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Significance

Patient-derived PDAC organoids hold great promise as surrogate tumor models for
personalized oncology. By integrating highly granular molecular, drug sensitivity and clinical
data, we demonstrate that PDOs are valid models for molecular characterization and response
prediction that also enable identification of novel drug sensitivity biomarkers and resistance

mechanisms in PDAC.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is characterized by high drug resistance and poor
prognosis. Novel therapeutic and stratification strategies are urgently needed. Here, we present
an integration of in-depth genomic and transcriptomic characterization with drug screening and
clinical outcome based on a catalogue of 51 patient-derived tumor organoids (PDOs) from
resected PDAC. Known PDAC molecular subtypes and their prognostic value are conserved
in organoids. Integration of transcriptomic and drug response profiles suggest a metabolism-
mediated modulations of drug resistance. Copy number alterations on chromosome 13q and
wild-type status of 7P53 emerged as potential novel genomic biomarkers for sensitivity to 5-
FU and oxaliplatin treatment, respectively. Functional testing of targeted drugs in PDOs
revealed its additional value for genome-driven personalized oncology. Co-deletion of
TP53/POLR2A increased vulnerability to RNA polymerase II inhibition, pointing to a

promising target for personalized treatment in PDAC.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy expected to become
the second cause of cancer-related deaths by 2030 (1,2). Surgical resection followed by
adjuvant chemotherapy is the best therapeutic option for PDAC patients with resectable disease
(3). The current standard adjuvant chemotherapy regimens, gemcitabine plus capecitabine (4)
and modified FOLFIRINOX (folinic acid, 5-fluorouracil, irinotecan and oxaliplatin) (5),
significantly improve outcome compared to surgery alone. However, the 5-year survival rates
remain dismal at around 30% (4). Further evidence indicates that chemotherapy sensitivity
might be dependent on molecular subtypes of PDAC (6). Molecular classification strategies
for PDAC tumors (7-9) converged into two widely recognized transcriptional subtypes with
prognostic value, a classical/progenitor subtype and a basal-like/squamous subtype (10). The

basal-like subtype is associated with a more aggressive phenotype, worse response to
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chemotherapy and poorer clinical outcome (6). However, molecular characterization of PDAC
tumors based on tumor biopsy samples is hampered by low epithelial tumor cellularity and
high stroma content. In addition, neoadjuvant treatment before surgery further challenges the
use of resected samples for high throughput sequencing. This hinders the understanding of the
molecular landscape of this disease and limits therapy guidance based on molecular data.
Hence, representative models, improved stratification strategies and novel therapeutic targets

for resected PDAC patients are urgently needed.

Patient-derived organoids (PDOs) have emerged as a 3D in vitro culture system with the
potential to retain and reflect the genetic complexity of human cancers (11). The organoid
culture system allows for the enrichment and long-term expansion of epithelial tumor cells
directly from bulk tumor tissue biopsies, overcoming the limitations of low tumor cellularity,

and enables functional testing of drug sensitivities (12,13).

Previous reports characterizing PDAC-PDO libraries point to their value as tumor avatars for
identifying new molecular traits (14) and as predictive tools for personalized oncology (12,15).
However, data on the molecular representability of PDOs of the parental tumor and the
molecular stability of PDOs during culture are sparse. More importantly, a comprehensive
integration of PDO molecular data and drug response profiling as well as validation of their

clinical predictive value are lacking.

In the present work, we generated a catalogue of 51 PDAC-PDOs derived from resected tumors
of 44 patients and performed extensive molecular characterization by RNA and whole-genome
sequencing. We demonstrate that our PDAC organoids remain largely representative of the
original tumors at genomic and transcriptomic levels during culture. Additionally, based on
integration of genomic, transcriptomic and drug sensitivity data for 39 PDOs, we identified
candidate mechanisms of drug resistance and biomarkers of drug response. Furthermore, PDO
drug sensitivity data was correlated with clinical outcomes to interrogate the predictive

potential of organoid pharmacotyping.

Results

Patient-derived PDAC organoid catalogue and its mutational landscape

We successfully established 51 PDAC-PDO cultures from 44 resected patients (Fig. 1A) with
an efficiency of approximately 60%, using a modification of the protocol described by Boj et

al. (16). The clinicopathological characteristics of the PDAC organoid catalogue are described
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in Supplementary Table S1A. In the majority of cases, one organoid line was generated per
patient (n = 39). For patients 077 and 080, three and two organoid lines, respectively, were
established from adjacent tumor sites (e.g. aPO, bPO, cPO) while for patients 034, 083 and
093, organoid lines were derived from the primary tumor (PO) and synchronous metastases
(MO). A total of 11 organoid lines (21.6%) were derived from patients which had undergone
neoadjuvant treatment. The majority of the PDOs displayed a mono-luminal morphology while
a few lines formed predominantly multi-luminal and solid structures (Fig. 1B and C,
“Morphology PDO”). Strikingly, in 84% of the cases, the predominant morphology of the
epithelial architecture of the original tumor was closely recapitulated by the PDO (Fig. 1C,
“Morphology adjacent tumor” and “Morphology PDO”).

Whole-genome sequencing (WGS) and RNAseq were performed for all organoid lines. For
analysis of recurrent genomic aberrations in the cohort, one representative sample was
randomly selected for cases with multiple samples (Supplementary Table S1B). The cohort
containing one organoid sample per patient will be referred to as the “main organoid cohort”
throughout the text. Alterations in the four main PDAC driver genes (17), i.e., KRAS activating
mutations, CDKN2A inactivation, 7P53 mutations and SMAD4 inactivation, were observed
with frequencies of 98%, 86%, 84% and 51%, respectively, in the main organoid cohort
(Supplementary Fig. S1, Supplementary Table S1C), which is in line with previous reports
for PDAC tumors and organoids (10,12,14,18). KRAS mutations were observed in 50 out of 51
cases, exhibiting one single nucleotide variant (SNV) per organoid line (Supplementary Table
S1D). In all organoids deriving from the same patient, the same SNV was detected. Similarly,
for all cases in which the original tumors were analyzed, KRAS mutation was identical between
tumor and matched PDO. The only KRAS wild-type line, 107PO, carried an activating BRAF
mutation (p.V600_K601delinsE) as presumed driver mutation.

Investigating mutational signatures (19) as traces of mutational mechanisms active in tumors,
seven mutational signatures with variable relative contributions were identified in the PDO
cohort (Supplementary Fig. S2A). The age-related signatures AC1 and AC5 were the major
relative contributors in 66% (33/50) and 14% (7/50) of the samples, respectively. Signature
AC3, related to homologous recombination repair (HRR) deficiency, was the predominant
signature in 12% (6/50) of the samples. Organoid line 064PO showed predominantly signature
AC3 (HRR) due to a germline BRCA2 mutation (p.E1953X) and concomitant loss of the wild-

type allele, while 76PO exhibited mostly signature AC6, consistent with a microsatellite
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instability phenotype due to a germline frameshift deletion and loss of heterozygosity in the

mismatch-repair gene MSH2 (Lynch syndrome).

IntOGen mutation platform (20) was used to identify potential novel driver genes in the main
organoid cohort based on SNVs and small insertions and deletions (indels) (Supplementary
Table S1E). Beside the four well-known main drivers mentioned above, ARIDIA was
significantly affected by SNVs/indels at a frequency of 12%. Additionally, DOCKI (Dedicator
of cytokinesis 1; 17% alteration frequency), SIPA1L1 (Signal Induced Proliferation Associated
1 Like 1; 7% alteration frequency), ATP2A2 (ATPase Sarcoplasmic/Endoplasmic Reticulum
Ca2+ Transporting 2; 4.7% alteration frequency) and LRBA (LPS Responsive Beige-Like
Anchor Protein; 7% alteration frequency) were identified as potential drivers by Oncodrive-

FM (g-value < 0.1) based on analysis of functional impact bias (21).

The transcriptional PDAC subtypes are conserved in PDOs and have prognostic value

In order to assess whether our PDO catalogue was able to maintain and reflect the subtype
identity of the parental tumors, we performed transcriptional subtyping of organoids and a
subset of matching tumors. We focused on the classical and basal-like gene signatures
described by Moffitt et al. (8), which have been shown to be relatively independent of tumor
cellularity (10). Based on the notion that transcriptional subtypes may not be binary, but
represent a transcriptional continuum, with classical and basal-like programs co-existing as
different tumor subpopulations within the same tumor (22), non-negative matrix factorization
(NMF) was utilized to extract the exposures of each sample to both signatures, which were
then assigned as classical and basal-like scores (Fig. 1C, Supplementary Table S2A). Subtype
scores correlated well between 14 organoids-tumor pairs, although the organoid samples
generally displayed slightly higher classical and slightly lower basal-like scores than tumor
samples (Fig. 1D). Similarly, subtype scores at early- and late-passages (8-16 passages, i.e., 2-
6 months later) of organoid lines were highly consistent, however a slight tendency to higher
classical and lower basal-like scores could be observed at later passages (Fig. 1E). We
hypothesize that this tendency is probably due to the culture conditions, which might either
favor the growth of classical subtype tumor cells or push the expression profile to a more

epithelial progenitor phenotype.

A principal component analysis (PCA) of the 1000 most variable genes in PDOs shows that
the subtype scores correlated with the first principal component, corresponding to most of the

observed transcriptional variation (Supplementary Fig. S3A and B). We additionally
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performed an independent component analysis (ICA) to decompose PDO transcriptional
heterogeneity into 10 robust, reproducible, and biologically meaningful independent
components (Supplementary Table S2B). Independent component 9 (IC9) showed a strong
positive correlation with the classical score (two-sided Spearman correlation test, correlation
coefficient = 0.68, P = 2.9 x 107, power = 0.999). Likewise, gene set enrichment analysis
(GSEA) showed a significant enrichment of Moffitt’s classical signature genes among 1C9 top
genes (Supplementary Fig. S3C and D). This suggests that PDAC subtypes are associated
with a large-scale transcriptional program, supporting the indication by the PCA analysis of

PDO transcription.

For categorical analyses a score threshold (see Materials and Methods) was applied to classify
the PDOs into three subtypes: classical (63%), intermediate (21%) and basal-like (16%) (Fig.
1C, Supplementary Table S2A). Different organoid lines derived from the same patient in
general had consistent subtype scores and classification, even for cases with samples derived
from primary and metastatic sites (Fig. 1C). The only exception was found for case 077, for
which two organoid lines were identified as basal-like while one was assigned as intermediate.
Remarkably, despite the small sample size, this subtype classification of PDOs was prognostic
for primary presentation/chemo-naive cases: patients with basal-like organoids had
significantly shorter survival time than patients with classical organoids (Fig. 1F). This result
1s consistent with previous reports based on PDAC tumor tissues (6,8) and supports the validity
of both the PDO technology as representative model for human PDAC and the method used
for PDO subtyping.

Comparing RNA expression profiles between classical and basal-like organoids revealed 2175
differentially expressed genes (DEGs; adjusted P < 0.1), of which 1092 were upregulated and
1083 were downregulated in basal-like organoids (Supplementary Fig. S3E). Functional
enrichment analysis for ENCODE/ChEA consensus transcription factor targets and MSigDB
Hallmark collections revealed that genes with higher expression in classical organoids were
enriched in target genes associated to the endodermal transcription factor HNF4A while genes
overexpressed in basal-like PDOs were enriched in TP63 targets (Fig. 1G). HNF4A, a
proposed determinant of the classical subtype (23) and TP63, previously identified as the
master regulator of PDAC squamous subtype (24) were also differentially expressed between
the subtypes (Fig. 1H). TNFa signaling via NFxB, inflammatory response, KRAS signaling
and epithelial-to-mesenchymal transition (EMT) were among the top Hallmark gene sets

enriched in genes upregulated in basal-like organoids (Supplementary Fig. S3F).
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Taken together, these results indicate that subtype identity is highly preserved and remains
stable in organoid cultures and that the major transcriptional features previously described in
tumor tissues for classical and basal-like subtypes are recapitulated in the organoid in vitro

system.

Genomic representability and heterogeneity of PDAC-PDOs

We next investigated whether our PDAC-PDO biobank remains genomically representative of
primary tumors and their heterogeneity. For this, a subset of parental tumors with a tumor cell
content >20% was selected for WGS to perform comparative analyses, also including cases
with multiple samples, such as case 083 (Fig. 2A-F, Supplementary Data). Additionally, for
a subset of organoid lines, a second sample from a later time point in culture (8-16 passages,
1.e., 2-6 months later) was subjected to WGS (Supplementary Table S1B, Supplementary
Data).

Mutational signature exposures as well as total number of structural variants (SVs) were
consistent in organoid cultures compared with their parental tumor samples and remained
stable over time in most samples (Supplementary Fig. S2 and S4). Exceptions included case
077c, for which the mutational signature AC13 was particularly enriched in the organoid line
(Supplementary Fig. S2B), and case 003, for which the number of deletions detected in the
early-passage organoid line were notably higher than in the tumor tissue (Supplementary Fig.

S4B) but decreased again for the later passage sample (Supplementary Fig. S4C).

We next focused our comparative analysis on predicted allele counts for non-silent SNVs and
indels (Supplementary Data). A detailed representative example of the multiple sample case
083 with three organoid/tumor tissue pairs is shown is Fig. 2A-F. Comparison of the predicted
allele counts for all non-silent (Fig. 2C) or functional (Fig. 2F) SNVs between organoids and
their corresponding tumor tissues revealed that, while the overall genomic representation is
well preserved, differences in copy numbers for a fraction of SNVs hints to sub-clonal
expansion in organoid cultures. For 083, the observed heterogeneity between primary tumor
and metastases was higher than between the two metastases (Fig. 2D), which was also
recapitulated in the corresponding organoids (Fig. 2E). For all tumor-organoid pairs compared,
predicted allele counts for recurrently altered PDAC driver genes were usually consistent (Fig.
2G). Major discordances between tumors and matching organoids were found only for case
080. While the primary tumor biopsies (080aPT/080bPT) displayed heterogeneity for the driver
genes, the matched organoid lines (080aPO/080bPO) did not. Comparison of early and late
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PDO pairs (Fig. 2H) indicated that alterations in driver genes were indeed highly stable during

culture.

These results indicate, as may be expected, some variable degrees of sub-clonal expansion
during organoid establishment and culture. However, the main functional genomic features of
their parental tumors are recapitulated in the PDOs in our cohort and preserved during

cultivation.

Landscape of genomic copy number alterations in PDAC-PDOs

Although the understanding of PDAC genomic features has greatly improved over the past
years, a deeper characterization of the copy number landscape remains challenging, mainly due
to the reduced sensitivity in the detection of copy number alterations (CNA), in particular
deletions, caused by the predominant non-neoplastic components in bulk PDAC tumor tissues.
Given that organoid cultures are exclusively composed of epithelial cancer cells, they offer a
highly sensitive platform for the characterization of CNAs and for the identification of the

underlying drivers.

We investigated the CNA profile of the main organoid cohort, as well as the profile of classical
and basal-like organoids separately. Significant chromosomal arm-level aberrations included
amplification of 8q (50%) and deletion of 17p (80%), 18q (72%) and 9p (70%) (Fig. 3A,
Supplementary Table S3A). While these aberrations have been previously reported for PDAC
(9,10) our organoid cohort suggests higher frequencies of occurrence for these chromosome

arms.

In our main organoid cohort, 28 significant deletion and 14 significant gain peaks were
identified (Fig. 3A, Supplementary Table S3B and C). The most significantly amplified peak
mapped to the intergenic locus between MYC and PV'T1 on 8q24.21 with a frequency of 80%,
whereas the most significant deletion peaks were CDKN2A4 (9p21.3) and SMAD4 (18q21.2),
present in 98% and 95% of the samples, respectively. Several of the significant regions
contained well-known oncogenes (such as CCNDI and ETV4) or tumor suppressors (such as
CDKN2A4, SMAD4 and STK11), for which the expression levels correlated with CNA status
(Supplementary Fig. SS and S6).

To gain insight of potential genomic alterations contributing to transcriptional subtype
determination, we compared copy number patterns in classical and basal-like organoids (Fig.

3B) and sought out significant CNAs displaying differential frequencies between the subtypes.
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We found a significant exclusion of copy number gains for the amplification peak on 20q13.2
in basal-like organoids (Fisher’s exact test, P < 0.005) (Fig. 3C). Among the four genes located
in the amplification peak (NFATC2, ATP9A4, SALL4, MIR3194), the transcriptional factor and
epigenetic modulator NFATC2 was found to be differentially expressed between classical and
basal-like organoids (adjusted P < 0.05). Additionally, NFATC2 expression correlated
negatively with the basal-like subtype score (Fig. 3D). Although involvement in PDCA tumor
growth and progression has been previously shown for NFATC2 (25,26), a direct role of
NFATC?2 in subtype determination has not been reported yet. Nevertheless, another probable
driver candidate of the differential CNA in this region is the classical transcription factor
HNF44 (Fig. 1G-I), located 7 Mb away on 20q13.12, which also displayed exclusion of copy
number gains in basal-like organoids (Fig. 3E). Additionally, when analyzing only classical
PDOs (Supplementary Fig. S7, Supplementary Table S3D-F), we identified significantly
amplified regions in 6p22.3 (KIF'134), a region frequently gained in retinoblastoma (27), and
in 13q14.13 (FAMI194B), both of which have not been associated with PDAC yet. These
observations identify potential candidate genes underlying subtype identity according to the

Moftitt transcriptional subtypes.

As expected, we observed a high frequency of SMAD4 copy number losses in the main
organoid cohort. However, complete loss of SMAD4, due to homozygous deletions or
mutations combined with monoallelic losses, was significantly under-represented in classical
organoids (Fisher’s exact test, P <0.01) (Fig. 3F). This result contradicts a recent report linking
decreased frequency of intact SMAD4 to classical tumors (22). Our result is yet in line with a

higher SMAD4 expression observed in classical PDX tumors by Moffitt et al. (8).

In vitro chemosensitivity of PDAC-PDOs is associated with patient survival.

We used the DeathPro workflow (28), a confocal imaging-based viability assay that is able to
resolve drug-induced cell death and proliferation inhibition, to evaluate the sensitivity of 39
PDOs to the cytostatic and cytotoxic effects of six chemotherapeutic agents commonly used in
the treatment of PDAC patients (Fig. 4A and B, Supplementary Table S4A). Death and
proliferation inhibition induced by gemcitabine, 5-fluorouracil (5-FU), irinotecan, oxaliplatin,
paclitaxel and erlotinib were determined at two different timepoints: after 72h of drug treatment
and after another 72h of drug washout (144h). Area under the curve (AUC) values derived for
death (AUCd) and proliferation inhibition (AUCpi) were used to analyze response. Organoid

lines displaying AUC values below 0.2 were considered as non-responders.

10
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We observed a strong positive correlation between AUCd (Rp = 0.78) and AUCpi (Rp = 0.89)
values at these two different timepoints (Supplementary Fig. S8A and B). Given that
responses were more robust and had a wider dynamic range after the drug washout period, we
focused on the readouts 44h after treatment begin for further analyses. Results revealed that for
all six drugs cytostatic effects were preponderant over cytotoxic effects (Fig. 4C and D). LD50
values could consequently not be determined for a large proportion of the samples
(Supplementary Fig. S8C). Gemcitabine and 5-FU were under our screen settings the most
effective cytostatic and cytotoxic drugs for most of the PDOs, followed by paclitaxel (Fig. 4C
and D). Oxaliplatin and erlotinib were particularly inefficient in inducing cell death, therefore
only AUCpi values were included in further analyses for these two drugs. In general, we
observed correlation between responses of individual organoid lines to different drugs
(Supplementary Fig. S8D), suggestive of the presence of multidrug resistance mechanisms in
PDAC. In particular, strong correlations (Rs > 0.7) were found between 5-FU and paclitaxel

AUCPpii44n as well as between 5-FU and gemcitabine AUCd 44n.

To assess whether our PDAC-PDO drug screening platform had clinical predictive value, we
correlated the organoid drug sensitivity data with overall survival of the patients receiving the
corresponding adjuvant therapy. A total of 27 out of 35 patients in our cohort with relevant
follow-up information received adjuvant treatment, most commonly (78%) gemcitabine alone
or in combination with 5-FU (or its prodrug capecitabine) (Supplementary Table S4B). We
analyzed the correlation of organoid drug responses to gemcitabine and 5-FU with the overall
survival time of patients that received gemcitabine or 5-FU, respectively, as monotherapy or
combined adjuvant treatment after upfront resection. Interestingly, when stratified by PDO 5-
FU AUCd44n response, the median overall survival for patients with responsive organoids
(AUCd 440> 0.2) was significantly higher than for patients with non-responsive organoids (Fig.

4E).

The association of PDO sensitivity with clinical outcome was not solely determined by the
transcriptional subtypes. While we observed that basal-like organoids were non-responders to
the cytotoxic effects of 5-FU and were associated with shorter patient survival, the response of
classical organoids was heterogenous, as was the clinical outcome (Fig. 4F). Similarly, 5-FU
AUCd 441 did not correlate significantly with the subtype scores (Supplementary Fig. S9A),
although a moderate correlation (Rp > 0.5) was found between classical score and 5-FU

AUCpiis4n (Supplementary Fig. S9B).
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In contrast to 5-FU AUCd44n, PDO response to gemcitabine treatment did not correlate with
survival nor did 5-FU AUCpii44n (Supplementary Fig. S9C-E). Collectively, these results
suggest that organoid pharmacotyping offers an effective means to identify patients more likely

to benefit from 5-FU-based adjuvant treatment.

Global transcriptomics programs underpin drug responses in PDAC-PDOs

In order to relate drug response of PDAC-PDOs to transcriptomic features, we derived drug-
response-specific gene sets by identifying genes whose transcriptional levels correlated
positively or negatively with AUCdi44n or AUCpiiasn parameters using Spearman correlation
analysis (P < 0.01; Supplementary Table S5). As for patient survival analysis, we included
only organoids derived from chemo-naive patients in order to avoid confounders arising from
selection pressure by previous chemotherapy. For simplification, gene sets were stratified into
two groups based on the directionality of correlation, i.e., genes with lower expression in more
resistant organoids are referred to as “down-in-resistant”, while genes with higher expression

in more resistant organoids are referred to as “up-in-resistant”.

At the gene level, we observed varying but generally modest overlap among gene sets
(Supplementary Fig. S10A and B). Most of the overlaps occurs among gene sets derived from
the same parameter, i.e., either AUCdi44n or AUCpii44n, suggesting that different genes are
associated with cytotoxic and cytostatic responses. In the case of AUCdi44n, the largest gene
overlaps were observed between gemcitabine/irinotecan and gemcitabine/5-FU for both up-in-
resistant (Supplementary Fig. S10A) and down-in-resistant gene sets (Supplementary Fig.
S10B), which is intelligible since the mechanism of actions of these three drugs involve direct
interference of DNA synthesis. A small number of genes were shared by gene sets related to at
least 3 different drugs, which might therefore be implicated in multidrug resistance
mechanisms (Fig. SA). Among genes shared by up-in-resistant gene sets, we found genes
related to processes with potential therapeutic implications such as mitochondrial protein
homeostasis (29) (SPG7 Matrix AAA Peptidase Subunit, Paraplegin), sphingolipid
biosynthesis (30) (SP7SSA4, Serine Palmitoyltransferase Small Subunit A) and endoplasmic
reticulum homeostasis (31) (H6PD, Hexose-6-Phosphate Dehydrogenase/Glucose 1-
Dehydrogenase).

Surprisingly, functional enrichment analysis for Wikipathways and KEGG collections revealed
distinct significantly enriched pathways for each gene set, with almost no overlap (Fig. SB and

Supplementary Fig. S11) in spite of the moderate or strong correlations in the responses for
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some of the drugs (Supplementary Fig. S8D). Enriched pathways in drug response specific
gene sets included terms associated with oxidative phosphorylation, metabolic reprogramming,
one carbon metabolism and vitamin D metabolism, all of which have been postulated as

potential target for therapeutic approaches in cancer (32—-34).

In order to ascertain if any large-scale transcriptional program was associated with drug
response we investigated if the independent components obtained from ICA were enriched in
any of the gene sets. Interestingly, IC4 was strongly associated with irinotecan AUCd44n gene
sets. 1C4 was positively enriched for up-in-resistant irinotecan AUCdi44n genes while
negatively enriched for down-in-resistant irinotecan AUCd44n genes (Supplementary Fig.
S12A). While the top 100 genes contributing to IC4 were mainly enriched for ribosomal
proteins (Supplementary Fig. S12B), the bottom 100 genes in IC4 displayed enrichment for
metabolic reprograming pathways, comparable to the down-in-resistant gene set enrichment
analysis (Supplementary Fig. S12C). Remarkably, the top 2 genes of 1C4 were to the
Mitochondrially Encoded Cytochrome C Oxidase III (M7-CO3) and the Mitochondrially
Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 1 (M7-ND1) genes, both integral
components of the mitochondrial respiratory chain. These findings suggest the existence of an
oxidative phosphorylation-related transcriptional program playing a complex role in

chemoresistance, alongside other transcriptional programs.

For 5-FU AUCd144n, which showed relevance for prediction of clinical response in our cohort,
no pathways were found to be over-represented in the up-in-resistant gene set, which was the
smaller one with only 30 genes, while significantly enriched pathways in the down-in-resistant
gene set were limited to “Nuclear Receptors in Lipid Metabolism and Toxicity” and “Nuclear
Receptors” (Fig. 5B and Supplementary Fig. S11). Notably, in the down-in-resistant gene set
for 5-FU AUCdi44n we observed an enrichment of genes located in chromosome 13ql4
(adjusted P < 1 x 10”7) and 13q12 (adjusted P < 1 x 10%), among them the tumor suppressor
RB1 (Fig. 5C). In addition, an association at the genomic level was also observed for these
regions; monoallelic losses were more frequent in more resistant organoids, while gains were
more frequent in more sensitive organoids (Fig. SD, Supplementary Fig. S13). Moreover,
chr13q12/14 loss was associated with shorter overall survival for patients receiving adjuvant
therapy containing 5-FU (Fig. 5E). These results suggest that genes located in these

chromosome 13q regions may play a key role in chemoresistance, particularly to 5- FU.
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Wild-type TP53 status is associated with higher sensitivity to growth inhibition induced
by oxaliplatin

Altered TP53 has been linked to worse overall survival in PDAC (35), yet it is a potential
positive predictive factor for gemcitabine efficacy in the adjuvant setting (36). In our main
organoid cohort, 83% of the PDOs had mutated 7P53. Only seven organoid lines carried wild-
type TP53, five of which were included in the drug screen. Although we did not observe an
association with gemcitabine response, wild-type TP53 was associated with higher sensitivity
of PDOs to the cytostatic effect of oxaliplatin (top third, Fisher’s exact test, P < 0.005; Fig.
5F). Interestingly, these organoid lines also showed low sensitivity to the cytotoxic effects of
irinotecan (Fig. SF). Only one wild-type 7P53 organoid line, 067PO, was a non-responder to
oxaliplatin treatment but responded to irinotecan (Fig. 5G). This PDO derived from a patient
who received the oxaliplatin- and irinotecan-containing FOLFIRINOX regime in a
neoadjuvant setting, hinting to selection or development of resistance against oxaliplatin in pre-
treated tumors. Unfortunately, none of the patients with wild-type TP53 organoids received
oxaliplatin-containing adjuvant therapy and therefore we were not able to clinically evaluate
this finding. Nevertheless, our results suggest that wild-type status of 7P53 is a potential
positive predictive factor for oxaliplatin-based chemotherapy efficacy although this
observation needs clinical validation. This might have important translational implication since
modified FOLFIRINOX has become one of the standard-of-care regimens for palliative,
neoadjuvant and adjuvant therapy in pancreatic cancer (37) but up to date, no predictive

biomarkers of response have been identified.

Added value of functional in vitro drug sensitivity testing in PDOs for personalized

oncology and target validation.

One of the most promising applications of PDOs is their exploitation as personalized oncology
tools to identify therapeutic vulnerabilities and functionally test targeted therapies. Within this
context, in addition to the sensitivity screen for chemotherapeutics in standard clinical use, we
tested whether homologous recombination deficiency (HRD) score, CDKN2A/B alteration
status and 7P53 loss of individual organoid lines were able to predict response to the PARP
inhibitor olaparib, to the CDK4/6 inhibitor palbociclib and to the RNA polymerase II inhibitor
a-amanitin, respectively. For this, as a proof of concept, eight PDAC-PDOs were selected
based on these genomic features and were stratified accordingly into control or target groups

(Fig. 6A and B).
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Two lines with a HRD score above 37.8, corresponding to the upper quartile of the main
organoid cohort, were stratified as potential responders (target group) to olaparib treatment
(Fig. 6C, Supplementary Fig. S14A). Notably, only one of the target lines showed high
sensitivity to olaparib-induced growth inhibition, while the organoid line with the germline
BRCA2 mutation (064PO) was not responsive. Of note, 064PO was derived from a patient who
received FOLFIRINOX in a neoadjuvant setting and therefore, the lack of response to olaparib
might be explained by development of resistance mechanisms during therapy with oxaliplatin.
Olaparib did not induce cytotoxicity in the target lines, although one of the lines in the control
group evidenced cell death response. This result suggests that genetic aberrations in
fundamental HRD genes might not be sufficient evidence to inform PARP inhibition treatment
and that addition of organoid-based functional testing could provide relevant information for

therapeutic decisions.

All the tested organoid lines with defective CDKN2A were responders to growth inhibition
induced by the CDK4/6 inhibitor palbociclib, although cell death response was scarce in both
groups (Fig. 6D, Supplementary Fig. S14B). Although the difference in cytostatic response
between the target and control groups did not reach statistical significance, these results suggest

that CDKN2A/B status should be further evaluated in context of palbociclib treatment in PDAC.

Co-deletion of POLR2A together with 7P53 has been previously described as a potential
therapeutic vulnerability in cancer (38). Colon, prostate and breast tumor cells with
TP53/POLR2A loss are more vulnerable to RNA polymerase II inhibition by the fungal toxin
a-amanitin than tumor cells with neutral copy number (38—40). In our main organoid cohort,
79% (34 out of 43) presented heterozygous 7P53 loss. In all of the cases we observed the
concomitant deletion of POLR2A. Therefore, we evaluated if 7P53 loss was also associated
with increased sensitivity to RNA polymerase Il inhibition by a-amanitin in PDAC-PDOs.
Organoids from the target group (7P53/POLR2A loss) showed significantly higher sensitivity
to a-amanitin growth inhibition and death induction, with a median LD50 for the target group
1.7-fold lower than for the control group (Fig. 6E, Supplementary Fig. S14C). These results
indicate that heterozygous deletion of 7P53 renders tumor organoids more susceptible to RNA

polymerase II inhibition, which could be exploited as a potential therapeutic target for PDAC.

Taken together, the results of the targeted drug screen suggest an additional value of functional
in vitro drug sensitivity testing in PDAC-PDOs over conventional genome-driven personalized
oncology and demonstrate the potential of organoids as a platform to functionally validate

novel targeted therapy approaches to PDAC.
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Discussion

In this work, we presented a catalogue of 51 PDAC-PDOs generated from resected tumors with
an in-depth molecular characterization based on RNAseq and WGS data. For a subset of 39
PDOs, molecular data was complemented with drug response profiling for standard-of-care
chemotherapeutics. A major particularity of our cohort, in comparison to previous studies on
PDAC organoid pharmacotyping (12,15,41), is the detailed clinical follow-up information that

allowed us to directly relate PDO molecular features and drug response to clinical outcomes.

We employed a customized reduced medium composition in order to maintain serum-free
conditions as well as to confine the growth to tumor cells. Failure in PDO establishment due to
normal ductal cell overgrow is recognized as a major challenge particularly for PDAC tumors.
PDAC tumor organoids show independence to some of the niche factors needed by their normal
counterpart (16) as well as heterogeneity in their requirements for successful establishment
(14,15). Nevertheless, we reached an establishment efficiency rate within the previously
reported range, despite including patients that received neoadjuvant therapy, which indicates
that our culture conditions are not exceedingly selective for a subset of tumors. Importantly,
we also showed that our organoid cultures remain molecularly representative of the original

tumors.

Another point showcasing the representability of our PDOs is the recognition of the subtype
spectrum from classical to basal-like phenotypes. Transcriptional profiles expressed as subtype
scores were highly concordant between organoids and original tumors. This indicates that
subtype heterogeneity is retained in organoid cultures, as we and others have shown also at the
single cell level (42,43). Strikingly, we were able to observe in our rather small cohort the
prognostic potential of tumor subtyping based on organoid transcriptomic data. To the best of
our knowledge, this is the first study reporting the association of organoid-based subtyping
with patient outcome. These results from PDOs as a pure tumor cell culture also validate the

signatures suggested by Moffitt et al. (8) as a feature of the tumor epithelium.

Given promising therapeutic implications (23,44), it has become increasingly relevant to
understand molecular players underlying the classical and basal-like phenotypes. Few copy
number alterations have been associated with classical or basal-like tumors, such as GATA6
(10) or MYC amplifications (45), respectively. Our CNA profiling of PDOs revealed exclusion
of chromosome 20q13.2 gains in basal-like organoids while their frequency in classical

organoids was around 60%. The high tumor purity of organoid cultures also allows to identify
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concordances between CNAs and mRNA levels, which may point out to oncogenic drivers. In
particular, NFATC2, a known cancer driver located on the chromosome 20q13.2 amplification
peak, was upregulated in classical organoids. We were also able to link frequent gains of the
classical transcription factor HNF4A (23), located on chromosome 20ql3.12, to its
upregulation in classical organoids. Additionally, our data suggests an association between
gains in chromosomes 6p22.3 and 13q14.13 with the classical subtype, which can be further

explored.

Organoid drug screening has gained substantial popularity over recent years with the promise
of becoming a clinically relevant tool for personalized oncology (46). Seppéléd et al. have
recently shown that establishment and pharmacotyping of PDAC-PDOs can be completed
within a timeframe that would allow to inform adjuvant treatment (41). Previous reports
assessing the predictive value of PDAC-PDO pharmacotyping only included a small number
of patients with clinical data and focused mainly on advanced disease (12,15). Given the
practical impossibility of directly assessing response to therapy in a post-resection adjuvant
setting, we used overall survival as an indicator of clinical response to the adjuvant treatment.
Even though all patients receiving adjuvant 5-FU in our cohort were treated with combination
regimens for adjuvant chemotherapy, patients with organoids classified as 5-FU-responders
had a better outcome than patients with non-responding organoids. Given that the two current
standard-of-care regimes in the adjuvant setting contain 5-FU, namely gemcitabine plus
capecitabine (5-FU pro-drug) and the modified FOLFIRINOX regime (37), our results are of
high clinical relevance and suggest that organoid screening could be used to identify patients
for which 5-FU-based adjuvant treatment could be beneficial and patients for which alternative
chemotherapy regimens, such as gemcitabine plus nab-paclitaxel (nanoparticle albumin bound
paclitaxel), should be pursued. Therefore, prospective validation of PDO pharmacotyping as

therapy stratification tool is urgently needed.

Despite an overall correlation in drug responses, integration of drug sensitivity data with
transcriptomic profiles recognized distinct pathways associated with the response to the
different drugs. Several of these pathways relate to metabolic functional modules including
OXPHOS, metabolic reprogramming and one carbon metabolism, suggesting that metabolic
plasticity might play a crucial role in PDAC drug resistance. Our drug screen also identified
copy number alterations in chromosome 13q as a potential predictive marker of response to 5-
FU as well as wild-type 7P53 as a potential predictive marker of sensitivity to oxaliplatin.

Mutated TP53 has been previously reported to predict gemcitabine efficacy in PDAC patients
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(36). Together with our results, this suggests that patients with wild-type 7P53 could therefore
benefit from oxaliplatin-based adjuvant therapy, such as the FOLFIRINOX regime, instead of

a gemcitabine-based treatment.

Despite great efforts made in individual genomic profiling for developing targeted therapies
for solid tumors including PDAC (47,48), still only a small number of patients benefit from
such approaches (49). Reasons include lack of predictive biomarkers and limited predictivity
of single genomic features to complex response to targeted therapeutics. Hence,
complementation of genomic information with functional testing using PDOs might improve
response prediction and biomarker identification (50). HRD is associated with a better
prognosis in PDAC (35) and patients with BRCA1/2 alterations have been shown to benefit
from PARP inhibition with olaparib, although not all of these patients respond to treatment
(51,52). Our proof-of-concept stratification strategy based on genomic features of eight PDOs
evidenced, however, that a deleterious BRCA2 alteration and concomitant HRD was not
predictive of olaparib sensitivity in an organoid line derived from a FOLFIRINOX pre-treated
tumor. Using the same approach, our results suggest that CDKN2A/B status could be a potential
predictor of sensitivity to the CDK4/6 inhibitor palbociclib, although a previous report using
patient-derived cell lines and xenografts did not find an association of response to palbociclib

with genetic alterations (53).

Finally, we could show that PDAC-PDOs with TP53/POLR2A co-deletions displayed
increased sensitivity to RNA polymerase II inhibition by the fungal toxin a-amanitin, a
vulnerability initially described for colorectal cancer (38). Due to the high liver toxicity of
systemic administration of o-amanitin, clinical use has not been possible yet, however,
approaches utilizing antibody-drug conjugates for tumor targeting are being tested in order to
overcome toxicity and potentially allow its clinical use (54). Alternatively, targeting other
components of the RNA polymerase II transcription machinery might represent a promising

therapeutic option for TP53/POLR2A hemizygous tumors (55).

In conclusion, our work demonstrates that PDAC-PDOs are valid surrogate tumor models that
not only support molecular characterization of PDAC and investigation of drug resistance

mechanisms but also hold potential clinical value as stratification tool for PDAC patients.
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Methods
PDAC patient cohort

PDAC patients were recruited from the Department of General, Visceral and Transplantation
Surgery, Heidelberg University Hospital. The study was approved by the ethical committee of
University of Heidelberg (ethic votes 301/2001, 159/2002, S-206/2011, S-708/2019) and was
conducted in accordance with the Helsinki Declaration. All patients provided written informed
consent prior to acquisition of tissue. Histological confirmation of the tumor entity and grading

was performed by an experienced pathologist.

Establishment and culture of pancreatic tumor organoids

Pancreatic tumor organoid cultures were established using a modified version of the protocol
described by Boj et al. (16), with culture conditions adapted to restrict the growth of normal
ductal cells. Resected pancreatic tumor specimens were collected in ice-cold basal organoid
medium consisting of AAMEM/F12 (Gibco), 2 mM GlutaMAX (Gibco), 10 mM HEPES
(Gibco), 1x Primocin (InvivoGen) and processed immediately. Collected tumor tissues were
cut in smaller pieces, a portion was snap-frozen and stored at -80°C for DNA and RNA
isolation, another portion was fixed in 5% neutral buffered formalin for histological processing
and the remaining pieces were used for establishing the organoid culture. For this, the tumor
pieces were minced and digested in basal organoid medium containing 1 mg/ml collagenase
type IV (Sigma-Aldrich), 100 pg/ml DNase I (AppliChem), 1x B27 (Gibco), 1 mM N-
acetylcysteine (Sigma-Aldrich) and 10 uM Y-27632 (Selleckchem) for up to 4 h at 37°C with
gentle agitation. The resulting cell suspensions were seeded in growth factor reduced, phenol
red-free Matrigel (Corning) and were cultured in organoid growing medium consisting of basal
organoid medium supplemented with 1x B27, 1 mM N-acetylcysteine, 10% RSPOI-
conditioned medium, 100 ng/ml FGF10 (PeproTech), 100 ng/ml Noggin (PeproTech), 500 nM
A83-01 (Tocris) and 10 puM Y-27632. Medium was refreshed every 3-4 days omitting Y-
27632. Organoids were routinely passaged by dissociation with TrypLE (Gibco) for 10 min at
37°C. Medium was further supplemented with 50 ng/ml EGF (PeproTech) and, if required,
with 50% Wnt3A-conditioned medium only after tumor cell enrichment to avoid overgrowth
of normal ductal cells during the initial passages. While Wnt-dependency has been previously
reported for a subset of PDAC tumor organoids (14), all our organoid lines were able to grow
for at least five passages without the addition of exogenous Wnt ligand, relying only on Wnt

signaling activation by R-spondin. For one organoid line (065PO), however, strict Wnt-
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dependency was evident thereafter. Organoid lines were routinely tested for Mycoplasma

contamination using Venor GeM Classic (Minerva Biolabs).

Histopathological and morphological analysis

Tumor tissue pieces were fixed overnight in 5% neutral buffered formalin and embedded in
paraffin. Organoid samples were embedded in low-melting point agarose or HistoGel (Thermo
Fisher Scientific) before overnight fixation in 5% neutral buffered formalin followed by
paraffin embedding. Routine hematoxylin and eosin staining was performed for 4 um sections
for both organoid and tumor samples. Pathological grading of the tumor tissue adjacent to the
source for organoid culture was performed by a pathologist, according to the WHO
classification system, 5th edition. Additionally, an analogue organoid grading strategy was
applied based exclusively on the amount of gland formation and nuclear features, since none

of the organoids showed a significant amount of mucin production via light microscopy.

Tumors were classified according to their predominant growth pattern as glandular, cribriform,
micropapillary or solid. Organoid lines were classified according to their lumen structure as
monolumen, multilumen or no-lumen organoids. For each line, the frequency of these
morphological categories was determined from H&E-staining images, by counting organoids
with at least 80 um diameter. A particular morphology was considered predominant when the
difference in frequency was higher than 20%, compared with the second most frequent
morphology, otherwise a tie was applied. Predominant morphology of tumor-organoid pairs
was considered concordant for the following combinations: glandular-monolumen, cribriform-

multilumen and micropapillary/solid-no-lumen.

Whole-genome sequencing

Prior DNA isolation, organoids were released from Matrigel using Cell Recovery Solution
(Corning). Frozen sections of matched tumor tissues were stained with H&E and tumor cell
content was evaluated. Only tissue samples with > 20% tumor cell content were selected for
whole-genome sequencing (WGS). DNA from organoids and frozen tumor tissues was isolated
using the QIAamp DNA Mini Kit (Qiagen) according to the manufacturer’s instructions. DNA
from matched blood samples was isolated using the QIAamp DNA Blood Mini Kit or the
QIAsymphony DSP DNA Mini Kit (Qiagen). Quality control was performed at the DKFZ-
HIPO Sample Processing Laboratory using Quant-iT dsDNA Kit, broad range (Thermo Fisher
Scientific) and Genomic DNA ScreenTape on the TapeStation System (Agilent). Library
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preparation and WGS sequencing was performed at the DKFZ Genomics and Proteomics Core
Facility. WGS libraries were prepared using the TruSeq Nano DNA Library Prep Kit (Illumina)
and paired-end sequencing (2x150 bp) was performed using the Illumina HiSeq X platform.
Tumor tissue, organoid and germline samples were sequenced in four, two and one lanes,

respectively.

WGS data from line 028PO was excluded from the analyses because it failed coverage

uniformity quality control.

Whole-genome sequencing analysis

Illumina short read alignment

[llumina short reads were aligned using the DKFZ alignment workflow, as used in the ICGC
Pan-Cancer Analysis of Whole Genome (PCAWG) projects (56). The workflow is available
for download as a Docker container:
https://dockstore.org/containers/quay.io/pancancer/pcawg-bwa-mem-workflow. Briefly, bwa
mem v(.7.8 was used to align paired reads to the reference human genome sequence (build 37,
version hs37d5 with PhiX) with minimum base quality threshold of zero [-T 0] and remaining
settings left at default values (57). The alignments were sorted by coordinates using
biobambam bamsort (version 0.0.148) with compression option set to fast (1), which was
streamed into duplicate read pairs marking using biobambam bammarkduplicates with

compression option set to best (9) (58).

Somatic small nucleotide variant calling

Somatic single nucleotide variants (SNVs) in matched organoid/tumor-normal pairs were
called using the DKFZ SNV calling workflow, as used in the ICGC PCAWG projects. The
workflow is available for download as a Docker container:
https://dockstore.org/containers/quay.io/pancancer/pcawg-dkfz-workflow:2.2.0. Briefly, the
SNVs were identified using samtools and beftools version 0.1.1957 (59) and then classified as
somatic or germline by comparing the tumor sample to the control, and later assigned a
confidence which is initially set to 10, and subsequently reduced based on overlaps with
repeats, DAC blacklisted regions, DUKE excluded regions, self-chain regions, segmental
duplication records as introduced by the ENCODE project (60) and additionally if the SNV
exhibited PCR or sequencing strand bias. Only SNVs with confidence 8 or above were

considered for further analysis.

Somatic small insertion and deletion calling
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Somatic small insertions and deletions (indels) in matched organoid/tumor-normal pairs were
called using the DKFZ indel calling workflow, as used in the ICGC PCAWG projects. The
workflow is available for download as a Docker container:
https://dockstore.org/containers/quay.io/pancancer/pcawg-dkfz-workflow:2.2.0. Somatic
indels were identified using Platypus (61). Indel calls were filtered based on Platypus internal
confidence calls, and only indels with confidence 8 or greater were used for subsequent

analysis.

Somatic small mutation annotation

The protein coding effect of somatic SNVs and indels from all samples were annotated using
ANNOVAR (62) according to Gencode v19 gene annotation and overlapped with variants from
dbSNP (build 141) and the 1000 Genomes Project phase 3 database (63,64).

Calculation of allele counts

In order to compare the SSMs between organoids and primary tumor we calculated the allele
counts for each variant. The allele count can be interpreted as the number of alleles in the tumor
predicted to harbor the variant, modelling the contribution of tumor and diploid normal towards
the variant allele fraction (VAF) observed for any given variant. Predicted allele counts were

annotated to each variant based on the following formula:

readsair TCNseg*tcCrum

allele_count,grignt = TCNseq * where,

readsiotal  (TCNseg*tcCrym)+(2*(1—tcceym))

TCN;eq4 = total copy number of the segment on which the variant lies (as calculated by

ACEseq)
reads,;; = the number of reads supporting the variant allele
reads;,tq; = the total number of reads over the position where the variant was called

tccrym = tumor cell content (as calculated by ACEseq)

Structural variations detection and annotation

Somatic structural rearrangements (SVs) were detected using SOPHIA v.34.0
[https://bitbucket.org/utoprak/sophia/]. Briefly, SOPHIA uses supplementary alignments to
identify SV candidates, which are then filtered by comparing them to a background control set.

The background control set consists of 3261 normal blood samples from published TCGA and
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ICGC studies and published and unpublished DKFZ studies, sequenced using [llumina HiSeq
2000, 2500 and HiSeq X platforms and aligned using the same workflow as in this study.
Gencode v19 gene annotations were used to annotate the SV breakpoints and the closest gene
up and downstream of the breakpoints. The COSMIC cancer census gene list was used to

annotate the overlapping and closest cancer genes to each break point.

Copy number alterations

Allele-specific copy number alterations (CNAs) were detected using ACEseq v1.2.8-3 (65).
ACEseq determines absolute allele-specific copy numbers as well as tumor ploidy and tumor
cell content based on coverage ratios of organoid/tumor to its matched control, and the B-allele
frequency (BAF) of heterozygous germline SNPs. SV calls were used to improve genome
segmentation. When the control coverage was of insufficient quality due to lack of uniformity,
another control sample with matching GC bias and gender was used. ACEseq also reported the

genome chromosome instability scores for HRD, LST and TAIL

Mutational signatures

Mutational signature exposures were calculated using YAPSA development version 3.13 (66)
using R 4.0.0. Briefly, the linear combination decomposition (LCD) of the mutational catalog
with known and predefined COSMIC mutational signatures v2 (19) was computed by non-
negative least squares (NNLS). The mutational signature analysis was applied to the mutational
catalogs for SNVs for all tumor and organoid samples. Signature-specific cutoffs were applied
and cohort level analysis was used for detecting signatures as recommended by Huebschmann

et al. (66). The cutoff used correspond to “cost factors” of 6 for SNVs.

Integrative oncoprint and mutational recurrence analysis

SNVs, indels, SVs and CNAs were integrated into an oncoprint in order to account for all
variant types in the recurrence analysis of the main organoid cohort. All genes with somatic
SNVs or indels in coding regions (nonsynonymous, stop gain, stop loss, splicing, frameshift
and non-frameshift events) and ncRNA (exonic) were included. Any SV directly lying on a
gene (SV direct) were considered for oncoprints. SVs were also annotated to a gene when they
were either within 100kb of a gene (SV near), or the gene was the closest gene (SV close) for
SV recurrence analysis to account for regulatory mutations such as enhancer hijacking events.
Any genes between the breakpoints of focal SVs (< 1 Mbp) were considered affected. To
capture the precise target of focal CNAs we employed results from GISTIC2 (67).

Mutational significance analysis
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The IntOGen pipeline (20) was used to identify significant cancer drivers in the main organoid
cohort. IntOGen v 3.0.4 was installed via conda from the bbglab anaconda channel. The
relevant conda environment setup included explicit definitions of python v3.5.5 (with libraries
pandas v0.17). In addition, a local installation of perl v5.16.3 was used, with installation of perl
libraries Digest-MDS5 v2.58 via cpan and perl-DBI v1.627-4.e17.x86 64 via yum package
managers. The background intogen database (bgdata) was automatically downloaded using the
command ‘intogen --setup’ which downloaded the 20150729 background databases. The
IntOGen run specific parameters included running on 4 cores, Matlab Compiler Runtime v8.1
(2013a) and MutSigCV v1.4. Significance thresholds of 10% FDR were used for oncodrivefm,
oncodriveclust and mutsig. Sample thresholds of 2 and 5 were used for oncodrivefm and
oncodriveclust respectively. X11 forwarding had to be enabled otherwise MutSigCV would

throw and error.

RNA sequencing

Total RNA was isolated directly from Matrigel-embedded organoids using the RNeasy Plus
Mini Kit (Qiagen) using the modification of the standard protocol that allows the purification
of total RNA containing small RNAs. Total RNA from snap-frozen tumor tissues was isolated
using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen). Quality control was performed
using Quant-1T RNA Kit, broad range (Thermo Fisher Scientific) and RNA ScreenTape on the
TapeStation System (Agilent). RNA isolation and quality control was performed at the DKFZ-
HIPO Sample Processing Laboratory. Library preparation and RNA sequencing (RNAseq) was
performed at the DKFZ Genomics and Proteomics Core Facility. RNAseq libraries were
prepared using the TruSeq Stranded mRNA Library Prep Kit (Illumina) and paired-end
sequencing was performed using the Illumina HiSeq 4000 (2x100bp) or HiSeq X (2x150bp)

platforms.

RNA sequencing analysis

RNAseq reads were aligned and gene expression quantified as previously described (68).
Briefly the RNAseq reads pairs were aligned to the STAR index generated reference genome
(build 37, version hs37d5) using STAR v2.5.2b in 2 pass mode (69). Duplicate reads were
marked using sambamba v0.4.6 and BAM files were coordinate sorted using SAMtools v1.19.
featureCounts v1.5.1 (70) was used to perform reverse strand specific read counting for genes

over exon features based on the Gencode v19 gene model. Read duplicates were not excluded.
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When both read pairs had an alignment quality score of 255 (indicating a unique alignment)
they were used towards gene reads counts. For total library abundance calculations, during
TPM expression values estimation, genes on chromosomes X, Y, MT and rRNA and tRNA

were omitted as they can introduce library size estimation biases.

Transcriptional subtyping

RNAseq counts normalization and analysis were performed using DESeq?2 (71) with “sample
source” (organoid or tumor tissue) as the design after removing all genes with zero counts.
Non-negative matrix factorization (NMF) analysis was performed using the NNLM library in
R to decompose the variance-stabilizing transformed counts of the 50 Moffitt genes (8). The
resulting signature matrix W corresponds to the “classical-like” and “basal-like” subtypes,
while the H matrix determines the coefficients or weights of the signatures for each sample,
which we defined as classical and basal-like scores. Convergence check of the NMF signatures
was performed by running the NMF five times independently with different seeds. For
categorical sample classification, a score threshold of 0.005 was applied; in cases where only
one of the scores was higher than the threshold, this defined the sample subtype, while in cases
where both classical and basal-like scores were higher than the threshold, the subtype was

defined as “intermediate”.

The PCA plot was generated based on the top 1000 most variable genes. Heatmap plots were
generated using the R package ComplexHeatmap (72).

Independent component analysis

Independent component analysis (ICA) was performed on the normalized RNAseq count
matrix of PDO samples to deconvolute the organoid transcriptome into 10 reproducible, robust,
and biologically relevant components using the fastiCA v1.2 implemented in Bioconductor-
minelCA v1.26.0 (73). Particularly, clusterFastiICARuns() was used setting the number of
iterations (nblt) as 500 and alg.type= “parallel”, i.e., the independent components (IC) were
extracted simultaneously. The ICA decomposition of the expression matrix X = AS yielded A,
the mixing matrix (consisted of the activity of the ICs on the PDO samples) and S, the source
matrix (provided the contribution of each gene to the ICs). Hence, the source matrix (S) was
used in the biological interpretation of the IC(s) by ranking the genes in descending order of

their contributing value. Spearman correlation coefficient test was performed to check the IC
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correlations to the Moffitt basal-like/classical scores as well as the drug response

AUCd/AUCpi parameters using Pingouin-python package.

Gene set enrichment analysis of independent components

Gene set enrichment analysis (GSEA) was performed using the R package clusterProfiler (74).
For each IC, genes were ranked according to their contribution and tested for enrichment in
custom gene sets. P values were adjusted using the fdr method. The threshold for significant

over-representation was set at an adjusted P < 0.05.

Differential expression and enrichment analyses of PDO subtypes

Differential expression testing was performed using the R/Bioconductor package DESeq2 (71).
Genes without at least one count in three organoid samples were filtered out before differential
expression analysis. An adjusted P < 0.1 was considered significant. Functional enrichment
analysis for ENCODE and ChEA Consensus TFs from ChIP-X and MSigDB v7.2 Hallmark
collections was applied to the significant differentially expressed genes using EnrichR (75).
The threshold for significant enrichment was set at an adjusted P < 0.01 and significant gene

sets were sorted by EnrichR “Combined Score”.

Survival analysis

Patients with recurrent disease or that received neoadjuvant therapy were excluded from
survival analyses. Death occurring within 90 days after surgery was considered peri-operative
and therefore also excluded from survival analyses. Overall survival (OS) was defined as the
time from surgery to death or last follow-up. Median survival was estimated using the Kaplan—
Meier method, patients still alive at the last follow-up were censored. The log-rank test was
used to compared survival curves between groups. Differences were considered statistically
significant if P < 0.05. Survival analysis and plots were performed using the R packages

survival and survminer.

Drug screening and drug response analysis

Drug screen was performed using the DeathPro workflow (28) on a subset of 39 PDAC-PDOs
to assess the response to the chemotherapeutic drugs gemcitabine, S-fluorouracil (5-FU),
irinotecan, oxaliplatin, paclitaxel and erlotinib. Drug concentrations, treatment intervals and

endpoints were chosen according to published studies or determined in pilot experiments
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(Supplementary Table S4A). All image data was used and analyzed. To assess
reproducibility, some drug tests were performed in two independent biological replicates.
Organoids were seeded at different time points and treated with drugs using different plate
layouts. Biological variability in all tested conditions was assessed by imaging two positions
per well and no other technical replicates were included. For drug testing 1000-2500 organoid
forming units were mixed with 10 pl growth-factor reduced, phenol red-free Matrigel (Corning,
>9 mg/ml protein) per well and seeded in 96-well Angiogenesis p-Plates (ibidi). Organoids
were grown for three days in growth medium, then stained with 1 pg/ml Hoechst (Invitrogen)
and 1 pg/ml propidium iodide (Sigma), incubated for 6 h and imaged (0 h timepoint). After
imaging, the dye-containing medium was substituted with drug-containing medium. After 72
h of drug treatment, organoids were stained with Hoechst and propidium iodide, incubated for
6 h and imaged again (72 h timepoint). After imaging, the dye-containing medium was
substituted with growth medium. Organoids were grown for additional 72 h and then stained
with Hoechst, propidium iodide and 500 nM SiR-Actin (Cytoskeleton, Inc) for 6 h and imaged
again (144 h timepoint). Cells were exposed maximally to 1% DMSO in the highest drug
concentrations and corresponding controls were included in the assay. Organoids were imaged
at similar positions at 0 h, 72 h and 144 h after start of drug treatment using a Zeiss LSM780
confocal microscope, 10x objective (EC Plan-Neofluar 10x/0.30 M27) and 405 nm, 561 nm
and 633 nm diode lasers in simultaneous mode. Imaging was performed in an incubation
chamber at 37 °C, 5% CO2 and 50-60% humidity using the Visual Basic for Applications
macro 'AutofocusScreen' (76). Image processing and drug response analysis was performed
with DeathPro workflow as described and published in Jabs et al., 2017 (28). For segmentation,
local threshold parameters were adjusted (Hoechst: rad=5, c=-5; PI: rad=100, ¢=-20) and
objects were filtered according to size (7 pixel < object < 40,000 pixel). LD50 (median lethal
dose) values were filtered to retain only robust fits: LD50 values smaller or larger than the
minimum or maximum drug concentration, respectively, and LD50 values with confidence

intervals larger than a factor of 1000 were removed.

Correlation analysis of drug response with gene expression

Normalized RNAseq counts from 44 PDTOs were filtered for protein-coding genes. After
inspecting the distribution of counts and not available values, further filtering was performed
for the correlation analysis: only genes that were detected in at least 41 of 44 organoid samples

were included, to avoid comparing correlations stemming from different sample sizes. In
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addition, a bimodal distribution of RNAseq counts was observed and the analysis was focused
to medium to highly expressed genes (logacounts > 7) to ease potential follow-up analyses. No
further filtering was performed and genes expressed with high and low variation across
organoids were included. In total, 12,236 genes were used for calculating spearman correlation
estimates and P values at a confidence level of 0.95 in a two-tailed test. P value distributions
were checked for unexpected behavior and to compare association of response and gene
expression between drugs. Genes sets containing genes correlating positively or negatively (P
< 0.01) with each response parameter (AUCd144n or AUCpii44n) were generated for each drug.
For downstream analyses, gene sets derived for PDOs from chemo-naive patients were

included.

Gene overlaps for the different gene sets were depicted using the UpSet plot implementation

within the Complexheatmap package (72), setting the mode to intersection.

Over-representation analysis

Over-representation analysis for Wikipathways and KEGG pathways was conducted for drug
response genes sets using the clusterProfiler package (74). P values were adjusted using the fdr

method. The threshold for significant over-representation was set at an adjusted P < 0.05.

For over-representation analysis of IC genes was conducted for the top 100 or bottom 100

genes according to their loading values using the same parameters described above.

Targeted drug testing

For testing of targeted agents, eight organoid lines were selected based on their molecular
status. The drug tested included palbociclib (Selleckchem), olaparib (Selleckchem), and the
fungal toxin a-amanitin (Sigma-Aldrich). Organoids were dissociated into single cells and
small aggregates by enzymatic dissociation with TrypLE. Cells were resuspended in Matrigel
at a density of 2000 cells/10 pL, seeded into the inner chamber of p-Chamber Angiogenesis
96-well-plates (ibidi) and cultured with 70 pl organoid medium. The drug or vehicle treatment
was applied three days after seeding. Dilution rows of the drugs (1:3, a-amanitin 1:2) were
freshly prepared before application from frozen stocks. After 72 hours of treatment, half of the
medium was replaced by fresh medium. Drug-induced cell death and proliferation inhibition
were quantitively assessed using the DeathPro workflow (28) 8 days after seeding (120 h after
treatment). At days 3 and 8, organoids were stained with 1 pg/ml Hoechst (Invitrogen) and 1

pug/ml propidium iodide (Sigma) in organoid medium. Automated confocal imaging was
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performed according to the DeathPro assay image acquisition procedures described above.
Images of two positions per well were acquired and each organoid line was screened once.
Image stacks were processed to Maximum Intensity Projections (MIPs) and dose-response-
curves were generated from the MIPs. Dose-response curves were manually checked for
plausibility by comparison with MIPs and severe outliers were excluded. Given that we
observed a column-wise growth bias most likely due to a seeding effect, we used the lowest
drug concentration conditions, which were located in the same column as the treatment
conditions, as individual baselines (controls) for each drug. Area under the curve values were
calculated for cell death (AUCA) and proliferation inhibition (AUCpi) from the corresponding
dose-response curves. LD50 values were derived as described above. Wilcoxon signed-rank

test was used for comparisons between groups.

Mutual exclusivity analysis

Mutual exclusivity analysis was performed on all genes with a minimum recurrence threshold
of 5. We applied the Fisher’s exact test and the COMET test (77). Fisher’s right tailed test was
used to support co-occurrence when the number of samples with alterations in both genes is
significantly higher than expected by chance. The Fisher’s left tailed suggests mutual
exclusivity when the number of samples with alterations in both genes is significantly lower.

A P value of <0.01 was used as cut-off for mutual exclusivity and inclusivity.

Data availability

All raw sequencing data has been deposited at the European Genome-Phenome Archive under
the accession number EGAS00001005474. All somatic mutation calls and integrated mutations
tables on which the analysis was performed will be available upon peer-reviewed publication

in Zenodo (10.5281/zenodo.5208420).
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Figure 1. PDAC organoid catalogue: transcriptional subtyping of PDAC-PDOs is

prognostic.
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A, Schematic overview of the analyses performed with the established PDAC-PDOs. B, H&E
staining of PDAC organoids and parental tumor tissues. Organoid growth patterns give rise to
mono-luminal, multi-luminal and solid morphologies, showing resemblance to the histological
features of the parental tumors. Scale bar 100 um. C, Expression heatmap of Moffitt’s classical
and basal-like signature genes. NMF-derived classical and basal-like scores are indicated, as
well as the classification of each organoid line into three subtype classes based on the scores.
Samples are sorted by the ratio basal-like/classical score. Clinicopathological variables,
adjacent tumor grading (Grading adj. tumor), organoid grading (Grading PDO), predominant
adjacent tumor morphology (Morphology adj. tumor) and predominant organoid morphology
(Morphology PDO) are annotated. The majority of the lines were derived from PDAC,
including rare subtypes such as adenosquamous (n = 2), anaplastic (n = 1) and ampullary,
pancreatobiliary type (n = 1) carcinomas. D, Correlation of classical and basal-like scores
between parental tumor tissues and organoids. R: Pearson’s correlation coefficient. E,
Correlation of classical and basal-like scores for organoid samples at early and later time points
in culture. R: Pearson’s correlation coefficient. F, Kaplan-Meier curves (log-rank test) for
overall survival, stratified by organoid subtypes. Only organoids derived from chemo-naive
patients were included in the survival analysis. G, Enriched ENCODE/ChEA consensus
transcription factors datasets (adjusted P < 0.01) in differentially expressed genes upregulated
in classical (top) and basal-like (bottom) organoids. H, Expression of HNF4A (top) and TP63
(bottom) according to the classical and basal-like scores. Rs: Spearman’s correlation

coefficient. TPM: transcript per million.
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Figure 2. PDAC-PDOs retain the main genomic characteristics of their parental tumors.

A-F, Analyses for representative case 083. A, For patient 083, three organoids lines were

generated: one from the primary tumor (083aPO), one from a liver metastasis (083bMO) and
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one from a second liver metastasis (083cMO). B, Representative confocal images of living
organoids embedded in Matrigel stained with Hoechst (green) and SiR-Actin (pink) after nine
days in culture. Lines 083aPO, 083bMO and 083¢cMO differ in size and morphology. C-E,
Correlations of predicted counts for all mutated alleles between each organoid line of case 083
and their corresponding primary tumor/metastatic tissue (C), primary tumor and metastatic
tissues (D) and each organoid line of case 083 (E). F, Correlations for predicted counts of
functional mutated alleles for all sample pairs of case 083. G, Comparison of predicted counts
of driver gene mutated alleles for parental tumor/metastatic tissues (T) and organoid lines (O).
H, Comparison of predicted counts of driver gene mutated alleles for the same organoid lines

sequenced at different passages (E: early, L: late).
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Figure 3. Landscape of genomic copy number alterations in PDAC organoids.

A, Frequency of somatic copy number gains (orange) and copy number losses (blue) predicted
by GISTIC2.0 in the main organoid cohort (mid panel). Significant amplification (top panel)
and deletion (bottom panel) peaks (g-value < 0.25). Known oncogenic driver genes are
annotated in bold. * The direct hit of the amplification peak on chromosome 8q24.21 was an

intergenic locus between MYC and PVTI. ** The direct hit of the amplification peak on
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chromosome 12p12.1 was an intergenic locus close to a cluster of genes including BCAT1,
LRMP, LYRMS5 and KRAS. B, Frequency of somatic copy number alterations in classical and
basal-like organoids. Differential (NFATC2) and unique significant amplification peaks for
classical organoids (KI/F134 and FAM194B) are indicated. C, Fraction of samples carrying
NFATC2 copy number gains, as predicted by ACEseq, according to organoid subtype. D,
Correlation of NFATC?2 expression with classical and basal-like scores. TPM: transcript per
million. E, Fraction of samples carrying HNF4A (20q13.12) copy number gains, as predicted
by ACEseq, according to organoid subtype. Correlation of HNF4A expression with classical
and basal-like scores appears in Fig. 11. F, Relative frequency of deleterious SMAD4 alteration

by organoid subtype.
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Figure 4. Organoid cytotoxic response to 5-FU treatment is associated with patient

survival after adjuvant therapy.
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A, Illustration of the DeathPro assay protocol used for screening PDAC-PDO responses to the
clinically relevant chemotherapeutic drugs gemcitabine, 5-FU, irinotecan, oxaliplatin,
paclitaxel and erlotinib. Drug-induced cell death and proliferation inhibition were evaluated by
confocal imaging after Oh, 72h and 144h (after drug washout) of treatment beginning. B,
Exemplary DeathPro workflow confocal images of line 067PO before (Oh) and after treatment
(144h) with the vehicle or with increasing concentrations of 5-FU. Merged Hoechst (green)
and propidium iodide (red) channels of maximum intensity projections are shown. Scale bar:
100 um. C-D, Hierarchical clustering of the 39 screened organoid lines according to death
(AUCd\44n, C) and growth inhibition (AUCpiia4n, D) responses. E, Kaplan-Meier curves (log-
rank test) for the overall survival of patients receiving adjuvant therapy containing 5-FU,
grouped by AUCdi44n response threshold. Patients with 5-FU-responsive organoids had a
longer median overall survival (34 months) than patients with non-responsive organoids (13
months). F, Correlation of 5-FU AUCd44n with overall survival of patients receiving adjuvant
therapy containing 5-FU. Only organoid lines derived from chemo-naive patients at resection
were included in this analysis. Dotted lines denote the response threshold of 0.2 AUC units.

Dot color indicates subtype. Black border indicates patients still alive at the last follow-up.
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Figure 5. Pharmacotranscriptomic and pharmacogenomic associations revealed by PDO

drug screening.

45


https://doi.org/10.1101/2021.08.26.457743
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457743; this version posted August 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A, Genes whose expression correlates negatively (up-in-resistant) and positively (down-in-
resistant) with the response (AUCdi4n or AUCpiiaan) to at least 3 different drugs. B,
Significantly enriched Wikipathways terms (adjusted P < 0.05) for each gene-drug response
correlation gene set. C, Heatmap of gene expression correlating negatively (up-in-resistant) or
positively (down-in-resistant) with the cytotoxic effect of 5-FU (AUCd144n). Samples are sorted
by 5-FU AUCdi4n and genes are sorted by their Spearman’s correlation coefficient. A
significant enrichment (adjusted P < 0.0001) of genes located on chromosome 13q12 and
13q14 (annotated genes) was observed for 5-FU AUCd44n down-in-resistant gene set. D, Copy
number alterations for the enriched cytobands in C, 13q12 and 13q14. Samples are sorted as in
C and genes are sorted by their position along the chromosome. Annotated genes belong to the
5-FU AUC 44 down-in-resistant gene set (same as in C). E, Kaplan-Meier curves (log-rank
test) for overall survival of patients receiving adjuvant therapy containing 5-FU, stratified by
CNA status for chrl3ql2/14 in organoids. F, Oncoprints of 7P53 mutational status
(SNVs/indels) for chemo-naive PDOs included in the drug screen. Mutation zygosity and
functional impact prediction as reported by COSMIC (FATHMM prediction) are indicated.
For non-mutated samples, the presence of other alterations (DEL: deletion, LOH: loss of
heterozygosity) are reported. Samples are sorted by oxaliplatin AUCpiiasan (top panel) and
irinotecan AUCdi44n (bottom panel). TP53 wild-type status (n = 4) was associated with
increased sensitivity to oxaliplatin proliferation inhibition in chemo-naive PDOs (top third,
Fisher’s exact test, P < 0.005) and lower sensitivity to irinotecan cytotoxic effects (bottom
third, Fisher’s exact test, P < 0.005). G, Proliferation inhibition (AUCpii44n) induced by
oxaliplatin and death induced by irinotecan (AUCd144n) in PDOs. PDOs are grouped by 7P53
mutation status. Organoids derived from patients pre-treated with neoadjuvant FOLFIRINOX

are indicated.
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Figure 6. PDOs as platform for testing personalized treatments: PDAC organoids
harboring TP53/POLR2A co-deletion display increased sensitivity to RNA polymerase 11

inhibition by a-amanitin.

A, Illustration depicting the DeathPro assay protocol for assessing organoid response to the
molecular targeted agents olaparib, palbociclib and a-amanitin. B, Legends for subfigures C to
E depicting the color codes for control and target groups, individual organoid lines and
genomic alterations. C, Response of PDCA-PDOs to the PARP inhibitor olaparib. Organoid
lines were stratified by their homologous recombination deficiency (HRD) score (middle
panel) into control (black) and target (red) groups for olaparib treatment. Alteration status of
BRCA2 is shown (top panel). Comparison of AUCpi and AUCd values between control (C)
and target (T) groups (bottom panel), computed from the dose-response curves in
Supplementary Fig. S14A. D, Response of PDCA-PDOs to the CDK4/6 inhibitor palbociclib.
CDKNZ2A/B alteration status (top panel) was used to classify organoid lines into control (black)
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and target (red) groups for palbociclib treatment. Comparison of AUCpi and AUCd values
(bottom panel) between control (C) and target (T) groups, derived from the dose-response
curves in Supplementary Fig. S14B. P values derive from Wilcoxon signed-rank test. E,
Response of PDCA-PDOs to RNA polymerase II inhibition by a-amanitin. Organoid lines with
TP53 neutral copy number or heterozygous deletion were stratified into control (black) and
target (red) groups for a-amanitin treatment, respectively (top panel). Comparison of POLR2A
expression, AUCpi, AUCd and LD50 values (middle panel) between control (C) and target (T)
groups. P values derive from Wilcoxon signed-rank test. Dose-response curves are shown in
Supplementary Fig. S14C. DeathPro workflow confocal images of a control (003PO) and
target organoid line (083aPO) before (0 h) and after treatment (120 h) with the vehicle (water)
or 200 nM o-amanitin. Merged Hoechst (green) and propidium iodide (red) channels of

maximum intensity projections are shown. Scale bar: 100 um (bottom panel).
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Supplementary Figure S1.

Mutational landscape of the main organoid cohort. A, Oncoprint for the most recurrent altered
genes (>12% frequency). B, Significance of the alterations according to MutSigCV,
Oncodrive-FM and GISTIC2.0.
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Supplementary Figure S2.

Mutational signatures profiles are preserved in organoid cultures. A, Relative mutational
signature exposures identified in the PDAC-PDO catalogue. B, Relative mutational signature
exposures in tumors (T) and matched organoids (O). C, Relative mutational signature
exposures in organoids at early (E) and later (L) passages. AC1: clock-like, AC2: APOBEC,
AC3: HRR deficient, ACS5: clock-like, AC6: MMR deficient, AC13: APOBEC, ACI17:

unknown.
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Supplementary Figure S3.

PDAC transcriptional subtypes in organoids. A-B, Principal component (PC) analysis of the
1000 most variant genes expressed by organoids colored according to classical and basal-like
scores. C-D, GSEA for Moffitt’s classical (C) and basal-like (D) signature genes in the
independent component IC9. Genes are ranked according to their contribution. NES:
normalized enrichment score. E, Venn diagram indicating the overlap of differentially
expressed genes (adjusted P <0.1) in organoids for the indicated subtype comparisons. F, Top
10 enriched Hallmark gene sets (adjusted P < 0.01) in basal-like organoids versus classical

organoids.
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Supplementary Figure S4.

Structural variant (SV) profiles of organoids and parental tumors. A, Total and relative number
of structural variants detected in the PDAC-PDO catalogue. B, Structural variants in tumors
(T) and matched organoids (O). C, Structural variants in organoids at early (E) and later (L)

passages.
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Supplementary Figure S5.

CNA status predicted by GISTIC2.0

Expression levels of genes in significantly amplified regions categorized by their CNA status

as predicted by GISTIC2.0. Only genes with a significant difference in expression in any of

the CNA groups are displayed (Wilcoxon test, comparisons against base-mean as reference

group, P < 0.05). TPM: transcript per million. * P < 0.05, ** P <0.01, *** P <0.001.

53


https://doi.org/10.1101/2021.08.26.457743
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457743; this version posted August 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Supplementary Figure S6

ZNF593 CNKSR1 CEP85 SH3BGRL3 UBXN11 DHDDS
1p36.11 1p36.11 1p36.11 1p36.11 1p36.11 1p36.11
84 *  x 7.5 * 11 * kK *k Kk
7- 6.5 6 6 6
| 10 : .
6 o % ~ |55 é 5 %.. o %_ Al ~| s §__
5—__% Foas @ 41 @ 81~ ;E 2_"% ’ 4—-@.
4 - T T T T 3.5 T 3 1 T T 7 B T \ T ‘\ T T T T T T
-2-10 1 —2 —1 0 1 —2 —1 0 1 —2 —1 0 -2-10 1 -2-10 1
HMGN2 RPS6KA1 ARID1A SFN GPN2 GPATCH3
1p36.11 1p36.11 1p36.11 1p36.11 1p36.11 1p36.11
114 *  kk *  kk 7 12 * gg_ *  kk
107 ® 11 5.5 61
9 . 7 . 6 $ - i A 5.0- -
81 '&- 6 ¥ ®1 é o] # 45 @ %] '@—
- 9 & - :
71 % - 49 _ 84 01 44
6 S Fe — —S 1 35-1F ‘.. e
-2-10 1 -2-10 1 —2 —1 0 1 -2-10 1 —2 -1 0 -2-10 1
NUDC Clorf172 FHIT FRG1 IMMP2L CDKN2A
1p36.11 1p36.11 3p14.2 4q35.2 7q31.1 9p21.3
S 104 *  kk 8 * 4 * o * * 549 % 754 *
o 7 . . 7 4l . K
= 9- * — 3 o . i
: B0 oy &
89 - - 2 o - o) 31 .
S 7. 5 . - 5. %3 2.5
- -l. I. T T 4 L T T 7 T 1 L T T T T = I. T 2 L T T T 0'0 a * I"
-2-10 1 -2-10 1 -2-10 1 -1 0 -1 0 1 -2 -1
TP53TG3C WWOX MSI2 SMAD4 PTBP1 MED16
16p11.2 1623.1 1722 18q21.2 19p13.3 19p13.3
0.03 - * * *k * 5 *k * 10 A * 8 *
. 5 . 6 4 [res N 74
0.02 4- L e ] d 3 1 P
. =] 51. @ % - .
P L PO s e
0.01 - d 41gy e
2 4 3 14 . 74 549 K °
0'00 B ? ? T T 1 - T T T T l. T 0 B T .T T T T T |. T T
-1 0 1 -1 0 1 -1 0 1 -2 -1 0 -1 0 1 -1 0 1
R3HDM4 GPX4 STK11 MIDN CIRBP C19orf24
19p13.3 19p13.3 19p13.3 19p13.3 19p13.3 19p13.3
9 . 115 . 7 - x 9
8 4 % * *
a8 10.5 - 6 w| v 81 L7
1o 7 oo o
e 95 . 5 . % ;ﬁé : #g 6- 5
. R : o iy ; &
FETulg® e 1BT ] T BT e E
6 L T T T 7-5 T T T 3 'I T T T’ T T T T T 'I T T
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

CNA status predicted by GISTIC2.0

Supplementary Figure S6.

Expression levels of genes in significantly deleted regions categorized by the CNA status as
predicted by GISTIC2.0. Only genes with a significant difference in expression in any of the
CNA groups are displayed (Wilcoxon test, comparisons against base-mean as reference group,

P <0.05). TPM: transcript per million. * P <0.05, ** P <0.01, *** P <0.001.
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Significant CNAs in classical and basal-like organoids predicted by GISTIC2.0. A, Deletion

and B, amplification peaks in classical organoids. C, Deletion and D, amplification peaks in

basal-like organoids.
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Supplementary Figure S8.
DeathPro drug screening of PDOs. Correlation of A, AUCd and B, AUCpi between DeathPro

assay readouts at 72 h and 144 h. Rp: Pearson’s correlation coefficient. C, LD50 values derived
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from death dose-response curves for the 144h time-point. D, Correlation matrix for drug
responses of the 39 organoid lines included in the drug screen. Spearman’s correlation
coefficients are displayed. Significant correlations are denoted by a colored circle according to

the Spearman’s correlation coefficient.
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Supplementary Figure S9.

Association of PDO drug response with subtype scores and patient survival. Correlation of A,
AUCd144n and B, AUCpiia4n with classical and basal-like scores. Only organoid lines derived
from chemo-naive patients at resection were included in this analysis. Correlation of organoid
drug responses for C, gemcitabine AUCdi44n, D, gemcitabine AUCpijasn and E, 5-FU
AUCpiisan with overall survival for patients receiving adjuvant therapy containing the
corresponding drug. Only organoid lines derived from chemo-naive patients at resection were

included in this analysis. Dotted lines denote the response threshold of 0.2 AUC units.
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Supplementary Figure S10.

UpSet plots for the overlap (intersection) of genes among gene-drug response correlation gene
sets. A, Number of genes shared by the indicated up-in-resistant gene sets (expression
negatively correlated with AUCdi4an or AUCpiia4n). B, Number of genes shared by the
indicated down-in-resistant gene sets (expression positively correlated with AUCdi44n or

AUCPpii44n).
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Supplementary Figure S11.

Enrichment map for significantly enriched Wikipathways terms (nodes; adjusted P < 0.05) for
each gene-drug response correlation gene set as shown in Fig. 5B, depicting overlapping gene
sets. Each color represents an individual gene set. Nodes sizes represent the number of genes

and the edge thickness the degree of overlap between two terms.
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Supplementary Figure S12.

Association of irinotecan AUCdi44n gene sets and 1C4. A, Gene set enrichment analysis of
irinotecan AUCd 44n up-in-resistant and down-in-resistant gene sets in 1C4. Genes are ranked
according to their contribution. NES: normalized enrichment score. B, Over-represented
Wikipathways (adjusted P < 0.05) for the top 100 IC4 genes. C, Top 10 over-represented
Wikipathways (adjusted P < 0.05) for the bottom 100 IC4 genes.
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AUCpiian. F, Oxaliplatin AUCpiiasn. G, Paclitaxel AUCdi44n. H, Paclitaxel AUCpiian. F,
Erlotinib AUCpii44n. Samples are sorted by drug response. Genes are sorted by their position

Copy number alterations in chr13q12/chr13q14 and PDO drug responses. A, 5-FU AUCpii44n.
B, Gemcitabine AUCd44n. C, Gemcitabine AUCpij44n. D, Irinotecan AUCd144n. E, Irinotecan

Supplementary Figure S13.
along the cytobands.
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Supplementary Figure S14.

Individual dose-response curves for growth and death for targeted therapies. A, Olaparib. B,

Palbociclib. C, a-amanitin.
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