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Abstract

Multitask learning allows the simultaneous learning of multiple ‘communicating’ algorithms. It is
increasingly adopted for biomedical applications, such as the modeling of disease progression. As data
protection regulations limit data sharing for such analyses, an implementation of multitask learning on
geographically distributed data sources would be highly desirable. Here, we describe the development
of dsMTL, a computational framework for privacy-preserving, distributed multi-task machine learning
that includes three supervised and one unsupervised algorithms. dsMTL is implemented as a library
for the R programming language and builds on the DataSHIELD platform that supports the federated
analysis of sensitive individual-level data. We provide a comparative evaluation of dsMTL for the
identification of biological signatures in distributed datasets using two case studies, and evaluate the
computational performance of the supervised and unsupervised algorithms. dsMTL provides an easy-
to-use framework for privacy-preserving, federated analysis of geographically distributed datasets,
and has several application areas, including comorbidity modeling and translational research focused
on the simultaneous prediction of different outcomes across datasets. dsMTL is available at

https://github.com/transbioZl/dsMTLBase (server-side package) and

https://github.com/transbioZl/dsMTLClient (client-side package).
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80 Introduction

81 The biology of many human illnesses is encoded in a vast number of genetic, epigenetic, molecular,
82 and cellular parameters. The ability of Machine Learning (ML) to jointly analyze such parameters and
83 derive algorithms with potential clinical utility has fueled a massive interest in biomedical ML
84 applications. One of the fundamental requirements for such ML algorithms to perform well is the
85 availability of data at a large scale, a challenge of steadily declining importance due to the ever-
86 increasing availability of biological data'>. As data can often not be freely exchanged across institutions
87  duetothe need for protection of the individual privacy, the utility of ‘bringing the algorithm to the data’
88 is becoming apparent. Technological solutions for this task have thus risen in popularity and exist in
89  various forms. One of the most straightforward approaches is the so-called federated ML, where
90  algorithms are simultaneously learned at different institutions and optimized through a privacy-
91 preserving exchange of parameters. Other approaches for this task include the training of ML
92  algorithms on temporarily combined data stored in working memory* or the more recently introduced
93 ‘swarm-learning’ approach®. One commonality of most ML algorithms, federated or not, is the
94 assumption that all investigated observations (e.g. illness-affected individuals) represent the same
95 underlying population. However, in biomedicine, this is rarely the case, as biological and technological
96 factors frequently induce cohort-specific effects that limit the ability to identify reproducible biological
97  findings. Multitask Learning (MTL) can address this issue through the simultaneous learning of
98  outcome (e.g. diagnosis) associated patterns across datasets with dataset-specific, as well as shared,
99  effects. Multi-task learning has numerous exciting application areas, such as comorbidity modeling,

100  and has already been applied successfully for e.g. disease progression analysis®.

101 Here, we describe the development of dsMTL (‘Federated Multi-Task Learning for DataSHIELD’), a
102 package of the statistical software R, for Federated Multi-Task Learning (FeMTL) analysis (Figure 1) .
103  dsMTL was developed for DataSHIELD’, a platform supporting the federated analysis of sensitive
104 individual-level data that remains stored behind the data owner’s firewall throughout analysis®. dsMTL

105 includes three supervised and one unsupervised federated multi-task learning algorithms that extend
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106  algorithms previously developed for non-federated analysis (for R implementations, see %),
107  Specifically, the dsMTL_L21 approach allows for cross-task regularization, building on the popular
108 LASSO method, in order to identify outcome-associated signatures with a reduced number of features
109  shared across tasks. The non-federated version of this approach has previously been applied to
110  simultaneously predict multiple oncological outcomes using gene expression data'l. The dsMTL_trace
111 approach constrains the coefficient vectors in a low-dimensional space during the training procedure
112 to penalize the complexity of task relationships, resulting in an improved generalizability of the models.
113 In a non-federated implementation, this method has previously been used to predict the response to
114 different drugs, and the identified models showed a high degree of interpretability in the context of
115 the represented drug mechanism®. dsMTL_net incorporates the task relationships that can be
116  described as a graph, in order to improve biological interpretability. In a non-federated version, this
117  technique has previously been used for the integrative analysis of heterogeneous cohorts®® and for the
118  prediction of disease progression*. The dsMTL_iNMF approach is an unsupervised, integrative non-
119  negative matrix factorization method that aims at factorizing the cohorts’ data matrices into shared
120  and dataset-specific components. Such modeling has been applied to explore dependencies in multi-
121  omics data for biomarker identification'®*®. In addition to the FeMTL methods, we also implemented

16

122  a federated version of conventional Lasso (dsLasso) *® in dsMTL package due to its wide usage in

123 biomedicine and as a benchmark for testing the performance of the federated MTL algorithms.

124  To explore the utility of the dsMTL algorithms, we used a network comprising three servers. These
125  servers hosted simulated data with variable degrees of cross-dataset heterogeneity, in order to test
126  the ability of the MTL algorithms to suitably characterize shared and specific biological signatures. In
127  addition, we analyzed actual RNA sequencing and microarray data across the three-server network, to
128  show that the accurate analysis can be performed in acceptable runtime using dsMTL in real network

129  latency.

130
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131 Results

132 Here we show the results for two case studies. The first case study aims at demonstrating the utility of
133 the supervised dsMTL_L21 algorithm to identify ‘heterogeneous’ target signatures across the data
134 network. With ‘heterogeneous’ we describe signatures that involve the same features (e.g. genes) but
135 with potentially differing signs (indicating differential directions of influences) across datasets. In
136 contrast, ‘homogeneous’ signatures relate to the same features and signs across datasets. The second
137 case study focuses on the unsupervised dsMTL_iNMF method and explores the utility of the federated
138  implementation, compared to the aggregation of local NMF models, to disentangle shared and cohort-
139  specific components across datasets. For all case studies, we evaluated the signature identification
140  accuracy as the major metric. For predictions of clinical outcomes, the prediction accuracy was also

141 demonstrated.

142

143 Case study 1 — distributed MTL for identification of heterogeneous target signatures

144 With the aim to identify ‘heterogeneous’ signatures, we compared the performance of dsMTL L21,
145  dslasso and the bagging of glmnet models. As part of this, we explored the sensitivity of these methods
146  to different sample sizes (n) relative to the gene number (p). Figure 2 shows the resulting prediction
147  performance and gene selection accuracy, each averaged over 100 repetitions. dsLasso showed the
148  worst prediction performance in this heterogeneous setting, and dsMTL_L21 slightly outperformed
149  the aggregation of local models (glmnet). Similarly, the gene selection accuracy of dsLasso was inferior
150  tothat of dsMTL_L21 and glmnet-bagging, which showed similar performance when the sample size is
151  sufficiently large, e.g. the number of subjects approximately equal to the number of genes (n/p ~1).
152 However, with a decreasing n/p ratio, dsMTL_L21 showed an increasing superiority over the other
153 methods, especially for n/p=0.15, where the gene selection accuracy of dsMTL_L21 was over 2.8 times

154  higher than that of the bagging technique.

155
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156  Case study 2 — distributed iNMF for disentangling shared and cohort-specific signatures

157  Figure 3 shows the performance of distributed and aggregated local NMF methods for disentangling
158 shared and cohort-specific signatures from multi-cohort data, given different ‘severities’ of the
159 signature heterogeneity. For both types of signatures, dsMTL _iNMF outperformed the ensemble of
160 local NMF models for any heterogeneity severity setting. Notably, even with increasing heterogeneity,
161 the accuracy of dsMTL_iNMF to capture shared genes remained stable at approximately 100%,
162 illustrating the robustness of dsMTL_iNMF against the heterogeneity’s severity shown in Figure 3c. In
163  contrast, for the ensemble of local NMF, the gene selection accuracy of the shared signature
164  continuously decreased to approximately 50% (20% of outcome-associated genes were shared among
165  cohorts), while the gene selection accuracy of cohort-specific signatures continuously increased to 75%

166  (20% of outcome-associated genes were shared among cohorts ) as shown in Figures 3a and 3b.

167

168  Efficiencyof supervised dsMTL

169 We aimed at determining the efficiency of supervised dsMTL using the real molecular data and the
170 actual latency of a distributed network. Using a three-server scenario (see Table 2 Supplementary
171 Results; two servers at the Central Institute of Mental Health, Mannheim; one server at BioQuant,
172 Heidelberg University) we analyzed four case-control gene expression datasets of patients with
173  schizophrenia and controls (median n=80; 8013 genes). Supplementary Table 3 shows the comparison
174  between dsLasso and mean-regularized dsMTL _net, which were trained (cross-validation + training)
175  and tested in approximately 8min and 10min, respectively, with the time-difference being due to the
176  increased network access of dsMTL. The prediction accuracy of dsMTL was slightly higher than that of
177  dslasso, consistent with our previous study®. Regarding model interpretability, dsLasso captured a
178  signature comprising 38 genes but could not distinguish shared and cohort-specific effects. Mean
179  regularized dsMTL identified a signature with 10 genes shared among all cohorts, with 163 genes

180  shared by two cohorts, as well as three cohort-specific signatures comprising 1532 genes.
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181

182  Efficiency of unsupervised dsMTL

183 The cohorts and server information is shown in Supplementary Table 4. It took 34.9 minutes (1,003
184  times network accesses) to train a dsMTL_iNMF model with 5 random initializations (~7 min for each
185 initialization). The factorization rank k=4 was selected as the optimal parameter. In Supplementary
186  Figure 1, the objective curve illustrates that the training time was sufficient for model convergence. In
187  this analysis, a shared signature comprising 473 genes between SCZ and BIP was identified, while two

188  disease-specific signatures containing 37 genes for SCZ and 152 genes for BIP, respectively, were found.

189

190

191

192 Discussion

193  We here present dsMTL — a secure, federated multi-task learning package for the programming
194  language R, building on DataSHIELD as an ecosystem for privacy-preserving and distributed analysis.
195 Multi-task learning allows the investigation of research questions that are difficult to address using
196  conventionalML, such as the identification of heterogeneous, albeit related, signatures across datasets.
197  The implementation of a privacy-preserving framework for the distributed application of MTL is an
198  essential requirement for the large-scale adoption of MTL. Using such a distributed server setup, we
199  demonstrate the applicability and utility of dsMTL to identify biomarker signatures in different settings.
200 For applications where the target biomarker signatures are different, but relate to an overlapping set
201  of features (explored here as the ‘heterogeneous’ case), conventional machine learning would not be
202  a meaningful algorithm choice. We show that MTL is able to identify the target signatures with high
203  confidence and may thus be a reasonable choice for a diverse set of interesting analyses. As mentioned

204  above, a particularly noteworthy application is comorbidity modeling, where the target signatures


https://doi.org/10.1101/2021.08.26.457778
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457778; this version posted August 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

205 index the shared (although potentially heterogeneously manifested) biology of multiple, clinically
206  comorbid conditions. Such analyses could potentially be a powerful, machine learning-based extension
207  of comorbidity modeling approaches based on univariate statistics that have already been very useful
208  for characterizing the shared biology of comorbid illness'’. We show that unsupervised MTL can
209  disentangle the shared from cohort-specific effects, demonstrating its potential utility for comorbidity
210  analysis. Other applications for this method include the analysis of biological patterns shared across
211 clinical symptom domains, between clinical and demographic characteristics, or with digital measures,

212 such as ecological momentary assessments.

213 The use of dsMTL follows the concept of the so-called “freely composing script” in the DataSHIELD
214  ecosystem. It organizes a given dsMTL workflow as a free composition of dsMTL, DataSHIELD, and local
215 R commands (e.g. R base functions, customer-defined functions and CRAN packages) into a script, such
216  that the geo-distribution of datasets and the federated computation are transparent to users. This
217 concept is similar to that of the “freely composing apps” used in a recently presented federated ML
218  application®®, which allows flexible scheduling of functions in the form of apps and improves the
219 federated data analysis flexibility for users. In addition to dsMTL, other packages in the DataSHIELD
220  ecosystem exist for e.g. “big data” storage and management?’, various statistical tests”*® and deep

19,20

221 learning

222 Interesting future developments of the dsMTL approach could include the implementation of
223 asynchronous communication, which provides a probabilistically approximate solution but faster
224  convergence???, Furthermore, integration of other popular systems for ML, such as tensorflow?, for
225  whichinterfaces with the R language already exist, would provide valuable additions to the DataSHIELD
226  system. Finally, a noteworthy consideration is an architecture underlying the distributed data
227 infrastructure. DataSHIELD builds on a centralized (“client-server”) architecture and each data provider
228 needs to install a well-configured data warehouse. Such infrastructure is suitable for long-term
229 collaboration scenarios and large consortia projects that conduct a broad spectrum of complex

230 analyses requiring high flexibility. However, in other scenarios that require more temporary and easy-
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231  compute collaboration setups, a server-free or decentralized architecture?* might be more suitable,

232 because the cost of data provider for participating is low.

233 In conclusion, the dsMTL library for the programming language R provides an easy-to-use framework
234  for privacy-preserving, federated analysis of geographically distributed datasets. Due to its ability to
235 disentangle shared and cohort-specific effects across these datasets, dsMTL has numerous interesting
236 application areas, including comorbidity modeling and translational research focused on the

237  simultaneous prediction of different outcomes across datasets.
238
239

240 Methods

241 Modeling

242 All methods part of dsMTL share the identical form,

243 mein L(0) +AS(0) + CX(0)

244  where L(0) is the data fitting term (or loss function), the major determinant of the solutions obtained
245  from model training. X(6) and S(0) are the penalties of 6 with the aim to incorporate the prior
246  information. X(0) is a non-smooth function and able to create sparsity, while S(8) is smooth. A and C
247  arethe hyper-parameters to control the strength of the penalties. More technical details can be found

248  in the supplementary methods.

249 In dsMTL, two approaches for sharing information across cohorts are included, 1) shared parameters
250 and 2) cross-task regularization, leading to a slightly different distributed computation. The shared
251 parameters are estimated using all cohorts. For cross-task regularization, the cohort-specific
252 parameters are estimated using only the local data, and then tuned by considering parameters from

253 other cohorts.
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254 Efficiency

255 Most dsMTL methods aim at training an entire regularization tree. The determination of the A
256 sequence controls the tree's growth and is essential for computational speed. The A sequence should
257 be accurately scaled to both capture the highest posterior and avoid overwhelming computations.
258 Inspired by a previous study?®, we estimate the largest and smallest A from the data by characterizing
259  the optima of the objective using the first-order optimal condition and then interpolate the entire A
260 sequence on a log scale (see supplementary methods for more details). In addition, several options are
261 provided to improve the speed of the algorithms by decreasing the precision of the results, i.e., 1) the
262 number of digits of parameters for transformation can be specified to reduce the network latency; 2)
263  several termination rules are provided, some of which are relaxed; 3) the depth of the regularization

264  tree can be shortened. More details can be found in supplementary methods.

265 Besides the efficiency of the federated ML/MTL methodology, the import/export of “big data” cohorts
266 is also crucial for computational efficiency, where e.g. uncompressed GWAS data requires tens of
267  gigabytes, leading to time-consuming data import. dsMTL was designed to support a wide variety of
268  data types. For this, an architecture package resourcer®® developed by the DataSHIELD community was
269  incorporated to facilitate the efficient import and export of large-scale datasets in compressed formats.
270 For example, in DataSHIELD, GWAS data of the PLINK file formats can be read and processed using the

271  software PLINK?® as the backend®®.

272 Security

273  dsMTL was developed based on DataSHIELD?, which provides comprehensive security mechanisms not
274  specific to machine learning applications. For example, 1) DataSHIELD requires the data analysis to
275  only occur behind the firewall; 2) each server is only allowed to communicate with a set of clients with
276  fixed IP addresses; 3) the network communication is protected by an SSL protocol; 4) an R parser®
277  implemented on the server rejects the calling of unwanted functions; and 5) the so-called ‘disclosure

278  control’® on the server ensures that the returned response does not contain any disclosive information.
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279 In addition, several permissions can be set by the data providers to fully control the usage of their data.
280  These permissions describe the degree of accessibility of data and functions on the server i.e. “which
281 users can perform what actions on what data”. In an extremely secure example, a user could be
282  granted to check the summary of a given dataset but cannot perform any actions because no functions
283  were granted. With these settings, DataSHIELD allows customizing the security protection strategies
284 according to the specific requirements of the applications. For statistical and machine learning analyses,

285 DataSHIELD assumes that summary statistics are safe to share.

286  dsMTLinherits all these security mechanisms. In addition, we considered potential ML-specific privacy
287 leaks, such as membership inference attacks?” and model inverse attacks®. Inverse attacks aim at
288  extracting the individual observation-level information from the models. Membership inference
289  attempts to decide if an individual was included in a given training set using the model. All these
290 techniques require a complete model for inference. Since multi-task learning returns multiple matrices,
291 returning an incomplete model could be one strategy against these attacks. For example, dsMTL_iNMF
292 in dsMTL only returns the homogenous matrix (H), whereas the cohort-specific components (V, W)
293 never leave the server. For example, in a two-server scenario, one (H) out of five output matrices is
294 transmitted between the client and the servers. With such an incomplete model, inverse construction
295 of the raw data matrix becomes difficult, and the risk of an inverse attack and membership inference
296 is reduced. For most biomedical analyses, the H matrix is sufficient for subsequent studies. In addition,
297  if the analyst was authorized to access the raw data of the server, the so-called “data key mechanism”
298  (see supplement) would allow the analyst to retrieve all component matrices. For supervised multi-
299  task learning methods in dsMTL, all models have to be aggregated within the clients, and thus we
300  suggest the data providers enable the option on the server that rejects a returned coefficient vector
301 containing parameter numbers exceeding the number of subjects. In this way, the model is not

302 saturated and more robust to an inverse attack.

303 Proof of concept with simulation and actual data
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304  Two case studies and speed-tests were conducted to demonstrate the suitability of dsMTL methods to
305 analyze heterogeneous cohorts, compared to federated ML methods and ensemble of local models
306 regarding the prediction performance, interpretability and computational speed. An overview of
307 methodological aspects related to the case studies is detailed below. For an extensive methodological

308  description, please see the supplementary Methods.

309 Case study 1. In this case study, the heterogeneous cohorts were generated with the same set of
310 outcome-associated genes. These however showed different directionality of their respective
311 associations with the outcome. A three-server scenario was simulated. 150 out of 500 features with

312 random signs across cohorts were simulated. Seven tests were created for simulating different n/p

sample size

313 ) ratios. The n/p ratio was {1.2,1,0.9,0.6,0.5,0.3,0.15} with the number of subjects

gene number
314 {600,500,450,300,250,150, 75} for each test. 500 genes were created for each server. The test

315 sample consisted of 200 subjects for each server. Data were generated as follows:

316 Given gene number p = 500, the models of three cohorts were {w(l), w®, w(3)} where w0 = p X1

317 A shared signature comprising 150 genes was generated for each w® but with random signs, W(')i =

2% (p—05)xN(1,01) 1<i<150

318
{ 0 others

, p~Bernoulli(§). The expression values of each subject

319  across cohorts were generated as x = 1 X p where x;~N(0,1). The numeric outcome (e.g. symptom

320 severity) y = xw® in cohort i was standardized in a normal distribution N(0,1), then model-

321 irrelevant noise with 50% of the variance of the true signal was addedy =y + N (0, 0.5).

322  dsMTL_L21 and dsLasso were trained as the federated learning system, and the hyper-parameter was
323  selected using 10 fold in-cohort cross-validation. For glmnet, the ensemble technique was only applied
324  onthe gene selection due to the consistent gene set of their signatures. The mean squared error (mse)
325 was used as the measure of prediction performance. To account for the sampling variance, we

326 repeated each analysis 100 times.
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327  Case study 2. In this case study, two heterogeneous RNA-seq cohorts were created to simulate a
328  comorbidity analysis, where the genes were separated to be part of either a shared signature among
329  cohorts, cohort-specific signatures or diagnosis-unassociated genes. The dsMTL_iNMF was compared
330 to the ensemble of local NMF regarding the selection accuracy of shared/cohot-specific genes, in
331 particular impacted by the severity of heterogeneity. Here the severity of heterogeneity refers to the
332 proportion of the genes harbored by the shared signature over all diagnosis-associated genes. The data

333  simulation protocol for RNA-seq data can be found in the Supplementary Methods.

334  Atwo-server scenario was simulated. As shown in Supplementary Table 1, for the data of each server,
335 1000 genes and 200 subjects were simulated, 50% of the genes were diagnosis-unassociated and the
336 remaining genes were part of the disease signature. The genes comprised by shared signatures were
337  identical for data of two servers, and the genes comprised by cohort-specific signatures did not overlap.
338 The case-control ratio was balanced for each server. Four tests were performed by varying the

339 proportion of genes in the shared signature over all diagnosis-associated genes from 20% to 80%.

340  Thetraining of dsMTL_iNMF results in three outputs related to the original input data: the shared gene
341 ‘exposure’ (H), cohort-specific gene ‘exposure’ (V) and sample ‘exposure’ (W). We measured the
342  association between the sample exposure and the diagnosis as the weight of each latent factor. The
343  shared( or specific) gene signature was identified as the weighted summation of the shared (or specific)
344  gene exposures over latent factors. To quantify the important genes related to a given signature, we
345 binarized the gene signature according to the mean (0-1 vector, values larger than the mean were
346  assigned). To assess the performance of the gene identification, we associated the selected genes set
347  with the ground truth (0-1 vector, signature genes were 1). The assessment was applied to shared and
348  cohort-specific genes in parallel. Based on this metric, three gene sets were derived as output from
349  dsMTL_iNMF, called dsMTL_iNMF-H, dsMTL_iNMF-V1 and dsMTL_iNMF-V2, and these related to the
350 shared, cohort 1 specific and cohort 2 specific gene signature, respectively. The same strategy was
351 applied to analyze the ensemble of local NMF models. For each cohort, the specific gene signature was

352 the weighted summation of gene exposure over latent factors, and then binarized as the specific gene
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353  set (called local-NMF1 and local-NMF2). The shared gene signature was identified as the sum of the
354  specific gene signature over cohorts, and then binarized as the shared gene set(NMF-bagging). We
355  then compared 1) NMF-bagging and dsMTL_iNMF-H for the accuracy related to the isolation of shared
356  genes; 2) dsMTL_iNMF-V1 and local-NMF1 as well as dsMTL_iNMF-V2 and local-NMF2 for the accuracy

357  ofisolating cohort-specific genes.

358 Computational speed of supervised dsMTL. We aimed at identifying the efficiency of supervised
359  dsMTL using real molecular data and given the real network latency. Four independent schizophrenia
360 case-control cohorts were used for this analysis. The training cohorts consisted of three datasets
361  comprising prefrontal cortex gene expression data (available from the GEO repository under accession
362 numbers GSE53987, GSE21138 and GSE35977). A detailed description of these datasets can be found
363 intheir respective original publications®*3!. The dataset used for algorithm testing was from the HBCC
364  (n=422) cohort comprising genome-wide gene expression data quantified by microarray (dbGAP ID:
365 phs000979.v3.p2). A detailed description of this dataset can be found in the original publication®. As
366 shown in Supplementary Table 2, three servers were used for training algorithms. Two servers were
367 held at the Central Institute of Mental Health, Mannheim while the third was positioned at the

368 BioQuant institute, Heidelberg.

369 Using this data, we repeated a previously described analysis®®, in order to evaluate computational
370 speedinafederated analysis setting. Here we show the formulation of the mean regularized MTL using

371 dsMTL_net:

372  The cohort-level batch effect was assumed to be Gaussian noise affecting the true coefficient of gene

373 i and cohort j w;; = w; +¢€;, €; € N(i,0). Hence, the average model w; across cohorts was an

2
374  unbiased estimator for the true coefficient, and therefore the squared penalty |wl-j —wl| was

375 incorporated to penalize the departure of each model j to the mean. The complete formulation was

. 1 -y (xOw
376 min 5o X%, Liogct + e OV 2w + ClwGli3
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2 o 1oz ozt
3 3 3 3
-1 2 2 -1
377 where G = 3 3 0 O 3 3
I_O 12 1 0 EJ
3 3 3 3
378

379  Computational speed of unsupervised dsMTL. Here, we analyzed the time efficiency in applying
380 dsMTL_iNMF on two real datasets based on the real network latency. Two processed RNA-seq case-
381  control cohorts comprising patients with schizophrenia (GSE164376°% ) and bipolar disorder
382 (GSE134497%*) were retrieved from the GEO database and converted into a matrix format for the
383 analysis. As shown in Supplementary Table 4, the data were stored on servers in Mannheim and

384  Heidelberg.
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390 Figure 1. Schematic illustration of dsMTL using comorbidity modeling of schizophrenia and
391 cardiovascular disease as an example. Multiple datasets stored at different institutions are used as a

392 basis for federated MTL. dsMTL was developed in the DataSHIELD ecosystem, which provides
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393  functionality regarding data management, transmission and security. Data are analyzed behind a given
394  institution’s firewall and only algorithm parameters that do not disclose personally identifiable
395 information are exchanged across the network. dsMTL contains algorithms for supervised and
396  unsupervised multi-task machine learning. The former aims at identifying shared, but potentially
397  heterogeneous signatures across tasks (here, diagnostic classification for schizophrenia and
398 cardiovascular disease). Unsupervised learning separates the original data into shared and cohort-

399 specific components, and aims at revealing the corresponding outcome-associated biological profiles.

400
dsMTL_L21 glmnet M dslLasso
a p 100
1.2-
>
8
= 8 075
5 3
@ 08 8
o c
£ 2 o050
= (%)
o 9
o 4
E 04 i
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T
]
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402 Figure 2. Analysis of ‘heterogeneous’ signatures of continuous outcomes in simulated data stored
403  on three servers. The figure shows the a) prediction accuracy expressed as the mean squared error
404  and b) the feature selection accuracy for different subject/feature number ratios. The respective
405 values were averaged across the three servers, and across 100 repetitions, in order to account for the

406  effect of sampling variability.

407

408

409
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412 Figure 3. The gene identification accuracy for shared and specific signatures using simulated data. a)
413 the identification accuracy of important genes for cohort 1. b) the identification accuracy of important
414  genes for cohort 2. c) the identification accuracy of genes comprised in the shared signature. Local-
415 NMF1 and Local-NMF2 were the cohort-specific gene sets identified by local NMF, which were
416  combined into “NMF-bagging” for the shared gene set. dsMTL_iNMF-H was the predicted shared gene
417  set using dsMTL_iNMF. dsMTL_iNMF-V1 and dsMTL_iNMF-V2 were the predicted cohort-specific gene
418  sets identified using dsMTL_iNMF (see Supplementary Figure 1). The proportion of genes harbored by
419  the shared signature was varied from 20% to 80% illustrating the impact of the heterogeneity severity.
420  The model was trained using rank=4 as model parameter. The results for a broader spectrum of rank
421 choices can be found in Supplementary Figure 2 illustrating that the superior performance of

422  dsMTL_iNMF was not due to the choice of ranks.
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