

1 Recurrent *de novo* single point mutation on the gene encoding Na^+/K^+ 2 pump results in epilepsy

3 Hong-Ming Li^{1,3}, Wen-Bao Hu^{6,10}, Chun-Gu Hong³, Ran Duan^{2,3}, Meng-Lu Chen^{2,3}, Jia
4 Cao³, Zhen-Xing Wang³, Chun-Yuan Chen^{1,3}, Fei Yin⁹, Zhong-Hua Hu⁶, Jia-Da Li⁷, Li-
5 Hong Zhong¹⁰, Hui Xie^{1-5,8*}, Zheng-Zhao Liu^{1-4,10*}

⁶ ¹Department of Orthopedics, Xiangya Hospital, Central South University, Changsha,
⁷ Hunan 410008, China.

8 ²Department of Sports Medicine, Xiangya Hospital, Central South University,
9 Changsha, Hunan 410008, China.

10 ³Movement System Injury and Repair Research Center, Xiangya Hospital, Central
11 South University, Changsha, Hunan 410008, China.

12 ⁴Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha,
13 Hunan 410008, China.

14 ⁵Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan
15 410008, China.

⁶Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.

18 ⁷State Key Laboratory of Medical Genetics, School of Life Sciences, Central South
19 University, Changsha, Hunan, 410078, China

20 ⁸National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
21 Changsha, Hunan 410008, China.

22 ⁹Department of Pediatrics, Xiangya Hospital, Central South University, Changsha,
23 Hunan 410008, China.

²⁴ ¹⁰Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University,
²⁵ Shenzhen, Guangdong 518035, China.

26 *These authors contributed equally.

27 *Correspondence to:

28 Zheng-Zhao Liu: liuzhengzhao@csu.edu.cn; Xiangya Hospital, Central South
29 University, 87 Xiangya Road, Changsha, Hunan 410008, China.

30 Hui Xie: huixie@csu.edu.cn; Xiangya Hospital, Central South University, 87 Xiangya
31 Road, Changsha, Hunan 410008, China.

32 **Abstract**

33 The etiology of epilepsy remains undefined in two-thirds of patients. Here, we
34 identified a *de novo* mutation of *ATP1A2* (c.2426 T>G, p.Leu809Arg), which encodes
35 the $\alpha 2$ subunit of Na^+/K^+ -ATPase, from a family with idiopathic epilepsy. This mutation
36 caused seizures in the study patients. We generated the point mutation mouse model
37 *Atp1a2^{L809R}*, which recapitulated the epilepsy observed in the study patients. In
38 *Atp1a2^{L809R/WT}* mice, convulsions were observed and cognitive and memory function
39 was impaired. This mutation affected the potassium binding function of the protein,
40 disabling its ion transport ability, thereby increasing the frequency of nerve impulses.
41 Our work revealed that *ATP1A2^{L809R}* mutations cause a predisposition to epilepsy.
42 Moreover, we first provide a point mutation mouse model for epilepsy research and
43 drug screening.

44 **Running title:** Mutation of *ATP1A2* causes epilepsy.

45 **Keywords :** *ATP1A2*; causative gene; epilepsy; etiology; genetic screening; mouse
46 model; Na^+/K^+ -ATPase.

47

48 **Introduction**

49 Epilepsy is among the most common and widespread neurologic diseases and is
50 characterized by recurrent seizures due to excessive discharge of cerebral
51 neurons(Nickels et al., 2016; Vezzani et al., 2019). Epileptic patients are diagnosed with
52 seizures together with an epileptic waveform detected using electroencephalography
53 (EEG)(Elger & Hoppe, 2018). However, the etiological factors of epilepsy remain
54 enigmatic. Genetic variations, metabolic disorders, cerebral tumors, and brain structure
55 abnormalities are regarded as causative factors, and genetic variation accounts for 40%
56 of individuals with epilepsy(Vezzani et al., 2016). However, identifying epilepsy-
57 causative genes is difficult because the etiology of epilepsy is multifactorial and
58 involves the influence of polygenic variants interacting with environmental factors.

59 Although monogenic forms of epilepsy account for 1-5% of all epilepsy cases(Striano
60 & Minassian, 2020) , identifying monogenic epilepsy genes is still challenging, since
61 obtaining genetic and experimental evidence from both the family pedigree and animal
62 models is not easy.

63 Central to genetic etiology studies, mutations of ion channels such as potassium,
64 sodium, and calcium channels draw the most attention to unravel the underlying
65 mechanisms of epilepsy(Aiba & Noebels, 2021; Djordjevic et al., 2021; El Ghaleb et
66 al., 2021; Oyrer et al., 2018; Shah, 2021). These ion channels affect neuronal
67 physiology by stabilizing and propagating neuronal activity(Oyrer et al., 2018). Genes
68 associated with neurotransmission, neurometabolic disorders, transcriptional activation,

69 or repression are also involved in epilepsy(Epi25 Collaborative. Electronic address &
70 Epi, 2019). To date, thousands of genes have been reported as associated with epileptic
71 conditions(Epi25 Collaborative. Electronic address & Epi, 2021; Fatima et al., 2021;
72 Fry et al., 2021; Li et al., 2021; Lindy et al., 2018; Liu et al., 2018; Parrini et al., 2017;
73 Tidball et al., 2020; Usmani et al., 2021), but most of them are not experimentally
74 confirmed(Ran et al., 2015; Stenson et al., 2017; Takata et al., 2019; J. Wang et al.,
75 2017). Considering that comprehensive epilepsy panels including hundreds of genes
76 are offered by companies for genetic counseling(Poduri, 2017; Y. Wang et al., 2017), it
77 is imperative to perform mechanistic studies and confirm genotype-phenotype
78 associations to assist clinicians in proper diagnosis and therapeutic decision-
79 making(Ellis et al., 2020).

80 *ATP1A2* encodes the $\alpha 2$ subunit of P-type cation transport Na^+/K^+ -ATPase, an integral
81 membrane protein responsible for establishing and maintaining the sodium and
82 potassium ion electrochemical gradients across the plasma membrane(Poulsen et al.,
83 2010). This protein pumps three sodium out of the cell and two potassium ions into the
84 cell after the nerve impulse. This gradient, which relies on constant Na^+/K^+ -ATPase
85 activity, is essential for osmoregulation, sodium-coupled transport of various organic
86 and inorganic molecules, and electrical excitability of nerve and muscle tissue (Entrez
87 Gene: ATP1A2 ATPase). This protein is highly expressed in the brain, heart, and
88 skeletal muscle. Structurally, the protein contains ten transmembrane helices that harbor
89 sodium- and potassium-binding sites(Morth et al., 2007b; Shinoda et al., 2009b) .
90 Mutations in *ATP1A2* are the primary genetic cause of family hemiplegic migraine 2
91 (FHM2)(Du et al., 2020) and alternating hemiplegia of childhood 1 (AHC1)(Monteiro
92 et al., 2020) . Epilepsy is described as a comorbidity of FHM2 and AHC1 in *ATP1A2*-
93 mutated cases(Costa et al., 2014; Deprez et al., 2008; Pisano et al., 2013). However,

94 evidence to confirm whether this gene causes epilepsy is lacking. To address this
95 question, we developed an *Atp1a2^{L809R}* mouse model, which is a new genetically
96 modified point mutation mouse model for epilepsy. The purpose of this study was to
97 demonstrate that *ATP1A2* is an epilepsy-causative gene, providing the genetic and
98 experimental evidence from the family pedigree to the animal model to explain the
99 cause of epilepsy.

100

101 **Results**

102 **Recurrent *de novo* *ATP1A2*^{L809R} mutation in a family with idiopathic epilepsy.**

103 A family with three children were enrolled in this study. The pedigree of the family is
104 shown in Figure 1A. Patient III-4 was born in August 2002, and was diagnosed with
105 epileptic syndrome. Patient III-5 was born in June 2009 and died at 7 years of age with
106 epileptic syndrome. Seizure's onset occurred at 6 months and then twice per year on
107 average in patient III-4 and patient III-5. The first seizures were preceded by a high
108 fever, followed by purplish lips, glassy eyes, and dysphagia. Migraine, alternative
109 hemiplegia, nausea, and vomiting were often associated with seizures. During the
110 seizures, the patients lost consciousness, suffered muscular spasms, strabismus, pale
111 skin, convulsions, drooling, dilated pupils, sweating of the palms, decreased heart rate,
112 increased blood pressure, and bladder and bowel incontinence. Patients often slipped
113 into comas after seizures and returned to consciousness 3 to 4 days later. Physical and
114 mental retardation were not observed at an early age, as the patients could read, count,
115 and recite at 2 to 3 years of age. However, mental retardation developed during aging
116 due to repeated seizures and encephalic damage, including brain edema and atrophy
117 (Fig. 1B). Agitation also triggered seizures. We obtained the clinical history of patient
118 III-5. Epilepsy was examined by EEG. Low- and medium-amplitude fast spike waves
119 were recorded in the frontal and anterior temporal areas while awake, and interictal
120 medium spike waves were recorded in the central and occipital areas while asleep (Fig.
121 1C). Other members of this family did not have epilepsy. Indeed, patient III-6 was born

122 in February 2019, without this mutation and no clinical epilepsy symptoms were
123 observed until now.

124 We investigated whether genetic variation was the cause of epilepsy in this family.

125 Whole-exome sequencing was performed to screen epilepsy-causing genes
126 (Supplementary Fig.1A). We hypothesized that the causative gene was an autosomal
127 recessive trait that was heterozygous in their parents but homozygous in the two non-
128 twin boys, as the two non-twin boys had epilepsy but their parents were healthy.

129 Unfortunately, none of the annotated genes related to epilepsy met this standard
130 (Supplementary Fig.1B) (Lindy et al., 2018; Liu et al., 2018; Parrini et al., 2017).

131 Surprisingly, we identified a *de novo* mutation in *ATP1A2* that occurred at the same
132 nucleotide in the two non-twin boys. We identified a c.2426 T > G variant in the
133 *ATP1A2* gene as the only remaining candidate mutation. This missense variant changed
134 thymine to guanine at the nucleotide position 2426 (NM_000702.4), and was predicted
135 to result in leucine to arginine substitution (p.Leu809Arg) (NP_000693.1).

136 Next, we extracted DNA from blood and amplified the fragment of the *ATP1A2* gene
137 containing c.2426T. We confirmed that the parents were normal but the two children
138 harbored the same heterozygous c.2426 T > G mutation (Fig. 1D), which was consistent
139 with the high-throughput sequencing results. The fact that both patients were
140 heterozygous in the *ATP1A2* gene indicated that the L809R mutation could be a gonadal
141 mosaicism mutation. Moreover, *ATP1A2*^{L809R} is a *de novo* mutation that is absent from
142 both the dbSNP and 1000 Genome databases, while *ATP1A2*^{L809R} is reported in a patient

143 with FHM2 in the ClinVar database without any functional evidence (accession No.
144 VCV000529755.1). we hypothesize that *ATP1A2*^{L809R} is the causative mutation for
145 epilepsy in this family.

146 The third child in this family without the *ATP1A2*^{L809R} point mutation is healthy, which
147 further supports our hypothesis. We suggested the parents do amniotic fluid culture for
148 prenatal diagnosis at 18 weeks post-conception when they had the unplanned pregnancy
149 of the third child in 2018. Fortunately, the prenatal diagnosis from amniotic fluid culture
150 showed that the embryo was normal without the L809R mutation (Fig. 1D). Magnetic
151 resonance imaging (MRI) also revealed normal brain structure 3 months after birth (Fig.
152 1D). The third child is healthy until now (2 years of age) without any epilepsy
153 symptoms. Follow-up studies of this child are needed.

154 **Recurrence of epilepsy in *Atp1a2*^{L809R} point mutation mice.**

155 To determine whether the *ATP1A2*^{L809R} mutation is the epilepsy-causing mutation, we
156 generated *Atp1a2*^{L809R} point mutation mice using CRISPR/Cas9 to investigate if this
157 mouse model presented the same phenotype of the two non-twin boys (Fig. 2A). The
158 genotype of the mice was confirmed by Sanger sequencing (Fig. 2B). To our surprise,
159 we could only obtain mice whose genotype was *Atp1a2*^{L809R/WT}. We observed that 8.4%
160 of mice died after birth. All these mice were confirmed to be homozygous by Sanger
161 sequencing (Fig. 2B, 2C), which deviated from Mendelian segregation ratios
162 suggesting that some *Atp1a2*^{L809R/L809R} mice were embryonic lethal. *Atp1a2*^{L809R/WT}
163 mice had seizures onset as early as 1 month after birth and died as early as 2 months

164 (Fig. 2C, 2D; Video S1). Quantitatively, 25% of *Atp1a2*^{L809R/WT} mice died within 2 months.

165 At the same time, all *Atp1a2*^{WT/WT} mice were alive and healthy (Fig. 2D). Compared to

166 the *Atp1a2*^{WT/WT} mice, *Atp1a2*^{L809R/WT} mice demonstrated higher frequency and

167 amplitude epileptiform EEG activity (Fig. 2E), suggesting seizures. Overall, we found

168 that the *Atp1a2*^{L809R/L809R} point mutation was lethal *in utero* and that *Atp1a2*^{L809R/WT} mice

169 recapitulated the phenotype of *ATP1A2*^{L809R} heterozygous patients.

170 **Cognitive dysfunction and encephalic damage in *Atp1a2*^{L809R} mice.**

171 To examine whether the *ATP1A2*^{L809R} mutation causes dysgnosia, Morris water maze

172 tests were performed to evaluate the cognitive function of mice. The latency to find the

173 hidden platform was increased in the *Atp1a2*^{L809R/WT} group compared with the

174 *Atp1a2*^{WT/WT} group (Fig. 3A). Further, the time spent in the target quadrant and annulus

175 crossings through the location of the removed platform were decreased in the

176 *Atp1a2*^{L809R/WT} group compared with the *Atp1a2*^{WT/WT} group (Fig. 3A). H&E staining

177 revealed longitudinal axial atrophy in the hippocampal dentate gyrus and enlarged

178 lateral ventricles in *Atp1a2*^{L809R/WT} mice (Fig. 3B). MRI confirmed that the brain was

179 damaged in 2-month-old mice, with enlarged lateral ventricles and small hippocampal

180 volume in *Atp1a2*^{L809R/WT} mice (Fig. 3C). Regional hypometabolism identified with ¹⁸F-

181 FDG positron emission tomography (PET) represented the focus and projection areas

182 of seizure activity (Duncan et al., 2016). In our case, hypometabolism was observed in

183 the hippocampus and cerebellum of *Atp1a2*^{L809R/WT} mice (Fig. 3D). Thus, *Atp1a2*^{L809R/WT}

184 mice presented cognitive decline and hippocampal damage comparable to those found

185 in patients.

186 ***Atp1a2^{L809R}* mutation disrupts potassium transportation and impairs flux through**
187 **the Na^+/K^+ pump.**

188 Next, we investigated the molecular mechanism of epilepsy caused by the *Atp1a2^{L809R}*
189 mutation. We analyzed the structure of this protein, and observed that p.Leu809 was
190 located in the M6 transmembrane domain of ATP1A2, next to aspartic acid residues
191 D808 and D811, which are critical for potassium-binding cavity formation (Kanai et al.,
192 2013; Nyblom et al., 2013) (Fig. 4A, 4B). Leu 809 is located in the K^+ binding pocket
193 (PDB code: 4HQJ) (Nyblom et al., 2013) (Fig. 4B). The amino acid position of this
194 variant is highly conserved in ATPase family members and is conserved across several
195 species, including human, mouse, rat, chicken, pig, and *Xenopus* (Supplementary
196 Figure 1C). This highly conserved region might play an important role in Na^+/K^+ pump
197 function. Since leucine is a neutral amino acid, L809R mutation might add a positive
198 charge and affect ion transport by changing the local structure of the potassium-binding
199 cavity.

200 To answer this question, we examined Na^+/K^+ pump current in 293T cells
201 overexpressing *ATP1A2^{WT}*, *ATP1A2^{L809R}*, and the ouabain-resistant mutants *ATP1A2^{WT}-*
202 ^R (Q116R, N127D) and *ATP1A2^{L809R-R}* (L809R, Q116R, N127D). Ouabain is a Na^+/K^+ -
203 ATPase inhibitor. We found that the Na^+/K^+ pump current in the *ATP1A2^{L809R}* group
204 was lower than that in the *ATP1A2^{WT}* group. The pump currents were blocked by 1 mM
205 ouabain in the *ATP1A2^{WT}* and *ATP1A2^{L809R}* groups. However, the current could not be

206 inhibited in the ouabain-resistant groups, suggesting that the blocked currents were
207 generated by Na^+/K^+ -ATPase and affected by L809R substitution (Fig. 4C). Protein
208 expression and membrane distribution were not different between the $ATPIA2^{WT}$ and
209 $ATPIA2^{L809R}$ groups, indicating that the decreased pump current in the $ATPIA2^{L809R}$
210 group did not result from altered protein expression level or membrane distribution
211 (Supplementary Fig.2A-B). Enzyme activity was also not affected by the $ATPIA2^{L809R}$
212 mutation (Supplementary Fig.2C). These data suggest that $ATPIA2^{L809R}$ abrogated
213 pump current *in vitro*. Furthermore, we measured K^+ concentration in cells after a 2 h
214 incubation in K^+ -free culture medium. The potassium concentration was lower in
215 $ATPIA2^{L809R}$ -overexpressing cells than in $ATPIA2^{WT}$ -overexpressing cells (Fig. 4D).
216 The lower K^+ concentration inside the cells indicated aberrant potassium transport in
217 the $ATPIA2^{L809R}$ mutant.

218 **$ATPIA2^{L809R}$ mutation causes neuronal hyperexcitation.**

219 The K^+ gradient is critical for nerve impulses. Therefore, we isolated primary neurons
220 from $Atp1a2^{WT/WT}$ and $Atp1a2^{L809R/WT}$ mice to evaluate neuronal function. We recorded
221 action potentials and found that the action potential frequency and amplitude were
222 enhanced in neurons from $Atp1a2^{L809R/WT}$ mice compared with $Atp1a2^{WT/WT}$ mice (Fig.
223 4E). These results suggest that neurons isolated from $Atp1a2^{L809R/WT}$ mice were
224 hyperexcited. ATP1A2 protein expression and membrane distribution between
225 $Atp1a2^{WT/WT}$ and $Atp1a2^{L809R/WT}$ mice were not different (Supplementary Fig.2D-E).
226 Enzyme activity was not significantly different between $Atp1a2^{WT/WT}$ and

227 *Atp1a2^{L809R/WT}* mice (Supplementary Fig.2F).

228 ***ATP1A2* is mutated in other epilepsy cases and diseases.**

229 We identified an epilepsy case in Xiangya Hospital with a heterologous mutation in
230 exon 18 of ATP1A2 (c.2563G>A, p.Gly855Arg). Gly855 is located within the
231 potassium-binding pocket, implying that residues in this pocket are important for
232 ATP1A2 function. ATP1A2^{L809R} is reported in a patient with FHM2 in the ClinVar
233 database, without any functional evidence (accession No. VCV000529755.1). Other
234 clinical case reports revealed epilepsy as part of the phenotype associated with ATP1A2
235 mutations (Monteiro et al., 2020). Moreover, frequent mutations in the ATP1A2 gene
236 were also found in numerous human cancers according to The Cancer Genome Atlas
237 (TCGA) datasets (Cerami et al., 2012; Gao et al., 2013) (Supplementary Fig.3). These
238 reports suggest that *ATP1A2* is a disease-causing gene and extremely important for ion
239 balance inside and outside cells.

240 **Discussion**

241 Identifying genes that cause epilepsy and the underlying mechanisms will advance
242 understanding of the etiology of epilepsy from a genetic viewpoint and inform
243 therapeutic decision-making. We found that *ATP1A2* is an epilepsy-causing gene in this
244 family with idiopathic epilepsy. Therapeutically targeting ATP1A2 may be a promising
245 and effective translational therapy for epilepsy caused by ATP1A2 dysregulation.
246 Mutations of the *ATP1A2* gene should be given intensive attention for preimplantation
247 and prenatal genetic diagnosis. Further, this gene should be included in gene sets that
248 predict epilepsy susceptibility.

249 Epilepsy with early-onset seizures usually leads to irreversible encephalic damage and
250 severe physical and mental retardation. Most patients cannot take care of themselves
251 and die at an early age due to the resulting damage. There are no effective drugs and
252 only few surgical operations for effective epilepsy therapy(Ding et al., 2021). Therefore,
253 prenatal diagnosis is particularly important. Screening identified epilepsy-causing
254 genes can help avoid the birth of a child with inherited or *de novo* gene mutations that
255 may cause epilepsy. These genes can also be explored as drug targets for epilepsy
256 treatment. Although many epilepsy-causative *loci* have been identified(Chopra et al.,
257 2021; Djordjevic et al., 2021; Helbig et al., 2018), the responsible genes remain to be
258 identified.

259 Here, we first characterized *ATPIA2^{L809R}* as an epilepsy-causing mutation through a
260 family study and recapitulated the epilepsy features using an *Atp1a2^{L809R}* point mutation
261 mouse model. In the present study, the two non-twin boys of the family had epilepsy.
262 The inheritance pattern of the epilepsy phenotype in this family was likely autosomal
263 recessive inheritance. Thus, we performed whole-exome sequencing and analysis of
264 epilepsy-related genes, but no candidate genes were observed to suggest autosomal
265 recessive inheritance. Notably, a *de novo* mutation in *ATPIA2* in the two non-twin
266 children drew our attention. Our case was also supported by the report from the Epi4K
267 Consortium & Epilepsy Phenome/Genome Project, which showed a significant excess
268 of *de novo* mutations in epileptic encephalopathies(Epi et al., 2013; Hamdan et al.,
269 2017). Interestingly, the two non-twin boys were mutated at the same site with the same

270 variant. One reasonable explanation was that one parent may have gonadal mosaicism.

271 We noted that the *de novo* mutation might be inherited from parents rather than

272 autonomously mutated in children, and that the actual risk of recurrence in families

273 with an affected child may be as high as 50% (Myers et al., 2018). To verify this

274 hypothesis, we extracted DNA from sperms, amplified the mutated region of *ATP1A2*,

275 inserted the PCR products into T-vectors, sequenced 100 T-vectors and found no

276 mutation in the sperm DNA. We could not investigate whether the mother's oocytes

277 were chimeric, because oocyte collection was not approved during ethical review.

278 Therefore, we could not tell from whom the mutation was inherited. Our early study

279 showed that *Atp1a2*^{L809R} might be the epilepsy-causative mutation, so when the parents

280 had an unplanned pregnancy, we suggested a prenatal diagnosis to exclude the L809R

281 mutation. Fortunately, *ATP1A2* was not mutated in the third child, which was born and

282 has been completely normal until now (2 years of age). Given that epilepsy occurred at

283 6 months in both patients, we have reason to believe that the child without the

284 *ATP1A2*^{L809R} mutation is healthy.

285 The $\alpha 2$ subunit of Na^+/K^+ -ATPase consists of ten transmembrane domains and

286 represents standard functional features of the P-type family of active cation transport

287 proteins. The L809 residue resides in the M6 transmembrane domain, which is critical

288 for K^+ binding. L809R substitution appears to cause a change in ion transport. Structural

289 analysis of the L809R variant showed that it affected potassium binding (Morth et al.,

290 2007a; Shinoda et al., 2009a), and thus may disable the ion transport through the protein.

291 Our data also indicated that the Na^+/K^+ pump current was lower in the L809R variant,
292 which caused neuronal hyperexcitation.

293 Mutations in *ATP1A2* have been described in FHM2 and AHC1. These neurological
294 disorders are dominantly inherited and are primarily caused by missense
295 mutations(Chatron et al., 2019; Vetro et al., 2021). L764P, W887R, M731T, R689Q,
296 D718N, P979L, E174K, C515Y, I286T, and T415M mutations occurred in families
297 with FHM2(De Fusco et al., 2003; Jurkat-Rott et al., 2004; Todt et al., 2005; Vanmolkot
298 et al., 2003; Vanmolkot et al., 2007). A T378N(Swoboda et al., 2004) mutation was
299 found in patients with AHC1. Novel R1007W (Pisano et al., 2013), G874S (Costa et
300 al., 2014), G900R, and C702T mutations were found in FHM2 with seizures. Our study
301 expands these previous findings. Our results confirm that the L809R mutation in
302 *ATP1A2* causes epilepsy and suggest that patients carrying *ATP1A2* mutations should
303 be warned about the susceptibility of epilepsy.

304 Here, we generated a new genetically engineered mouse model of familial epilepsy.
305 This gene-to-phenotype mouse model based on a phenotype-to-gene study enables
306 further epileptogenic studies and antiepileptic drug screening. Epilepsy animal models
307 need to meet three criteria: first, similar etiology to human epilepsy; second, identical
308 physiological and genetic manifestations to human epilepsy; and third, an efficient
309 therapeutic response to antiepileptic drugs (Grone & Baraban, 2015). Currently, there
310 is no single animal model of epilepsy that fully represents this disease(Grone & Baraban,
311 2015). Researchers should match their study aims with the advantages of each model.

312 Acute mouse models (maximal electroshock model, MES; pentylenetetrazol model,
313 PTZ) were used to screen antiepileptic drugs and were biased toward drugs that act on
314 ion channels. These models appear more like seizure models rather than epilepsy
315 models. Chronic mouse models (kindling) are used to evaluate the physiological and
316 pathological changes in epilepsy occurrence and development, but establishing a
317 chronic model is costly and time-consuming(Grone & Baraban, 2015). Additionally,
318 some rat models were genetically-fixed by selective breeding, and the underlying
319 genetic mutation responsible for epilepsy in these animals remains a mystery(Grone &
320 Baraban, 2015). Here, we generated a new genetic epilepsy mouse model with a single
321 point mutation. *Atp1a2*^{L809R} mice showed similar etiology and pathology to those of
322 human epilepsy, which broadens the genetically modified mouse model for
323 epileptogenic studies and antiepileptic drug screening. Heterozygous *Atp1a2*^{L809R}
324 caused epilepsy, while the homozygous mutation was prenatally lethal similar to the
325 findings of previous studies. Homozygous *Atp1a2* knockout mice (*Atp1a2*^{-/-}) are
326 perinatally lethal due to absent respiratory activity resulting from abnormal Cl⁻
327 homeostasis in brainstem neurons(Isaksen & Lykke-Hartmann, 2016).
328 Taken together, we identified *ATP1A2*^{L809R} as an epilepsy-causing mutation in a family
329 with idiopathic epilepsy and established an *Atp1a2*^{L809R} point mutation mouse model.
330 *ATP1A2*^{L809R} should ultimately be included in data sets for prenatal diagnosis of
331 epilepsy. Our *Atp1a2*^{L809R} point mutation mouse model will have a significant impact
332 on epileptogenic studies and antiepileptic drug screening.

333 **Materials and methods**

334 **Ethics statement.** All procedures involving human samples and animal care in this
335 study were reviewed and approved by the ethical review board at the Xiangya Hospital
336 of Central South University. All the animal experiments strictly followed the
337 Regulations for the Administration of Affairs Concerning Experimental Animals, the
338 Chinese national guideline for animal experiments.

339 **Patient family.** A family exhibiting an epilepsy phenotype was identified at the Third
340 Xiangya Hospital, Central South University, Changsha, China. A total of 5 individuals
341 in three generations, including two affected and three unaffected members, participated
342 in this study (Fig. 1). The probands underwent detailed clinical evaluation including
343 medical history, video/electroencephalograph (VEGG) examination, inherited
344 metabolic disease determination tests, and urine organic acid determination tests. All
345 the participants were informed of the research studies and provided written informed
346 consent.

347 **Sample preparation and whole-exome sequencing.** Genomic DNA was extracted
348 from peripheral blood from all the family members who participated in the study. DNA
349 purity and concentration were measured on a Nanophotometer spectrophotometer
350 (IMPLEN, CA, USA) (OD260/280 = 1.8~2.0). DNA degradation and suspected
351 RNA/protein contamination were evaluated by electrophoresis on 1% agarose gels. The
352 concentration and purity of DNA samples were further quantified using Qubit DNA
353 Assay Kits and a Qubit 2.0 fluorometer (Life Technologies, CA, USA).

354 The exome sequences were enriched from 1.0 µg genomic DNA using an Agilent liquid
355 capture system (Agilent Sure Select Human All Exon V5). First, qualified genomic
356 DNA was randomly fragmented to an average size of 180-280 bp using a Covaris S220
357 sonicator. Then, DNA fragments were end-repaired and phosphorylated, followed by
358 A-tailing and ligation at the 3' ends with paired-end adaptors (Illumina) with a single
359 "T" base overhang. The DNA fragments were purified using Agencourt AMPure SPRI
360 beads (Beckman-Coulter). The fragment size distribution and library concentrations
361 were determined using an Agilent 2100 Bioanalyzer and qualified using real-time PCR
362 (2 nM). Finally, the DNA library was sequenced on an Illumina Hiseq 4000 instrument
363 (Illumina, Inc., San Diego, CA, USA) using 150 bp paired-end reads (Fig. 2).

364 ***Quality control.*** The raw image files obtained from Hiseq 4000 were processed using
365 the Illumina pipeline for base calling and were stored in Fastq format (raw data). The
366 reads were processed using the following quality control steps: 1) reads with adaptor
367 contamination (>10 nucleotides aligned to the adaptor, allowing $\leq 10\%$ mismatches)
368 were filtered; 2) reads containing more than 10% uncertain nucleotides were discarded;
369 and 3) paired reads with a single read having more than 50% low quality (Pared quality
370 < 5) nucleotides were discarded. All the downstream analyses used high-quality clean
371 data. QC statistics including total read number, raw data, raw depth, sequencing error
372 rate, percentage of reads with average quality $> Q20$, percentage of reads with average
373 quality $> Q30$, and the GC content distribution were calculated.

374 ***Read mapping.*** Valid sequencing data was mapped to the reference genome (UCSC

375 hg19) using Burrows-Wheeler Aligner (BWA) software. Subsequently, Samtools and
376 Picard⁵²⁵¹⁵⁸⁵⁸⁵⁹ were used to sort and de-duplicate the final bam file.

377 **Variant calling.** Reads that aligned to exon regions were collected for mutation
378 identification and subsequent analysis. Samtools mpileup and bcftools were used for
379 variant calling and to identify single-nucleotide polymorphisms and indels. We used
380 CoNIFER software (Krumm et al., 2012) to identify disruptive genic CNVs in human
381 genetic studies of disease, which might be missed by standard approaches.

382 **Functional annotation.** ANNOVAR software (Wang et al., 2010) was used to annotate
383 the VCF (Variant Call Format) file obtained during variant calling. The variant position,
384 type, conservative prediction, and other information were obtained using various
385 databases, such as DbSNP, 1000 Genomes, ExAC, CADD (Kircher et al., 2014) and
386 HGMD. Since we were interested in exonic variants, gene transcript annotation
387 databases, such as Consensus CDS, RefSeq, Ensembl, and UCSC were also used for
388 annotation to determine amino acid alterations.

389 **Filtering.** Variants obtained from the previous steps were filtered with MAF (minor
390 allele frequency) > 1% using the 1000 Genomes database (1000 Genomes Project
391 Consortium). Only SNVs occurring in exons or in canonical splice sites (splicing
392 junction \pm 10 bp) were further analyzed since we were interested in amino acid changes.
393 Synonymous SNVs that were not relevant to amino acid alterations were discarded to
394 get nonsynonymous SNVs that led to different gene expression products. Finally, the
395 retained nonsynonymous SNVs were submitted to PolyPhen-2 (Adzhubei et al., 2013),

396 SIFT , Mutation Taster , and CADD (Kircher et al., 2014) for functional prediction.

397 SNVs identified by at least two software applications as not benign were retained.

398 **Analysis of potential epilepsy-causing variants.** Potential candidate variants were

399 verified by co-segregation with the phenotype within this family, based on Sanger

400 sequencing. Primer F (introduced a 5' *BamHI* site):

401 CGGGATCCGGGGAAAGAGTCCCTCTGACCTCCCTGATGCC; primer R

402 (introduced a 3' *XhoI* site):

403 CGCTCGAGAGGGACCTGTGTGGGGTAGGAAATGGGGCAG. The PCR

404 products (46 3bp) were analyzed using Sanger sequencing. Nucleotide sequence

405 conservation analysis across species was analyzed using Vector NTI software.

406 **Generation of *ATPIA2*^{L809R} point mutation mice and animal handling.** The

407 *ATPIA2*^{L809R} mice were generated by Cyagen Biosciences (Guangzhou, China). We

408 created an *ATPIA2*^{L809R} point mutation in C57BL/6 mice using CRISPR/Cas9-mediated

409 genome engineering. The mouse *Atp1a2* gene (GenBank accession number:

410 NM_178405.3; Ensembl: ENSMUSG00000007097) is located on mouse chromosome

411 1. Twenty-three exons have been identified, and L809 is located on exon 17. A gRNA

412 targeting vector (pRP[CRISPR]-hCas9-U6) and donor oligo (with targeting sequence

413 flanked by 120-bp homologous sequences combined on both sides) were designed

414 targeting exon 17. An L809R (CTG to CGG) mutation site in the donor oligo was

415 introduced into exon 17 by homology-directed repair. Cas9 mRNA and gRNA

416 generated by *in vitro* transcription and donor oligos were co-injected into fertilized eggs.

417 The pups were genotyped using PCR followed by sequence analysis and *HpaII*
418 restriction analysis (wild-type allele: 730 bp and mutant allele: 419 bp and 311 bp). The
419 gRNA target sequence and gRNA vectors were designed using VectorBuilder. gRNA1
420 (matches forward strand): CCATCCT(CTG)CATCGACCTGGGG,
421 <http://www.vectorbuilder.com/us/en/vector/VB170605-1007fsn.html>; gRNA2
422 (matches reverse strand): CTGTCCC(CAG)GTCGATGCAGAGGG,
423 <http://www.vectorbuilder.com/us/en/vector/VB170605-1008ekx.html>; gRNA3
424 (matches forward strand): CATCGAC(CTG)GGGACAGATAGGG,
425 <http://www.vectorbuilder.com/us/en/vector/VB170605-1036add.html>. Donor oligo
426 sequence:
427 CTGTTCATCATTGCCAACATCCCCCTTCCACTGGGCACTGTGACCATCCTC
428 TGCATCGAC(CGG)GGGACAGATATGGTGAGGCCAGAGGGCAGAGTCGAG
429 CAGTCCCACAGAATAAGGGTGGGG
430 **Assay of CRISPR-induced mutations.** The target region of the mouse *Atp1a2* locus
431 was amplified using PCR with specific primers: *Atp1a2*-F:
432 TCCGATGTCTCTAACGCAGGCGG; *Atp1a2*-R:
433 GAAGGTATCTGAAGAGGTCTGTGAACTG. The PCR product size was 730bp;
434 *HpaII* restriction analysis gives 730 bp or 419 bp + 311 bp from wild-type or mutant
435 alleles, respectively. PCR products were sequenced to confirm targeting.
436 **Mouse electroencephalograph (EEG) recording.** EEG recordings were performed to
437 record the electrical potentials at the surface of the brain. Briefly, the mouse was

438 anesthetized with 20 μ L/g 3% pentobarbital sodium. Screws, which served as electrodes
439 and were linked to wires, were inserted into holes drilled in the skull. The apparatus
440 was fixed with dental cement and connected to a Multichannel Physiological Signal
441 Acquisition and Processing System [RM-6240E] (Chengdu, China). One reference
442 electrode was placed over the cerebellum, while the anode and cathode were implanted
443 at (coordinates from bregma): posterior 2.3 mm, lateral 2.0 mm (left and right)
444 separately, subdural 0.5 mm. The implants remained affixed and produced good
445 recordings for over a month.

446 **Vector construction.** The *ATP1A2* human cDNA sequence was cloned to the pEGFP-
447 C1 vector between the *EcoRI* and *BamHI* restriction sites, with an additional C behind
448 *EcoRI* to prevent frameshifts. Site-directed mutagenesis was carried out to generate
449 *ATP1A2*^{L809R} by mutating the c.2426 T>G. The ouabain-resistant form WT-R (Q116R
450 and N127D) or triple mutants L809R-R (L809R, Q116R, N127D), were also obtained
451 by site-directed mutagenesis.

452 **Patch-clamp electrophysiology.** Na^+/K^+ pump currents (I_p) were recorded in
453 HEK293T cells transfected with *ATP1A2*^{WT}, *ATP1A2*^{L809R}, *ATP1A2*^{WT-R}, or
454 *ATP1A2*^{L809R-R}, and treated with 1 mM ouabain. Briefly, cells were incubated in buffer
455 (144 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl₂, 2 mM BaCl₂, 5 mM NiCl₂, 10 mM
456 HEPES, pH 7.4 (adjusted with NaOH)) supplemented with 10 μ M ouabain to block
457 endogenous Na^+/K^+ -ATPase. The cell membrane was patched with a pipette with inner
458 buffer (110 mM CsCl, 40 mM NaCl, 10 mM NaOH, 3 mM MgCl₂, 6 mM EGTA, 10

459 mM HEPES, 10 mM Mg-ATP, pH 7.4 (adjusted with CsOH)). The osmolarity was
460 adjusted to 315 mOsm with glucose. The voltage was held at 0 mV while recording.

461 **Primary neuron isolation.** Primary neurons were obtained from *Atp1a2^{WT/WT}* and
462 *Atp1a2^{L809R/WT}* mice. Pregnant C57BL/6 mice were euthanized with 20 μ L/g 3%
463 pentobarbital sodium and E16.5 embryos were isolated. Neurons were dissected from
464 the embryos and enzymatically digested with 2 mg/mL papain at 37 °C for 40 min,
465 followed by mechanical dissociation. Isolated neurons were plated onto 100 mg/mL
466 poly-D-lysine-coated coverslips and cultured in DMEM/F-12 medium supplemented
467 with B27 (0.04%) and GlutaMAX (2 mM). Two days later, cells were subjected to
468 electrophysiology recording.

469 **Electrophysiology recording of excitability in primary neurons.** Neurons were
470 incubated in bath buffer (140 mM NaCl, 3 mM KCl, 2 mM CaCl₂, 2 mM MgCl₂, 10
471 mM HEPES, pH 7.4 (adjusted with NaOH)). Neurons were patched with pipettes with
472 inner buffer (140 mM KCl, 0.5 mM EGTA, 5 mM HEPES, 3 mM Mg-ATP, pH 7.4
473 (adjusted with KOH)). The osmolarity was adjusted to 315 mOsm with glucose.

474 **Potassium concentration measurements.** The K⁺ concentration was measured using
475 Cell Potassium Ion Assay Kits (cat: GMS50605.1, GenMed, USA). Briefly, HEK293T
476 cells (1 \times 10⁶ cells) overexpressing *ATP1A2^{WT}* or *ATP1A2^{L809R}* were incubated with K⁺-
477 free saline in 15 mL tubes. After 2 h incubation, cells were centrifuged at 300 g for 5
478 min, washed three times with normal saline, and lysed with lysis buffer. The lysates
479 were centrifuged at 16,000 g for 5 min at 4 °C and the protein concentration was

480 measured. 100 μ L cell lysate (200 μ g/mL) was mixed with 100 μ L potassium-binding
481 benzofuran isophthalate (PFBI) and incubated in the dark for 30 min. The relative
482 fluorescence was measured and converted to potassium ion concentration.

483 **Western blotting.** 293T cells or brain tissue extracts were incubated in RIPA buffer
484 with proteasome inhibitors for 30 min and then centrifuged at 20,000 \times g at 4 °C for
485 15 min to remove cellular debris. 20 μ g total protein was separated using SDS-PAGE.
486 ATP1A2 was immunoblotted with an anti-ATP1A2 (Abcam, ab166888; 1:2000).

487 **Morris water maze test.** Morris water maze tests were performed as previously
488 described with minor modifications. A circular pool (diameter: 120 cm and height: 50
489 cm) was filled with 22-23 °C water. The pool was divided into four quadrants of equal
490 area. A transparent platform (diameter: 8 cm and height: 20 cm) was centered in one of
491 the four quadrants. Four prominent visual cues were presented on each side of the pool.

492 For visible platform tests (1.5 cm above the water surface), the water in the pool was
493 un-dyed. For invisible platform test (1.0 cm below the water surface), the water was
494 dyed white with non-toxic paint. Test trials were conducted for 7 days. For each daily
495 trial, the mouse was randomly placed into the water maze at one of four quadrants. The
496 trial was stopped when the mouse found and climbed onto the platform, and the escape
497 latency was recorded. Visible platform tests were conducted for 4 days. A probe trial
498 was conducted 24 h after the last acquisition session to assess the spatial retention of
499 the location of the hidden platform. During this trial, the platform was removed from
500 the maze, and each mouse was allowed to search the pool for 60 s before being removed.

501 The time spent in the target quadrant was used as a measure of consolidated spatial
502 memory.

503 **Statistics.** Data were analyzed using Prism 7 (GraphPad Software, San Diego, CA,
504 USA, <http://www.graphpad.com>). Data are presented as mean \pm standard deviation.

505 Comparisons between groups were analyzed by unpaired t-test or ANOVA with
506 Dunnett's post-hoc test. $P < 0.05$ indicated statistically significant differences.

507 **Acknowledgements**

508 We thank S.D.Z. at the National Institute of Biological Science, Beijing, and Z.X.L. at
509 Sun Yat-sen University for structural analysis; W.Z. and C.N.X. at Central South
510 University for electrophysiological recording. This work was supported by grants from
511 the National Natural Science Foundation of China (82172502, 81974127, 81871822,
512 81801395), Guangdong Basic and Applied Basic Research Foundation
513 (2016A030306051), Innovation-Driven Project of Central South University
514 (2018CX029, 2019CX014), Science and Technology Plan Project of Hunan Province
515 (2018RS3029), Non-profit Central Research Institute Fund of Chinese Academy of
516 Medical Sciences (2019-RC-HL-024), and Fundamental Research Funds for the
517 Central Universities of Central South University (2020zzts859).

518 **Author contributions**

519 Z.Z.L. conceived the study, designed the experimental procedures, analyzed data,
520 prepared the manuscript, and supervised the project. H.M.L. performed the majority of
521 the experiments, analyzed data, and prepared the draft manuscript. W.B.H. reviewed
522 and edited the manuscript. C.G.H, M.L.C., and R.D. performed the experiments. F.Y.,
523 and L.H.Z. contributed to clinical data acquisition. J.C., Z.X.W., and C.Y.C.
524 participated in experimental design and provided suggestions for this project. Z.H.H.,
525 and J.D.L. helped isolating neurons and performed the electrophysiologic test. H.X.
526 conceived the experiments, critically reviewed the manuscript and supervised the
527 project.

528 **Conflict of interests**

529 Z.Z.L., H.X., H.M.L., and C.G.H. are inventors on a patent related to this work filed by
530 Xiangya Hospital (no. 201810342556.7, filed March 26, 2021). The authors have

531 declared that no other conflict of interest exists.

532 **Data availability**

533 Further information and requests for resources and reagents should be directed to and
534 will be fulfilled by the Lead Contact, Zheng-Zhao Liu (liuzhengzhao@csu.edu.cn). We
535 are glad to share the ATP1A2^{L809R} point mutation mouse generated in this study with
536 reasonable compensation by the requestor for processing and shipping with a completed
537 Materials Transfer Agreement. Original data of whole-exosome sequencing is available
538 [Dryad, Dataset, <https://doi.org/10.5061/dryad.tmpg4f500>].

539 **Code availability**

540 The patient-related data is from the clinician. All data are available from the
541 corresponding author upon reasonable request.

542 **References**

543 Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). Predicting functional effect of
544 human missense mutations using PolyPhen-2. *Curr Protoc Hum Genet, Chapter*
545 7, Unit7 20. <https://doi.org/10.1002/0471142905.hg0720s76>

546 Aiba, I., & Noebels, J. L. (2021). Kcnq2/Kv7.2 controls the threshold and
547 bihemispheric symmetry of cortical spreading depolarization. *Brain*.
548 <https://doi.org/10.1093/brain/awab141>

549 Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen,
550 A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A.
551 P., Sander, C., & Schultz, N. (2012). The cBio cancer genomics portal: an open
552 platform for exploring multidimensional cancer genomics data. *Cancer Discov*,
553 2(5), 401-404. <https://doi.org/10.1158/2159-8290.CD-12-0095>

554 Chatron, N., Cabet, S., Alix, E., Buenerd, A., Cox, P., Guibaud, L., Labalme, A., Marks,
555 P., Osio, D., Putoux, A., Sanlaville, D., Lesca, G., & Vasiljevic, A. (2019). A
556 novel lethal recognizable polymicrogyric syndrome caused by ATP1A2
557 homozygous truncating variants. *Brain*, 142(11), 3367-3374.
558 <https://doi.org/10.1093/brain/awz272>

559 Chopra, M., McEntagart, M., Clayton-Smith, J., Platzer, K., Shukla, A., Girisha, K. M.,
560 Kaur, A., Kaur, P., Pfundt, R., Veenstra-Knol, H., Mancini, G. M. S., Cappuccio,
561 G., Brunetti-Pierri, N., Kortum, F., Hempel, M., Denecke, J., Lehman, A., Study,
562 C., Kleefstra, T., Stuurman, K. E., Wilke, M., Thompson, M. L., Bebin, E. M.,
563 Bijlsma, E. K., Hoffer, M. J. V., Peeters-Scholte, C., Slavotinek, A., Weiss, W.
564 A., Yip, T., Hodoglugil, U., Whittle, A., diMonda, J., Neira, J., Yang, S., Kirby,

565 A., Pinz, H., Lechner, R., Sleutels, F., Helbig, I., McKeown, S., Helbig, K.,
566 Willaert, R., Juusola, J., Semotok, J., Hadonou, M., Short, J., Genomics England
567 Research, C., Yachelevich, N., Lala, S., Fernandez-Jaen, A., Pelayo, J. P.,
568 Klockner, C., Kamphausen, S. B., Abou Jamra, R., Arelin, M., Innes, A. M.,
569 Niskakoski, A., Amin, S., Williams, M., Evans, J., Smithson, S., Smedley, D.,
570 de Burca, A., Kini, U., Delatycki, M. B., Gallacher, L., Yeung, A., Pais, L., Field,
571 M., Martin, E., Charles, P., Courtin, T., Keren, B., Iascone, M., Cereda, A., Poke,
572 G., Abadie, V., Chalouhi, C., Parthasarathy, P., Halliday, B. J., Robertson, S. P.,
573 Lyonnet, S., Amiel, J., & Gordon, C. T. (2021). Heterozygous ANKRD17 loss-
574 of-function variants cause a syndrome with intellectual disability, speech delay,
575 and dysmorphism. *Am J Hum Genet*, 108(6), 1138-1150.
576 <https://doi.org/10.1016/j.ajhg.2021.04.007>

577 Costa, C., Prontera, P., Sarchielli, P., Tonelli, A., Bassi, M. T., Cupini, L. M., Caproni,
578 S., Siliquini, S., Donti, E., & Calabresi, P. (2014). A novel ATP1A2 gene
579 mutation in familial hemiplegic migraine and epilepsy. *Cephalgia*, 34(1), 68-
580 72. <https://doi.org/10.1177/0333102413498941>

581 De Fusco, M., Marconi, R., Silvestri, L., Atorino, L., Rampoldi, L., Morgante, L.,
582 Ballabio, A., Aridon, P., & Casari, G. (2003). Haploinsufficiency of ATP1A2
583 encoding the Na⁺/K⁺ pump alpha2 subunit associated with familial hemiplegic
584 migraine type 2. *Nature Genetics*, 33(2), 192-196.
585 <https://doi.org/10.1038/ng1081>

586 Deprez, L., Weckhuysen, S., Peeters, K., Deconinck, T., Claeys, K. G., Claes, L. R.,
587 Suls, A., Van Dyck, T., Palmini, A., Matthijs, G., Van Paesschen, W., & De
588 Jonghe, P. (2008). Epilepsy as part of the phenotype associated with ATP1A2
589 mutations. *Epilepsia*, 49(3), 500-508. <https://doi.org/10.1111/j.1528-1167.2007.01415.x>

590 Ding, D., Zhou, D., Sander, J. W., Wang, W., Li, S., & Hong, Z. (2021). Epilepsy in
591 China: major progress in the past two decades. *Lancet Neurol*, 20(4), 316-326.
593 [https://doi.org/10.1016/S1474-4422\(21\)00023-5](https://doi.org/10.1016/S1474-4422(21)00023-5)

594 Djordjevic, D., Pinard, M., Gauthier, M. S., Smith-Hicks, C., Hoffman, T. L., Wolf, N.
595 I., Oegema, R., van Binsbergen, E., Baskin, B., Bernard, G., Fribourg, S.,
596 Coulombe, B., & Yoon, G. (2021). De novo variants in POLR3B cause ataxia,
597 spasticity, and demyelinating neuropathy. *Am J Hum Genet*, 108(1), 186-193.
598 <https://doi.org/10.1016/j.ajhg.2020.12.002>

599 Du, Y., Li, C., Duan, F. J., Zhao, C., & Zhang, W. (2020). Early Treatment in Acute
600 Severe Encephalopathy Caused by ATP1A2 Mutation of Familial Hemiplegic
601 Migraine Type 2: Case Report and Literature Review. *Neuropediatrics*, 51(3),
602 215-220. <https://doi.org/10.1055/s-0039-3400986>

603 Duncan, J. S., Winston, G. P., Koepp, M. J., & Ourselin, S. (2016). Brain imaging in
604 the assessment for epilepsy surgery. *Lancet Neurol*, 15(4), 420-433.
605 [https://doi.org/10.1016/S1474-4422\(15\)00383-X](https://doi.org/10.1016/S1474-4422(15)00383-X)

606 El Ghaleb, Y., Schneeberger, P. E., Fernandez-Quintero, M. L., Geisler, S. M., Pelizzari,

607 S., Polstra, A. M., van Hagen, J. M., Denecke, J., Campiglio, M., Liedl, K. R.,
608 Stevens, C. A., Person, R. E., Rentas, S., Marsh, E. D., Conlin, L. K., Tuluc, P.,
609 Kutsche, K., & Flucher, B. E. (2021). CACNA1I gain-of-function mutations
610 differentially affect channel gating and cause neurodevelopmental disorders.
611 *Brain*. <https://doi.org/10.1093/brain/awab101>

612 Elger, C. E., & Hoppe, C. (2018). Diagnostic challenges in epilepsy: seizure under-
613 reporting and seizure detection. *Lancet Neurol*, 17(3), 279-288.
614 [https://doi.org/10.1016/S1474-4422\(18\)30038-3](https://doi.org/10.1016/S1474-4422(18)30038-3)

615 Ellis, C. A., Petrovski, S., & Berkovic, S. F. (2020). Epilepsy genetics: clinical impacts
616 and biological insights. *Lancet Neurol*, 19(1), 93-100.
617 [https://doi.org/10.1016/S1474-4422\(19\)30269-8](https://doi.org/10.1016/S1474-4422(19)30269-8)

618 Entrez Gene: ATP1A2 ATPase. Na⁺/K⁺ transporting, alpha 2 (Gene ID: 477).

619 Epi25 Collaborative. Electronic address, j. c. c. e., & Epi, C. (2021). Sub-genic
620 intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of
621 29,165 individuals. *American Journal of Human Genetics*, 108(6), 965-982.
622 <https://doi.org/10.1016/j.ajhg.2021.04.009>

623 Epi25 Collaborative. Electronic address, s. b. u. e. a., & Epi, C. (2019). Ultra-Rare
624 Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of
625 17,606 Individuals. *American Journal of Human Genetics*, 105(2), 267-282.
626 <https://doi.org/10.1016/j.ajhg.2019.05.020>

627 Epi, K. C., Epilepsy Phenome/Genome, P., Allen, A. S., Berkovic, S. F., Cossette, P.,
628 Delanty, N., Dlugos, D., Eichler, E. E., Epstein, M. P., Glauser, T., Goldstein, D.
629 B., Han, Y., Heinzen, E. L., Hitomi, Y., Howell, K. B., Johnson, M. R.,
630 Kuzniecky, R., Lowenstein, D. H., Lu, Y. F., Madou, M. R., Marson, A. G.,
631 Mefford, H. C., Esmaeeli Nieh, S., O'Brien, T. J., Ottman, R., Petrovski, S.,
632 Poduri, A., Ruzzo, E. K., Scheffer, I. E., Sherr, E. H., Yuskaitis, C. J., Abou-
633 Khalil, B., Alldredge, B. K., Bautista, J. F., Berkovic, S. F., Boro, A., Cascino,
634 G. D., Consalvo, D., Crumrine, P., Devinsky, O., Dlugos, D., Epstein, M. P.,
635 Fiol, M., Fountain, N. B., French, J., Friedman, D., Geller, E. B., Glauser, T.,
636 Glynn, S., Haut, S. R., Hayward, J., Helmers, S. L., Joshi, S., Kanner, A., Kirsch,
637 H. E., Knowlton, R. C., Kossoff, E. H., Kuperman, R., Kuzniecky, R.,
638 Lowenstein, D. H., McGuire, S. M., Motika, P. V., Novotny, E. J., Ottman, R.,
639 Paolicchi, J. M., Parent, J. M., Park, K., Poduri, A., Scheffer, I. E., Shellhaas, R.
640 A., Sherr, E. H., Shih, J. J., Singh, R., Sirven, J., Smith, M. C., Sullivan, J., Lin
641 Thio, L., Venkat, A., Vining, E. P., Von Allmen, G. K., Weisenberg, J. L.,
642 Widdess-Walsh, P., & Winawer, M. R. (2013). De novo mutations in epileptic
643 encephalopathies. *Nature*, 501(7466), 217-221.
644 <https://doi.org/10.1038/nature12439>

645 Fatima, A., Hoeber, J., Schuster, J., Koshimizu, E., Maya-Gonzalez, C., Keren, B.,
646 Mignot, C., Akram, T., Ali, Z., Miyatake, S., Tanigawa, J., Koike, T., Kato, M.,
647 Murakami, Y., Abdullah, U., Ali, M. A., Fadoul, R., Laan, L., Castillejo-Lopez,
648 C., Liik, M., Jin, Z., Birnir, B., Matsumoto, N., Baig, S. M., Klar, J., & Dahl, N.

649 (2021). Monoallelic and bi-allelic variants in NCDN cause neurodevelopmental
650 delay, intellectual disability, and epilepsy. *Am J Hum Genet*, 108(4), 739-748.
651 <https://doi.org/10.1016/j.ajhg.2021.02.015>

652 Fry, A. E., Marra, C., Derrick, A. V., Pickrell, W. O., Higgins, A. T., Te Water Naude,
653 J., McClatchey, M. A., Davies, S. J., Metcalfe, K. A., Tan, H. J., Mohanraj, R.,
654 Avula, S., Williams, D., Brady, L. I., Mesterman, R., Tarnopolsky, M. A., Zhang,
655 Y., Yang, Y., Wang, X., Genomics England Research, C., Rees, M. I., Goldfarb,
656 M., & Chung, S. K. (2021). Missense variants in the N-terminal domain of the
657 A isoform of FHF2/FGF13 cause an X-linked developmental and epileptic
658 encephalopathy. *Am J Hum Genet*, 108(1), 176-185.
659 <https://doi.org/10.1016/j.ajhg.2020.10.017>

660 Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y.,
661 Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., & Schultz, N.
662 (2013). Integrative analysis of complex cancer genomics and clinical profiles
663 using the cBioPortal. *Sci Signal*, 6(269), pl1.
664 <https://doi.org/10.1126/scisignal.2004088>

665 Grone, B. P., & Baraban, S. C. (2015). Animal models in epilepsy research: legacies
666 and new directions. *Nature Neuroscience*, 18(3), 339-343.
667 <https://doi.org/10.1038/nn.3934>

668 Hamdan, F. F., Myers, C. T., Cossette, P., Lemay, P., Spiegelman, D., Laporte, A. D.,
669 Nassif, C., Diallo, O., Monlong, J., Cadieux-Dion, M., Dobrzeniecka, S.,
670 Meloche, C., Retterer, K., Cho, M. T., Rosenfeld, J. A., Bi, W., Massicotte, C.,
671 Miguet, M., Brunga, L., Regan, B. M., Mo, K., Tam, C., Schneider, A.,
672 Hollingsworth, G., Deciphering Developmental Disorders, S., FitzPatrick, D.
673 R., Donaldson, A., Canham, N., Blair, E., Kerr, B., Fry, A. E., Thomas, R. H.,
674 Shelagh, J., Hurst, J. A., Brittain, H., Blyth, M., Lebel, R. R., Gerkes, E. H.,
675 Davis-Keppen, L., Stein, Q., Chung, W. K., Dorison, S. J., Benke, P. J., Fassi,
676 E., Corsten-Janssen, N., Kamsteeg, E. J., Mau-Them, F. T., Bruel, A. L., Verloes,
677 A., Ounap, K., Wojcik, M. H., Albert, D. V. F., Venkateswaran, S., Ware, T.,
678 Jones, D., Liu, Y. C., Mohammad, S. S., Bizargity, P., Bacino, C. A., Leuzzi, V.,
679 Martinelli, S., Dallapiccola, B., Tartaglia, M., Blumkin, L., Wierenga, K. J.,
680 Purcarin, G., O'Byrne, J. J., Stockler, S., Lehman, A., Keren, B., Nougues, M.
681 C., Mignot, C., Auvin, S., Nava, C., Hiatt, S. M., Bebin, M., Shao, Y., Scaglia,
682 F., Lalani, S. R., Frye, R. E., Jarjour, I. T., Jacques, S., Boucher, R. M., Riou, E.,
683 Srour, M., Carmant, L., Lortie, A., Major, P., Diadori, P., Dubeau, F., D'Anjou,
684 G., Bourque, G., Berkovic, S. F., Sadleir, L. G., Campeau, P. M., Kibar, Z.,
685 Lafreniere, R. G., Girard, S. L., Mercimek-Mahmutoglu, S., Boelman, C.,
686 Rouleau, G. A., Scheffer, I. E., Mefford, H. C., Andrade, D. M., Rossignol, E.,
687 Minassian, B. A., & Michaud, J. L. (2017). High Rate of Recurrent De Novo
688 Mutations in Developmental and Epileptic Encephalopathies. *Am J Hum Genet*,
689 101(5), 664-685. <https://doi.org/10.1016/j.ajhg.2017.09.008>

690 Helbig, K. L., Lauerer, R. J., Bahr, J. C., Souza, I. A., Myers, C. T., Uysal, B., Schwarz,

691 N., Gandini, M. A., Huang, S., Keren, B., Mignot, C., Afenjar, A., Billette de
692 Villemeur, T., Heron, D., Nava, C., Valence, S., Buratti, J., Fagerberg, C. R.,
693 Soerensen, K. P., Kibaek, M., Kamsteeg, E. J., Koolen, D. A., Gunning, B.,
694 Schelhaas, H. J., Kruer, M. C., Fox, J., Bakhtiari, S., Jarrar, R., Padilla-Lopez,
695 S., Lindstrom, K., Jin, S. C., Zeng, X., Bilguvar, K., Papavasileiou, A., Xing,
696 Q., Zhu, C., Boysen, K., Vairo, F., Lanpher, B. C., Klee, E. W., Tillema, J. M.,
697 Payne, E. T., Cousin, M. A., Kruisselbrink, T. M., Wick, M. J., Baker, J., Haan,
698 E., Smith, N., Sadeghpour, A., Davis, E. E., Katsanis, N., Task Force for
699 Neonatal, G., Corbett, M. A., MacLennan, A. H., Gecz, J., Biskup, S.,
700 Goldmann, E., Rodan, L. H., Kichula, E., Segal, E., Jackson, K. E., Asamoah,
701 A., Dimmock, D., McCarrier, J., Botto, L. D., Filloux, F., Tvardik, T., Cascino,
702 G. D., Klingerman, S., Neumann, C., Wang, R., Jacobsen, J. C., Nolan, M. A.,
703 Snell, R. G., Lehnert, K., Sadleir, L. G., Anderlid, B. M., Kvarnung, M.,
704 Guerrini, R., Friez, M. J., Lyons, M. J., Leonhard, J., Kringlen, G., Casas, K.,
705 El Achkar, C. M., Smith, L. A., Rotenberg, A., Poduri, A., Sanchis-Juan, A.,
706 Carss, K. J., Rankin, J., Zeman, A., Raymond, F. L., Blyth, M., Kerr, B., Ruiz,
707 K., Urquhart, J., Hughes, I., Banka, S., Deciphering Developmental Disorders,
708 S., Hedrich, U. B. S., Scheffer, I. E., Helbig, I., Zamponi, G. W., Lerche, H., &
709 Mefford, H. C. (2018). De Novo Pathogenic Variants in CACNA1E Cause
710 Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly,
711 and Dyskinesias. *Am J Hum Genet*, 103(5), 666-678.
712 <https://doi.org/10.1016/j.ajhg.2018.09.006>

713 Isaksen, T. J., & Lykke-Hartmann, K. (2016). Insights into the Pathology of the alpha2-
714 Na(+)/K(+)-ATPase in Neurological Disorders; Lessons from Animal Models.
715 *Front Physiol*, 7, 161. <https://doi.org/10.3389/fphys.2016.00161>

716 Jurkat-Rott, K., Freilinger, T., Dreier, J. P., Herzog, J., Gobel, H., Petzold, G. C.,
717 Montagna, P., Gasser, T., Lehmann-Horn, F., & Dichgans, M. (2004). Variability
718 of familial hemiplegic migraine with novel A1A2 Na+/K+-ATPase variants.
719 *Neurology*, 62(10), 1857-1861.
720 <http://www.ncbi.nlm.nih.gov/pubmed/15159495>

721 Kanai, R., Ogawa, H., Vilsen, B., Cornelius, F., & Toyoshima, C. (2013). Crystal
722 structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. *Nature*,
723 502(7470), 201-206. <https://doi.org/10.1038/nature12578>

724 Kircher, M., Witten, D. M., Jain, P., O'Roak, B. J., Cooper, G. M., & Shendure, J. (2014).
725 A general framework for estimating the relative pathogenicity of human genetic
726 variants. *Nat Genet*, 46(3), 310-315. <https://doi.org/10.1038/ng.2892>

727 Krumm, N., Sudmant, P. H., Ko, A., O'Roak, B. J., Malig, M., Coe, B. P., Project, N. E.
728 S., Quinlan, A. R., Nickerson, D. A., & Eichler, E. E. (2012). Copy number
729 variation detection and genotyping from exome sequence data. *Genome Res*,
730 22(8), 1525-1532. <https://doi.org/10.1101/gr.138115.112>

731 Li, C., Beauregard-Lacroix, E., Kondratev, C., Rousseau, J., Heo, A. J., Neas, K.,
732 Graham, B. H., Rosenfeld, J. A., Bacino, C. A., Wagner, M., Wenzel, M., Al

733 Mutairi, F., Al Deiab, H., Gleeson, J. G., Stanley, V., Zaki, M. S., Kwon, Y. T.,
734 Leroux, M. R., & Campeau, P. M. (2021). UBR7 functions with UBR5 in the
735 Notch signaling pathway and is involved in a neurodevelopmental syndrome
736 with epilepsy, ptosis, and hypothyroidism. *Am J Hum Genet*, 108(1), 134-147.
737 <https://doi.org/10.1016/j.ajhg.2020.11.018>

738 Lindy, A. S., Stosser, M. B., Butler, E., Downtain-Pickersgill, C., Shanmugham, A.,
739 Retterer, K., Brandt, T., Richard, G., & McKnight, D. A. (2018). Diagnostic
740 outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and
741 neurodevelopmental disorders. *Epilepsia*, 59(5), 1062-1071.
742 <https://doi.org/10.1111/epi.14074>

743 Liu, J., Tong, L., Song, S., Niu, Y., Li, J., Wu, X., Zhang, J., Zai, C. C., Luo, F., Wu, J.,
744 Li, H., Wong, A. H. C., Sun, R., Liu, F., & Li, B. (2018). Novel and de novo
745 mutations in pediatric refractory epilepsy. *Mol Brain*, 11(1), 48.
746 <https://doi.org/10.1186/s13041-018-0392-5>

747 Monteiro, F. P., Curry, C. J., Hevner, R., Elliott, S., Fisher, J. H., Turocy, J., Dobyns, W.
748 B., Costa, L. A., Freitas, E., Kitajima, J. P., & Kok, F. (2020). Biallelic loss of
749 function variants in ATP1A2 cause hydrops fetalis, microcephaly,
750 arthrogryposis and extensive cortical malformations. *Eur J Med Genet*, 63(1),
751 103624. <https://doi.org/10.1016/j.ejmg.2019.01.014>

752 Morth, J. P., Pedersen, B. P., Toustrup-Jensen, M. S., Sorensen, T. L., Petersen, J.,
753 Andersen, J. P., Vilse, B., & Nissen, P. (2007a). Crystal structure of the sodium-
754 potassium pump. *Nature*, 450(7172), 1043-1049.
755 <https://doi.org/10.1038/nature06419>

756 Morth, J. P., Pedersen, B. P., Toustrup-Jensen, M. S., Sorensen, T. L., Petersen, J.,
757 Andersen, J. P., Vilse, B., & Nissen, P. (2007b). Crystal structure of the
758 sodium-potassium pump-pig. *Nature*, 450(7172), 1043-1049.
759 <https://doi.org/10.1038/nature06419>

760 Myers, C. T., Hollingsworth, G., Muir, A. M., Schneider, A. L., Thuesmann, Z., Knupp,
761 A., King, C., Lacroix, A., Mehaffey, M. G., Berkovic, S. F., Carvill, G. L.,
762 Sadleir, L. G., Scheffer, I. E., & Mefford, H. C. (2018). Parental Mosaicism in
763 "De Novo" Epileptic Encephalopathies. *N Engl J Med*, 378(17), 1646-1648.
764 <https://doi.org/10.1056/NEJMc1714579>

765 Nickels, K. C., Zaccariello, M. J., Hamiwnka, L. D., & Wirrell, E. C. (2016). Cognitive
766 and neurodevelopmental comorbidities in paediatric epilepsy. *Nat Rev Neurol*,
767 12(8), 465-476. <https://doi.org/10.1038/nrneurol.2016.98>

768 Nyblom, M., Poulsen, H., Gourdon, P., Reinhard, L., Andersson, M., Lindahl, E.,
769 Fedosova, N., & Nissen, P. (2013). Crystal structure of Na⁺, K⁽⁺⁾-ATPase in
770 the Na⁽⁺⁾-bound state. *Science*, 342(6154), 123-127.
771 <https://doi.org/10.1126/science.1243352>

772 Oyrer, J., Maljevic, S., Scheffer, I. E., Berkovic, S. F., Petrou, S., & Reid, C. A. (2018).
773 Ion Channels in Genetic Epilepsy: From Genes and Mechanisms to Disease-
774 Targeted Therapies. *Pharmacological Reviews*, 70(1), 142-173.

775 <https://doi.org/10.1124/pr.117.014456>

776 Parrini, E., Marini, C., Mei, D., Galuppi, A., Cellini, E., Pucatti, D., Chiti, L., Rutigliano, D., Bianchini, C., Virdo, S., De Vita, D., Bigoni, S., Barba, C., Mari, F., Montomoli, M., Pisano, T., Rosati, A., Clinical Study, G., & Guerrini, R. (2017). Diagnostic Targeted Resequencing in 349 Patients with Drug-Resistant Pediatric Epilepsies Identifies Causative Mutations in 30 Different Genes. *Human Mutation*, 38(2), 216-225. <https://doi.org/10.1002/humu.23149>

782 Pisano, T., Spiller, S., Mei, D., Guerrini, R., Cianchetti, C., Friedrich, T., & Pruna, D. (2013). Functional characterization of a novel C-terminal ATP1A2 mutation causing hemiplegic migraine and epilepsy. *Cephalgia*, 33(16), 1302-1310. <https://doi.org/10.1177/0333102413495116>

786 Poduri, A. (2017). When Should Genetic Testing Be Performed in Epilepsy Patients? *Epilepsy Curr*, 17(1), 16-22. <https://doi.org/10.5698/1535-7511-17.1.16>

788 Poulsen, H., Khandelia, H., Morth, J. P., Bublitz, M., Mouritsen, O. G., Egebjerg, J., & Nissen, P. (2010). Neurological disease mutations compromise a C-terminal ion pathway in the Na⁽⁺⁾/K⁽⁺⁾-ATPase. *Nature*, 467(7311), 99-102. <https://doi.org/10.1038/nature09309>

792 Ran, X., Li, J., Shao, Q., Chen, H., Lin, Z., Sun, Z. S., & Wu, J. (2015). EpilepsyGene: a genetic resource for genes and mutations related to epilepsy. *Nucleic Acids Res*, 43(Database issue), D893-899. <https://doi.org/10.1093/nar/gku943>

795 Shah, M. M. (2021). A new HCN1 channelopathy: implications for epilepsy. *Brain*. <https://doi.org/10.1093/brain/awab220>

797 Shinoda, T., Ogawa, H., Cornelius, F., & Toyoshima, C. (2009a). Crystal structure of the sodium-potassium pump at 2.4 Å resolution. *Nature*, 459(7245), 446-450. <https://doi.org/10.1038/nature07939>

800 Shinoda, T., Ogawa, H., Cornelius, F., & Toyoshima, C. (2009b). Crystal structure of the sodium-potassium pump at 2.4 Å resolution-shark. *Nature*, 459(7245), 446-450. <https://doi.org/10.1038/nature07939>

803 Stenson, P. D., Mort, M., Ball, E. V., Evans, K., Hayden, M., Heywood, S., Hussain, M., Phillips, A. D., & Cooper, D. N. (2017). The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. *Human Genetics*, 136(6), 665-677. <https://doi.org/10.1007/s00439-017-1779-6>

808 Striano, P., & Minassian, B. A. (2020). From Genetic Testing to Precision Medicine in Epilepsy. *Neurotherapeutics*, 17(2), 609-615. <https://doi.org/10.1007/s13311-020-00835-4>

811 Swoboda, K. J., Kanavakis, E., Xaidara, A., Johnson, J. E., Leppert, M. F., Schlesinger-Massart, M. B., Ptacek, L. J., Silver, K., & Youroukos, S. (2004). Alternating hemiplegia of childhood or familial hemiplegic migraine? A novel ATP1A2 mutation. *Annals of Neurology*, 55(6), 884-887. <https://doi.org/10.1002/ana.20134>

816 Takata, A., Nakashima, M., Saitsu, H., Mizuguchi, T., Mitsuhashi, S., Takahashi, Y.,

817 Okamoto, N., Osaka, H., Nakamura, K., Tohyama, J., Haginioya, K., Takeshita,
818 S., Kuki, I., Okanishi, T., Goto, T., Sasaki, M., Sakai, Y., Miyake, N., Miyatake,
819 S., Tsuchida, N., Iwama, K., Minase, G., Sekiguchi, F., Fujita, A., Imagawa, E.,
820 Koshimizu, E., Uchiyama, Y., Hamanaka, K., Ohba, C., Itai, T., Aoi, H., Saida,
821 K., Sakaguchi, T., Den, K., Takahashi, R., Ikeda, H., Yamaguchi, T., Tsukamoto,
822 K., Yoshitomi, S., Oboshi, T., Imai, K., Kimizu, T., Kobayashi, Y., Kubota, M.,
823 Kashii, H., Baba, S., Iai, M., Kira, R., Hara, M., Ohta, M., Miyata, Y., Miyata,
824 R., Takanashi, J. I., Matsui, J., Yokochi, K., Shimono, M., Amamoto, M.,
825 Takayama, R., Hirabayashi, S., Aiba, K., Matsumoto, H., Nabatame, S.,
826 Shiihara, T., Kato, M., & Matsumoto, N. (2019). Comprehensive analysis of
827 coding variants highlights genetic complexity in developmental and epileptic
828 encephalopathy. *Nat Commun*, 10(1), 2506. <https://doi.org/10.1038/s41467-019-10482-9>

830 Tidball, A. M., Lopez-Santiago, L. F., Yuan, Y., Glenn, T. W., Margolis, J. L., Clayton
831 Walker, J., Kilbane, E. G., Miller, C. A., Martina Bebin, E., Scott Perry, M.,
832 Isom, L. L., & Parent, J. M. (2020). Variant-specific changes in persistent or
833 resurgent sodium current in SCN8A-related epilepsy patient-derived neurons.
834 *Brain*, 143(10), 3025-3040. <https://doi.org/10.1093/brain/awaa247>

835 Todt, U., Dichgans, M., Jurkat-Rott, K., Heinze, A., Zifarelli, G., Koenderink, J. B.,
836 Goebel, I., Zumbroich, V., Stiller, A., Ramirez, A., Friedrich, T., Gobel, H., &
837 Kubisch, C. (2005). Rare missense variants in ATP1A2 in families with
838 clustering of common forms of migraine. *Hum Mutat*, 26(4), 315-321.
839 <https://doi.org/10.1002/humu.20229>

840 Usmani, M. A., Ahmed, Z. M., Pamela, M., Pienkowski, V. M., Rasmussen, K. J.,
841 Hernan, R., Rasheed, F., Hussain, M., Shahzad, M., Lanpher, B. C., Niu, Z.,
842 Lim, F. Y., Pippucci, T., Ploski, R., Kraus, V., Matuszewska, K., Palombo, F.,
843 Kianmahd, J., Center, U. C. G., Martinez-Agosto, J. A., Lee, H., Colao, E.,
844 Motazacker, M. M., Brigatti, K. W., Puffenberger, E. G., Riazuddin, S. A.,
845 Gonzaga-Jauregui, C., Chung, W. K., Wagner, M., Schultz, M. J., Seri, M.,
846 Kievit, A. J. A., Perrotti, N., Wassink-Ruiter, J. S. K., van Bokhoven, H.,
847 Riazuddin, S., & Riazuddin, S. (2021). De novo and bi-allelic variants in AP1G1
848 cause neurodevelopmental disorder with developmental delay, intellectual
849 disability, and epilepsy. *Am J Hum Genet*.
850 <https://doi.org/10.1016/j.ajhg.2021.05.007>

851 Vanmolkot, K. R., Kors, E. E., Hottenga, J. J., Terwindt, G. M., Haan, J., Hoefnagels,
852 W. A., Black, D. F., Sandkuijl, L. A., Frants, R. R., Ferrari, M. D., & van den
853 Maagdenberg, A. M. (2003). Novel mutations in the Na⁺, K⁺-ATPase pump
854 gene ATP1A2 associated with familial hemiplegic migraine and benign familial
855 infantile convulsions. *Annals of Neurology*, 54(3), 360-366.
856 <https://doi.org/10.1002/ana.10674>

857 Vanmolkot, K. R., Stam, A. H., Raman, A., Koenderink, J. B., de Vries, B., van den
858 Boogerd, E. H., van Vark, J., van den Heuvel, J. J., Bajaj, N., Terwindt, G. M.,

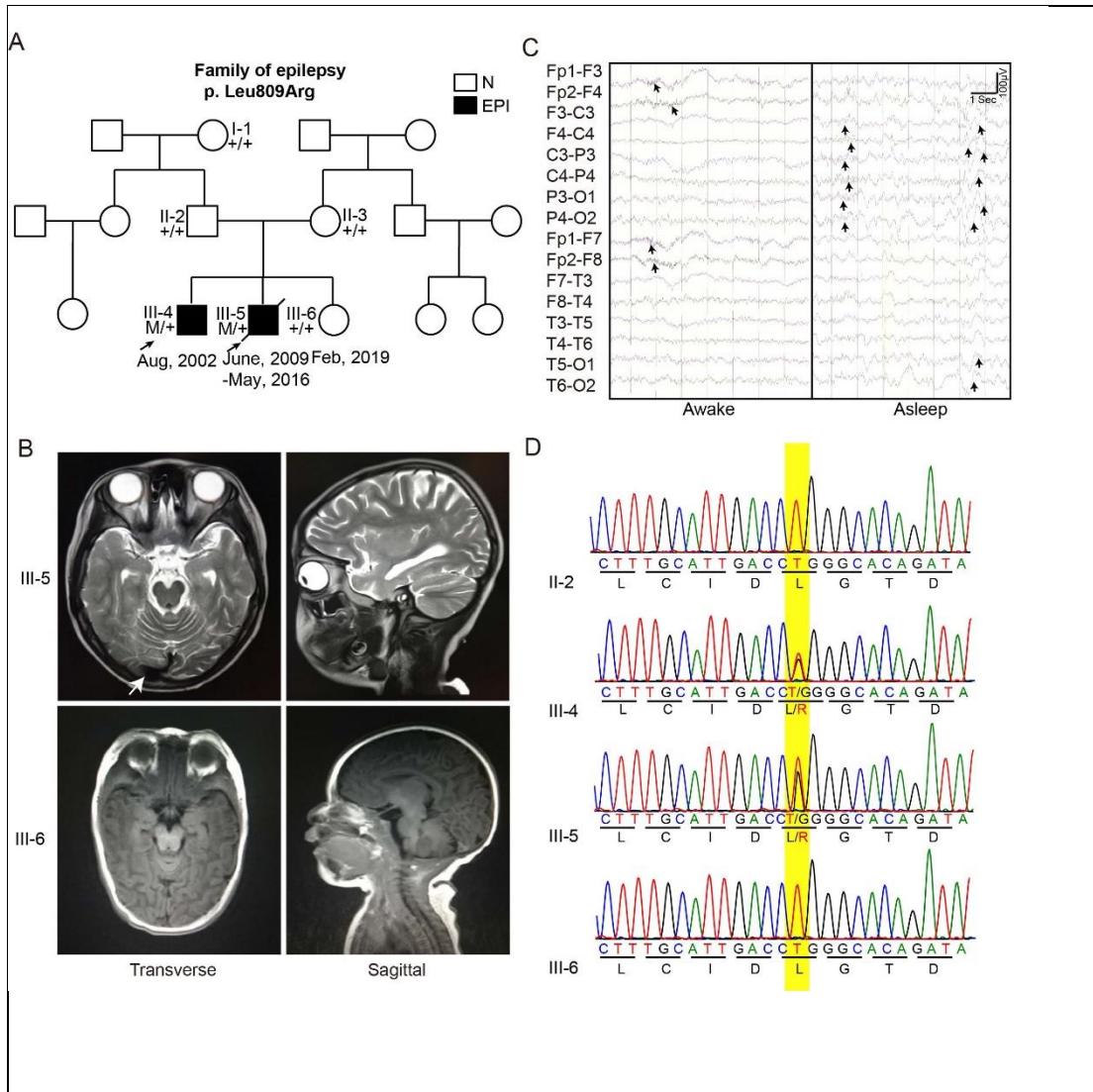
859 Haan, J., Frants, R. R., Ferrari, M. D., & van den Maagdenberg, A. M. (2007).
860 First case of compound heterozygosity in Na,K-ATPase gene ATP1A2 in
861 familial hemiplegic migraine. *Eur J Hum Genet*, 15(8), 884-888.
862 <https://doi.org/10.1038/sj.ejhg.5201841>

863 Vetro, A., Nielsen, H. N., Holm, R., Hevner, R. F., Parrini, E., Powis, Z., Moller, R. S.,
864 Bellan, C., Simonati, A., Lesca, G., Helbig, K. L., Palmer, E. E., Mei, D.,
865 Ballardini, E., Haeringen, A. V., Syrbe, S., Leuzzi, V., Cioni, G., Curry, C. J.,
866 Costain, G., Santucci, M., Chong, K., Mancini, G. M. S., Clayton-Smith, J., AA,
867 A. C., Bigoni, S., Scheffer, I. E., Dobyns, W. B., Vilse, B., & Guerrini, R.
868 (2021). ATP1A2- and ATP1A3-associated early profound epileptic
869 encephalopathy and polymicrogyria. *Brain*.
870 <https://doi.org/10.1093/brain/awab052>

871 Vezzani, A., Balosso, S., & Ravizza, T. (2019). Neuroinflammatory pathways as
872 treatment targets and biomarkers in epilepsy. *Nat Rev Neurol*, 15(8), 459-472.
873 <https://doi.org/10.1038/s41582-019-0217-x>

874 Vezzani, A., Fujinami, R. S., White, H. S., Preux, P. M., Blumcke, I., Sander, J. W., &
875 Loscher, W. (2016). Infections, inflammation and epilepsy. *Acta Neuropathol*,
876 131(2), 211-234. <https://doi.org/10.1007/s00401-015-1481-5>

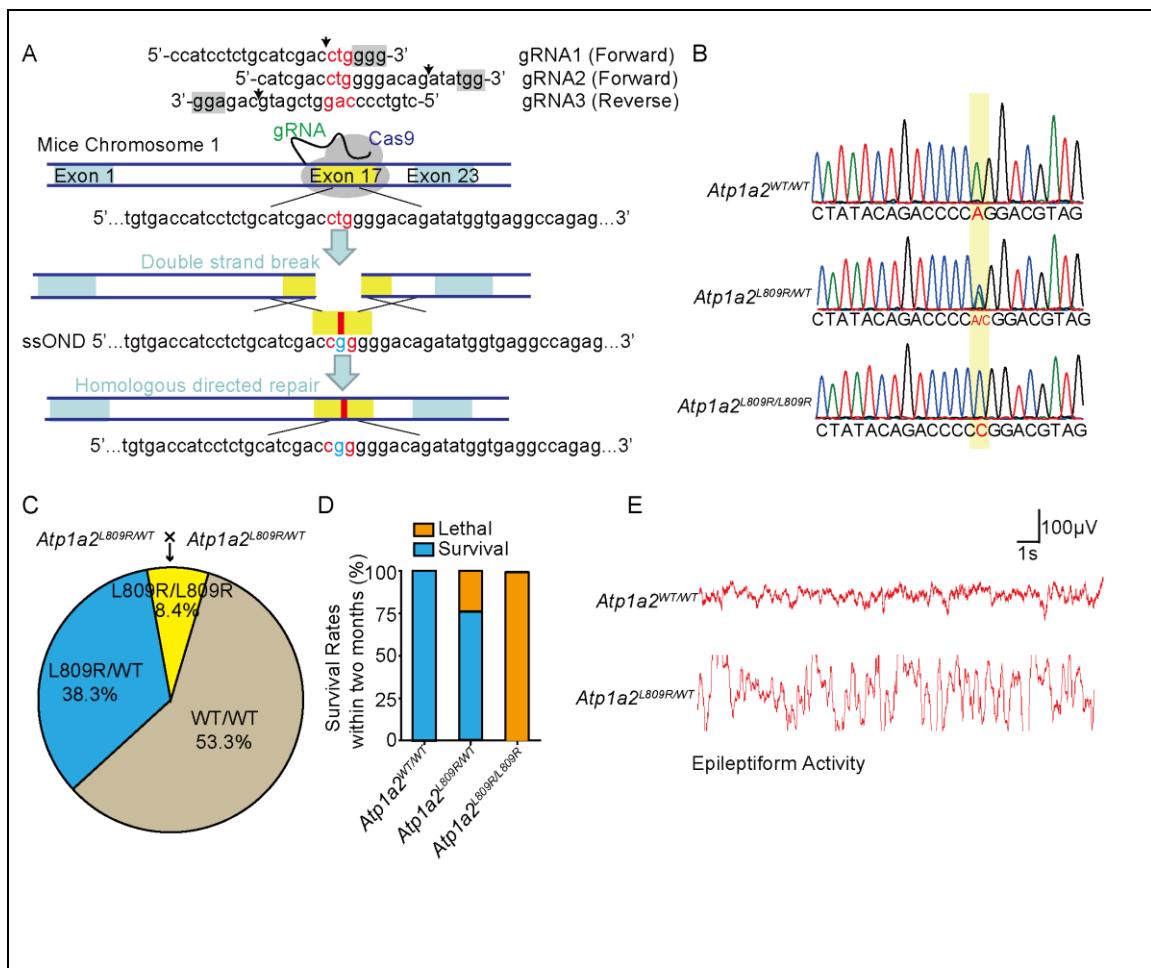
877 Wang, J., Lin, Z. J., Liu, L., Xu, H. Q., Shi, Y. W., Yi, Y. H., He, N., & Liao, W. P.
878 (2017). Epilepsy-associated genes. *Seizure*, 44, 11-20.
879 <https://doi.org/10.1016/j.seizure.2016.11.030>


880 Wang, K., Li, M., & Hakonarson, H. (2010). ANNOVAR: functional annotation of
881 genetic variants from high-throughput sequencing data. *Nucleic Acids Research*,
882 38(16), e164. <https://doi.org/10.1093/nar/gkq603>

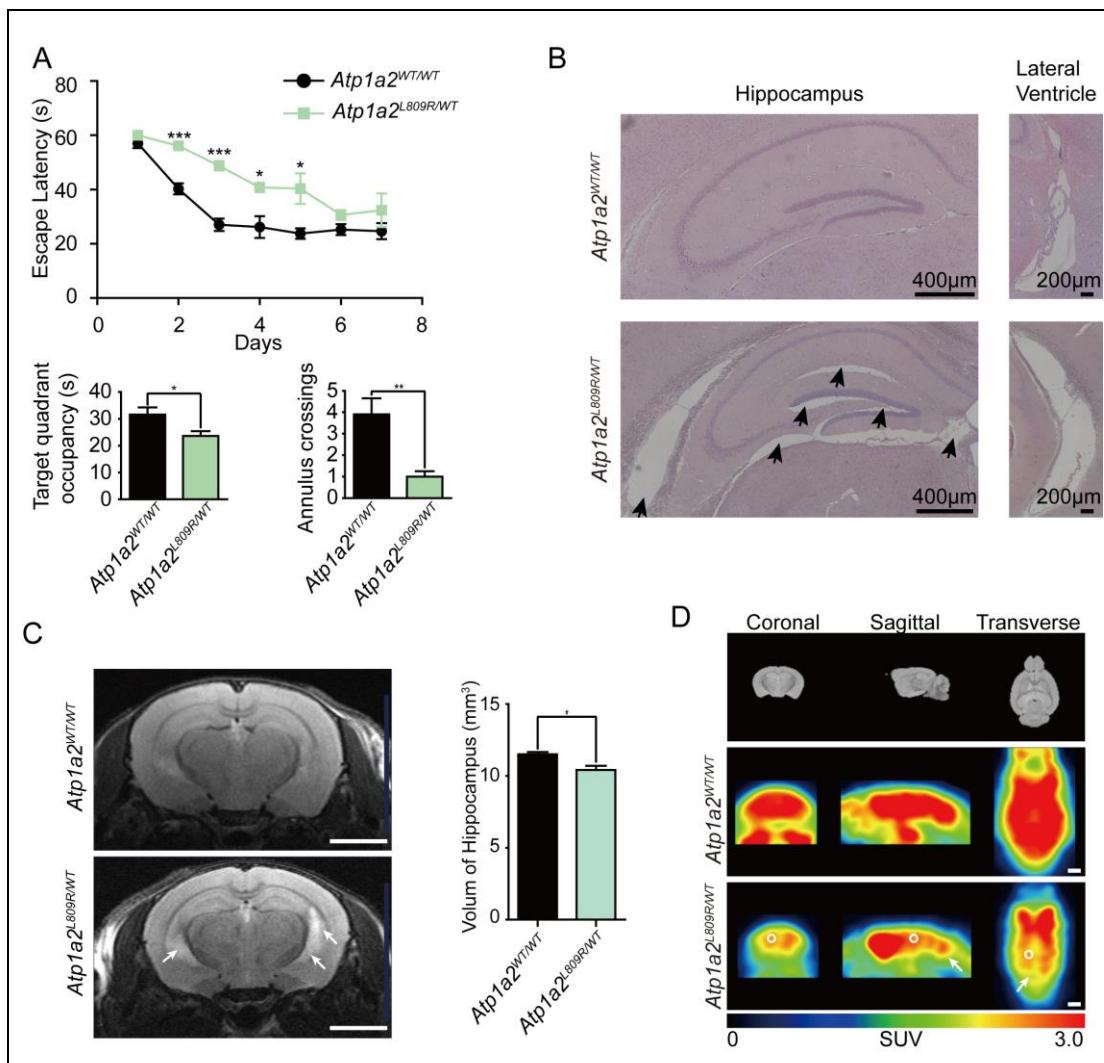
883 Wang, Y., Du, X., Bin, R., Yu, S., Xia, Z., Zheng, G., Zhong, J., Zhang, Y., Jiang, Y. H.,
884 & Wang, Y. (2017). Genetic Variants Identified from Epilepsy of Unknown
885 Etiology in Chinese Children by Targeted Exome Sequencing. *Sci Rep*, 7, 40319.
886 <https://doi.org/10.1038/srep40319>

887

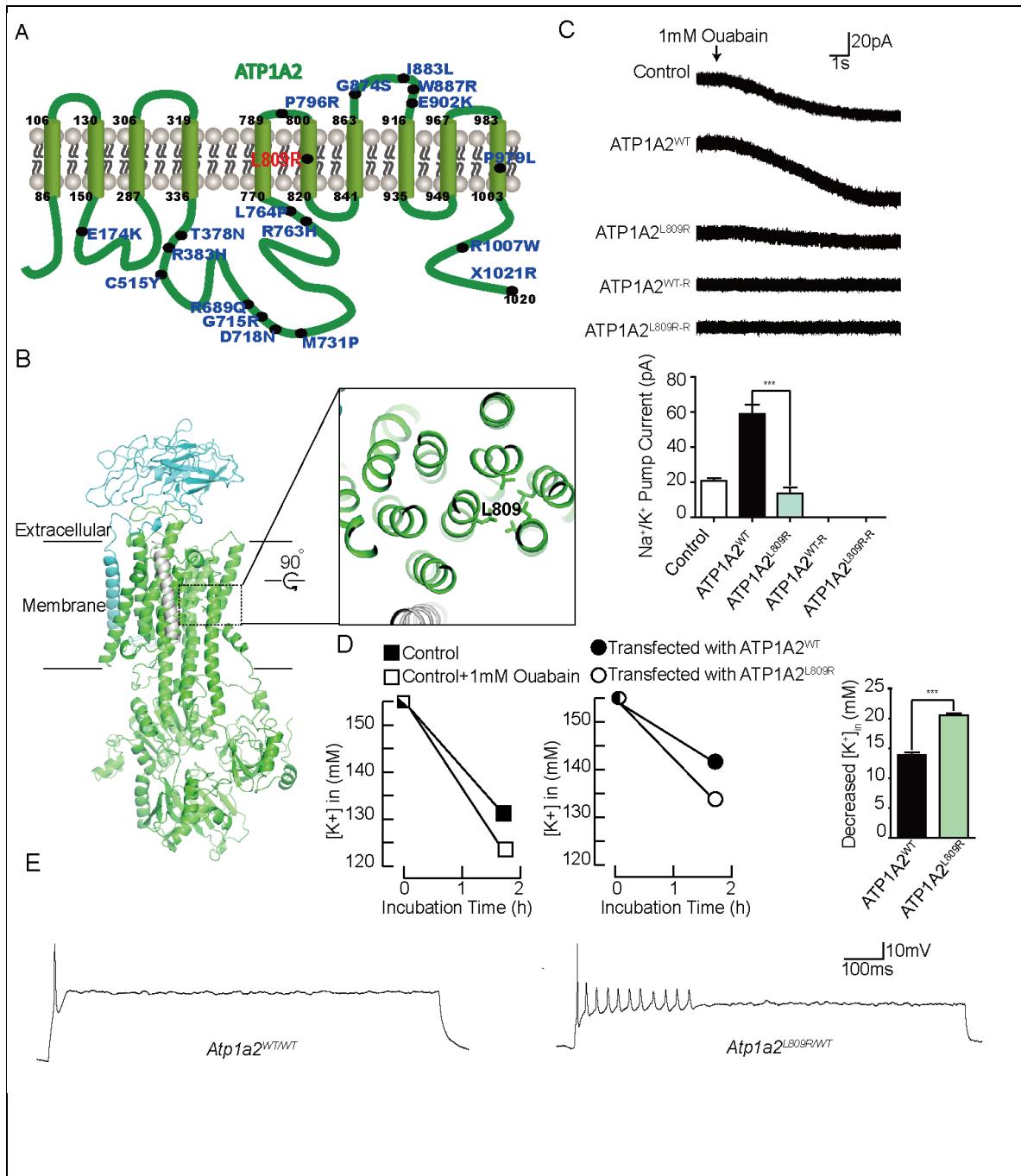
888


889 **Figures and Figure legends**

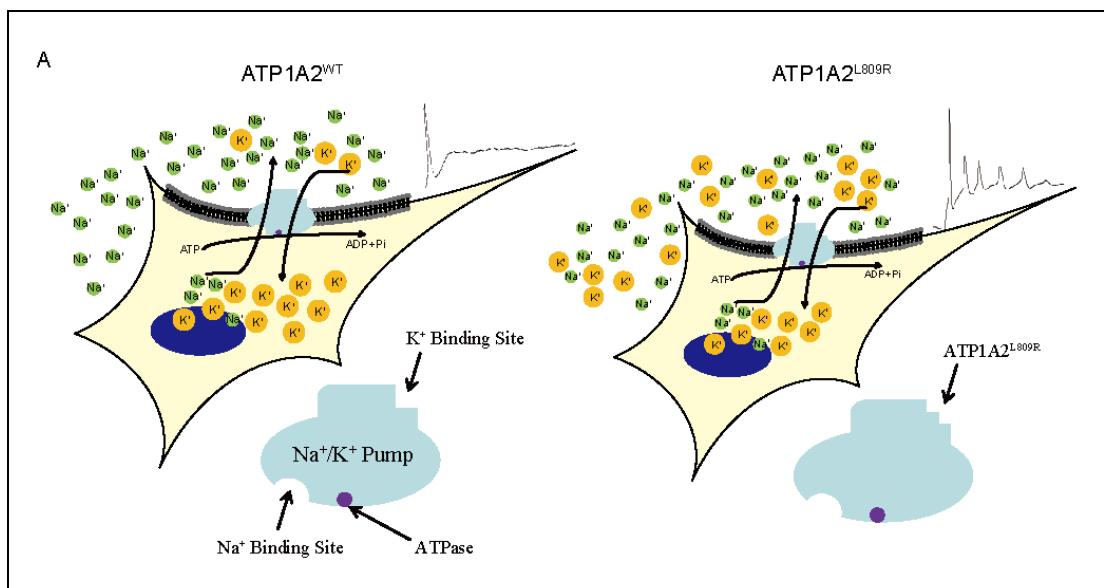
890 **Fig. 1 | The recurrent *ATP1A2*^{L809R} mutation in a family with idiopathic epilepsy.**


891 **A**, The pedigree demonstrating the *de novo* occurrence of the c.2426 T > G mutation in
892 *ATP1A2*. I-1, II-2, II-3, III-4, III-5 were subjected to whole-exome sequencing. M,
893 mutated allele (c.2426 T > G); +, wild-type allele; N, normal; EPI, epilepsy. **B**, MRI
894 brain images: Abnormal signals in the white matter of the brain; the left cerebral
895 hemisphere is slightly atrophied; the right anterior and middle cerebral arteries are
896 altered; enlarged ventricles (7-year-old III-5). Normal MRI images (3-month-old III-6).
897 Arrows show brain lesions. **C**, Representative electroencephalograms. Low- and

898 medium-amplitude fast spike waves were observed in the frontal and anterior temporal
899 lobes while awake. Medium interictal spikes were observed in the central and occipital
900 lobes while asleep (7-year-old III-5). The patient did not cooperate with the eye opening
901 and closing test and hyperventilation tests. Arrows show the abnormal epileptic activity
902 in EEG recordings. **D**, Sanger sequencing demonstrating *de novo* $ATPIA2^{L809R}$
903 heterozygotes in III-4 and III-5. No mutation was found in III-6.


904 **Fig. 2 | *Atp1a2*^{L809R} heterozygous mice recapitulate epilepsy of the $ATPIA2^{L809R}$**
905 **heterozygous patients.** **A**, Schematic showing the CRISPR/Cas9 techniques used to
906 generate *Atp1a2*^{L809R} point mutation mice. c.2426 T > G mutation introduced into exon
907 17 of mouse *Atp1a2*. Arrows showing the cutting site; grey indicates the protospacer

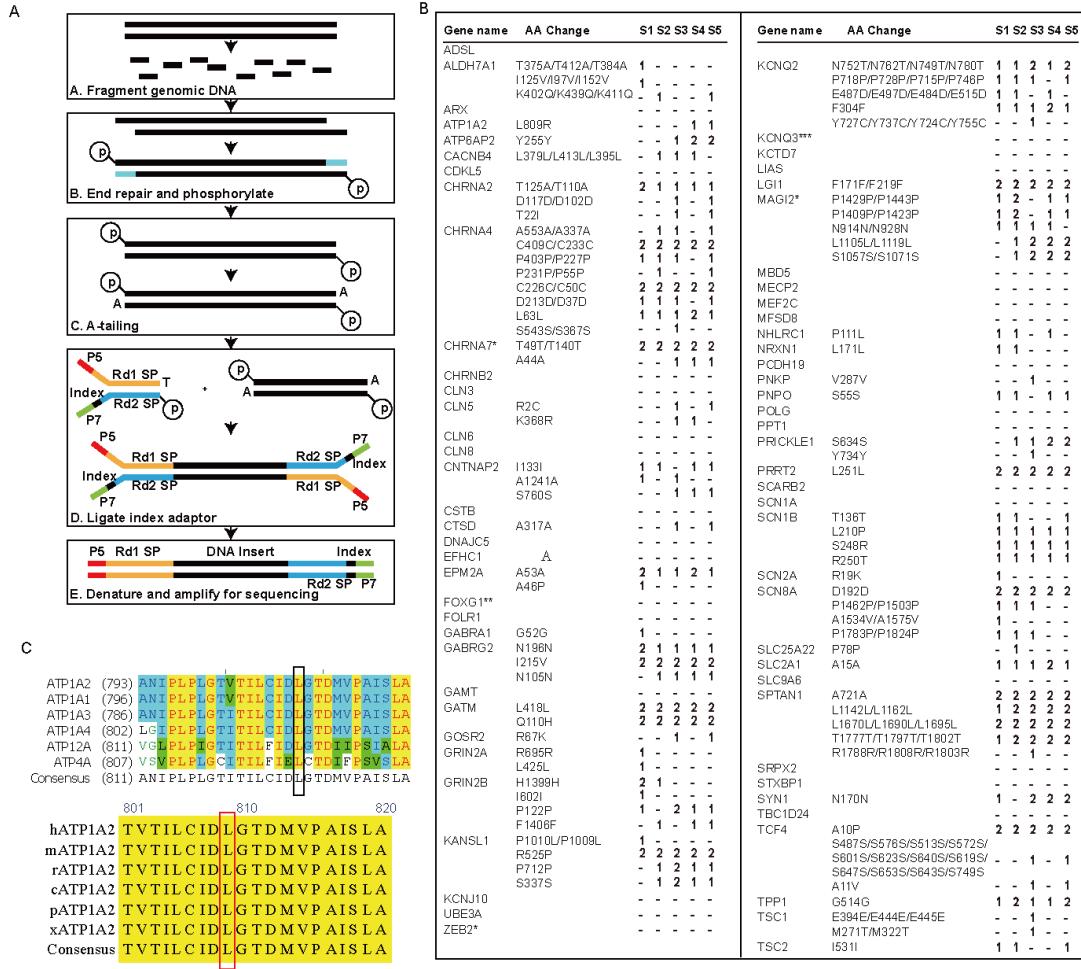
908 adjacent motif (PAM) sequences; gRNA1 and gRNA2 match the forward strand DNA;
909 gRNA3 matches the reverse strand DNA; ssOND, single-strand oligo donor DNA. **B**,
910 Sanger sequencing demonstrating heterozygous $Atp1a2^{L809R}$ ($Atp1a2^{L809R/WT}$) and
911 homozygous $Atp1a2^{L809R}$ ($Atp1a2^{L809R/L809R}$). **C**, Birth rates of $Atp1a2^{WT/WT}$,
912 $Atp1a2^{L809R/WT}$, and $Atp1a2^{L809R/L809R}$ mice (per 50 mice). **D**, Survival rates of
913 $Atp1a2^{WT/WT}$, $Atp1a2^{L809R/WT}$, and $Atp1a2^{L809R/L809R}$ mice within 2 months. **E**,
914 Representative EEG demonstrating epileptiform activity in $Atp1a2^{L809R/WT}$ mice.


915 **Fig. 3 | Impaired memory loss and hippocampal damage in $Atp1a2^{L809R/WT}$ mice. A,**
916 Morris water maze tests were performed to analyze the long-term memory of

917 *Atp1a2^{L809R/WT}* mice. Escape latency to the invisible platform, target quadrant
918 occupancy, and annulus crossings were measured. *Atp1a2^{L809R/WT}* mice showed a
919 significant decrease in long-term memory performance compared to age-matched wild-
920 type mice. n = 6. Data are presented as mean \pm SD. * $P < 0.05$, *** $P < 0.001$ by two-
921 way ANOVA with Dunnett's post-hoc test (top); * $P < 0.05$, ** $P < 0.01$ by unpaired
922 t-test (bottom). **B**, H&E staining showing longitudinal axial atrophy in the hippocampus
923 and an enlarged lateral ventricle in *Atp1a2^{L809R/WT}* mice. n = 6. **C**, MRI showing reduced
924 hippocampal volume and enlarged lateral ventricles in *ATP1A2^{L809R/WT}* mice. n = 5.
925 Scale bar, 2 mm. Data are presented as mean \pm SD. * $P < 0.05$ by unpaired t-test. **D**,
926 PET-CT revealed that glucose metabolism was reduced in the hippocampus (circles)
927 and cerebellum (arrows) of *Atp1a2^{L809R/WT}* mice. n = 5. Scale bar, 2 mm.

928 **Fig. 4 | ATP1A2^{L809R} affects K⁺ transport and neuron excitability. A,** A schematic
 929 showing the transmembrane domain structure of a single α2 subunit with ten
 930 transmembrane domains. The p.L809R substitution changes one of the leucine residues
 931 to an arginine. Other labeled sites indicate pathogenic mutations reported for ACH1 or
 932 FHM2. **B,** Leu809 is located in the K⁺ binding pocket. The structure shown here has

933 Protein Data Bank code 4HQJ (Nyblom et al., 2013). An enlarged view showing the
934 location of Leu 809. The positively-charged arginine substitution in the S6 segment
935 changes the property of the transporter. **C**, Representative traces of whole-cell currents
936 recorded in 293T cells transfected with the indicated plasmids (empty vector control,
937 $ATP1A2^{WT}$, $ATP1A2^{L809R}$, $ATP1A2^{WT-R}$, $ATP1A2^{L809R-R}$) and treated with 1 mM ouabain.
938 Ouabain is an inhibitor of Na^+/K^+ pumps, and $ATP1A2^{L809R-R}$ is resistant to ouabain
939 treatment. Na^+/K^+ pump currents were recorded at 0 mV. $n = 6$. Data are represented as
940 mean \pm SD. *** $P < 0.0001$ by one-way ANOVA with Dunnett's post-hoc test. **D**, K^+
941 uptake analysis of 293T cells treated with ouabain (left) or transfected with $ATP1A2^{WT}$
942 or $ATP1A2^{L809R}$ (middle). Quantification of K^+ uptake is represented (right). $n = 3$. **E**,
943 $ATP1A2^{L809R}$ causes membrane hyperexcitability in primary neurons. Representative
944 action potential recordings of neurons isolated from $Atp1a2^{WT/WT}$ and $Atp1a2^{L809R/WT}$
945 mice. Current-clamp recordings were performed by injecting a suprathreshold stimulus
946 of 200 pA for 950 ms. Representative traces are shown. $n = 6$ for each group.


947

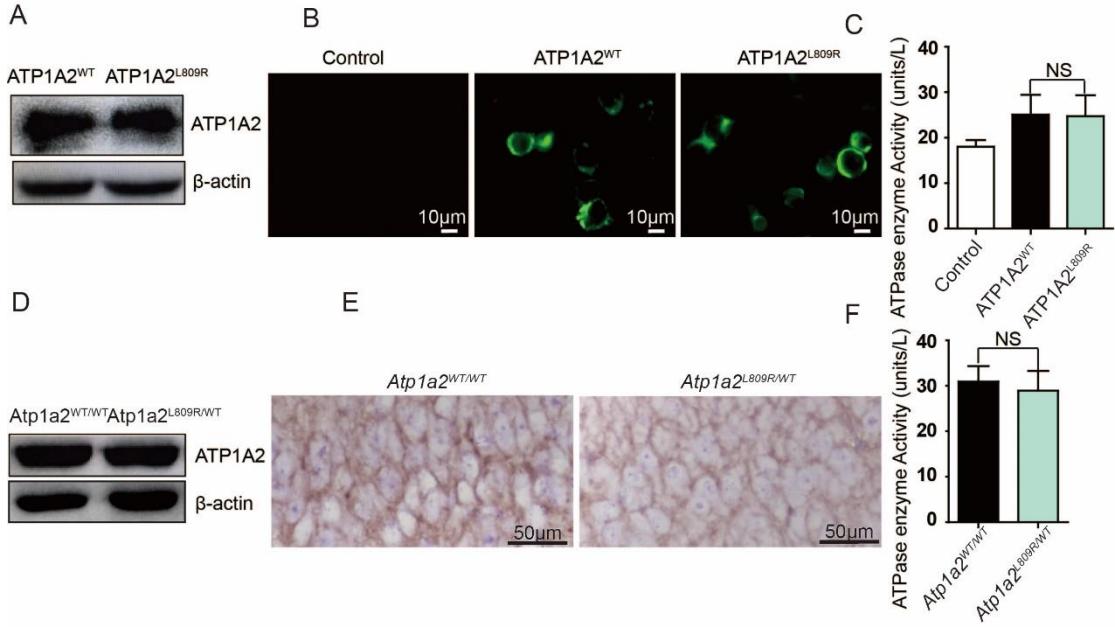
948 **Fig. 5 | A schematic showing how ATP1A2^{L809R} affects K⁺ transport and causes**

949 **epilepsy.**

950

1 Supplementary information

2


3 **Supplementary Fig. 1 | Strategy of the whole-exome sequencing and conserved**

4 **p.L809 among species.** A, Schematic showing the whole-exome sequencing. B, Epilepsy gene analysis to screen the susceptibility genes for epilepsy. 1, heterozygote; 2, homozygote; -, normal; S1, I-1; S2, II-2; S3, II-3; S4, III-4; S5, III-5. C, The ClustalX comparison of amino acid sequences for the K⁺-binding S6 segment shows full conservation of leu809 (arrow) across family proteins (upper) and different species (bottom). This leucine 809 residue (highlighted with a rectangle) is highly conserved

10 within families and across species. h, human; m, mouse; r, rat; c, chicken; p, pig; x,

11 *Xenopus*.

12

13

14 **Supplementary Fig. 2 | Protein level, membrane localization, and ATPase activity**
15 **of ATP1A2 were not affected by p.L809R mutation. A,** Western blot analysis of
16 ATP1A2 in 293T cells transfected with *ATP1A2^{WT}* and *ATP1A2^{L809R}*. **B,**
17 Immunofluorescent images revealed the membrane distribution of ATP1A2^{WT} and
18 ATP1A2^{L809R} in 293T cells transfected with pEGFP-C1-ATP1A2^{WT} or pEGFP-C1-
19 ATP1A2^{L809R}. Scale bar, 10 μm. **C,** ATPase activity analysis of ATP1A2 in 293T cells
20 showed no significant (NS) difference between cells transfected with *ATP1A2^{WT}* and
21 *ATP1A2^{L809R}*. Data are presented as mean ± SD. No statistical significance by one-way
22 ANOVA with Dunett's post hoc test. **D,** Western blot analysis of ATP1A2 in the brain
23 tissue of *Atp1a2^{WT/WT}* and *Atp1a2^{L809R/WT}* mice. **E,** Immunohistochemistry images
24 showing membrane distribution of ATP1A2 in the brain tissue of *Atp1a2^{WT/WT}* and
25 *Atp1a2^{L809R/WT}* mice. Scale bar, 50 μm. **F,** ATPase activity of ATP1A2 in the brain
26 tissue showed no significant (NS) difference between *Atp1a2^{WT/WT}* and *Atp1a2^{L809R/WT}*

27 mice. n=6. Data are presented as mean \pm SD. No statistical significance by unpaired

28 t-test.

Cancer Type	ATP1A2 AA Change	Number	Total Cases	center
Bladder	G706E, K154N, I204M, V1001I, A297T, M384I	10	3240	BGI, TCGA, DFCI/MSKCC,
Glioma	R443W, R72L, T83Hfs*4, D470N, P786S, T224I	6	3847	TCGA, UCSF
Breast	V662L, E530Q, S836P, R510H, T84A, E360G, D999V, K352R, E360G, V264G	16	7286	BCCRC, Broad, Sanger, TCGA pub, TCGA
Cervical	Q165K, F875L	2	2154	TCGA
Cholangiocarcinoma	G324S	1	87	TCGA
CLL	R884C, V169L, R514Q	3	46	IUOPA
ccRCC	X165_splice, A150T, R72L, E957K, Q54L, R548C, T415M, Q54K, F98Vfs*25	15	3602	U Tokyo, TCGA pub, TCGA
Colorectal	R1007Q, G96R, R1008Q, G506E, K175M, A328T, G105R, T690M, T712M, N353S, R267H, E477D, T368M, R908W, R92C, T577M, R428C, P81L, A595V, R976C, D750A, R443Q, D744N, R938H, G377D, K352N, R976H, R510H, G855R, H42N, D569N	42	122057	DFCI, Genentech, TCGA pub, TCGA
DESM	I678F, V277A, R493Q, M531I	4	4650	Broad
Esophagus	N635T, R1008Q, C702F, R428H, L425F, V711M, F144L, E48D, R763H, E459Q, K89T, M829I	12	4592	Broad, TCGA
Stomach	M468Tfs*105, T364M, A118S, E397V, R1008Q, Q705H, R51C, V475A, T378I, G607D, R514W, A507T, S499I, X211_splice, V738I, R351W, G333E, D261G, R1007W, R879Q, S452L, L545Tfs*28, R267C, K740R, G131C, R510H	40	72248	TMUCH, Pfizer UHK, TCGA pub, TCGA, Utokyo, UHK
GBM	Q853H, R890Q	4	220	TCGA
Head & neck	R267C, R976C, F863L, E530G, L965I, E530G, N393I, A77V, A318V, R510C, R1007Q, X655_splice, G715E	15	9627	TCGA pub, TCGA
pRCC	E636*, Q927L, G551*, M977L, H207R, L335Q	2	157	TCGA
Liver	S734C, E822K, S779R, P592N, M176L, K28T, A962D, D590Y, G664S, K52I, Y1019*, A5Wfs*3, Y1019*	6	2248	TCGA
Lung adeno	S734C, E822K, S779R, P592N, M176L, K28T, A962D, D590Y, G664S, K52I, Y1019*, A5Wfs*3, Y1019*	16	8731	Broad, MSKCC, TCGA pub, TCGA
Lung squ	R938S, P526Q, Q651E, A71S, A962D, T368M, L550L, R351Q, R1008W, L550L, R351Q, N233K,	17	7738	TCGA pub, TCGA
Melanoma	G2D, A150T, E700DR, G634D, E27K, S966F, MUTATED, D212N, Q54*, M540I, G706R, E872K, S818F, R834Q, G882R, R1002*, E86K, S836F, A594V, S226F, P692L, G701E, E363K, R351Q, G173R, P164L, S672L, S308F, P563S, G114D, G855G, P1010S, G96R, P591S, G758E, M946I, G377S, D68N, M971I, N393D, G21N, R1007Q	46	166603	Broad/DFCI, Broad, TCGA, Yale
LGG-GBM	R443W, T83Hfs*4, Q853H	3	145	TCGA
Prostate	R763H, R279W, A730V, R1008Q, G664S, G301W, V340V	8	8160	SU2C, FHCRC, TCGA
MDS	R564W	1	6	Tokyo
NCI-60	E17D, V69I, D894Y, R238C	4	9028	discover.nci.nih.gov
NPC	A272P	1	21	Singapore
NBL	P123A	1	91	AMC
Ovarian	R1007P, V652A, R1007P, V652A	4	335	TCGA pub, TCGA
NSCLC	T237S, R1008W, K456M, A962D, S632*, R510H, T339A, A5Wfs*3, E578*, E287K, Q148L, K442M, Y1019*, G324S, G715W, G664S, M389V, A71S, G295W, G664C, K28T, K52I, M971I, E174D, R938L, R938H, P786R, D399Y, S779R, P782Q, R351Q, M119L, F98Sfs*72, G861C, E822K, T683S, N233K, G713C, P592N, F110Tfs*57, T368M, A710D, S734C, I828M, L550L, X165_splice, P80Hfs*90, L355M, Q651E	50	24400	TCGA
Pancreas	R1007W, R510H, R3H, R421*, N358D, A180T, G706E	7	14957	ICGC, QCMG, UTSW
Thyroid	R1002*, S205T,	2	37	TCGA pub, TCGA
Ewing Sarcoma	A361V, K34R	2	196	DFCI
Sarcoma	T370I, G1012V, G544A	3	803	TCGA
Small Cell Lung	A361E, V501L, M162V, M731I, A180S, A361E, E872D, V501L, W1013*, C934Y	10	2278	CLCGP, JHU, UCOLOGNE
Thymoma	F98Sfs*72, T364M	2	664	TCGA
ucs	G274D, T671I, R1008W	3	16643	Johns Hopkins
Uterine	D886N, F863L, K770N, X705_splice, A688V, D126N, I320L, T570M, M468L, R421Q, F110S, D157N, R267H, R72Q, D528N, L502P, R514Q, E181D, R471K, R171W, G324S, R412*, D392N, E27D, E477D, R689Q, L585F, D392N, E181D, D126N, F863L, A688V	53	290984	TCGA pub, TCGA
29 Uveal melanoma	A774T	1	398	TCGA

30 **Supplementary Fig. 3 | Diseases caused by ATP1A2 mutation.** Frequent mutations

31 in *ATP1A2* genes uncovered from 35 different types of human cancers. Information

32 about mutations in the *ATPIA2* gene was extracted from TCGA (The Cancer Genome
33 Atlas) datasets(Gao et al., 2013) (Cerami et al., 2012). Mutations in the *ATPIA2* gene
34 are indicated as amino acid alteration or distinct mutation types: Nonsense (*), Mis-
35 sense, or Splice. The center reports the mutation, number of mutations found, and
36 number of cases for each cancer type sequenced. CLL, chronic lymphocytic leukemia;
37 ccRCC, clear cell renal cell carcinoma; DESM, desmoplastic melanoma; GBM,
38 glioblastoma multiforme; pRCC, papillary renal cell carcinoma; LGG-GBM, low-grade
39 glioma-glioblastoma multiforme; MDS, myelodysplastic syndrome; NCI-60, national
40 cancer institute's collection of 60 human cancerous cell lines; NPC, neuroendocrine
41 prostate cancer; NBL, neuroblastoma; NSCLC, non-small-cell lung carcinoma; UCS,
42 uterine carcinosarcoma.

43

44 **Supplementary Video 1 | Representative video of the ictal behavior of**

45 ***Atp1a2L809R/WT* mice.**

46

47

48 **References**

49 Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen,
50 A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A.
51 P., Sander, C., & Schultz, N. (2012). The cBio cancer genomics portal: an open
52 platform for exploring multidimensional cancer genomics data. *Cancer Discov*,
53 2(5), 401-404. <https://doi.org/10.1158/2159-8290.CD-12-0095>

54 Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y.,
55 Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., & Schultz, N.
56 (2013). Integrative analysis of complex cancer genomics and clinical profiles
57 using the cBioPortal. *Sci Signal*, 6(269), p11.
58 <https://doi.org/10.1126/scisignal.2004088>

59