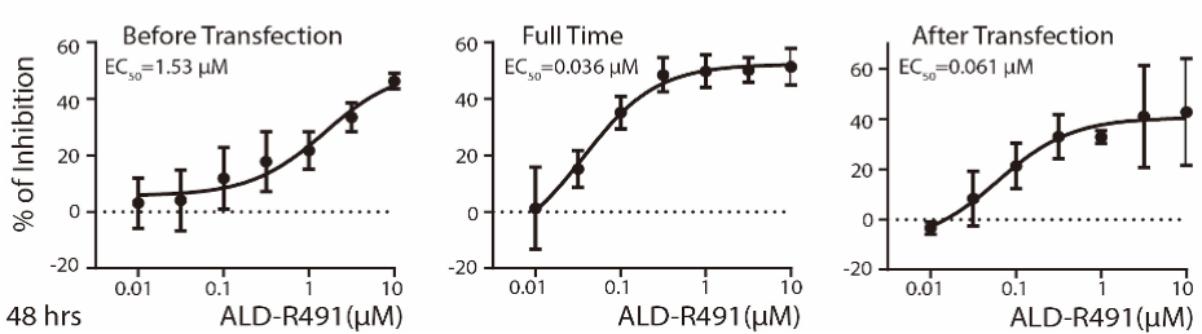
1192 alveolar damages (DAD) were scored by the method of Schmidt (2018). **E.**
1193 Histopathology was blindly evaluated by a board-certified pathologist. **F.** Lung tissues
1194 from all groups of mice were harvested on Day 5 and viral titers were measured by PCR.
1195 No statistical significance between infected vehicle group vs. individual treatment
1196 groups.

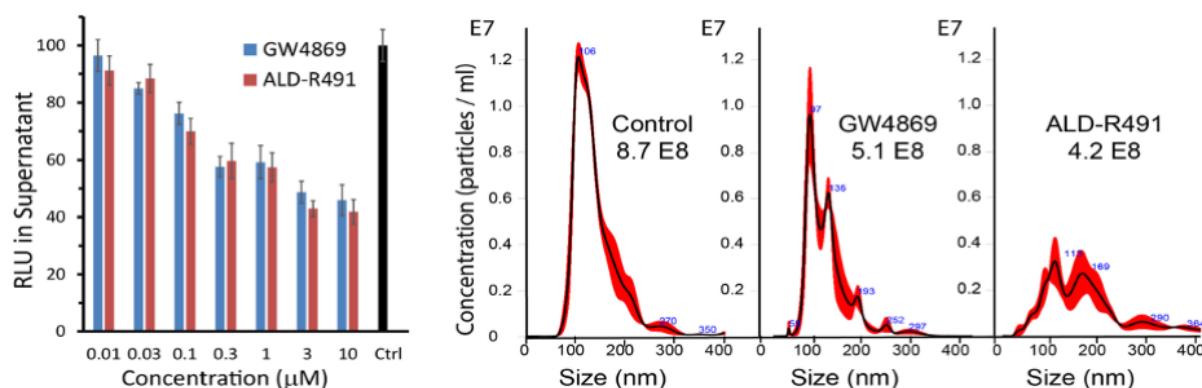

1197 **Fig. S6. ALD-R491 reduced lung injury and collagen deposition in the lung.**

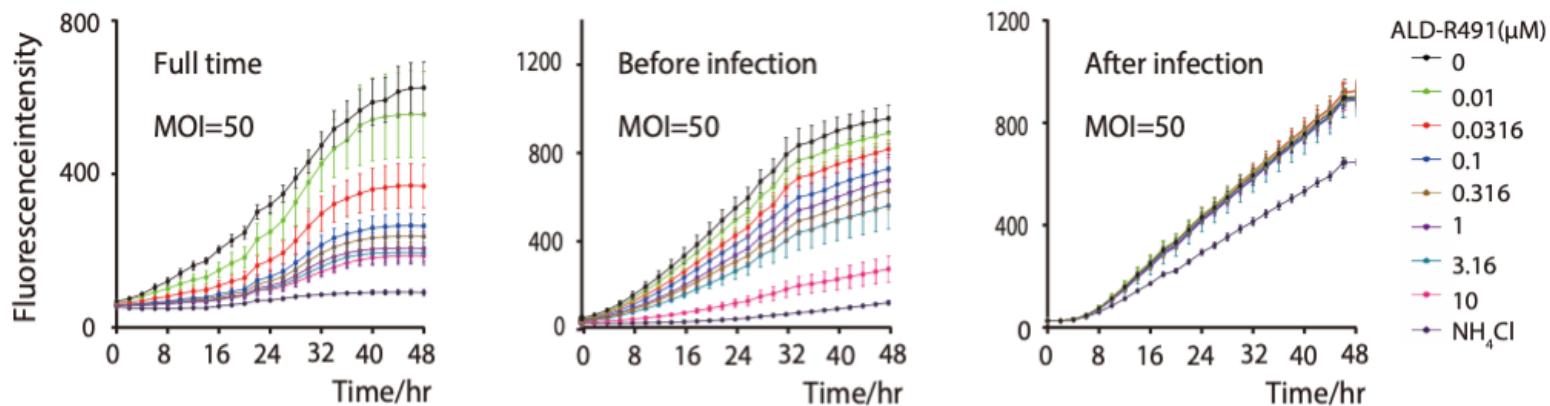
1198 Representative images of **A.** the bronchial and arteriole injury in fibrotic border; **B.** the
1199 alveolar damage in fibrotic core; **F.** the immunohistochemical staining of collagen 1 in
1200 the fibrotic lung. Brown color: collagen 1. All the representative images were selected
1201 from sections with scores or percentage of positive areas close to those of individual
1202 group averages.

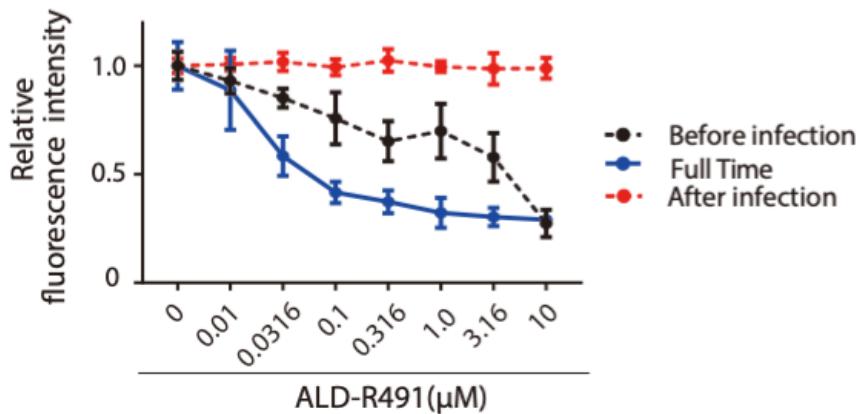
A

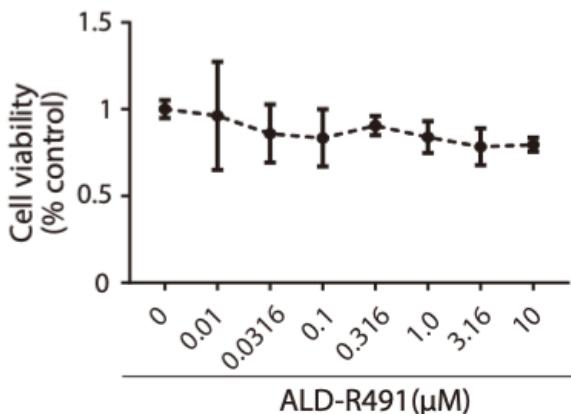

B

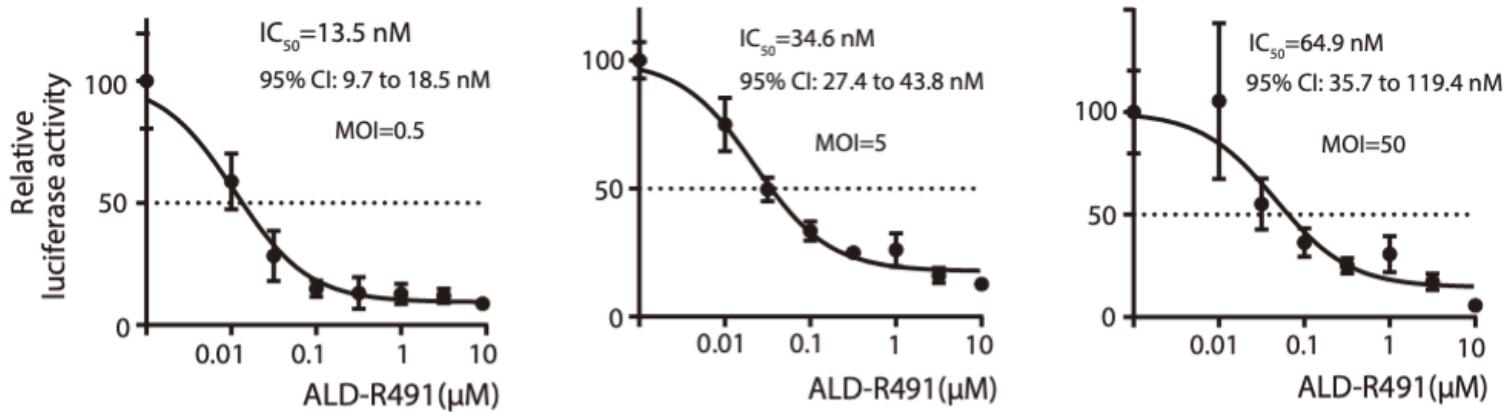

C

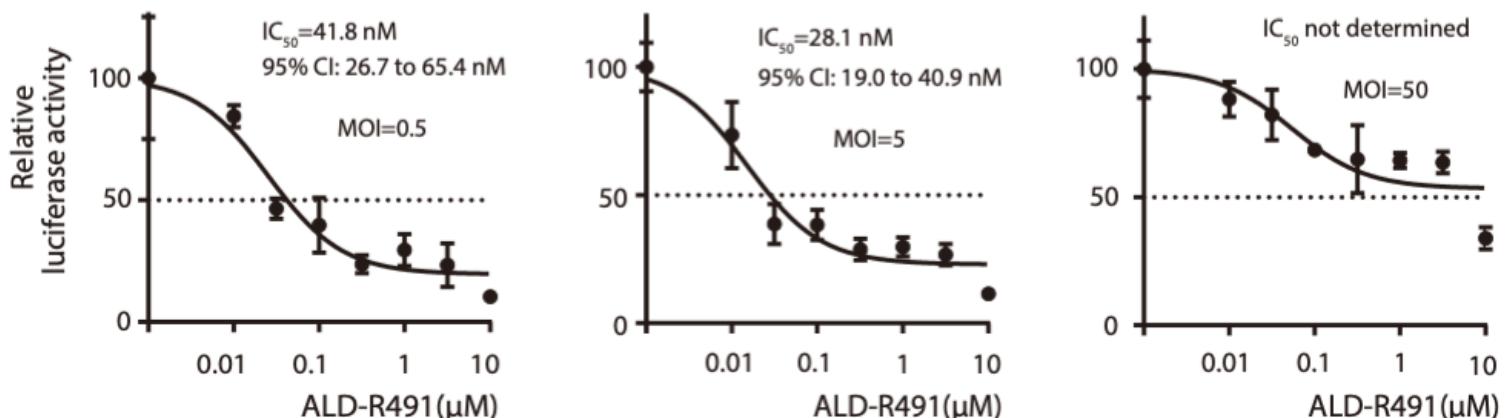

D


E

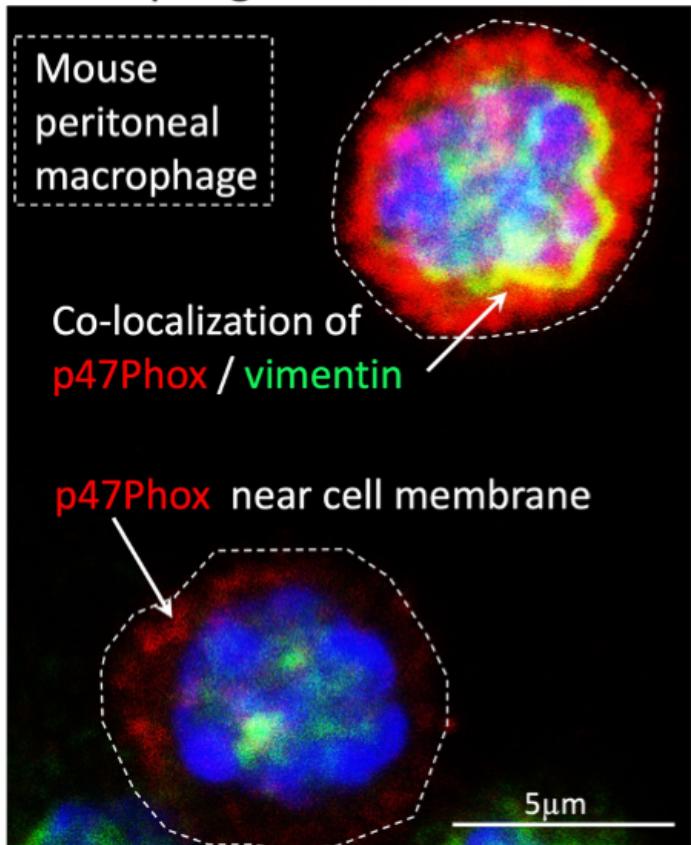

F


A Time course of viral gene expression

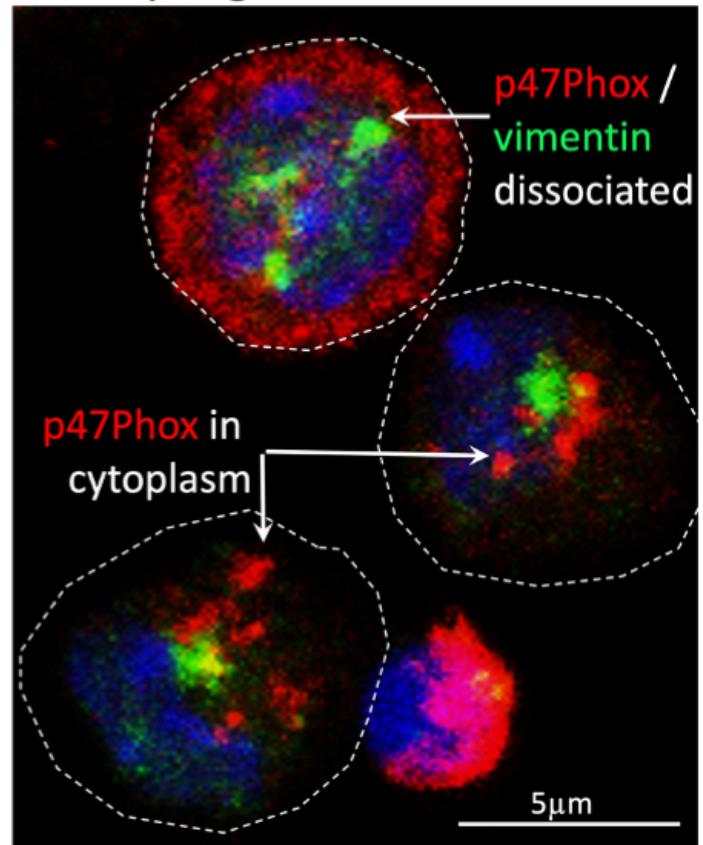

B Dose-responsive inhibition


C No cytotoxic effect

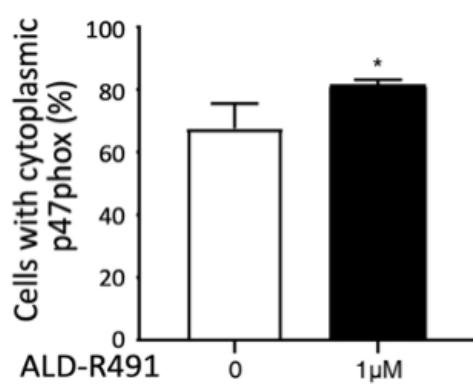
D Treatment for the full time of infection

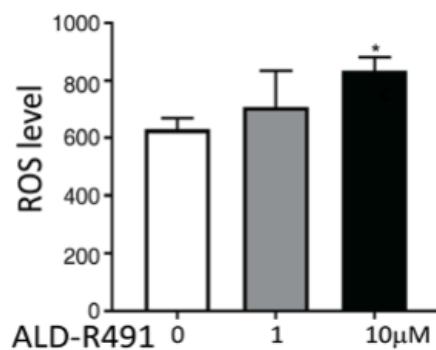


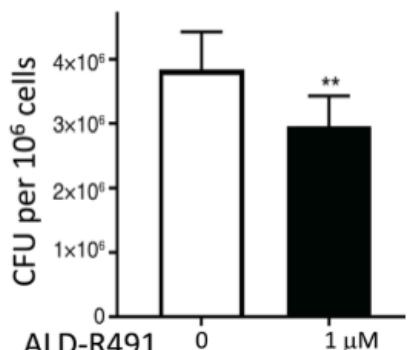
E Treatment before infection



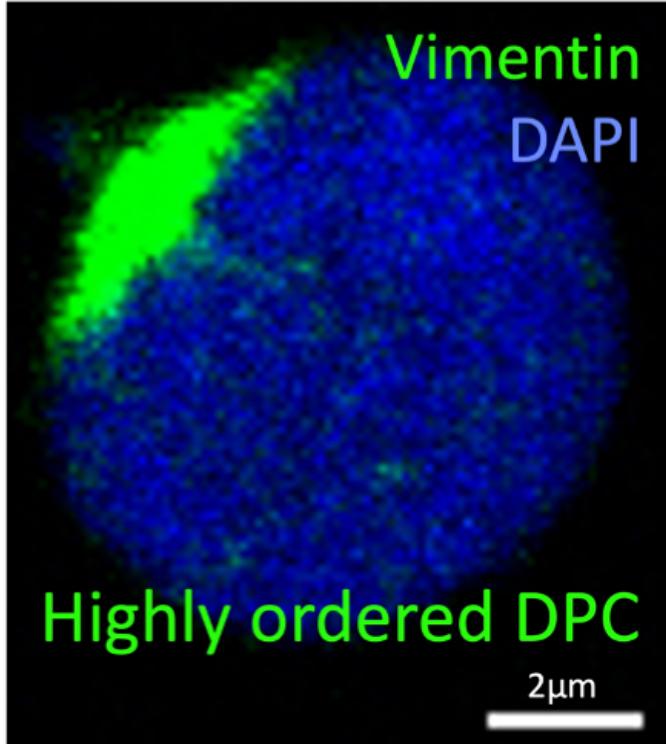
A


Macrophage + DMSO

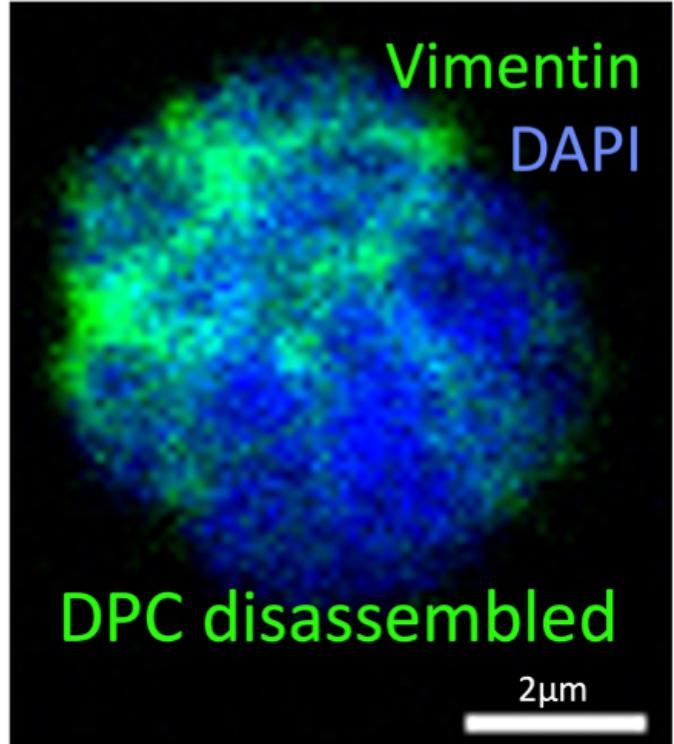

Macrophage + ALD-R491


B

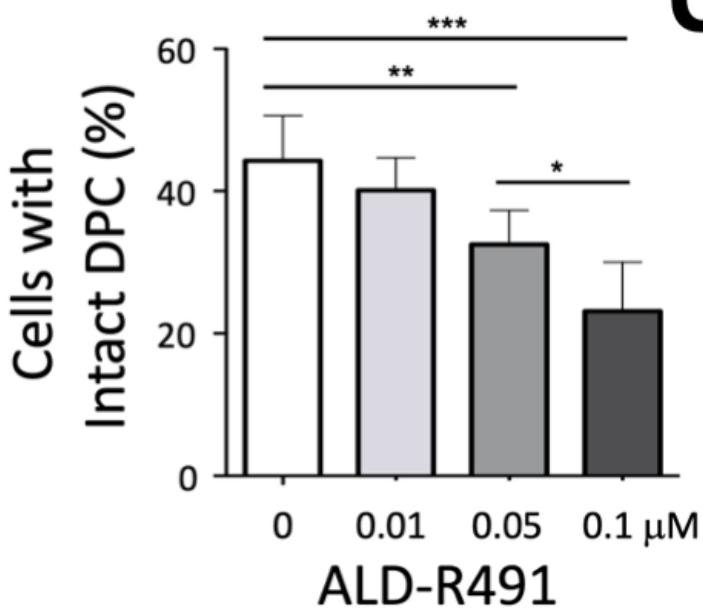
C

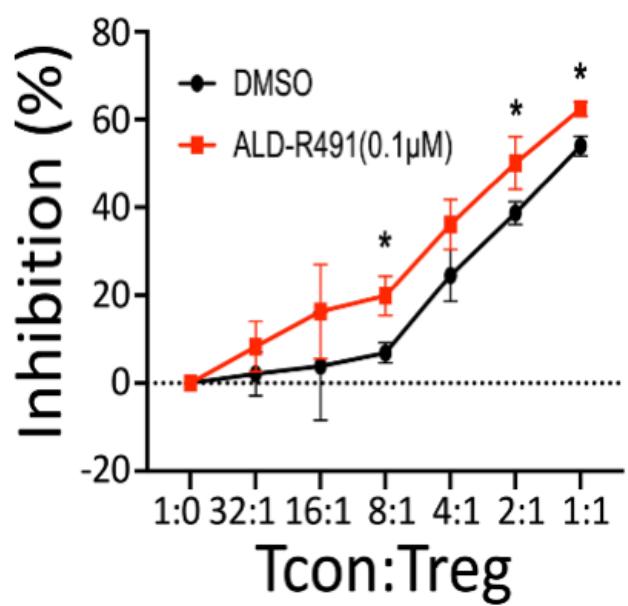


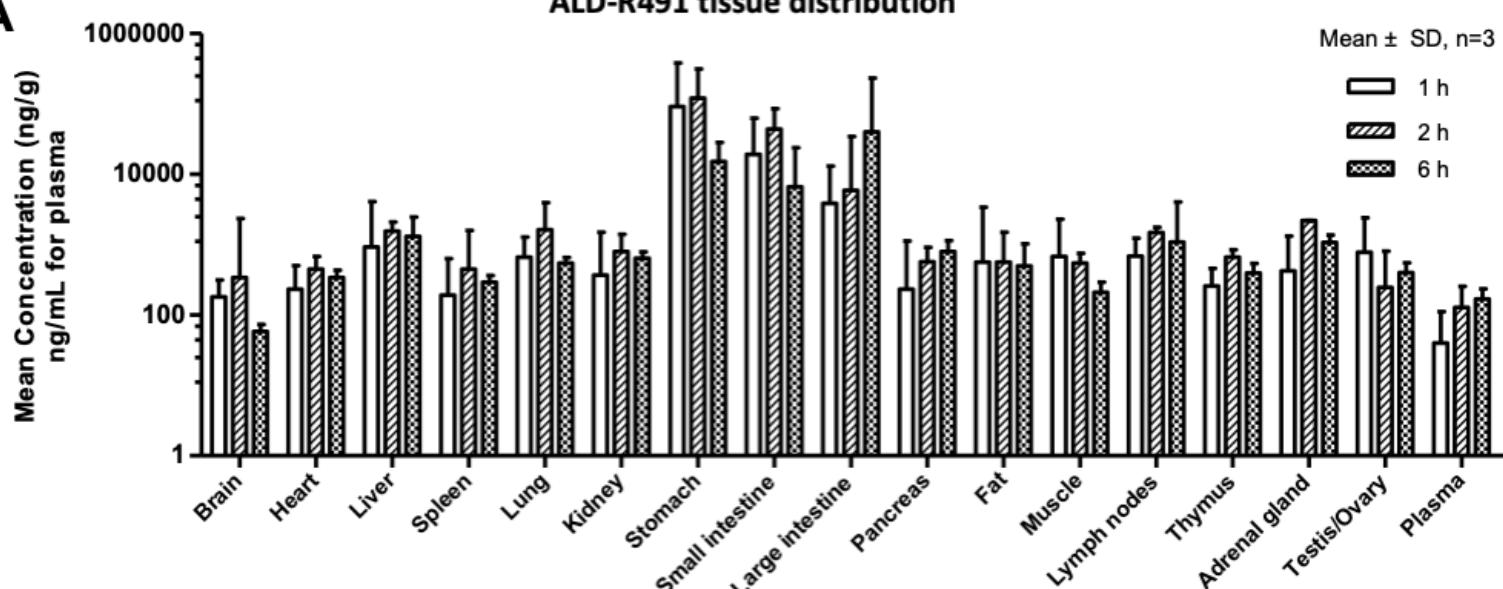
D

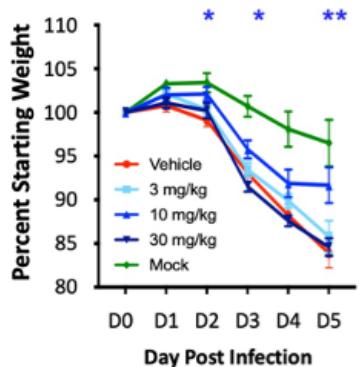


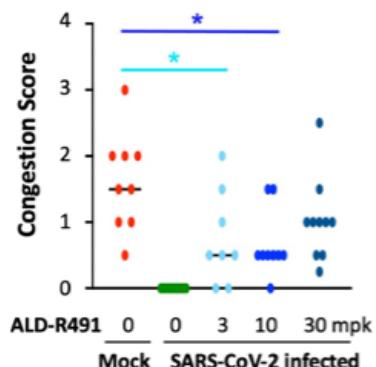
A

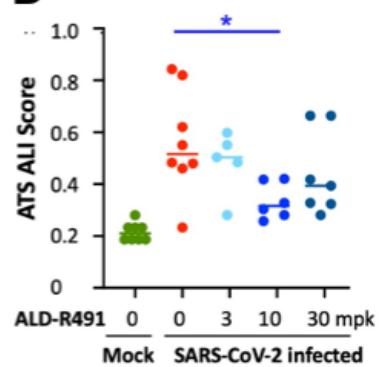

Treg cell + DMSO

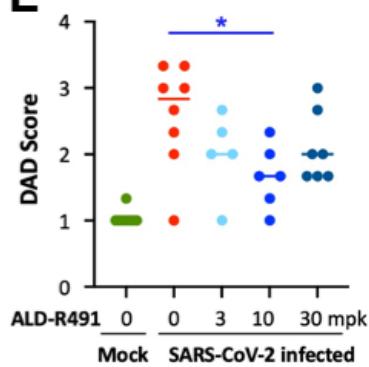

Treg cell + ALD-R491

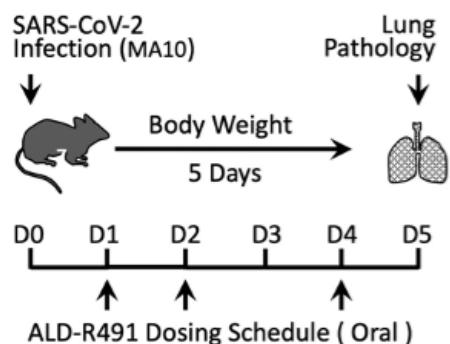

B

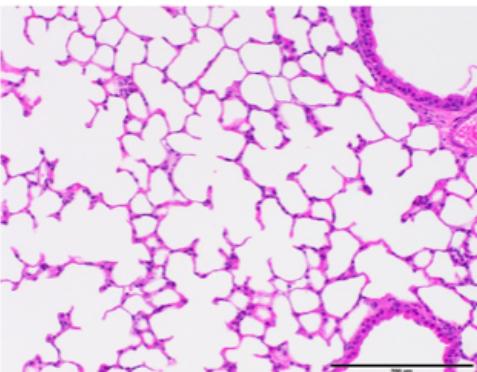

C

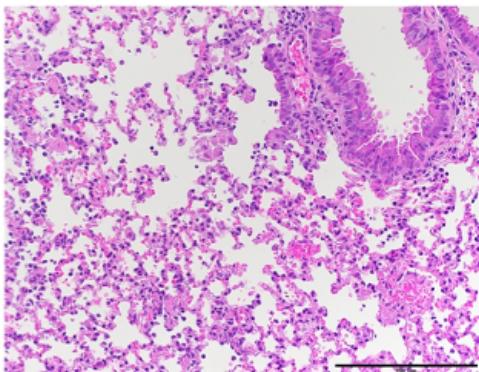

A

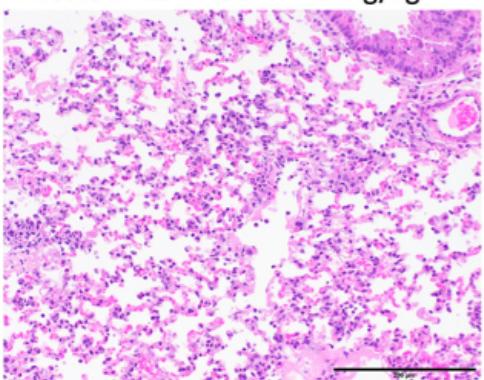

B

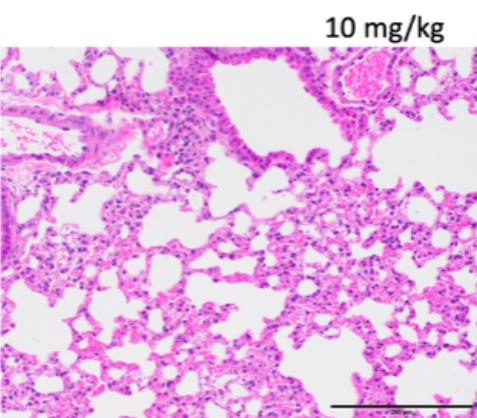

C

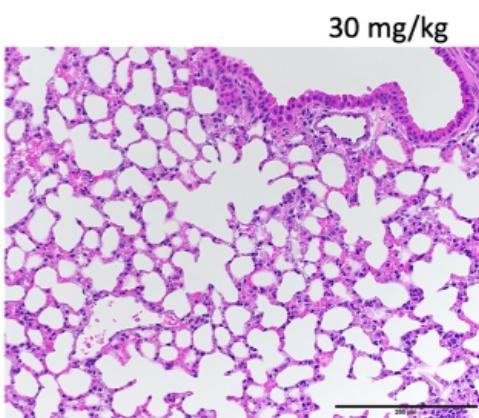

D

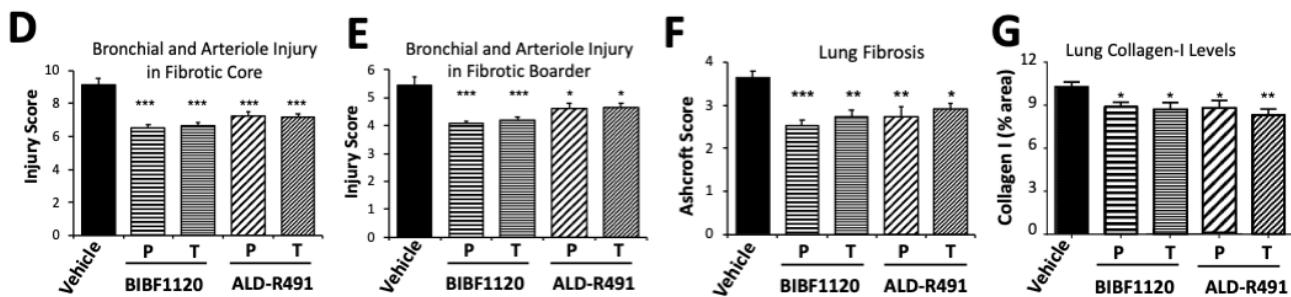
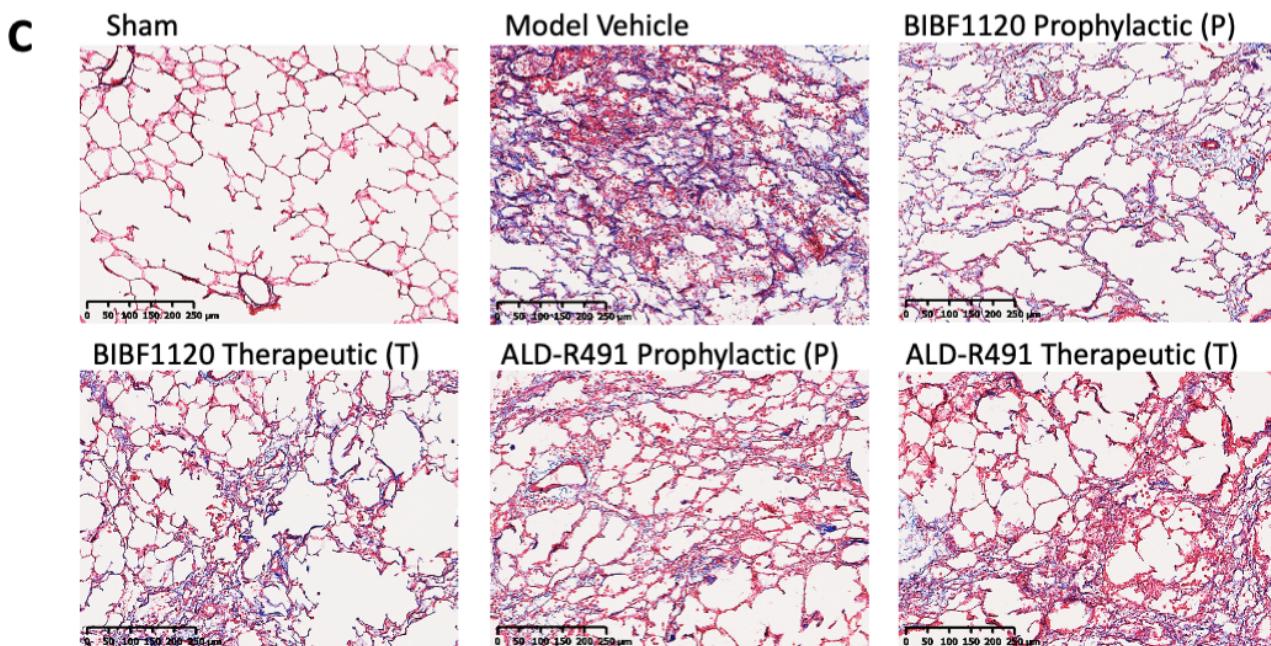
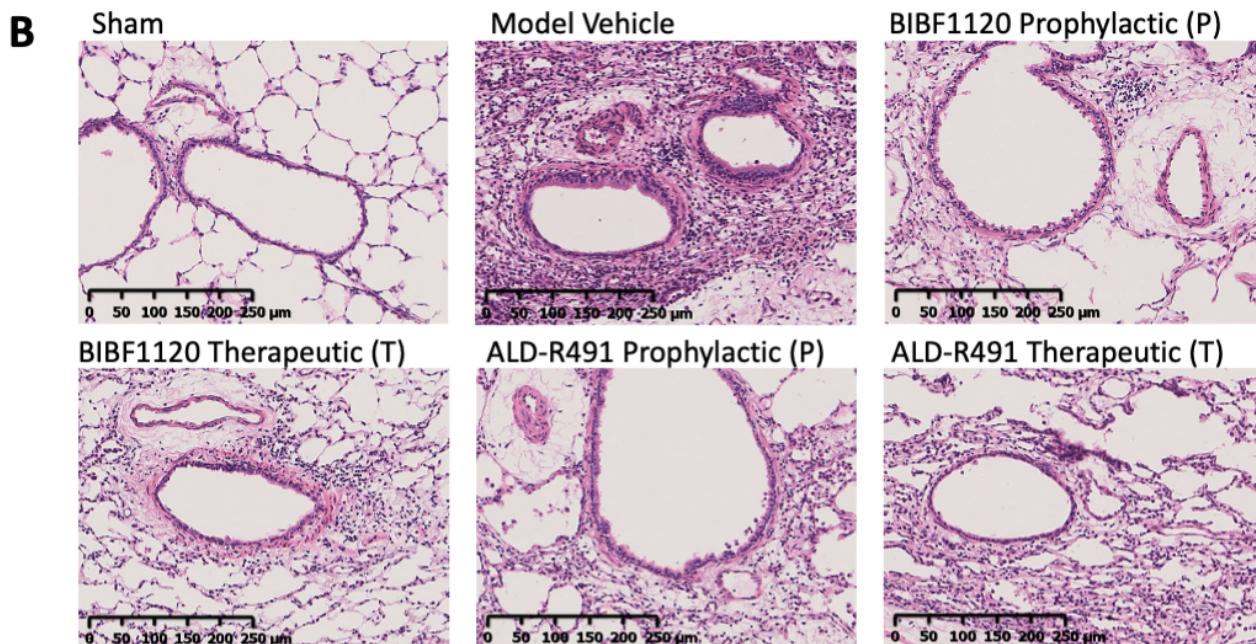
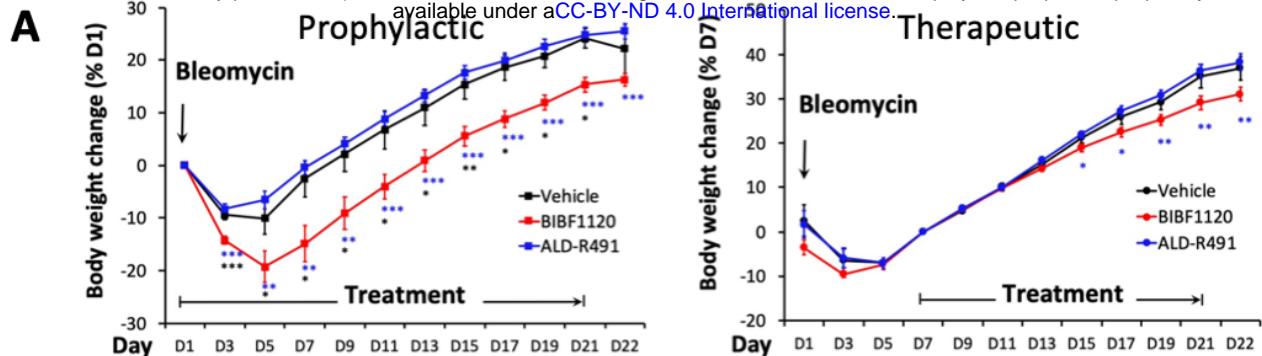

E

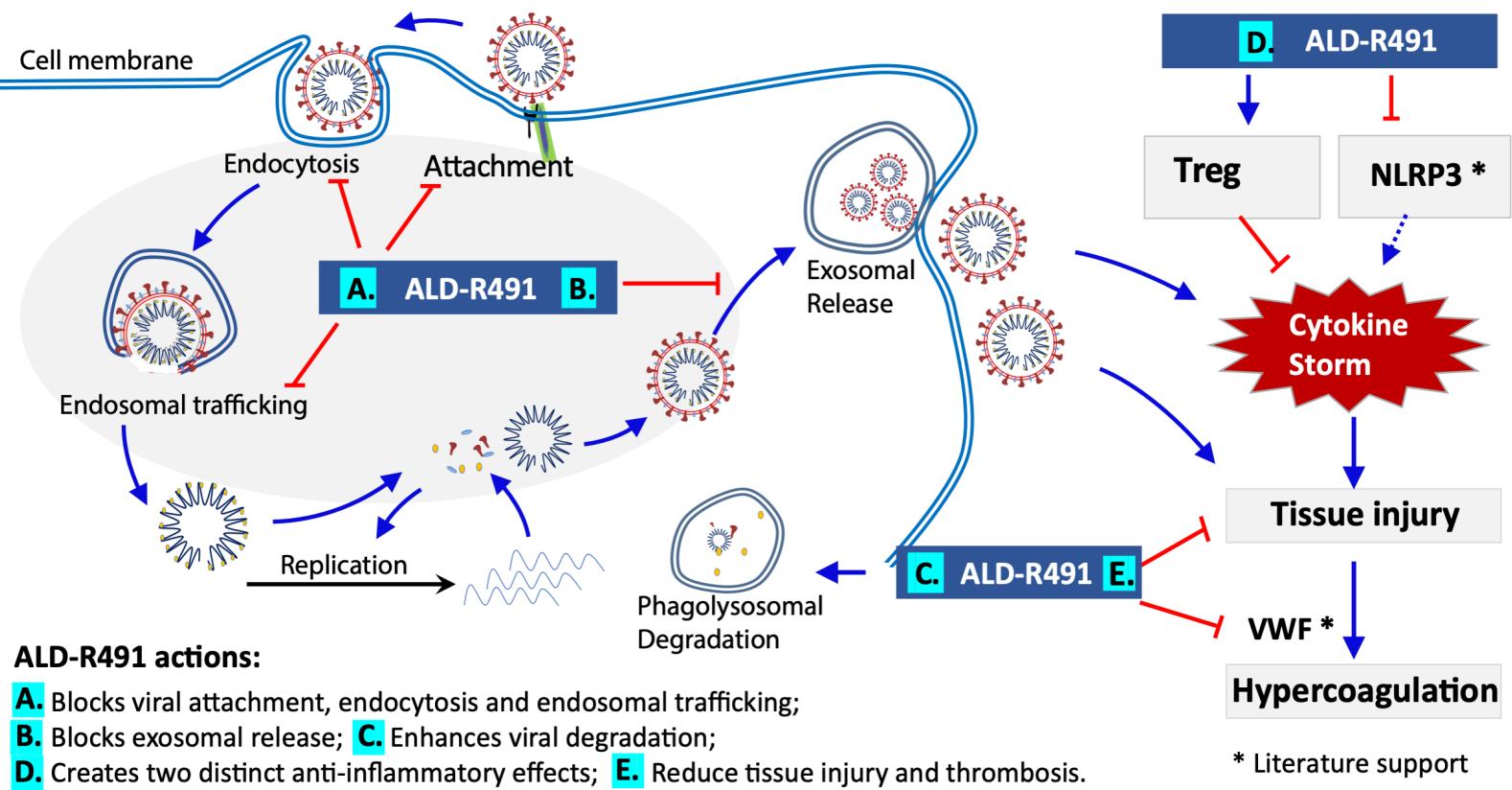

F


Mock Vehicle


Infected Vehicle


Infected ALD-R491





3 mg/kg


10 mg/kg

30 mg/kg

Disease uses vimentin in multiple ways: One target can achieve multiple actions against multiple aspects of COVID-19

