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Abstract
Despite the availability of chromatin conformation capture experiments,

understanding the relationship between regulatory elements and conformation
remains a challenge. We propose Hi-C-LSTM, a method that produces
low-dimensional latent representations that summarize intra-chromosomal Hi-C
contacts via a recurrent long short-term memory (LSTM) neural network model.
We find that these representations contain all the information needed to recreate
the original Hi-C matrix with high accuracy, outperforming existing methods.
These representations enable the identification of a variety of
conformation-defining genomic elements, including nuclear compartments and
conformation-related transcription factors. They furthermore enable in-silico
perturbation experiments that measure the influence of cis-regulatory elements
on conformation.
Keywords: Chromatin conformation; Hi-C; Representation learning; Deep
learning; Long short-term memory (LSTM) neural network; Genome embedding;
In-silico genetic perturbation

Background
The organisation of the genome in 3D space inside the nucleus is important to
its function. Chromosome conformation capture (3C) techniques, developed in the
last couple of decades, have enabled researchers to quantify the strength of in-
teractions between loci that are nearby in space. Hi-C [1] uses a combination of
chromatin conformation capture and high-throughput sequencing to assay pairwise
chromatin interactions genome-wide. This rich source of data promises to help elu-
cidate genome function but its size and complexity necessitates the development
computational tools.

Representation learning [2] is a machine learning technique that aims to summa-
rize high dimensional datasets into a low-dimensional representation. It has become
a valuable tool for finding compact and informative representations that disentan-
gle explanatory factors in diverse data types. Representation learning has recently
driven advances in a variety of tasks including speech recognition [3], signal pro-
cessing [4], object recognition [5], natural language processing [6, 7] and domain
adaptation [8]. Representation learning has recently been applied to genomic se-
quences [9, 10] and Hi-C data [11, 12, 13, 14].
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We need representations for Hi-C data that can effectively summarize the contact
map. Such a representation would encapsulate all the contacts from each locus to
the others into a small number of features per position. Reducing the Hi-C map to
locus-level representations in this way would allow us to study the effect of sequence
elements on chromatin conformation, identify genomic drivers of 3D conformation
and predict the effect of genetic variants.

Two methods for representation learning of Hi-C data have previously been de-
veloped, SNIPER [11] and SCI [12] (section Related Work). SNIPER uses a fully-
connected autoencoder [15] to transform the sparse Hi-C inter-chromosomal matrix
into a dense one row-wise, the bottleneck of which is assigned as the representation
for the corresponding row. SCI [12] treats the Hi-C matrix as a graph and performs
graph embedding [16], aiming to preserve the local and the global structures to form
representations for each node.

Existing methods for Hi-C representations have two weaknesses that limit their
applicability. First, SNIPER takes only inter-chromosomal contacts as input and
therefore its representations cannot incorporate intra-chromosomal contact patterns
such as topological domains and promoter-enhancer looping. Second, the Hi-C rep-
resentations produced by both SNIPER and SCI do not account for the inherent
sequential nature of the genome.

In this work, we propose a method called Hi-C-LSTM that produces low-
dimensional representations of the Hi-C intra-chromosomal contacts, assigning a
vector of features to each genomic position that represents that position’s contact
activity with all other positions in the given chromosome. Hi-C-LSTM defines these
representations using a sequential long short-term memory (LSTM) neural network
model which, in contrast to existing methods like SNIPER and SCI, accounts for
the sequential nature of the genome. A second methodological innovation of Hi-C-
LSTM is that, instead of learning an encoder to create representations, we learn
our representations directly through iterative optimization. We find that this ap-
proach provides a large improvement in information content relative to existing
non-sequential methods, enables the use of intra-chromosomal interactions, and en-
ables the model to accurately predict the effects of genomic perturbations (Results).

We demonstrate the utility of Hi-C-LSTM’s representations through several anal-
yses. First, we show that our representations have information needed to recreate the
Hi-C matrix and that this recreation is more accurate using an LSTM than alterna-
tives. Second, we show that our representation captures cell type-specific functional
activity, genomic elements and identifies genomic regions that drive conformation.
Third, we show that feature attribution of Hi-C-LSTM can identify sequence ele-
ments driving 3D conformation, such as binding sites of CTCF and cohesin subunits
[17, 18]. Fourth, we show that in-silico perturbation of CTCF and cohesin binding
sites has the expected effects on predicted contacts, demonstrating Hi-C-LSTM’s
utility for such experiments.

Related work
Hi-C-LSTM performs two main tasks; it forms Hi-C representations, and it pre-
dicts Hi-C contacts. Learning methods have been proposed that perform either of
these tasks. SNIPER [11] and SCI [12] can form representations of Hi-C. SNIPER
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forms Hi-C representations using a feed-forward neural network autoencoder. While
SNIPER predicts high-resolution Hi-C contacts using low-resolution contacts as in-
put, Hi-C-LSTM predicts Hi-C contacts using just the genomic positions as input.
SCI forms Hi-C representations by performing graph network embedding on the
Hi-C data. SCI is similar to Hi-C-LSTM in that it can be used to identify elements,
however, it differs in the underlying structure it uses to represent the genome. SCI
represents the genome using a graph, whereas Hi-C-LSTM treats the genome as a
sequence. We compare Hi-C-LSTM with these two methods as they are most similar
to what we are trying to achieve.

The first Hi-C representations were formed using Principal component analysis
(PCA) based methods, introduced in Lieberman-Aiden et al. [1]. These methods
cluster the Hi-C matrix into A and B compartments based on the first princi-
pal component of the intra-chromosomal contact matrix. Imakaev et al. [19] later
showed that PCA based reduction is inaccurate at classifying compartments and
Rao et al. [20] used a Gaussian hidden Markov model (HMM) to obtain latent fea-
tures that were better at locating compartments. We treat the PCA based method
developed in Lieberman-Aiden et al. [1] as a baseline.

Some methods form chromatin representations but are not directly comparable
to ours. REACH-3D [21] forms internal Hi-C representations using manifold learn-
ing combined with recurrent autoencoders, however, these are three dimensional
and mainly used for 3D chromatin structure inference. MATCHA [14] forms repre-
sentations using hypergraph representation learning and uses them to distinguish
multi-way interactions from pairwise interaction cliques. We don’t compare Hi-C-
LSTM with MATCHA because MATCHA works with multi-way interaction data
(SPRITE and ChIA-Drop) whereas we use pair-wise interaction data (Hi-C).

Many methods have been proposed for predicting Hi-C contacts. Some methods
try to predict the chromatin contacts by using either the nucleotide sequence or
chromatin accessibility and histone modifications or both [22, 23, 24, 25, 26, 27].
Akita in particular [27], is a convolutional neural network that predicts chromatin
contacts from the nucleotide sequence alone, and can be used to perform in-silico
predictions. In addition to these, the maximum entropy genomic annotation from
biomarkers associated to structural ensembles (MEGABASE) coupled with an en-
ergy landscape model for chromatin organization called minimal chromatin model
(MiChroM), generates an ensemble of 3D chromosome conformations [28]. Though
these methods are similar to Hi-C-LSTM in that they predict Hi-C contacts, we
don’t compare Hi-C-LSTM with them as none of them produce Hi-C representa-
tions.

Results
Hi-C-LSTM representations capture the information needed to create the Hi-C
matrix
Hi-C-LSTM assigns a representation to each genomic position in the Hi-C contact
map, such that a LSTM [29] that takes these representations as input can predict the
original contact map (Fig. 2). The representation and the LSTM are jointly trained
to optimize the reconstruction of the Hi-C map. This process gives us position-
specific representations genome-wide (see Methods for more details).
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We find that the Hi-C-LSTM achieves higher accuracy when constructing the Hi-
C matrix compared to existing methods (Fig. 3A). The inferred Hi-C map matches
the original Hi-C map (Fig. 3C) closely, and differs from it by about 0.25 R-squared
points on average. We adapt SNIPER to our task by replacing the feed-forward de-
coder that converts low-resolution Hi-C to high-resolution Hi-C with a decoder that
reproduces the original input Hi-C. We call this SNIPER-FC. Hi-C-LSTM outper-
forms SNIPER (SNIPER-FC) convincingly, by 10% higher R-squared on average
(Fig. 3A). Hi-C-LSTM also outperforms SCI (SCI-LSTM) by 12% higher R-squared
on average (Fig. 3A).

Two hypotheses could explain Hi-C-LSTM’s improved reconstructions: (1) that
Hi-C-LSTM’s representation captures more information, or (2) that an LSTM is
a more powerful decoder. We found that both are true. To distinguish these hy-
potheses, we split each model respectively into two components—its representation
and decoder—and evaluated each possible pair of components. We train the repre-
sentations (Hi-C-LSTM, SCI, SNIPER) on all chromosomes and couple them with
selected decoders (LSTM, CNN, FC). Using the representations as input, we re-
train these decoders with a small subset of the chromosomes and test on the rest.
(see Methods for more details). We compute the average R-squared value for creat-
ing the Hi-C contact matrix using each combination of selected representations and
decoders

We found that the choice of decoder has the largest influence on reconstruction
performance. Using a LSTM decoder performs best, even when using representations
derived from SNIPER or SCI (improvement of 0.14 and 0.12 R-squared points on
average over fully-connected decoders respectively, Fig. 3A). Furthermore, we found
that Hi-C-LSTM’s representations are most informative, even when using decoder
architectures derived from SNIPER or SCI (Fig. 3A).

Though the Hi-C-LSTM representations capture important information from a
particular sample, we wanted to verify whether they capture real biological processes
or irreplicable experimental noise. To check the effectiveness of Hi-C-LSTM repre-
sentations in creating the Hi-C contact map of a biological replicate, we train the
representations on one replicate (replicate 1), repeat the decoder training process on
replicate 2 (see Methods for more details), and compute the average R-squared value
for creating the Hi-C contact map of replicate 2 (Fig. 3B). The average R-squared
reduces slightly for inference of replicate 2 due to experimental variability; how-
ever, the performance trend of the representation-decoder combinations is largely
preserved (Fig. 3B). These results show that Hi-C-LSTM’s improved performance
is not merely driven by memorizing irreplicable noise.

Hi-C-LSTM representations locate functional activity, genomic elements, and
regions that drive 3D conformation
Considering that a good representation of Hi-C should contain information about
the regulatory state of genomic loci, we evaluated our model by checking whether
these genomic phenomena and regions are predictable from only the representation.
Specifically, we test whether the position specific representations learned via the
Hi-C contact-generation process are useful for genomic tasks that the model was
not trained on, such as classifying genomic phenomena like gene expression [30]
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and replication timing [31, 32, 33, 34], locating nuclear elements like enhancers,
transcription start sites (TSSs) [35] and nuclear regions that are associated with
3D conformation like promoter-enhancer interactions (PEIs) [36, 37, 38], frequently
interacting regions (FIREs) [39, 40], domains, loops and subcompartments [20].
We used a boosted decision tree (XGBoost) model [41] to predict binary genomic
features from representations. (See Methods for more details regarding comparison
methods, baselines and classifier).

We find that the models built using the intra-chromosomal representations achieve
higher predictive accuracy overall relative to ones trained on inter-chromosomal rep-
resentations when predicting gene expression, enhancers and TSSs (Fig. 4A). This
trend is likely due to the relatively close range of the elements involved in prediction.
In contrast, SNIPER is slightly better at predicting replication timing when com-
pared to the rest of the intra-chromosomal models except Hi-C LSTM (SNIPER-
INTER, Fig. 4A). While all methods achieve low absolute accuracy at predicting
promoter-enhancer interactions, Hi-C-LSTM performs best (0.5 mAP on average,
0.1 mAP higher on average than SCI) (Fig. 4A, B). Both methods perform compara-
bly in predicting the other interacting genomic regions like FIREs, domains, loops,
and subcompartments (Fig. 4A). SNIPER-INTRA as well as SNIPER-INTER don’t
perform as well as Hi-C-LSTM and SCI on these tasks.

The only task on which other methods outperform Hi-C-LSTM is at predict-
ing subcompartments. Subcompartments were originally defined based on inter-
chromosomal interactions, so representations based on such interactions outper-
form those based on intra-chromosomal interactions such as Hi-C-LSTM. Also
subcompartment-ID (SBCID) (Methods) achieves perfect mAP by virtue of its de-
sign (Fig. 4A). Among the rest of the methods, we find that methods which were
designed to predict subcompartments such as SCI and SNIPER-INTER, perform
better than the others (Fig. 4A). Hi-C-LSTM does perform marginally better than
SNIPER-INTRA. Overall, although Hi-C LSTM performs better than other mod-
els on most of the tasks, the performance of SCI and SNIPER are comparable to
Hi-C-LSTM and all three models perform significantly better than the baselines on
average (Fig. 4A).

Feature attribution reveals association with genomic elements driving 3D
conformation
Given that our representations capture elements driving 3D conformation, we should
be able to identify those elements using our representations. To validate the ability of
our representations to locate genomic regions that drive chromatin conformation,
we identified which genomic positions have the largest impact on Hi-C contacts,
using the technique of feature attribution. Feature attribution is a technique that
allows us to attribute the prediction of neural networks to their input features.
In this case, it identifies which genomic positions influence which Hi-C contacts.
We ran feature attribution analysis on the Hi-C-LSTM and aggregated the feature
importance scores across all the dimensions of the input representation to get a
single score for each genomic position (see Methods for more details). We expected
to see higher feature attribution for the elements, regions, and domains that are
crucial for chromatin conformation.
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We found that the CTCF and cohesin binding sites as given by ChIP-seq have a
large influence on contacts given their high feature importance score. The genome
folds to form “loop domains”, which are found to be a result of tethering between
two loci bound by CTCF and cohesin subunits RAD21 and SMC3 [18]. Among
the many models of genome folding, a CTCF protein- and cohesin ring-associated
complex that extrudes chromatin fibers is most promising. This extrusion model
explains why loops don’t overlap [17]. We found that CTCF sites show 10% higher
mean importance score than RAD21 and SMC3 sites and all three sites have a
spread that is predominantly positive (Fig. 5C). The high feature importance scores
observed at CTCF and cohesin binding sites validates the crucial role they play in
loop formation [17, 18].

The importance of CTCF is further validated by the aggregated feature impor-
tance (Fig. 5C), showing a markedly positive score near CTCF binding sites given
by Segway [42], particularly the strong ones (mean importance score of 0.45). More-
over, we see that the model places high importance on regulatory elements, particu-
larly enhancers (mean importance score of 0.4) (Fig. 5C). The active domain types
have a higher mean score and a spread that largely occupies the positive portion
of the feature importance plot when compared to the inactive regions (Fig. 5C).
This suggests that active regions may play a dominant role in nuclear organization,
where the movement of repressed regions to the periphery is a side-effect.

Aggregated feature importance also demonstrates the largely positive feature at-
tribution of genomic regions that are an integral part of 3D conformation like FIREs,
topologically associating domain (TAD) boundaries with and without CTCF sites,
loop and non-loop domains (Fig. 5C). TAD boundaries enriched with CTCF show
a 20% higher mean importance score compared to TAD boundaries not associated
with CTCF, pointing to the importance of CTCF sites at domain boundaries in con-
formation (Fig. 5C). Moreover, loop domains show a 20% higher mean importance
score compared to non-loop domains, which is expected because of the increased
contact strength on average and the presence of CTCF sites (Fig. 5C).

The variation of the aggregated feature importance across interesting genomic
regions helps us distinguish boundaries of domains and genomic regulatory elements
(Fig. 5). We observe the variation of the feature importance signal across TADs
and a selected portion of chromosome 21 (28 Mbp to 29.2 Mbp) [43] to check if we
can isolate the boundaries of domains, genes and other regulatory elements. To deal
with TADs of varying sizes, we partition the interior of all TADs into 10 equi-spaced
bins and average the feature importance signal within these bins. We plot this signal
along with the signal outside the TAD boundary 50Kbp upstream and downstream,
averaged across all TADs (Fig. 5A). The feature importance has largely similar
values in the interior of the TAD, noticeably peaks at the TAD boundaries, and
slopes downward in the immediate exterior vicinity of the TAD (Fig. 5A). This trend
validates the importance of TADs and TAD boundaries in chromatin conformation,
which we saw in (Fig. 5C). We also consider a candidate region in chromosome 21
that is referred to in [43] to observe the variation of feature importance across active
genomic elements (Fig. 5B). For this selected region in chromosome 21, as we don’t
have to deal with domains of varying sizes, we just average the feature importance
signal within a specified number of bins and plot this in the UCSC Genome Browser
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[44] along with genes and regulatory elements. The feature importance peaks around
genes, regulatory elements and domain boundaries (Fig. 5B), showing that they play
a more important role in conformation than other functional elements.

Hi-C-LSTM enables in-silico knockout experiments
As Hi-C-LSTM models the dependence of sequence on 3D conformation, it enables
us to perform in-silico deletion, insertion and reversal of certain genomic loci and
observe changes in the resulting Hi-C contact map. In-silico knockout experiments
have gained prominence lately, mainly in intercepting signal flows in signaling path-
ways [45] and drug discovery [46, 47, 48]. A Hi-C in-silico manipulation tool is of
great value it enables researchers to identify the importance and influence of any
genomic locus of interest to 3D chromatin conformation.

Hi-C-LSTM enables a researcher to perform two types of experiments. First, one
can simulate the knockout of a locus by deleting a portion of the representation or
replacing it with a null representation. As a null, we use the average local features
within 0.2 Mbp. Second, one can simulate the replacement or translocation of an
element by replacing or removing the corresponding representation (see Methods).

Previous work showed that inserting even a single base pair near the loop anchors
can make many loops and domains vanish, altering chromatin conformation at the
megabase scale [17]. Given the crucial role played by CTCF and cohesin subunits in
conformation at loop anchors (See Downstream Classification, Feature Attribution),
we hypothesized that knocking out CTCF and cohesin subunit binding sites will
change the Hi-C contact map noticeably. The average difference in predicted contact
strength between no knockout and knockout at the site under consideration as
a function of genomic distance is observed (Fig. 6C). After CTCF and cohesin
knockouts, the average contact strength reduces by >15% when compared to the
no knockout case (Fig. 6C). CTCF knockout is seen to affect insulation at about
100 Kbp and reflect possible loss of loops at 200 Kbp (Fig. 6C). The knockout of
cohesin subunits SMC3 and RAD21 binding sites is observed to be independent of
CTCF knockout with 5% higher average inferred strength over distance, hinting at
their relative importance (Fig. 6C).

The CTCF sites at loop anchors occur mainly in a convergent orientation, with
the forward and reverse motifs together, suggesting that this formation maybe re-
quired for loop formation [20, 49, 50, 51, 52, 53, 54]. To check how important the
orientation of CTCF motifs is to conformation, we conducted CTCF orientation
replacement experiments at loop boundaries. The average difference in predicted
contact strength between no replacement and replacement at the site under consid-
eration as a function of genomic distance is observed (Fig. 6C). The replacement
of convergent with the divergent orientation around loops is seen to behave similar
to the case of CTCF knockout thereby validating observations made in [55] (Fig.
6C). On the other hand, replacement of divergent with the convergent orientation
is seen to preserve loops at 200 Kbp and behave similar to the control, although
with reduced inferred contact strength (5% on average) (Fig. 6C).

The difference in inferred Hi-C between the CTCF (Fig. 6A) and cohesin (Fig. 6B)
knockout and the no knockout for a selected portion of chromosome 21 (41.5 Mbp to
41.7Mbp), shows the importance of CTCF and cohesin sites in conformation. The
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CTCF knockout at both the edges of the loop results in decrease in contact strength
(0.18 lower on average) within the loop (Fig. 6A). Cohesin knockout at the start of
the loop also results in decrease in contact strength within the loop (0.12 lower on
average), but not as strongly as the CTCF knockout (Fig. 6B). Around the loop,
CTCF and cohesin knockout results in patches of decreased (0.05 lower on average)
as well as increased contacts (0.05 higher on average) (Fig. 6A, B). The predicted
Hi-C after CTCF and cohesin knockout (Fig. 6A, B:Bottom) validates the fading of
loops. The average difference in inferred Hi-C between the CTCF knockout at TAD
boundaries and the no knockout (Fig. 6D) shows similar trends, with decreased
contacts (0.2 lower on average) within the TAD and increased contacts (0.08 higher
on average) outside the TAD. The symmetry of the Hi-C matrix is largely preserved
after the knockouts, validating the capability of Hi-C-LSTM to perform knockout
experiments.

Hi-C-LSTM accurately predicts effects of a 2.1 Mbp duplication at the SOX9
locus
To further validate Hi-C-LSTM as a tool for in-silico genome alterations, we simu-
lated a structural variant at the SOX9 locus that was previously assayed by Melo
et al. [56]. This variant was observed in an individual with Cook’s syndrome and
comprises the tandem duplication of a 2.1 Mbp region on chromosome 17 that in-
cludes regulatory elements of SOX9 (chr17:67,958,880–70,085,143; GRCh37/hg19,
Fig. 7A). To simulate a Hi-C experiment on a genome with this variant, we made
a new Hi-C-LSTM representation matrix that includes a tandem copy of the rep-
resentation at the locus in question and passed this representation matrix through
the original Hi-C-LSTM decoder to produce a simulated Hi-C matrix on a post-
duplication genome (Fig. 7B). Because Hi-C reads cannot be disambiguated between
the two duplicated loci, we simulated mapping reads to the original hg19 reference
by summing reads originating from the two copies (see Methods). We evaluated Hi-
C-LSTM’s predictions according to the agreement between this predicted matrix
and a Hi-C experiment performed by Melo et al. [56] (Fig. 7C).

We found that Hi-C-LSTM accurately predicted the effect of the duplication. The
domains that existed pre-duplication (D1, D2, D3, Fig. 7A) are correctly captured
post-duplication. In addition, a new chromatin domain (DNew) that was introduced
by the duplication is correctly predicted by Hi-C-LSTM (Fig. 7B). To quantitatively
evaluate our predictions, we compared them to a baseline that predicts the original
pre-duplication Hi-C for the interactions between the upstream, downstream and
duplicated regions, and the genomic average for the interactions of the duplicated
region with itself (see Methods). We found that Hi-C-LSTM’s predictions signif-
icantly outperform this baseline overall (Fig. 7D). Note the baseline is a slightly
better predictor of contacts between the upstream and downstream regions.

Hi-C-LSTM’s predictions have the advantage that they describe contacts on the
true post-duplication genome, in contrast to the reference genome used to map
reads (Fig. 7C). Hi-C-LSTM’s contacts recapitulate the post-duplication topological
domain structure hypothesized by Melo et al. These duplication experiments further
validate the ability of Hi-C-LSTM to perform in-silico mutagenesis.
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Discussion
In this work we have proposed a deep LSTM model that uses intra-chromosomal
contacts to form position-specific representations of chromatin conformation. These
representations are able to capture a variety of genomic phenomena and elements
and at the same time distinguish genomic regions, transcription factors and domains
that are known to play an important role in chromatin conformation. They also
elucidate the interplay between genome structure and function. The classification
and feature attribution results validate the ability of the representations to locate
vital regions such as CTCF and cohesin binding sites.

The primary contribution of this work is the application of a deep LSTM to the
problem of forming representations for intra-chromosomal interactions. The Hi-C-
LSTM not only outperforms the existing models like SCI and SNIPER that form
representations in predicting genomic phenomena but also locates elements driving
3D conformation as revealed by feature importance analysis. In addition to these,
the Hi-C-LSTM has few distinct advantages over its counterparts. One, it can be
used as a contact generation model. It’s observed that the Hi-C-LSTM represen-
tations are more informative in this regard and that sequential models like the
LSTM perform much better at contact generation. Two, a low-dimensional Hi-C-
LSTM representation is powerful enough to reasonably recreate the Hi-C matrix
(see Ablation). Three, the Hi-C-LSTM framework allows us to conduct in-silico ex-
periments like insertion, deletion and reversal of elements driving 3D conformation
and observe changes in contact generation. This would be extremely useful in fully
understanding the role of CTCF and cohesin binding sites and other transcription
factors in chromatin conformation.

An important limitation of Hi-C-LSTM’s in silico experiment is that they can
simulate only cis effects. Variation in chromatin structure can be caused either by
cis or trans effects. Cis effects are caused by genetic variants on the same DNA
molecule, whereas trans effects arise from diffusible elements like transcription fac-
tors. Hi-C-LSTM can model only cis effects because trans-acting cellular machinery
is captured within the Hi-C-LSTM decoder, which cannot be easily modified. An
example of a cis-effect is the duplication at the SOX9 locus, in which case we showed
Hi-C-LSTM correctly models the resulting neo-TAD (see Duplication) [56]. Hi-C-
LSTM cannot model trans effects such as recent investigation of the removal of
RAD21 [18] and CTCF [57, 58].

The good performance of Hi-C-LSTM suggests several avenues for future work.
First, extending the mode to incorporate data from multiple cell types and the re-
sulting representations may yield insights into differences in chromatin organization
across development. Second, the success of a LSTM model suggests trying other re-
current neural network models such as Transformers [59]. Third, a modified version
of Hi-C-LSTM may be able to infer a 3D structure of chromatin. The Hi-C represen-
tations that we form currently are embedded on a lower-dimensional manifold that
does not have any direct physical significance. However, a Hi-C-LSTM-like model
trained to produce three-dimensional representations may be able to reproduce the
true nuclear positions of chromatin.
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Conclusions
Hi-C-LSTM representations capture genomic regions that play a vital role in chro-
matin conformation. The utility of these representations include but is not limited
to: supervised classification to find association with genomic phenomena, unsuper-
vised element discovery using feature importance and in-silico knockout to elucidate
the role of sequence in conformation.

Methods
The code and data repository for this project, including training, evaluation, data
handling, and generated data can be found in our GitHub repository [60].

Data sets
The Hi-C data for the GM12878 B-Lymphocyte cell line was acquired using the
GEO accession number GSE63525 [20, 61]. We generated a intrachromosomal Hi-C
data set on the hg19 human reference genome assembly [62] at 10Kb resolution with
KR (Balanced) normalization [63] using juicer tools [64] with the command
java -jar juicer tools.jar dump observed KR data/chr.hic chr chr BP
10000 chr.txt,
where chr refers to the chromosome being extracted.

Following SCI [12], to mitigate the extreme range of magnitudes present in Hi-C
read counts, we transformed Hi-C values into contact probabilities between 0 and
1. We calculated contact probabilities according to the exponential transformation
(Eq. 1)

cf = 1
v + δ

CP = exp (−a ∗ cf),
(1)

where v is the raw input contact strength, δ is a very small positive real number
(we set δ to be 10−10) , cf is the coefficient obtained, a is the coefficient multiplier,
and CP is the resulting contact probability. We chose a = 8 because it appeared to
provide a good separation of low and high contact values.

RNA-seq data for 57 cell types was obtained from the Roadmap Consortium [65].
For the classification task, each gene was considered to be active if its log mean

expression value across the gene was greater than 0.5 [66, 67].
We defined promoter-enhancer interactions as the ones that were used to train

TargetFinder [68, 69].
Frequently interacting region (FIRE) scores at 40Kbp resolution were downloaded

from the additional material of [39] and were converted to binary indicators using
0.5 as a threshold following [70].

The replication timing data given by Repli-Seq [71] was downloaded from Repli-
cation Domain [72] at 40Kbp resolution.

Locations of known enhancers and transcription start sites (TSSs) were obtained
from FANTOM [73] and ENCODE [74] respectively.

Domain, loop and subcompartment annotations were obtained from the results
of Rao et al. [20] using the GEO accession number GSE63525 [61].
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Segway and Segway-GBR labels were obtained from Hoffmanlab [75] and Noblelab
[76] respectively.

CTCF, RAD21 and SMC3 peak calls were downloaded from ENCODE [77]. The
CTCF orientations were obtained by using the CTCF motif from the MEME suite
[78] (version 5.3.3) and running FIMO [79] to get the motif instances using the
command fimo -oc output directory motif file.meme sequence file.fna.
We use all default options while running fimo including the p-value threshold
(--thresh) of 10−4. We ran FIMO after obtaining the human genome sequence
file under mammals and the hg19 genome assembly.

Topologically-associating domain (TAD) annotations were downloaded from
TADKB [80].

LSTM
Long short-term memory (LSTM) networks were proposed as a solution to the
vanishing gradient problem [81] in recurrent neural networks (RNNs) [82]. They are
known to be a good candidate for modelling sequential data and have been widely
used for sequential tasks [83, 84, 85]. An LSTM is made up of a memory state (ht),
a cell state (ct), and three gates that control the flow of data: input (it), forget (ft)
and output (ot) gates. The input and the forget gates together regulate the effect of
a new input on the cell state. The output gate determines the contribution of the
cell state on the output of the LSTM.

Let matrices W and U be the weights of the input and recurrent connections, and
b refer to the biases. There are four sets of weight matrices and biases in the LSTM.
These include one for each of the three gates—forget gate (Wf , Uf , bf ), input gate
(Wi, Ui, bi) and output gate (Wo, Uo, bo)—and one to form the cell state (Wc, Uc,
bc). The current cell state (ct) is formed by the modulation of the previous cell state
(ct−1) by the forget gate (ft) and combining it with the modulation of the current
input (xt) and the previous memory state (ht−1) by the input gate (it). Finally, the
current memory state (ht) is formed by the modulation of the current cell state (ct)
by the output gate (ot).

An LSTM’s output is determined by the following series of operations [29].

ft = σ(Wfxt + Ufht−1 + bf )
it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)
ct = ft ◦ ct−1 + it ◦ σ(Wcxt + Ucht−1 + bc)
ht = ot ◦ σ(ct)

(2)

where ◦ is the Hadamard product and σ refers to the sigmoid activation function.

Hi-C-LSTM
Hi-C-LSTM creates a representation given a pair of genomic positions in the Hi-C
contact matrix using an embedding neural network layer and predicts the contact
strength at that particular pair via a deep LSTM [29] that takes these represen-
tations as input (Fig. 2). Hi-C-LSTM takes as input a N × N intra-chromosomal

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457856doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.26.457856
http://creativecommons.org/licenses/by-nc/4.0/


Dsouza et al. Page 12 of 26

Hi-C contact matrix (HN×N ), for each chromosome, where N is the chromosome
length.

A trained Hi-C-LSTM model consists of LSTM parameters (section LSTM) and a
representation matrix R ∈ RN×M , where M is the representation size. At each ge-
nomic position, (i, j) pair is given as input to an embedding layer, which indexes the
row and column representations Ri, Rj ∈ RM and feeds these two vectors as input
to the LSTM. The output of the LSTM is the predicted Hi-C contact probability
Ĥi,j for the given (i, j) pair.

The hidden states of the LSTM are carried over from preceding columns thereby
maintaining a memory for the row. For the sake of memory usage, the hidden states
are reinitialized after every each frame of 1.5 Mbp or 150 resolution bins (see Design
Choices). This process is repeated for each row of the Hi-C matrix (Eq. 3).

Ĥi,j = LSTM(Ri, Rj , hj) for j = 1, 2, . . . , N
for i = 1, 2, . . . , N

(3)

where hj is the same as hj−1 within the frame and is reinitialized at the beginning
of each new frame.

The LSTM and the embedding neural network layer are jointly trained using the
mean squared error (MSE) loss function which facilitates the faithful construction
of the Hi-C intra-chromosomal matrix (Eq. 4).

MSE = 1
N

 N∑
i=j

(Hi,j − Ĥi,j)2

 for i = 1, 2, . . . , N (4)

At the end of all the training iterations, the output of the embedding neural
network layer at each row i (Ri) is treated as the representation for that row. The
Hi-C-LSTM framework infers the Hi-C contact matrix from pairs of position IDs
and therefore is a transformation from linear sequential space to the Hi-C space.
The linear position IDs are a convenient and useful modeling assumption which
builds a framework that doesn’t make any other transfer function assumptions.

Modeling choices and training
The LSTM model required us to make a few design choices. As layer normaliza-
tion can significantly reduce the training time and is effective at stabilizing the
hidden state dynamics in LSTMs, we used a unidirectional layer norm LSTM [86]
with one hidden layer. We found that variants such as the bidirectional LSTM [87]
and LSTM with multiple layers provided a marginal increase in test performance
(Additional Files: Fig. 1). The variants were also prone to overfitting. Therefore,
we chose the single-layer unidirectional model over these variants accounting for
computational efficiency and good generalization. Gradient clipping [81] and the
softsign activation [88] were used at all nodes owing to their mitigating effect on
hidden state saturation. The design choices were made after conducting ablation
experiments which are elaborated in the following section (Ablation). We used a
batch size of 300 and a sequence length 150 bins, both of which were observed to be
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data dependent and the best fit for our data. We used a learning rate of 0.01 for 5
epochs and 0.001 for 5 more epochs. We reinitialized the hidden states of the LSTM
after every frame of length 150 and predicted each diagonal block of length 150 with
fresh hidden states (Figure 3B). The prediction error improved towards the end of
the frame and increased at the start of the next frame (Additional Files: Fig. 1).
We tried passing the hidden states across frames and saw that the convergence time
significantly increased as the training graph had to be retained across iterations. So
we chose to reinitialize the hidden states in each window instead.

We employed PyTorch [89], a Python-based deep learning framework and trained
Hi-C-LSTM on GeForce GTX 1080 Ti GPUs with ADAM as the optimizer [90].
All parameters in PyTorch were set to their default values while training. As our
primary goal was not to infer values for unseen positions but to form reliable rep-
resentations for every chromosome, we trained our model on all the chromosomes.
For our Hi-C reproduction evaluation, we trained the representations on all chro-
mosomes but the decoders only on a random subset. We chose to train the decoders
on a random subset of chromosomes to prevent the decoder from overpowering the
representations.

Hyperparameter selection
To choose the representation size of our model, we performed an ablation analysis.
We computed the average mAP across all downstream tasks with the Hi-C-LSTM
model which consists of a single layer, unidirectional LSTM with layer norm in the
absence of dropout [91] for odd chromosomes and used the even chromosomes to
validate whether the choice of hyperparameters remained the same irrespective of
chromosome set. We observed the mAP (section Classification) of the Hi-C-LSTM
vs. increasing representation size along with Hi-C-LSTM that is bidirectional, in
the presence of dropout, without layer norm and 2 layers (Additional Files: Fig.
2). While both the presence of dropout and the absence of layer norm adversely
affected mAP, the addition of a layer and a complimentary direction did not yield
significant improvements in downstream performance. We conducted a similar ab-
lation experiment and computed the average Hi-C R-squared for the predictions
with increasing representation size (Additional Files: Fig. 2) and observed that the
performance trend is preserved, which was indicative of the fact that recreating the
Hi-C matrix faithfully aids in doing well across downstream tasks. These results
were verified to be true for even chromosomes as well (Additional Files: Fig. 2).
For both odd and even chromosomes, even though the Hi-C prediction accuracy
increased substantially with hidden size, we noticed the elbow at a representation
size of 16 for average mAP and therefore set our representation size to that value
as a trade-off.

Hi-C reproduction evaluation
We investigated three hypotheses with following analysis. First, we asked whether
the Hi-C-LSTM representations faithfully construct the Hi-C matrix. Second,
whether the Hi-C-LSTM representation and the decoder are both powerful in gen-
erating the Hi-C map. Third, we evaluated the utility of the representations to infer
a replicate map. In all cases, we computed the average prediction accuracy in re-
constructing the Hi-C contact matrix, measured using R-squared, which represents
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the proportion of the variance of the original Hi-C value that’s explained by the
Hi-C value predicted by the Hi-C-LSTM.

In our first experiment, we trained both the representations and decoders on
replicate 1 (Figure 3A). We took representations trained using all chromosomes
from Hi-C-LSTM, SCI and SNIPER and coupled these with some selected decoders,
namely, a LSTM, a convolutional neural network (CNN) and a fully connected (FC)
feed-forward neural network (used by SNIPER). We compared LSTM with CNN
and FC decoders mainly because CNNs provided us with an alternative way of
incorporating structure (using moving filters) and FC networks did not include any
information about underlying structure. We re-trained these decoders using either
of the representations as input, with a small subset of the chromosomes and tested
on the rest. All the decoders were configured to have the same number of layers
and hidden size per layer. As the decoders were separately trained, this process
allowed us to check the power of the representations alone, moreover, as a small
subset of chromosomes were used to train the decoder, we reduced the possibility
of the decoders overfitting.

In our second experiment (Figure 3B), we trained the representations on replicate
1 using all chromosomes, and repeated the aforementioned decoder training process
on replicate 2.

Comparison methods
We compared our downstream classification results with five alternatives: two vari-
ations of SNIPER [92], one with inter-chromosomal (SNIPER-INTER) and the
other with intra-chromosomal contacts (SNIPER-INTRA), SCI [93] and two base-
lines, namely, the subcompartment-ID (SBCID) and principal component analysis
(PCA). SNIPER-INTRA was the same as the original SNIPER-INTER, modified
to take the intra-chromosomal row as input instead of the inter-chromosomal row.
All the parameters for the two SNIPER versions and SCI were set as given in their
respective papers [11], [12]. The SBCID baseline used the one-hot-encoded vector
of the subcompartment as the representation at the position under contention. The
PCA baseline assigned the principal components from the PCA of the Hi-C matrix
as the representations.

Element identification evaluation
We used the following analysis to evaluate the ability of a representation to identify
genomic phenomena and chromatin regions.

For each type of element, a boosted decision tree classifier called XGBoost [41]
was trained on the representations. We employed tree boosting as it is shown to
outperform other classification models with respect to accuracy when ample data is
available. Following Avocado [70], we used XGBoost with a maximum depth of 6 and
a maximum of 5000 estimators and these parameters were chosen following ablation
experiments with odd chromosomes as the training set and even chromosomes as
the test set (Additional Files: Fig. 3). N-fold cross-validation, with n = 20, was used
to validate our training with and an early stopping criterion of 20 epochs. The rest
of the XGBoost parameters were set to their default values.

For each task, the genomic loci under contention were assigned labels. All tasks
were treated as binary classification tasks, except the subcompartments task, which
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was treated as a multi-class classification task. For tasks without preassigned neg-
ative labels, negative labels were created by randomly sampling genome-wide, ex-
cluding the regions with positive labels.

The XGBoost classifier was given the representations at these genomic loci as
input and the assigned labels as targets. The classifier was evaluated using the metric
of mean average precision (mAP), which is a standard metric for classification tasks
and is defined as the average of the maximum precision scores achieved at varying
recall levels.

Sequence attribution
We validated the utility of the Hi-C-LSTM representations in locating genomic
regions important for conformation using feature attribution analysis. Feature at-
tribution was carried out on the intra-chromosomal representations using Integrated
Gradients [94]. Integrated Gradients is a feature attribution technique that follows
an axiomatic approach to attribution, adhering to the axioms of sensitivity and
implementation invariance. Sensitivity implies that if the input and baseline dif-
fers in one feature and have different predictions, then the differing feature should
be assigned a non-zero attribution. Implementation invariance requires that two
networks, whose output is equal for every input despite having different implemen-
tations, should have the same attributions. We used Captum [95], a Integrated
Gradients feature attribution framework in PyTorch that is generic and works with
sequential models. The resulting feature attributions were summed across all fea-
tures, giving us one importance score for every position in the genome. The feature
importance scores were then subjected to log normalization followed by min-max
normalization (Eq. 5). Specifically, let IG be to the integrated gradients (IG) score,
IGmin and IGmax be the minimum and maximum IG scores. The normalized IG
score IGnorm is defined as

IGnorm = log IG− log IGmin
log IGmax − log IGmin

. (5)

In-silico perturbation
The Hi-C-LSTM enables us to perform in-silico deletion, orientation replacement
and reversal of genomic loci and predict changes in the resulting Hi-C contact map.
We performed three types of experiments:: knockout, CTCF orientation replace-
ment, and duplication. In a knockout experiment, we chose certain genomic sites
(such as CTCF and cohesin binding sites) and replaced their representations with
a null representation. As a null representation, we used the average representations
in a window of 0.2 Mbp around the site in question, because this captures the ge-
nomic neighborhood while removing the features specific to site. The knockout of
the representation at a particular row affects not just the Hi-C inference at columns
corresponding to that row but also the succeeding rows because of Hi-C-LSTM’s
sequential behavior. The LSTM weights remain unchanged, but as the input to the
LSTM is modified, the inferred Hi-C contact probability is altered based on the
information retained by the LSTM about the relationship between the sequence
elements under contention and chromatin structure.
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In a CTCF orientation replacement experiment, we replaced the representations
of downstream-facing CTCF motifs with the genome-wide average of the upstream-
facing motifs and vice versa. This was done under the assumption that the average
representation of the given orientation would encapsulate the important information
regarding the role played by the orientation in chromatin conformation.

Our duplication experiment was carried out by creating a tandem duplication
the representations from the 2.1 Mbp region between 67.95 Mbp to 70.08 Mbp in
chromosome 7 region [56] and then passing the resulting representation matrix to
the LSTM to infer contacts. Given our Hi-C resolution of 10 kbp, the duplicated
region corresponds 214 bins, i.e., bin 6795 to bin 7008. Specifically, the duplicated
representation matrix R̂i is defined as R̂ := [R1:6794, R6795:7008, R6795:7008, R7009:N ].

To enable comparison to Hi-C data mapped to the original pre-duplication refer-
ence genome, we combined inferred contacts from both copies. This combination is
required because Hi-C reads cannot be disambiguated between the two duplicated
copies when they are mapped to the reference genome. Specifically, we passed the
predicted contact probability cp through the inverse exponential transformation to
define predicted read counts CS = 1

− log cp/a − δ (see Eq. 1). We summed predicted
read counts from the two duplicated copies to simulate mapping reads from both
copies to the same reference genome CS′, then re-applied the exponential transform
to obtain predicted contact probability cp′.

Our baseline for the quantitative evaluation was the original pre-duplication Hi-C
for the interactions between the upstream, downstream and duplicated regions, and
the genomic average for the interactions of the duplicated region with itself. We
considered a window of 214 bins (length of the duplicated region), and computed
the average genomic contact strength for the bins with themselves in a window of
this size.
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Additional Files
Additional file 1 — Supplementary Results
The additional file contains supplementary figures of salient features of Hi-C-LSTM predictions, ablation
experiments with Hi-C-LSTM, parameter search for the XGBoost classifier, confusion matrix for classification of
subcompartments, and feature importance for Segway-GBR labels.
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Figure 1: Overview of approach. Hi-C-LSTM learns a K-length vector
representation of each genomic position that summarizes its chromatin contacts,

using an LSTM embedding neural network. The representations and LSTM
decoder are jointly optimized to maximize the accuracy with which the decoder

can reproduce the original Hi-C matrix given just the representations. The
resulting representations identify sequence elements driving 3D conformation
through Integrated Gradients (IG) analysis, and they enable a researcher to

perform in-silico perturbation experiments by editing the representations and
observing the effect on predicted contacts.
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Figure 2: Overview of the Hi-C-LSTM model. A trained Hi-C-LSTM model
consists of a K-length representation Ri for each genomic position i and LSTM
connection weights (Methods). To predict the contact vector of a position i with
all other positions, the LSTM iterates across the positions j ∈ {1 . . . N}. For each

(i, j) pair, the LSTM takes as input the concatenated representation vector
(Ri, Rj) and outputs the predicted Hi-C contact probability Hi,j . The LSTM

hidden state h is carried over from (i, j) to (i, j + 1). This process is repeated for
all N rows of the contact map by reinitializing the LSTM states. The LSTM and
the representation matrix are jointly trained to minimize the reconstruction error.
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Figure 3: Accuracy with which representations reproduce the original Hi-C matrix.
A,B) The Hi-C R-squared computed using the combinations of representations

from different methods and selected decoders for replicate 1 and 2. The horizontal
axis represents the distance between positions in Mbp. The vertical axis shows the
average R-squared for the predicted Hi-C data. The R-squared was computed on a
test set of chromosomes using selected decoders with the representations trained

all chromosomes as input. The legend shows the different combinations of methods
and decoders, read as [representation]-[decoder]. C) A selected portion of the

original Hi-C map (upper-triangle) and the predicted Hi-C map (lower-triangle).
The portion is selected from chromosome 21, between 40 Mbp to 43 Mbp.
Diagonal black lines denote Hi-C-LSTM’s frame boundaries (Methods).
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Figure 4: Important genomic phenomena and chromatin regions are classified
using the Hi-C-LSTM representations as input. A) mAP for gene expression,

replication timing, enhancers, transcription start sites (TSSs), promoter-enhancer
interactions(PEIs), frequently interacting regions (FIREs), loop and non-loop

domains, and subcompartments. The y-axis shows the mAP, the x-ticks refer to
the prediction targets, and the legend shows the different methods compared with.
B) The Precision-Recall curves of Hi-C-LSTM for the various prediction targets.

The y-axis shows the Precision, the x-axis shows the Recall, and the legend shows
the prediction targets.
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Figure 5: Hi-C-LSTM representations identify genomic elements involved in
conformation through Integrated Gradients (IG) feature importance analysis. A)
The IG feature importance averaged across different TADs of varying sizes. The

vertical axis indicates the average IG importance at each position and the
horizontal axis refers to relative distance between positions in Kbp,

upstream/downstream of the TADs. B) The IG feature importance for a selected
genomic locus (chr21 28-29.2Mbp) along with genes, regulatory elements and
Hi-C. We see that the feature importance scores peak at known regulatory

elements. C) Violin plots of aggregated feature attribution scores for selected
elements. The x-axis shows the labels/elements and the y-axis displays the log

plus z normalized feature importance scores from Integrated Gradients.
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Figure 6: In-silico deletion and orientation replacement of CTCF and cohesin
subunits is performed and changes in the resulting Hi-C contact matrix is

observed. A) The difference in predicted Hi-C contact strength between CTCF
knockout and no knockout, performed on chromosome 21, between 41.5 Mbp to
41.7Mbp. The bottom figure shows just the predicted Hi-C after knockout. B)

Same as A, but for Cohesin knockout. C) Average difference in contact strength of
the inferred Hi-C matrix between knockout and no knockout (y-axis) for varying
distance between positions in Mbp (x-axis). The knockout experiments include

CTCF and cohesin knockout and convergent/divergent CTCF replacements
(legend). D) The genome-wide average difference in predicted Hi-C contact

strength between CTCF knockout at TAD boundaries and no knockout.
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Figure 7: In-silico duplication of a 2.1 Mbp region on Chromosome 7 [56]. In all
subplots, upper and lower triangles denote observed and predicted Hi-C contact

probabilities respectively, and diagonal black lines denote Hi-C-LSTM frame
boundaries. A) Original and predicted Hi-C before duplication. D1, D2 and D3

indicate the three pre-duplication topological domains. B) Predicted Hi-C after
duplication on a simulated reference genome that includes both copies. Lower

triangle indicates Hi-C-LSTM predicted contacts. The true Hi-C contact matrix
on this reference genome is not observable because the read mapper cannot

disambiguate between the two copies. The upper triangle depicts the
post-duplication topological domain structure hypothesized by Melo et al, which

includes a novel topological domain DNew. C) Original and predicted Hi-C on the
original pre-duplication reference genome. Upper triangle shows observed
post-duplication Hi-C data assayed by Melo et al. Lower triangle shows

Hi-C-LSTM predictions, mapped to the pre-duplication reference by summing the
contacts for the two copies (Results). D) Average mean-squared error in

predicting the observed data by (lower triangle) Hi-C-LSTM, and (upper triangle)
a simple baseline (Results) at the upstream, duplicated, and downstream regions.
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