

Extensive incorporation, polarisation and improved maturation of transplanted human cones in a murine cone degeneration model

Authors:

Sylvia J Gasparini*•¹, Karen Tessmer*¹, Miriam Reh², Stephanie Wieneke^{1,3}, Madalena Carido¹, Manuela Völkner^{1,3}, Oliver Borsch¹, Anka Swiersy¹, Marta Zuzic^{1,4}, Olivier Goureau⁵, Thomas Kurth⁶, Volker Busskamp^{1,4}, Günther Zeck^{2,7}, Mike O Karl^{1,3}, Marius Ader•¹

* co-first authors • corresponding authors

Affiliations:

1. Center for Regenerative Therapies Technical University Dresden (CRTD), Dresden, Germany
2. Natural and Medical Sciences Institute at the University of Tübingen, in Reutlingen, Germany
3. German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
4. University of Bonn, Department of Ophthalmology, Bonn, Germany
5. Sorbonne Université, Institut de la Vision, INSERM, CNRS, 75012 Paris, France
6. Center for Molecular and Cellular Bioengineering (CMCB) of the TU Dresden, Technology Platform
7. Biomedical Electronics and Systems, EMCE Institute, Technische Universität Wien, Austria.

Corresponding author:

Sylvia Gasparini

Marius Ader

Center for Regenerative Therapies Technical University Dresden (CRTD)

Technische Universität Dresden

Fetscherstr. 105

01307 Dresden, Germany

+49(0)351-45882203

sylvia.gasparini@tu-dresden.de

marius.ader@tu-dresden.de

Keywords

Photoreceptor replacement, iPSC, cone reporter, retinal organoid, transplantation,

incorporation, outer segment, polarisation

1 Summary:

2 Once human photoreceptors die, they do not regenerate, thus photoreceptor transplantation

3 has emerged as a potential treatment approach for blinding diseases. Improvements in

4 transplant organization, donor cell maturation and synaptic connectivity to the host will be

5 critical in advancing this technology to clinical practice. Unlike the unstructured grafts of prior

6 cell suspension transplantations into end-stage degeneration models, we describe extensive

7 incorporation of iPSC retinal organoid-derived human photoreceptors into mice with cone

8 dysfunction. This incorporate phenotype was validated in both cone-only as well as pan-

9 photoreceptor transplantations. Rather than forming a glial barrier, Müller cells extend

10 throughout the graft, even forming a common outer limiting membrane. Donor-host

11 interaction appears to promote polarisation as well as development of morphological features

12 critical for light detection, namely formation of inner and well stacked outer segments

13 oriented towards the RPE. Putative synapse formation and graft function is evident both at a

14 structural and electrophysiological level. Overall, these results show that human

15 photoreceptors interact readily with a partially degenerated retina. Moreover, incorporation

16 into the host retina appears to be beneficial to graft maturation, polarisation and function.

17

18 Highlights

- 19 • Generation of the first human iPSC cone reporter line
- 20 • Human cones extensively incorporate into the retina of mice with cone degeneration
- 21 • Donor cone age and time in vivo are important factors for transplant incorporation
- 22 • Incorporation into the host retina correlates with graft polarisation
- 23 • Improved photoreceptor maturation after transplantation in vivo vs. in vitro
- 24 • Re-establishment of cone-mediated light-responses in the cone deficient mouse

25 **Introduction**

26

27 Vision impairment represents the most prevalent disability in the industrialized world and very
28 few treatment options exist (1). Many blinding diseases are characterized by the progressive
29 loss of photoreceptor cells which lack the ability to regenerate in mammals, including humans.

30 Photoreceptor transplantation therapy has thus been proposed as a treatment modality in
31 which healthy donor cells replace those that have been lost. Cell replacement therapies are
32 an attractive option for retinal diseases – the eye is an organ which is self-contained and
33 partially immune privileged, minimizing the risk of unwanted cell migration and rejection (2).

34 Additionally, the eye is readily accessible and easily monitored. The cone rich foveal region,
35 which is extremely important for human vision, facilitating tasks such as reading, facial
36 recognition and driving, is relatively small, reducing the amount of donor cells required.

37 Within the fovea there are only around 200 000 cones (3) – a number of cells which is readily
38 produced with current organoid technology. However, to date no human cone-specific
39 reporter line has been described and no efficient cell surface markers have been identified to
40 facilitate effective sorting of donor cones. Although a marker panel for cone enrichment has
41 been suggested, this provided low purity and yield (4).

42

43 Several recent studies have utilized human stem cell derived retinal organoids as a source of
44 either photoreceptor or retinal sheets for transplantation, particularly in end stage-
45 degeneration models. While some improvements in vision have been reported through the
46 use of retinal sheets (5–9), these grafted sheets were largely disorganized, with extensive
47 rosette formation and the complication of donor photoreceptors mostly synapsing to donor
48 second order neurons rather than host cells. For human cone cell suspension transplants,

49 while functionality has recently been reported from two different research groups, grafts
50 appeared disordered with little evidence of cell polarisation (10) (i.e. inner and outer
51 segments oriented towards RPE, axons extended towards the second order neurons) or
52 showed some polarisation but poor general transplant cell survival (11, 12).

53

54 The aforementioned studies mostly focused on transplantation into models of severe end-
55 stage degeneration, particularly the rd1 mouse model, where no host photoreceptors
56 remained. While these proof-of-concept studies are of utmost importance for the
57 development of photoreceptor replacement therapies, the early onset and severity of the rd1
58 phenotype represents a rather atypical pathology in regard to retinal degeneration patients.

59 Complete photoreceptor cell loss only occurs in patients in very late stages of retinal disease,
60 while in AMD, the most prevalent retinal degenerative disease, massive photoreceptor
61 degeneration, called geographic atrophy (GA), is locally restricted. Additionally, a highly
62 degenerated environment may not be conducive to graft survival, organized graft integration
63 or synaptic connectivity with the host retina. In humans, extensive glial scarring and neural
64 retinal remodeling may render end stage transplantations challenging (13). It is not yet known
65 in which retinal disease type or at what degenerative stage photoreceptor replacement
66 therapies would be most effective. Here, we therefore used the cone photoreceptor function
67 loss mouse (Cpfl1), in which cones are dysfunctional and rapidly degenerate while rods remain
68 largely unaffected (14), in order to determine whether human cones can integrate into the
69 existing host photoreceptor layer.

70

71 In this study, a cone-specific human iPSC GFP-reporter line was generated in order to facilitate
72 FAC sorting of an enriched cone population from retinal organoids. We used an optimized

73 differentiation protocol which generates cone-rich retinal organoids ensuring a large
74 population of transplantable cone cells. We aimed to investigate how transplanted cones
75 mature, as well as how the donor-host interaction changes over time after transplantation.
76 Results show long-term survival for up to six months in mouse recipients, extensive and
77 polarised incorporation into the remaining mouse outer nuclear (photoreceptor) layer and
78 interaction with host Müller glia and second order neurons. Human graft incorporation was
79 further validated through the use of donor photoreceptors from a pan-photoreceptor
80 reporter iPSC line. Moreover, photoreceptor graft maturation and polarisation was enhanced
81 by donor-host interaction, as shown by histology, ultrastructural analysis and transcriptomics.
82 Human photoreceptor transplants ultimately led to the re-establishment of cone-mediated
83 light-responses in the cone deficient mouse.

84

85 **Results**

86 Validation of a human cone reporter iPSC-line to produce a transplantable population of human
87 cones

88

89 A human iPSC line carrying GFP under the control of the cone-specific mouse cone arrestin
90 (mCar) promoter was generated using a piggyBac transposon system (mCar-GFP line). This did
91 not affect karyotype (Fig S1B,C). Human mCar-GFP retinal organoids were produced using a
92 modified version of a previously published protocol which has been shown to generate robust
93 numbers of cone photoreceptors (Fig S1A)(15–17). The mCar-driven GFP signal was
94 predominantly located in the outer neuroepithelial layer as to be expected for cones (Fig 1A).
95 Reporter expression co-localised with human cone arrestin (ARR3) antibody staining and all
96 ARR3 positive cells appeared to be GFP⁺, indicating the specificity and efficiency of this

97 reporter. The GFP⁺ cells were positive for the photoreceptor-specific markers CRX and
98 recoverin, and also expressed more mature cone markers such as L/M Opsin, and S-opsin at
99 day (D) 240 of in vitro differentiation (Fig 1B). Note that there are far more L/M opsin cones
100 present in the organoids than S-opsin cones, as previously described (15). Markers of other
101 retinal cell types, namely, rods (Nrl and Rhodopsin), Müller glia (Sox2 and GLAST/CRALBP),
102 bipolar (PKC α) and amacrine/ganglion cells (HuC/D) did not colocalize with GFP (Fig S1D-F).
103 For a more in-depth analysis of the cell identity of GFP expressing cells, next generation
104 sequencing of FAC-sorted GFP⁺ and GFP⁻ cells was performed with D200, D270 and D370
105 retinal organoids. This analysis confirmed that GFP⁺ cells highly express cone specific genes
106 such as ARR3, CNGB3, PDE6C and L and M opsins, whereas the negative fraction showed high
107 expression of typical marker genes of other retinal cell-types including rods, Müller glia,
108 bipolar cells and retinal ganglion cells (Fig 1B). Additionally, Gene ontology term analysis of
109 differentially expressed genes in cones from D200 versus D270 organoids revealed an
110 enrichment of cellular compartment pathways critical to photoreceptor function in D270
111 cones, indicating that D200 cones are not yet fully mature and undergo extensive molecular
112 changes in the following 10 weeks (Fig 1C).

113
114 To assess the proportion of cones in the organoids and the efficiency of reporter expression,
115 FAC-sorting followed by immunocytochemical analysis was performed (Fig 1D-G). As
116 expected, there was a significant increase in the proportion of GFP⁺ cells with organoid age
117 (i.e. at D140, D200, D250), with up to 45% of cells determined to be GFP⁺ by D250 (Fig 1D).
118 The FAC-sorted GFP⁺ fraction was found to be highly enriched in recoverin and ARR3 positive
119 cells (Fig 1E-G), whereas the GFP⁻ fraction was almost entirely depleted of cone arrestin
120 positive cells at all time points investigated (Fig 1G). This indicates that almost all cones are

121 captured using the mCar-GFP reporter-based sorting system. With the confirmation of the
122 cone identity of GFP⁺ cells, cones from D200 organoids were determined to be the most
123 suitable population to perform transplantation studies, due to the robust number of relatively
124 mature cone cells present, combined with a high degree of viability following dissociation and
125 FACS purification. A smaller transplantation study using cones from D250 organoids was also
126 performed for comparison.

127

128 Human cones incorporate extensively into the host retina with longer post-transplantation
129 times

130

131 Human cones were transplanted into the subretinal space (between the RPE and
132 photoreceptor layer) of Cpf1 mice, which received monthly vitreal triamcinolone acetonide
133 injections for immune suppression from the time of transplantation. All transplanted cells
134 expressed human ARR3 across the study timeframe and minimal immune reactivity of the host
135 was observed (Fig S2A,B). Three weeks after transplantation, clusters of human cones survived
136 in the subretinal space but did not interact extensively with the host outer nuclear layer (ONL).
137 Donor cell clusters appeared mostly separated from the host ONL with few contact points (Fig
138 2A). Strikingly, 10 weeks after transplantation, large clusters (up to 30,000 μm^2 per retinal
139 section) of human cones were found to be partially incorporated into the Cpf1 host ONL (Fig
140 2B) and appeared to incorporate further by 26 weeks (Fig 2C). Note that this phenomenon is
141 not due to material transfer, which is frequently observed in mouse-to-mouse photoreceptor
142 transplants (18–20). Here, GFP⁺ cells are identifiable as human by human mitochondrial
143 and human ARR3 expression, as well as through significantly larger and less dense nuclei than
144 mouse photoreceptors (Fig S2, see also (10, 21)). Additionally, transcriptome analysis by next

145 generation sequencing revealed the human origin of GFP⁺ cells isolated from transplanted
146 retinas (see below).

147

148 Maturation of human cones within Cpf1 hosts

149

150 In addition to incorporating into the host ONL over time, human cones also appear to further
151 mature in vivo. While at 3 weeks post-transplantation the donor cell mass was largely
152 amorphous, by 10 weeks transplanted cones developed axon-like projections towards the
153 host INL and mitochondria rich bulbous outgrowths towards the RPE. As photoreceptors are
154 characterised by two distinctive compartments - namely the highly metabolic inner segment
155 containing densely packed mitochondria and the unique light detecting outer segment, an
156 elaborated primary cilium comprised of stacked disc membranes - the observed mitochondria
157 rich bulbous outgrowths are indicative of inner segment development (Fig 2A,B). These
158 presumed inner segments were even more widespread by 26 weeks post-transplantation (Fig
159 2C). To confirm the inner segment identity of the bulbous mitochondria-rich outgrowths,
160 retinal sections were stained with markers associated with inner and outer segments.
161 Accordingly, PNA which is specific for cone inner and outer segments, was bound in a non-
162 localised fashion throughout the graft at 3 weeks. By 10 and even more prominently by 26
163 weeks, the PNA label was increasingly concentrated in mitochondria rich regions, i.e. the RPE
164 facing edge of incorporated grafts and the rosette-like structures which occurred in some
165 areas where mouse photoreceptors remained underneath the incorporating graft (Fig 3A).
166 Peripherin-2 (PRPH2) staining of outer segments was not evident in the human cones at 3
167 weeks and only occasionally at 10 weeks post transplantation, however, by 26 weeks, PRPH2

168 was expressed in close association with the putative inner segments (hMito), also suggesting
169 outer segment formation by this timepoint (Fig 3B).

170 To investigate the extent of photoreceptor maturation further, grafts were examined at the
171 ultrastructural level. Indeed, many examples of inner segments were seen at 10 weeks post-
172 transplantation, whereas outer segments were not found (Fig 3C). By 26 weeks, however,
173 numerous cones formed relatively well organized and tightly stacked outer segment-like
174 structures which were sometimes found to be joined to inner segments via a connecting
175 cilium, additionally identifiable by the characteristic basal bodies (Fig 3D,E). The cells
176 displaying these photoreceptor specific features were confirmed to be of human origin by the
177 distinctive size and morphology of the human cone nuclei (these are much larger and less
178 electron dense than the mouse photoreceptor cells – e.g. Fig 5A,B) as well as through
179 immunogold labelling of human specific ARR3 (Fig S2C).

180
181 As inner and particularly outer segments took a long time to develop post-transplantation, we
182 postulated that transplanting cones derived from older organoids might reduce the time
183 required for the *in vivo* development of such mature photoreceptor specific features. Cones
184 isolated from D250 retinal organoids were transplanted and assessed 10 weeks post-
185 transplantation. Interestingly, unlike D200 cones, after 10 weeks *in vivo* most of the D250
186 grafts remained in the subretinal space, indicating a reduced capacity of the older cells to
187 incorporate into the host ONL (Fig 3F). Much like D200 + 3 week transplantations, the
188 D250 + 10 week grafts were presenting as a largely amorphous cell mass with few
189 mitochondria rich or PRPH2 outgrowths evident and PNA label dispersed through the cell
190 mass, rather than accumulating towards the RPE (Fig 3F,G,H). At an ultrastructural level,
191 occasional inner segments as well as some outer segments were observed, however, the outer

192 segments were highly disorganized and not tightly stacked (Fig 3I,J). Although photoreceptors
193 of D250 + 10 week grafts (i.e. post-differentiation D320) are in total older than D200 +
194 10 week grafts (post-differentiation D270), they in comparison show a decreased capacity for
195 incorporation and maturation. This suggests D200 cones are a preferable donor cell age.
196 Together, these observations indicate that donor cone age and time in vivo are important
197 factors for transplant incorporation and maturation.

198

199 Müller glia incorporate transplanted cones into the host retina, forming a common OLM

200

201 In normal retinal physiology, photoreceptors are intermingled in a dense network of Müller
202 glia processes that support photoreceptor structure, homeostasis, and function – even
203 participating in the cone visual cycle (22). Therefore, the interaction between transplanted
204 human cones and recipient Müller glia was assessed.

205 Immunohistochemical staining for GFAP revealed that in the D200 + 3 week and D250 + 10
206 week transplants, Müller glia processes extend into the graft only in limited areas where donor
207 clusters start to make contact with the ONL, while no GFAP staining was observed within
208 subretinal-located grafts (Fig 4A). By D200 + 10 weeks, rather than forming a glial barrier,
209 Müller glia processes permeate throughout the graft (Fig 4A), and seemingly create an outer
210 limiting membrane (OLM) in between the human nuclei and the subretinal space. Phalloidin
211 staining supports this finding, showing an actin-dense band above the human nuclei which is
212 continuous and in line with the host OLM, incorporating the clusters of human cones rather
213 than excluding the xenogeneic cells (Fig 4B). This interaction was maintained at 26 weeks (Fig
214 4A, B, D).

215 These observations were confirmed by EM, where close association of Müller glia processes
216 and human cones was evident. The continuous band of adherens junctions formed between
217 them at the base of the inner segments strongly supports the OLM phenotype and resembles
218 normal OLM structure. Furthermore, EM analysis again showed the continuity of the OLM
219 between human cones and endogenous photoreceptors (Fig 4C).

220 Importantly, we also observed via EM that even within the same eye, it was primarily in these
221 clusters of incorporated human cones that mature photoreceptor-specific features of inner
222 and outer segments developed, whereas those clusters of cones which remained isolated in
223 the subretinal space, without obvious interaction with host Müller glial processes, persisted
224 largely amorphous (Fig 5A,B).

225

226 To quantify the extent of donor-host interaction at different experimental timepoints, total
227 transplanted cell area was determined and the percentage of interacting grafts was
228 calculated. Here, “ONL contact” was defined as areas where the cell mass remains in the sub-
229 retinal-space but had points of contact with the ONL (Fig 5C). “Partially incorporated” graft
230 was defined as areas where the transplant was in line with the host ONL (Fig 5C), but where
231 some host photoreceptors remained beneath the graft and often formed small rosette-like
232 structures. The graft was only considered “fully incorporated” when the transplant area
233 appeared to replace stretches of host ONL, with direct contact to the INL and no rosettes or
234 gaps evident (Fig 5C). Over half of the D200 + 10 week transplant cell clusters partially
235 incorporated and a further 20% fully incorporated into the host ONL. By D200 + 26 weeks,
236 over 40% of the graft area was fully incorporated. Both the D200 + 3 week and the D250 + 10
237 week samples only minimally interacted with the host retina (~85% graft area non-interacting)
238 (Fig 5D). Accordingly, only D200 + 10 week and D200 + 26 weeks grafts exhibited numerous

239 mitochondrial rich outgrowths, i.e. inner segments (Fig 5E). If this were simply a factor of cell
240 age, one would expect D250 + 10 week to display at least as many inner segments as D200 +
241 10 week grafts, however, in line with our previous observations, these only developed very
242 few mitochondria-rich inner segments. Moreover, where inner segments did develop, these
243 appear almost exclusively in areas where the host retina is directly contacted by the graft (Fig
244 3F), indicating that interaction with the host influences the maturation and development of
245 photoreceptor-specific morphological features like inner segments.

246

247 Cones mature more extensively in the mouse retinal environment compared to those
248 maintained in retinal organoids *in vitro*

249

250 In order to further investigate whether the maturation trajectory of the retinal organoid-
251 derived cones was influenced, as we suggest, by the host retinal environment, we compared
252 the transcriptional profile of transplanted cones with cones from age-matched retinal
253 organoids. D200 organoids were either maintained for a further 10 or 26 weeks (henceforth
254 referred to as *in vitro*) or whole eye cups were dissociated at 10- and 26-weeks post
255 transplantation (hereafter referred to as *in vivo*), and GFP⁺ cells recollected via FACS for RNA
256 sequencing (Fig 6A). Interestingly, PCA analysis of the top 500 differentially regulated genes
257 revealed that the greatest source of variance in the data separated clusters not depending on
258 their age (D200 + 10 week and D200 + 26 week *in vitro* samples cluster closely together in
259 PC1), but according to the time *in vivo*, indicating that maturation within the host retina
260 indeed plays an important role (Fig 6B). More detailed gene overrepresentation analysis
261 showed that molecular mechanisms, biological processes and cellular compartment pathways
262 involved in light perception were highly and significantly enriched in the *in vivo* matured cone

263 samples (Fig 6C). Both L and M opsins as well as other outer segment related genes were
264 highly upregulated in the in vivo matured samples – particularly after 26 weeks (Fig 6D). In the
265 D200 + 26wk in vivo cones there was additionally enrichment in many mitochondrial and
266 respiratory pathways compared to age-matched in vitro matured cones, indicating higher
267 metabolic capacity in the in vivo matured cones (Fig 6 C, E). This analysis supports the
268 histological and ultrastructural evidence that the host retinal environment promotes
269 maturation of organoid-derived human cones, leading to enhanced inner and outer segment
270 formation, which is critical to light detection.

271

272 Validation of donor cell incorporation using the CRX iPSC cell line

273

274 To examine whether the incorporating capacity displayed by the human cones was specific to
275 this cell line, we generated and transplanted photoreceptors from a CRX driven mCherry
276 reporter iPSC line (23). CRX is expressed in retinal progenitors, rods and cones, with Crx-
277 mCherry thus marking both photoreceptor cell types (Fig S3). FAC-sorted D200 Crx-mCherry⁺
278 cells were transplanted into Cpf1 mice as per mCar-GFP⁺ cones. A remarkably similar
279 phenotype was observed where Crx-mCherry⁺ photoreceptor transplants appeared to replace
280 whole sections of mouse ONL (Fig 7A,B), with apical oriented inner segments (Fig 7A-D) and
281 Müller glia extensions throughout the graft (Fig 7E).

282

283 Evidence for contact between host second order neurons and transplanted human cones

284

285 As cone axon-like protrusions were observed projecting towards the INL (Fig 2B,C), we aimed
286 to assess whether there is also synaptic connectivity between transplanted photoreceptors

287 and host second order neurons in the highly interactive grafts. Immunohistochemical staining
288 showed that both PKC α ⁺ rod- and segretagogin⁺ cone- bipolar cell dendrites extended
289 extensively into human cone clusters in areas where the donor cells are incorporated into the
290 host ONL (Fig 8A; S3A). Further, calbindin⁺ horizontal cells also extended neural processes into
291 the human cone grafts (Fig S3B). These observations indicate potential synaptic connections
292 formed between donor cones and host second order neurons. To further investigate
293 connectivity between donor and host cells, association between pre- and post-synaptic
294 markers was assessed. As seen in Fig 8B, many examples of ribbon synapses labelled by CTBP2
295 within the graft can be found in close proximity to the bipolar cell post-synaptic marker
296 mGluR6. This further supports putative synaptic connectivity between graft and host. Finally,
297 the presence of typical photoreceptor ribbon synapses was confirmed by EM already at 10
298 weeks post-transplantation (Fig 8C).

299 To evaluate the functionality of these potential connections, we performed
300 electrophysiological measurements using multi-electrode array (MEA) recordings. Here, due
301 to technical challenges associated with cell mass localization of GFP causing severe bleaching,
302 retinas containing Crx-mCherry cells were used. Robust and stable ON and OFF photopic light
303 evoked responses (30 minutes of binary checkerboard white noise stimulation with stringent
304 spike threshold settings to reduce artifacts) were detected in 5 of 9 transplanted eyes tested
305 (Fig 9 A, B, E, F, G). However, low levels of photopic light responsiveness were also detected
306 in non-transplanted regions of the same retina (Fig 9 E, F), but only following fluorescent
307 stimulation, which was necessarily applied to locate the cell mass. Rods have been reported
308 to respond to photopic light when over saturated (24). To eliminate potential endogenous
309 oversaturated rod activity, the metabotropic glutamate receptor blocker L-AP4 was added
310 during recording. L-AP4 blocks synaptic transmission between photoreceptors and all ON

311 bipolar cells, including rod bipolar cells. Spike-triggered averaging was then used to categorise
312 the ganglion cell response types (Fig 9 B, D). As expected, L-AP4 effectively quenched all ON
313 RGC responses (Fig 9E, H). Moreover, OFF responses which are driven by cone bipolars
314 remained only in the transplanted region (Fig 9F), strong evidence that the light-induced
315 spiking activity is driven by the transplanted photoreceptors due to the lack of functional
316 endogenous cones. Note that when the receptive field of the active ganglion cells was
317 calculated, there was a high degree of overlap with the cell mass location (Fig 9C), further
318 indicating that the transplant is driving the functional response to photopic light.

319

320

321 Discussion

322

323 In this study a human cone-specific GFP-reporter iPSC line facilitated the efficient enrichment
324 of human cone photoreceptors from retinal organoids. The use of a local immune
325 suppressant, monthly vitreal injection of triamcinolone acetonide, prevented the rejection of
326 these human cells when transplanted into the Cpf1 mouse subretinal space. This allowed
327 long-term follow up over a 6-month period (26 weeks). With longer transplantation times,
328 grafts interacted extensively with the host retina. These findings were confirmed through
329 transplantations of a second photoreceptor-specific reporter iPSC line. Rather than forming a
330 glial barrier, Müller glia intermingled throughout the graft, leading to the establishment of a
331 common OLM between mouse and human cells. Second order neurons extended dendrites
332 into the transplant forming potential synaptic connections. The incorporation of transplanted
333 human cones into the host retina was accompanied by an improvement in cell polarisation
334 and maturation of photoreceptor-specific morphological features, namely inner and outer

335 segments. Light detecting capacity and putative synaptic connectivity of transplanted human
336 photoreceptors was further supported by light-evoked electrophysiological recordings of
337 downstream retinal ganglion cells.

338

339 While human photoreceptor and rod specific ESC/iPSC reporter lines have been previously
340 generated (23, 25–28), no human cone reporter PSC line has thus far been described. Based
341 on immunohistochemical and transcriptional assessment, the herein presented mCar-GFP
342 iPSC reporter line appears to robustly and specifically label human cone photoreceptors. This
343 is not only useful for transplantation studies, but may also be of interest in other applications,
344 e.g. studying human cone development or in the identification of human cone-specific cell
345 surface markers. A previous study used viral labelling of L/M opsin cones to allow
346 identification of cone cell surface markers. Not only does this exclude S-cones, but also, due
347 to viral transduction efficiency, only around half of the total cone population was labelled (4).
348 The resulting marker panel led to a maximal enrichment of ~50% cones. A pan-cone reporter
349 line would be of use in this context, as identification of cell surface markers is highly
350 advantageous in a clinical setting where reporter or virally labelled fluorescent cells cannot be
351 used.

352

353 In this study we show extensive incorporation of human cones and Crx-mCherry⁺
354 photoreceptors into the mouse ONL. This is to our knowledge the first report of such extensive
355 incorporation of donor photoreceptors into the host retina from any species. Mouse into
356 mouse photoreceptor transplants largely result in material transfer rather than
357 structural integration (18–20) – a mechanism that was ruled out in this study. As most recent
358 studies of human photoreceptor suspension transplantation were either performed over a

359 shorter time period and/or focused on transplantation into a fully degenerated retina (10–12,
360 21, 23), those experiments would not be expected to result in the aforementioned
361 incorporation due to insufficient time (at 3 weeks only limited interaction was seen) or lack of
362 ONL in which to incorporate. While three weeks after transplantation donor grafts mainly
363 remain in the host subretinal space with only few contact points to the host ONL, at 10 weeks
364 post-transplantation extensive incorporation was evident. However, areas where some host
365 photoreceptors remained below the graft formed rosette-like structures reminiscent of outer
366 retinal tubulations. Such tubulations are a well-known pathology upon retinal degeneration
367 or damage (29) and it is assumed that this arrangement has a beneficial effect on
368 photoreceptor survival when the RPE is defective. In the present case, rosette formation might
369 thus be a response to the inaccessibility of RPE support in cases when the graft is sitting in
370 between ONL and RPE. With longer times post-transplantation, and particularly with smaller
371 clusters, human cones often fully incorporated into the host ONL, seeming to replace
372 stretches of host photoreceptors with no obvious physical impediment to the host INL.

373

374 Single cell suspension studies have often been criticized for the lack of structure of the
375 resulting graft (30). While in theory retinal sheet transplantation could provide pre-
376 established structure, currently described studies suffer from extensive rosette formation and
377 self-synapsing to graft second order neurons (5, 7–9, 31, 32). Sheet transplants are
378 surgically more challenging, particularly in the context of degenerative retinas where rupture
379 of the tissue remains a potential risk. In this study, however, pre-purification of the
380 transplanted cells was possible due to our photoreceptor-specific reporter lines and the used
381 suspension technique. Unlike in other studies, the incorporated cones and Crx-mCherry⁺
382 photoreceptors appeared to become well polarized, with axon projections towards the INL

383 and inner and outer segments towards the RPE. As photoreceptor loss is not complete until
384 very late stages of blinding diseases, the remaining ONL may, as in this study, provide a
385 structural framework for more organized integration of transplanted photoreceptors. This
386 structural organization is likely aided by the close interaction with host Müller glia cells.

387

388 In the present work, graft maturation capacity was only observed upon incorporation into the
389 host ONL. Through recovery of transplanted cells for next generation sequencing – a
390 technique which has not yet been applied to photoreceptor transplants – we could show that
391 in vivo matured cones from timepoints with extensive incorporation exhibit significant
392 upregulation of visual transduction and outer segment related genes. With longer post-
393 transplantation time, in vivo matured cones also increasingly expressed mitochondrial
394 associated genes, which is noteworthy as mature cones are known to have very high energy
395 requirements (33). Graft incorporation and maturation was further accompanied by close
396 interaction with Müller glia, which not only intermingled throughout inner segment
397 developing clusters, but even appeared to form a common OLM between human and mouse
398 photoreceptor areas. Whether the Müller glia directly enhance maturation of the transplant
399 remains to be proven, however, it is well known that glia are important supporters of neuronal
400 function. Müller glia are critical for photoreceptor neurite outgrowth in both 2D and 3D
401 culture systems (34, 35). Interestingly, Müller cells are also reported to play a role in organised
402 outer segment assembly (36). In the present study, the outer segments that developed within
403 older (D250) cone grafts, which incorporated to a much lesser extent and did not show much
404 interaction with host Müller glia processes, were found to be highly disorganized.

405

406 While several studies have shown evidence of nascent outer segment formation – often in the
407 organoids pre-transplantation rather than in the graft itself – these are usually small and/or
408 with limited and disorganized discs (21, 37–41). A recent exception to this is the small but
409 organized OS described by Ribeiro and colleagues, however no connecting cilium was shown
410 (10). The outer segments seen in our study (D200 + 26 weeks) were not only tightly stacked
411 and relatively well organized but were also seen sometimes to project from the inner segment
412 via a connecting cilium, a feature which, to our knowledge, has not previously been reported
413 in human photoreceptor suspension transplants. Of note, organized outer segment
414 formation including connecting cilium has been described in retinal sheet transplants (32),
415 however these formed primarily within rosettes which would likely negatively affect function.
416 A recent paper transplanted optogenetically engineered photoreceptors to circumvent the
417 necessity for OS formation (42). While restored visual function was observed, this is limited to
418 the specific wavelength of the optogenetic and has different kinetics to normal visual perception.
419 Greater understanding and ideally modification of the factors required to encourage
420 transplanted photoreceptors to develop and correctly form distinctive OS structures critical
421 for light detection is of great importance if photoreceptor cell replacement therapy is to be
422 an effective treatment modality.

423
424 Further interaction of host and donor tissue was seen at the level of the second order neurons.
425 Rod and cone bipolar cells as well as horizontal cells extended dendrites into the transplant.
426 Close proximity of pre- and postsynaptic ribbon synapse proteins supports the putative
427 formation of synaptic connections. Of note, the putative synaptic connectivity occurred
428 already at 10 weeks, preceding the extensive maturation of donor cells, as is also seen during
429 development. Similar plasticity in second order neurons was already described in rd1 mice

430 upon photoreceptor transplantation (10), but it is interesting that this effect is also seen in
431 the Cpf1 host where rod photoreceptors largely remain. This implies that the incorporated
432 cell mass can replace existing connections, as dendritic remodeling of host second order
433 neurons was observed only in areas of human cone incorporation. Similarly, in the
434 aforementioned study, photopic light evoked responses by MEA were also reported (10). In
435 our context, MEA recordings were complicated by the oversaturation of endogenous rods due
436 to fluorescent cell mass localization, leading to a low level of background photopic response.
437 For future studies, the injected cell number may be increased to expand graft area removing
438 the need to locate by fluorescence, as per Ribeiro et al, where the transplantation of 500,000
439 donor cells not only increased graft area but also improved maturation compared to their
440 previous studies using 150,000 cells (10). Regardless, using just 150,000 donor
441 photoreceptors, we observed 3 to 4-fold higher proportion of both ON and OFF responsive
442 RGCs under mesopic and photopic conditions when comparing regions containing
443 transplanted cells with non-transplant containing regions. This is a strong indicator that the
444 increased response is due to light-evoked responses transmitted from the graft. While the ON
445 RGC contribution of the graft vs endogenous rods cannot be resolved definitively, the
446 introduction of L-AP4 isolates cone OFF bipolar responses. As cones are dysfunctional or
447 absent in the Cpf1 host, any cone-OFF bipolar response should be due to newly formed
448 connections to the graft. Indeed, all ON responses were quenched by L-AP4 and OFF responses
449 remained only in the transplanted region, giving strong evidence that there is photopic light
450 evoked signal transduction of transplanted cells through the cone OFF pathway. This indicates
451 that the well matured and structurally incorporated photoreceptors in this study are
452 functionally integrated and synaptically connected to the host retina.

453

454 In this study we describe the first human cone-specific reporter iPSC-line for the use of retinal
455 organoid generation. Transplanted human cones and CRX⁺ photoreceptors extensively
456 incorporated into a mouse model of cone degeneration. Incorporated grafts were well
457 polarized and developed inner and outer segments. Further studies will be required to
458 investigate details of the cellular and molecular requirements for structural incorporation and
459 interaction with the host tissue allowing subsequent donor photoreceptor maturation. Such
460 knowledge will be helpful to further optimize graft organization, OS formation and synaptic
461 connectivity with the ultimate goal of improving visual perception. Nonetheless, the observed
462 structural incorporation and subsequent in vivo polarisation and maturation of the human
463 photoreceptors, second order neuron plasticity and the lack of physical impediment to
464 synaptic connectivity is encouraging evidence that transplanted human photoreceptors may
465 have the potential to integrate into the remaining outer nuclear layer of patients.

466

467 [Acknowledgements](#)

468

469 The authors would like to thank the Stem Cell Engineering, Flow Cytometry, Light Microscopy
470 and Deep Sequencing core facilities at the CMCB, Technische Universität Dresden for
471 assistance in iPSC cell culture, cell sorting, microscopy and sequencing/ bioinformatic analysis,
472 respectively. Additional technical assistance was provided by Jochen Hentschel, Sneha
473 Prabhakara Shastry, Klara Schmidtke and Lynn Ebner.

474 This work was supported by the Bundesministerium für Bildung und Forschung (BMBF):
475 ReSight - 01EK1613A to M.A., 01EK1613E to M.R. and G.Z.), and Deutsche
476 Forschungsgemeinschaft (DFG): within the SPP2127 Program (AD375/7-1 to M.A.), and FZT
477 111 and EXC68. Supported by the Funding Programs for DZNE Helmholtz (M.K.); TU Dresden

478 CRTD (M.K.); HGF ExNet-007 (M.K.); Bundesministerium für Bildung und Forschung (BMBF)
479 ReSight (01EK1613A); DFG KA2794/5-1 SPP2127 (M.K.). This work received financial support
480 from the State Ministry of Baden-Wuerttemberg for Economic Affairs, Labour and Tourism
481 (M.R. and G.Z.).V.B. acknowledges funding by the European Research Council (ERC-2020-PoC-
482 966709 - iPhotoreceptors), by the Deutsche Forschungsgemeinschaft (SPP2127, EXC-2151-
483 390873048 – Cluster of Excellence – ImmunoSensation2 at the University of Bonn) and the
484 Volkswagen Foundation (Freigeist - A110720).T.K. and the EMF of the CMCB are supported by
485 EFRE.

486

487 [Author contribution](#)

488

489 S.G., K.T., and M.A. conceived this study. S.G., K.T., M.R., M.C., O.B., S.W., A.K., M.Z., M.V.,
490 T.K., O.G., M.K., V.B., G.Z. and M.A. designed and/or performed the experiments. S.G., K.T.
491 and M.A. wrote this paper with input from all authors.

492

493 [Declaration of interests](#)

494

495 The authors have no disclosures.

496

497 Methods

498

499 Vector production

500 The piggyBac vector backbone PB-TRE-dCas9-VPR (43) was a gift from George Church
501 (Addgene plasmid, 63800). All promoter elements and open reading frames between the core
502 insulator at the 5' and the SV40 polA at the 3' ends were removed using restriction enzymes
503 and replaced with either PCR-amplified rod or cone reporter cassette. PCR products were
504 introduced into the piggyBac vector backbone using Gibson assembly cloning (44). For the
505 cone reporter cassette production, a PCR-amplified mouse cone arrestin promoter (mCAR)
506 from LV-mCAR-eNpHR-EYFP (45) (gift from Botond Roska) was assembled with an EGFP
507 followed by a downstream WPRE-BGH-pA element. Finally, a PCR-amplified ubiquitin C
508 promoter (UBC)-blasticidin (Bla) cassette from vector pLV-TRET-hNgn1-UBC-Bla (46)(gift from
509 Ron Weiss, Addgene plasmid, 61473) was further added to both vector assemblies resulting
510 in reporter plasmids PB-hRHO-DsRed-WPRE-BGH-pA-UBC-Bla and PB-mCAR-EGFP-WPRE-
511 BGH-pA-UBC-Bla. The plasmid DNA was transformed in chemically competent bacteria (One
512 Shot® Stbl3™, Thermo Fisher Scientific) following the manufacturer's protocol. The correct
513 sequences were confirmed with Sanger sequencing. While RFP was also introduced under the
514 Rhodopsin promoter, almost no RFP signal was detected even after 270 days in culture,
515 however for the purposes of a cone transplantation study this was deemed irrelevant (data
516 not shown).

517

518 Generation of a hiPSC cone reporter line

519 The Personal Genome Project hiPS cell line PGP1 (47) was a gift from George Church
520 (<https://www.encodeproject.org>, accession number: ENCBS368AAA). The cells were cultured

521 on Matrigel coated wells (Corning, 354277) in mTeSR™1 medium (StemCell Technologies,
522 85850) and passaged in the presence of ROCK Inhibitor InSolution™ Y-27632 (Merck Millipore,
523 688001). The 4D-Nucleofector™ System (Lonza) was used to electroporate piggyBac and
524 transposase vectors into PGP1 cells in suspension (X-Unit, P3 Primary Cell 4D-Nucleofector® X
525 Kit L, program CB-156) following the manufacturer's protocol. After nucleofections, cells were
526 selected with 20 µg/ml Bla (Thermo Fisher Scientific, A1113903) for five days. The selected
527 cells were seeded at low densities and propagated until each single cell formed a colony.
528 Colonies were picked and genotyped using primers specifically binding to rod and cone
529 reporter cassettes. The monoclonal cell line carrying both reporter cassettes (PGP1dR) at
530 passage number 33-38 was used for all further experiments.

531 hRHO_for - GGATACGGGGAAAAGGCCTCCACGGCCACTAGTAGTTAATGATTAACCCG

532 hRHO_rev - GACGTCCCTCGGAGGAGGCCATGGTGGCTGCAGAATTCAAGGGATGACTCT

533 mCAR_for -

534 CTGGGGGGATACGGGGAAAAGGCCTCCACGGCCACTAGTGGTCTTCCCATTTGGCTAC

535 mCAR_rev -

536 GAACAGCTCCTGCCCTTGCTCACCATGGTGGCTAGACCTCCAGCTCTGGTTGCTAAGCTGGC

537

538 hiPSC maintenance and differentiation of retinal organoids

539 The mCar-GFP and Crx-mCherry iPSC lines (kind gift from Olivier Goureau – see (23)) were
540 maintained in mTeSR1 (Stem cell technologies) on matrigel coated plates and split using
541 ReleSR at room temperature (Stem cell technologies). Stem cells were differentiated to retinal
542 organoids using an optimized protocol as previously described see also supplementary
543 methods (17).

544 FAC-sorting of reporter positive cells
545 Retinal organoids were dissociated in 20 U/ml papain, followed by gentle titration with a fire
546 polished glass pipette and further processing as per the manufacturer's instructions - Papain
547 Dissociation System (Worthington). The cell pellet was resuspended in MACS buffer (0.5%
548 BSA, 2 mM EDTA in PBS) to a concentration of ~5 million cells per mL. The cell suspension was
549 filtered through a 35 µm mesh and kept on ice for FAC sorting. An Ariall or Arialll sorter was
550 used to sort GFP⁺ or mCherry⁺ cells. Briefly, forward (FSC-A) and side scatter area (SSC-A) was
551 used to discriminate cells from debris. Doublets were removed by gating FSC area vs height
552 and by SSC height vs width. Dead cells were gated out using DAPI staining. Finally, GFP⁺ or
553 mCherry⁺ cells were discriminated from auto fluorescent cells using GFP vs PE or APC.

554

555 Animals

556

557 Adult cone photoreceptor function loss 1 (Cpfl1) mutant (7-14 week-old) were used as
558 recipients for cell transplantation. Mice were maintained in a 12-hour Light/Dark cycle with
559 ad libitum access to food and water.

560

561 Transplantations

562

563 Following FAC sorting, GFP⁺ or mCherry⁺ cells were resuspended in MACS buffer (150 000
564 cells/µl) and injected into the subretinal space of host eyes as previously described -see also
565 supplementary (48). Directly following cell transplantation, 1 µL of preservative free
566 triamcinolone acetonide suspension (80 µg /µL in NaCl prepared by University Clinic
567 Pharmacy, Dresden) was injected into the vitreous using a hand held 10 µl Hamilton syringe

568 with a blunt 34-Gauge needle. Triamcinolone vitreal injections were repeated on a monthly
569 basis.

570

571 Immunohistochemistry

572

573 Immunohistochemistry was performed as described previously (18) see supplementary
574 methods for details. For immunocytochemistry following dissociation and sorting of the
575 retinal organoid cells, cells were resuspended in RM2 media and laminin was added to each
576 fraction. From each fraction 50 000 cells were plated into flexiperm wells on a PDL coated
577 slide. Cells were incubated at 37°C for 2 hours to allow attachment. Cells were then fixed for
578 15 minutes at room temperature (RT), washed 3 times with PBS and stained as per frozen
579 sections above. Frozen sections and plated cells were mounted following antibody staining
580 using AquaPolymount (Polysciences, Heidelberg, Germany) and imaged using a Zeiss Apotome
581 ImagerZ2 (Zeiss, Heidelberg, Germany).

582

583 Transmission Electron Microscopy (TEM) and Correlative Light Electron Microscopy (CLEM)
584

585 TEM of transplanted cones was performed as previously described (49, 50).

586 CLEM of immunolabeled sections was performed as described previously (51, 52)

587 TEM imaging was performed with a Jeol JEM1400 Plus transmission electron microscope
588 (camera: Ruby, Jeol) running at 80kV acceleration voltage.

589

590 SmartSeq2

591

592 Whole eye cups of transplanted eyes or organoids maintained in culture from the same
593 differentiation round were dissociated with papain as described above (Papain dissociation
594 kit 20U). Cell were resuspended in MACS buffer and filtered through a 35 µm mesh before
595 FAC-sorting and sequencing - method was modified based on (53) see supplementary for
596 details.

597

598

599 Transcriptomic Analysis

600

601 Basic quality control of the resulting sequence data was done with FastQC (v0.11.6)
602 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) and the degree of mouse
603 contamination was assessed with FastQ-Screen (v0.9.3)
604 (https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen). Reads originating from
605 mouse were removed with xengsort (v2021-05-27)(54). Reads were aligned to the human
606 reference genome hg38 using the aligner gsnap (v2020-12-16)(55) with Ensembl 92 human
607 splice sites as support. Uniquely mapped reads were compared based on their overlap to
608 Ensembl 92 human gene annotations using featureCounts (v2.0.1)(56) to create a table of
609 fragments per human gene and sample. Normalization of raw fragments based on library size
610 and testing for differential expression between the different cell types/treatments was
611 performed with the R package DESeq2 (v1.30.1) (57). Sample to sample Euclidean distance,
612 Pearson' and Spearman correlation coefficient and principal component analysis based upon
613 the top 500 genes with the highest variance were computed to explore correlation between

614 biological replicates and different libraries. To identify differentially expressed genes, counts
615 were fitted to the negative binomial distribution and genes were tested between conditions
616 using the Wald test of DESeq2. The comparison of the GFP-positive vs the GFP-negative
617 fraction included the age as covariate while all other comparisons just included the specific
618 groups. Resulting p-values were corrected for multiple testing with the Independent
619 Hypothesis Weighting package (IHW 1.18.0) (58, 59). Genes with a maximum of 5% false
620 discovery rate ($p_{adj} \leq 0.05$) were considered as significantly differentially expressed.

621

622 Electrophysiological recordings with multi electrode array

623

624 A Glass MEA with 256 electrodes of 30 μ m diameter and a spacing of 200 μ m spanning an area
625 of 3 mm \times 3 mm (256MEA100/30iR-ITO) with recording headstage (MEA256-System, Multi
626 Channel Systems MCS) below the microscope was used for all experiments.

627

628 The preparation of ex vivo retina was performed in carbonated (95% O₂, 5% CO₂) Ames'
629 medium (Ames A 1420, Sigma Aldrich + NaHCO₃). Following the euthanasia of the mouse, the
630 eyes were opened via a small needle incision above the ora serrata. After removal of the lens,
631 the eye was cut in half and the graft located with stereomicroscope (Leica M80), equipped
632 with a fluorescent illumination unit. The retina with the graft was then separated from the
633 sclera and RPE, trimmed with a scalpel and the vitreous removed. The retina was placed
634 ganglion cell side up on a filter paper and transferred retinal ganglion cell (RGC) side down on
635 to the coated (Cell-Tak, Corning), as described in detail in a previous report (60) recording
636 electrodes and filter paper removed. The other half of the retina was prepared in the same
637 way as a reference sample.

638

639 A patterned light stimulus created by an oLED display (DSVGA monochrome green XLT,
640 eMagin) in combination with the software GEARS (61) was used, allowing for binary
641 checkerboard white noise (bwn) stimulation. The oLED is coupled to the microscope with an
642 adapter and its light is projected onto the sample through a 2.5x objective. The oLEDs power
643 was derived as $P=0.7 \mu\text{W}$ for full-field illumination, which can be calculated into
644 photoisomerizations equaling to approx. $1 \cdot 10^5 \text{ R}^*/\text{photoreceptor/s}$ for both rods and m cones.
645 We generated pseudo-random, binary (green and black) checkerboard stimuli - where at every
646 stimulus frame the intensity of each checker was drawn from a binary distribution - with a
647 temporal frequency of 38 Hz (frame duration of 26ms) and a total duration of 25 min, with a
648 resolution of 30 pixel x 30 pixel, resulting in an illuminated area of 3.2 mm x 4.2 mm.

649

650 During RGC activity recording the MEA chamber was continuously perfused with Ames'
651 solution at a rate of 2-4 mL/min. The temperature of the MEA chamber was maintained at \sim
652 36°C by heating the bottom of the recording chamber and the perfusion inlet. To assure RGC
653 OFF responses are driven by injected photoreceptors, experiments were performed before and
654 after addition of the mGluR6 blocker L-AP4 (50 μM , Tocris Cat. No. 0103). Extracellular
655 voltages were recorded using the software MCRack (MCS) and preprocessed using a 2nd order
656 Butterworth highpass filter (300Hz), before spike detection -see supplementary for details.

657

658 Image processing

659 Images and graphs were processed and generated using Image J (National Institutes of
660 Health), Zen Blue Software (Zeiss), Affinity Designer (Serif Ltd), and graphpad Prism 7

661

662 Recoverin and cone arrestin quantification of ICC was performed using cell profiler 3.1.9. Total
663 graft area was quantified using Zen Blue image analysis wizard, and then each individual GFP⁺
664 cell cluster with associated area was categorized manually as ONL contact – cluster made
665 contact with the ONL but mostly remained in the subretinal space, partially incorporated –
666 the cluster was in line with the host ONL, however gaps or rosette like structures from
667 remaining host ONL reside below the graft area, or fully incorporated – the cluster replaced
668 sections of host ONL without gaps or rosettes from the host.

669

670 Panther was used for gene enrichment analysis (62). Differentially expressed genes from our
671 data set were run through the statistical overrepresentation test function using the whole
672 human genome as reference list. Fisher's exact test with calculated false discovery rate was
673 selected and output was condensed by hierarchical clustering of GO-terms to reduce
674 repetitive pathway findings. Morpheus (<https://software.broadinstitute.org/morpheus>) was
675 used to create heat maps.

676

677 Statistical analyses

678 Statistical significance was calculated using a one-way ANOVA with Tukeys multiple
679 comparison tests. Statistical significance is represented in the figures as follows: *, p < .05;
680 **, p < .01; ***, p < .001; ****, p < .0005, n.s.: not-statistically significant. Detailed statistical
681 analysis of transcriptional data and spike sorting see respective sections.

682

683 Study approval

684 All animal experiments were approved by the ethics committee of the TU Dresden and the
685 Landesdirektion Dresden (approval number: TVV 16/2016 and TVV 38/2019). All regulations

686 from European Union, German laws (Tierschutzgesetz), the ARVO statement for the Use of
687 Animals in Ophthalmic and Vision Research and the NIH Guide for the care and use of
688 laboratory work were strictly followed for all animal work.

689

690 References

691

692 1. WHO. World report on vision [Internet]2019;<https://www.who.int/publications-detail->

693 redirect/9789241516570. cited April 27, 2021

694 2. Mead B et al. Stem cell treatment of degenerative eye disease. *Stem Cell Res.*

695 2015;14(3):243–257.

696 3. Kolb H. Facts and Figures Concerning the Human Retina [Internet]. In: Kolb H, Fernandez

697 E, Nelson R eds. *Webvision: The Organization of the Retina and Visual System*. Salt Lake City

698 (UT): University of Utah Health Sciences Center; 1995:

699 4. Welby E et al. Isolation and Comparative Transcriptome Analysis of Human Fetal and iPSC-

700 Derived Cone Photoreceptor Cells. *Stem Cell Rep.* 2017;9(6):1898–1915.

701 5. Iraha S et al. Establishment of Immunodeficient Retinal Degeneration Model Mice and

702 Functional Maturation of Human ESC-Derived Retinal Sheets after Transplantation. *Stem Cell*

703 *Rep.* 2018;10(3):1059–1074.

704 6. Lin B, McLelland BT, Mathur A, Aramant RB, Seiler MJ. Sheets of human retinal progenitor

705 transplants improve vision in rats with severe retinal degeneration. *Exp. Eye Res.*

706 2018;174:13–28.

707 7. Mandai M et al. iPSC-Derived Retina Transplants Improve Vision in rd1 End-Stage Retinal-

708 Degeneration Mice. *Stem Cell Rep.* 2017;8(1):69–83.

709 8. McLelland BT et al. Transplanted hESC-Derived Retina Organoid Sheets Differentiate,
710 Integrate, and Improve Visual Function in Retinal Degenerate Rats. *Invest. Ophthalmol. Vis.*
711 *Sci.* 2018;59(6):2586–2603.

712 9. Tu H-Y et al. Medium- to long-term survival and functional examination of human iPSC-
713 derived retinas in rat and primate models of retinal degeneration. *EBioMedicine*
714 2018;39:562–574.

715 10. Ribeiro J et al. Restoration of visual function in advanced disease after transplantation of
716 purified human pluripotent stem cell-derived cone photoreceptors [Internet]. *Cell Rep.*
717 2021;35(3). doi:10.1016/j.celrep.2021.109022

718 11. Collin J et al. CRX Expression in Pluripotent Stem Cell-Derived Photoreceptors Marks a
719 Transplantable Subpopulation of Early Cones. *Stem Cells* 2019;37(5):609–622.

720 12. Zerti D et al. Transplanted pluripotent stem cell-derived photoreceptor precursors elicit
721 conventional and unusual light responses in mice with advanced retinal degeneration. *Stem*
722 *Cells* 2021;39(7):882–896.

723 13. Pfeiffer RL, Marc RE, Jones BW. Persistent remodeling and neurodegeneration in late-
724 stage retinal degeneration. *Prog. Retin. Eye Res.* 2020;74:100771.

725 14. Chang B et al. Retinal degeneration mutants in the mouse. *Vision Res.* 2002;42(4):517–
726 525.

727 15. Kim S et al. Generation, transcriptome profiling, and functional validation of cone-rich
728 human retinal organoids. *Proc. Natl. Acad. Sci.* 2019;116(22):10824–10833.

729 16. Lowe A, Harris R, Bhansali P, Cvekl A, Liu W. Intercellular Adhesion-Dependent Cell
730 Survival and ROCK-Regulated Actomyosin-Driven Forces Mediate Self-Formation of a Retinal
731 Organoid. *Stem Cell Rep.* 2016;6(5):743–756.

732 17. Völkner M, Pavlou M, Büning H, Michalakis S, Karl MO. Optimized Adeno-Associated
733 Virus Vectors for Efficient Transduction of Human Retinal Organoids [Internet]. *Hum. Gene*
734 *Ther.* [published online ahead of print: March 23, 2021]; doi:10.1089/hum.2020.321

735 18. Santos-Ferreira T et al. Retinal transplantation of photoreceptors results in donor-host
736 cytoplasmic exchange. *Nat. Commun.* 2016;7:13028.

737 19. Pearson RA et al. Donor and host photoreceptors engage in material transfer following
738 transplantation of post-mitotic photoreceptor precursors. *Nat. Commun.* 2016;7:13029.

739 20. Singh MS et al. Transplanted photoreceptor precursors transfer proteins to host
740 photoreceptors by a mechanism of cytoplasmic fusion. *Nat. Commun.* 2016;7:13537.

741 21. Gonzalez-Cordero A et al. Recapitulation of Human Retinal Development from Human
742 Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors. *Stem*
743 *Cell Rep.* 2017;9(3):820–837.

744 22. Reichenbach A, Bringmann A. New functions of Müller cells. *Glia* 2013;61(5):651–678.

745 23. Gagliardi G et al. Characterization and Transplantation of CD73-Positive Photoreceptors
746 Isolated from Human iPSC-Derived Retinal Organoids. *Stem Cell Rep.* 2018;11(3):665–680.

747 24. Tikidji-Hamburyan A et al. Rods progressively escape saturation to drive visual responses
748 in daylight conditions. *Nat. Commun.* 2017;8(1):1813.

749 25. Collin J et al. Using Zinc Finger Nuclease Technology to Generate CRX-Reporter Human
750 Embryonic Stem Cells as a Tool to Identify and Study the Emergence of Photoreceptors
751 Precursors During Pluripotent Stem Cell Differentiation. *Stem Cells Dayt. Ohio*
752 2016;34(2):311–321.

753 26. Kaewkhaw R et al. Transcriptome Dynamics of Developing Photoreceptors in Three-
754 Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod
755 Differentiation Revealing Cell Surface Markers and Gene Networks. *STEM CELLS*
756 2015;33(12):3504–3518.

757 27. Lam PT, Gutierrez C, Del Rio-Tsonis K, Robinson ML. Generation of a Retina Reporter
758 hiPSC Line to Label Progenitor, Ganglion, and Photoreceptor Cell Types. *Transl. Vis. Sci.*
759 *Technol.* 2020;9(3):21.

760 28. Phillips MJ et al. Generation of a rod-specific NRL reporter line in human pluripotent
761 stem cells. *Sci. Rep.* 2018;8(1):2370.

762 29. Zweifel SA et al. Outer retinal tubulation: a novel optical coherence tomography finding.
763 *Arch. Ophthalmol.* 2009;127(12):1596–1602.

764 30. Gasparini SJ, Llonch S, Borsch O, Ader M. Transplantation of photoreceptors into the
765 degenerative retina: Current state and future perspectives. *Prog. Retin. Eye Res.* 2019;69:1–
766 37.

767 31. Assawachananont J et al. Transplantation of Embryonic and Induced Pluripotent Stem
768 Cell-Derived 3D Retinal Sheets into Retinal Degenerative Mice. *Stem Cell Rep.*
769 2014;2(5):662–674.

770 32. Shirai H et al. Transplantation of human embryonic stem cell-derived retinal tissue in two
771 primate models of retinal degeneration. *Proc. Natl. Acad. Sci.* 2016;113(1):E81–E90.

772 33. Ingram NT, Fain GL, Sampath AP. Elevated energy requirement of cone photoreceptors.
773 *Proc. Natl. Acad. Sci.* 2020;117(32):19599–19603.

774 34. Kljavin IJ, Reh TA. Muller cells are a preferred substrate for in vitro neurite extension by
775 rod photoreceptor cells. *J. Neurosci.* 1991;11(10):2985–2994.

776 35. Tsai ELS et al. Modeling of Photoreceptor Donor-Host Interaction Following
777 Transplantation Reveals a Role for Crx, Müller Glia, and Rho/ROCK Signaling in Neurite
778 Outgrowth. *Stem Cells* 2019;37(4):529–541.

779 36. Wang X, Iannaccone A, Jablonski MM. Contribution of Müller cells toward the regulation
780 of photoreceptor outer segment assembly. *Neuron Glia Biol.* 2005;1:1–6.

781 37. Cowan CS et al. Cell Types of the Human Retina and Its Organoids at Single-Cell
782 Resolution. *Cell* 2020;182(6):1623-1640.e34.

783 38. Mellough CB et al. IGF-1 Signaling Plays an Important Role in the Formation of Three-
784 Dimensional Laminated Neural Retina and Other Ocular Structures From Human Embryonic
785 Stem Cells. *Stem Cells* 2015;33(8):2416–2430.

786 39. Reichman S et al. Generation of Storable Retinal Organoids and Retinal Pigmented
787 Epithelium from Adherent Human iPS Cells in Xeno-Free and Feeder-Free Conditions. *Stem
788 Cells* 2017;35(5):1176–1188.

789 40. Zhong X et al. Generation of three-dimensional retinal tissue with functional
790 photoreceptors from human iPSCs. *Nat. Commun.* 2014;5:4047.

791 41. Wahlin KJ et al. Photoreceptor Outer Segment-like Structures in Long-Term 3D Retinas
792 from Human Pluripotent Stem Cells. *Sci. Rep.* 2017;7(1):766.

793 42. Garita-Hernandez M et al. Restoration of visual function by transplantation of
794 optogenetically engineered photoreceptors. *Nat. Commun.* 2019;10(1):4524.

795 43. Chavez A et al. Highly efficient Cas9-mediated transcriptional programming. *Nat.*
796 *Methods* 2015;12(4):326–328.

797 44. Gibson DG et al. Creation of a Bacterial Cell Controlled by a Chemically Synthesized
798 Genome. *Science* 2010;329(5987):52–56.

799 45. Busskamp V et al. Genetic reactivation of cone photoreceptors restores visual responses
800 in retinitis pigmentosa. *Science* 2010;329(5990):413–417.

801 46. Busskamp V et al. Rapid neurogenesis through transcriptional activation in human stem
802 cells. *Mol. Syst. Biol.* 2014;10(11):760.

803 47. Lee J-H et al. A Robust Approach to Identifying Tissue-Specific Gene Expression
804 Regulatory Variants Using Personalized Human Induced Pluripotent Stem Cells. *PLOS Genet.*
805 2009;5(11):e1000718.

806 48. Eberle D, Santos-Ferreira T, Grahl S, Ader M. Subretinal transplantation of MACS purified
807 photoreceptor precursor cells into the adult mouse retina. *J. Vis. Exp. JoVE*
808 2014;(84):e50932.

809 49. Völkner M et al. Mouse Retinal Organoid Growth and Maintenance in Longer-Term
810 Culture. *Front. Cell Dev. Biol.* 2021;9:645704.

811 50. Völkner M, Kurth T, Karl MO. The Mouse Retinal Organoid Trisection Recipe: Efficient
812 Generation of 3D Retinal Tissue from Mouse Embryonic Stem Cells. *Methods Mol. Biol.*
813 2019;1834:119–141.

814 51. Fabig G et al. Labeling of ultrathin resin sections for correlative light and electron
815 microscopy. *Methods Cell Biol.* 2012;111:75–93.

816 52. Eberle D et al. Outer segment formation of transplanted photoreceptor precursor cells.
817 *PLoS One* 2012;7(9):e46305.

818 53. Picelli S et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells.
819 *Nat. Methods* 2013;10(11):1096–1098.

820 54. Zentgraf J, Rahmann S. Fast lightweight accurate xenograft sorting. *Algorithms Mol. Biol.*
821 *AMB* 2021;16(1):2.

822 55. Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short
823 reads. *Bioinformatics* 2010;26(7):873–881.

824 56. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for
825 assigning sequence reads to genomic features. *Bioinforma. Oxf. Engl.* 2014;30(7):923–930.

826 57. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
827 RNA-seq data with DESeq2. *Genome Biol.* 2014;15(12):550.

828 58. Ignatiadis N, Huber W. Covariate powered cross-weighted multiple testing [Internet].
829 *ArXiv170105179 Stat* [published online ahead of print: June 21,
830 2021];<http://arxiv.org/abs/1701.05179>. cited July 12, 2021

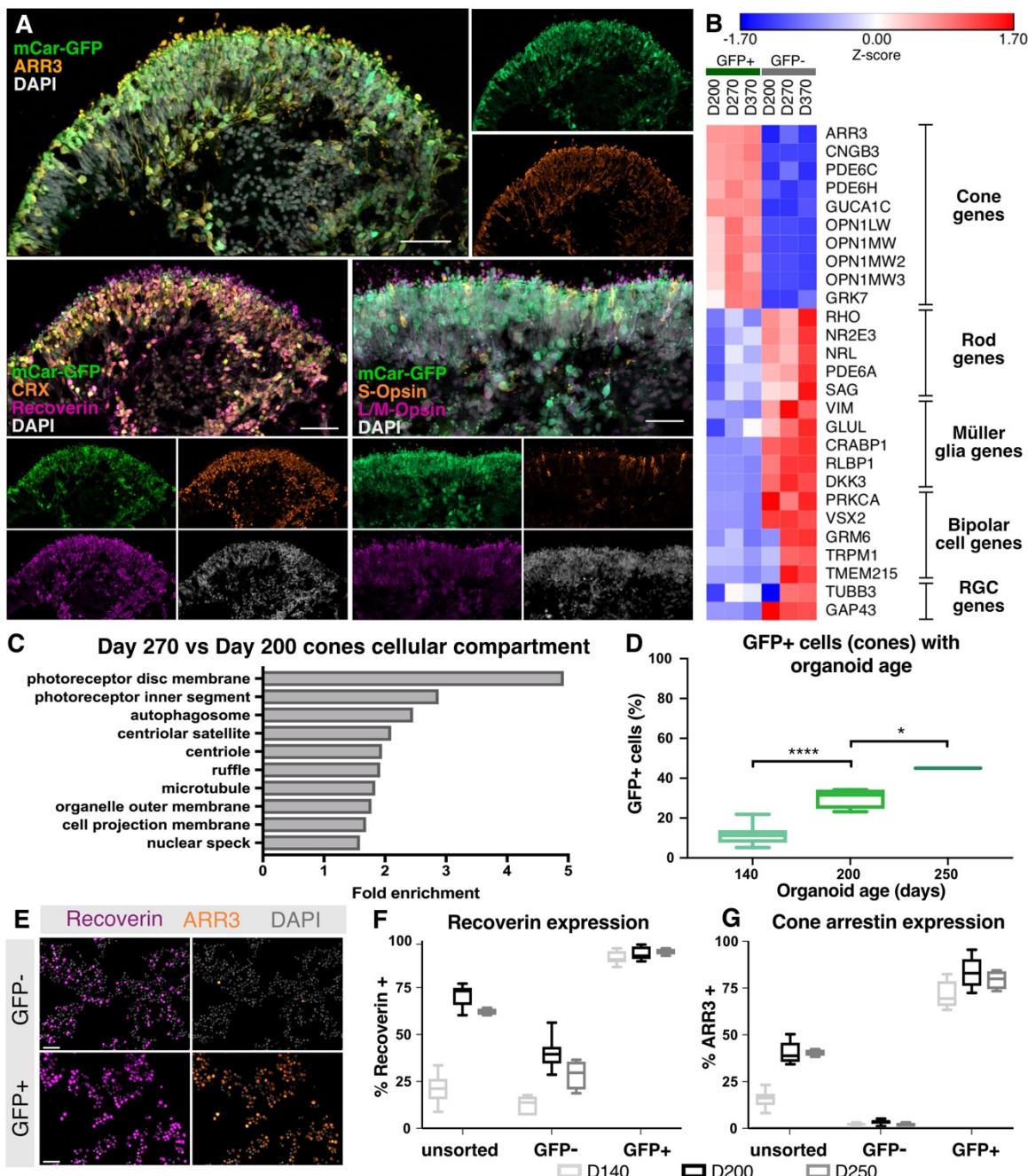
831 59. Ignatiadis N, Klaus B, Zaugg JB, Huber W. Data-driven hypothesis weighting increases
832 detection power in genome-scale multiple testing. *Nat. Methods* 2016;13(7):577–580.

833 60. Reh M, Lee M-J, Schmierer J, Zeck G. Spatial and temporal resolution of optogenetically
834 recovered vision in ChR2-transduced mouse retina. *J. Neural Eng.* [published online ahead of
835 print: February 5, 2021]; doi:10.1088/1741-2552/abe39a

836 61. Szécsi L, Kacsó Á, Zeck G, Hantz P. Interactive Light Stimulus Generation with High
837 Performance Real-Time Image Processing and Simple Scripting. *Front. Neuroinformatics*
838 2017;11:70.

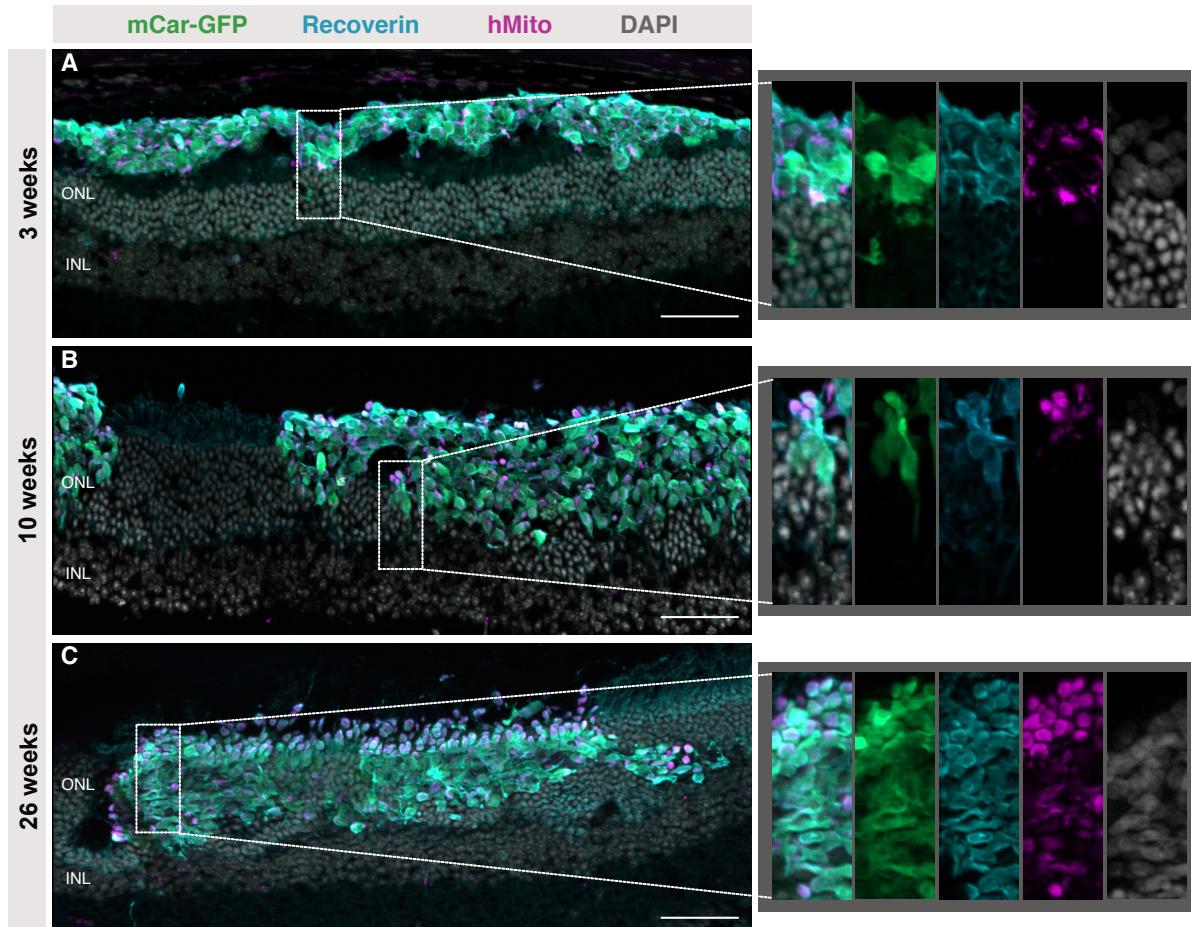
839 62. Mi H et al. PANTHER version 16: a revised family classification, tree-based classification
840 tool, enhancer regions and extensive API. *Nucleic Acids Res.* 2021;49(D1):D394–D403.

841

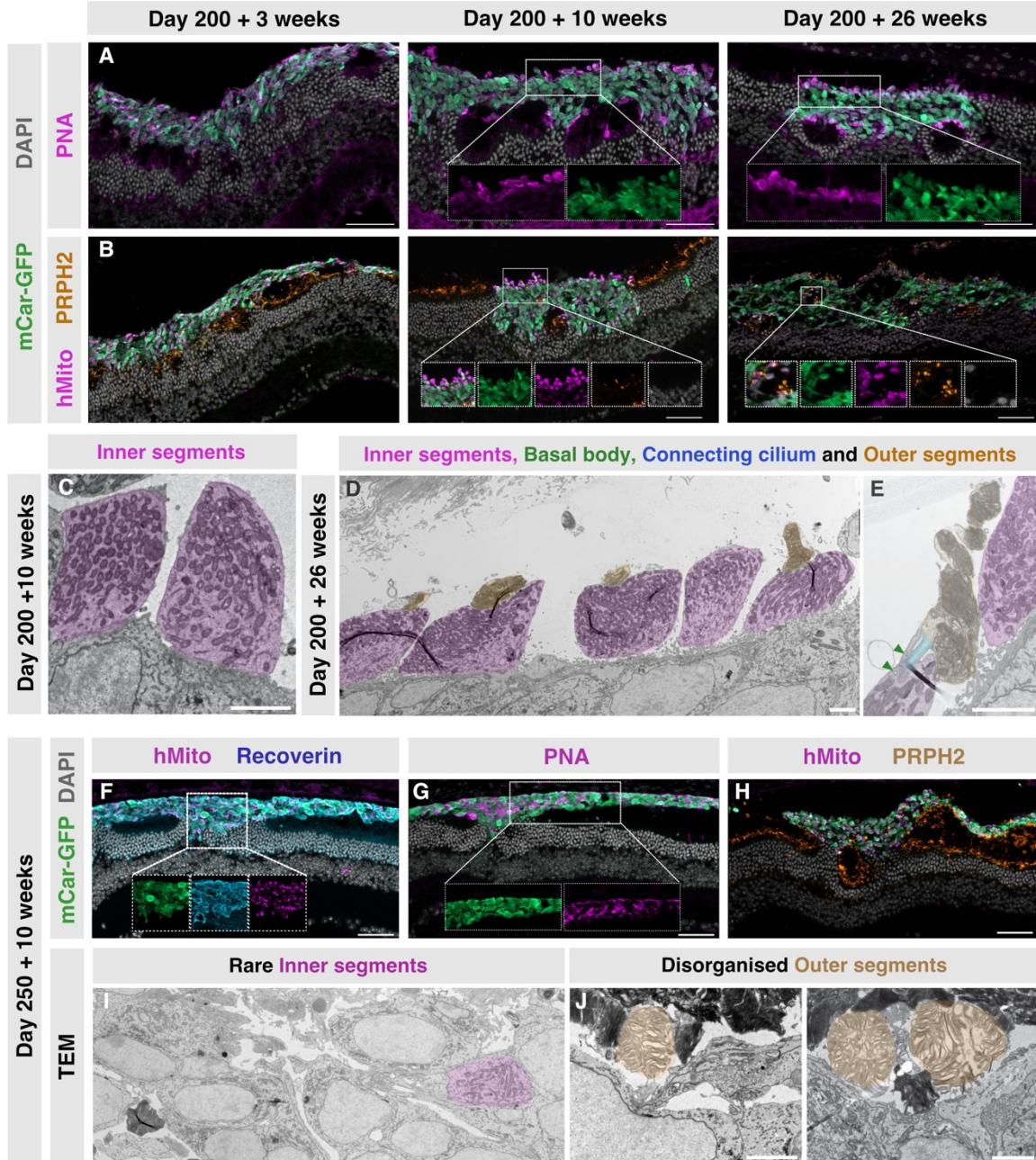

842

843

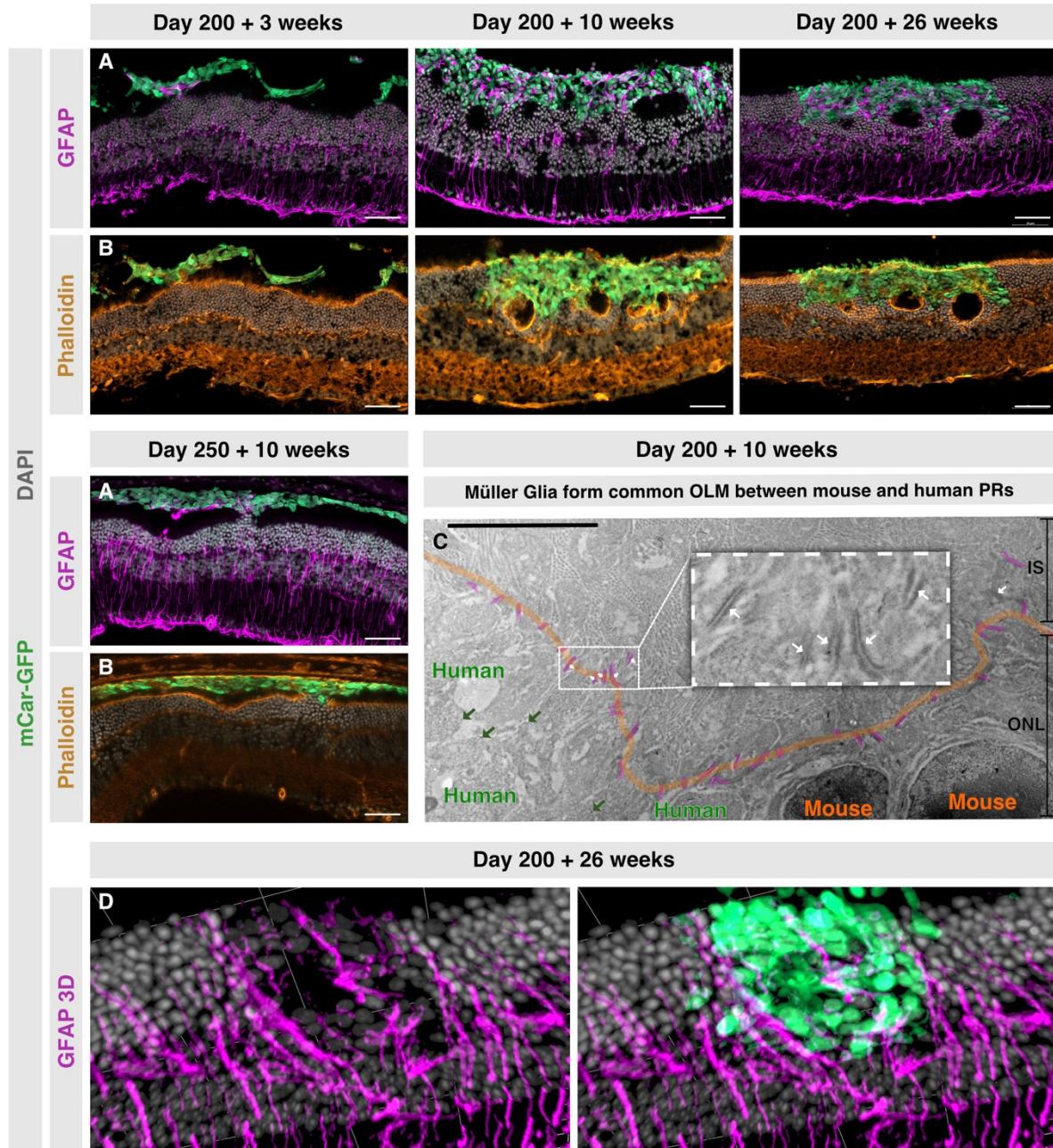
844


845

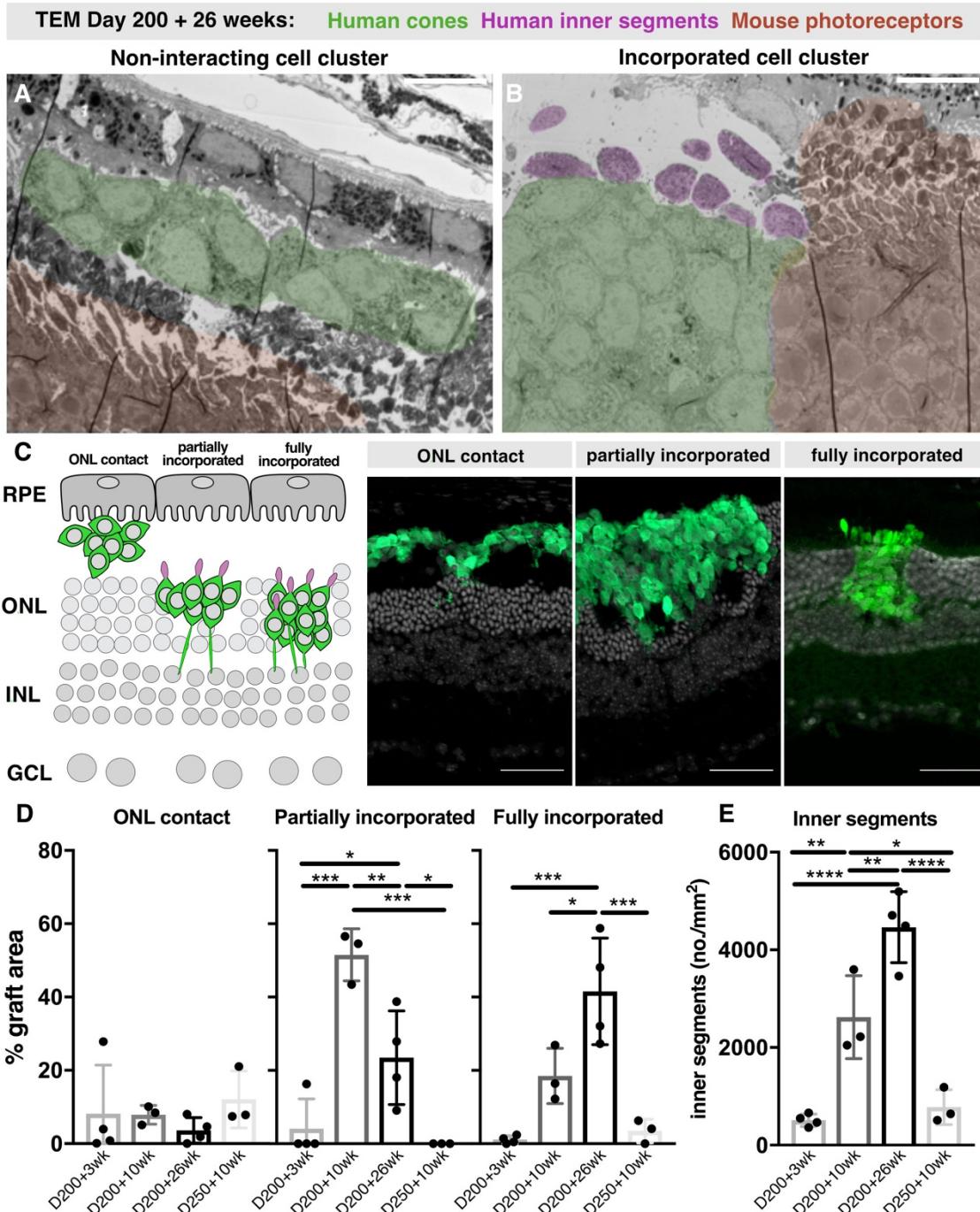
846 Figures and legends


847

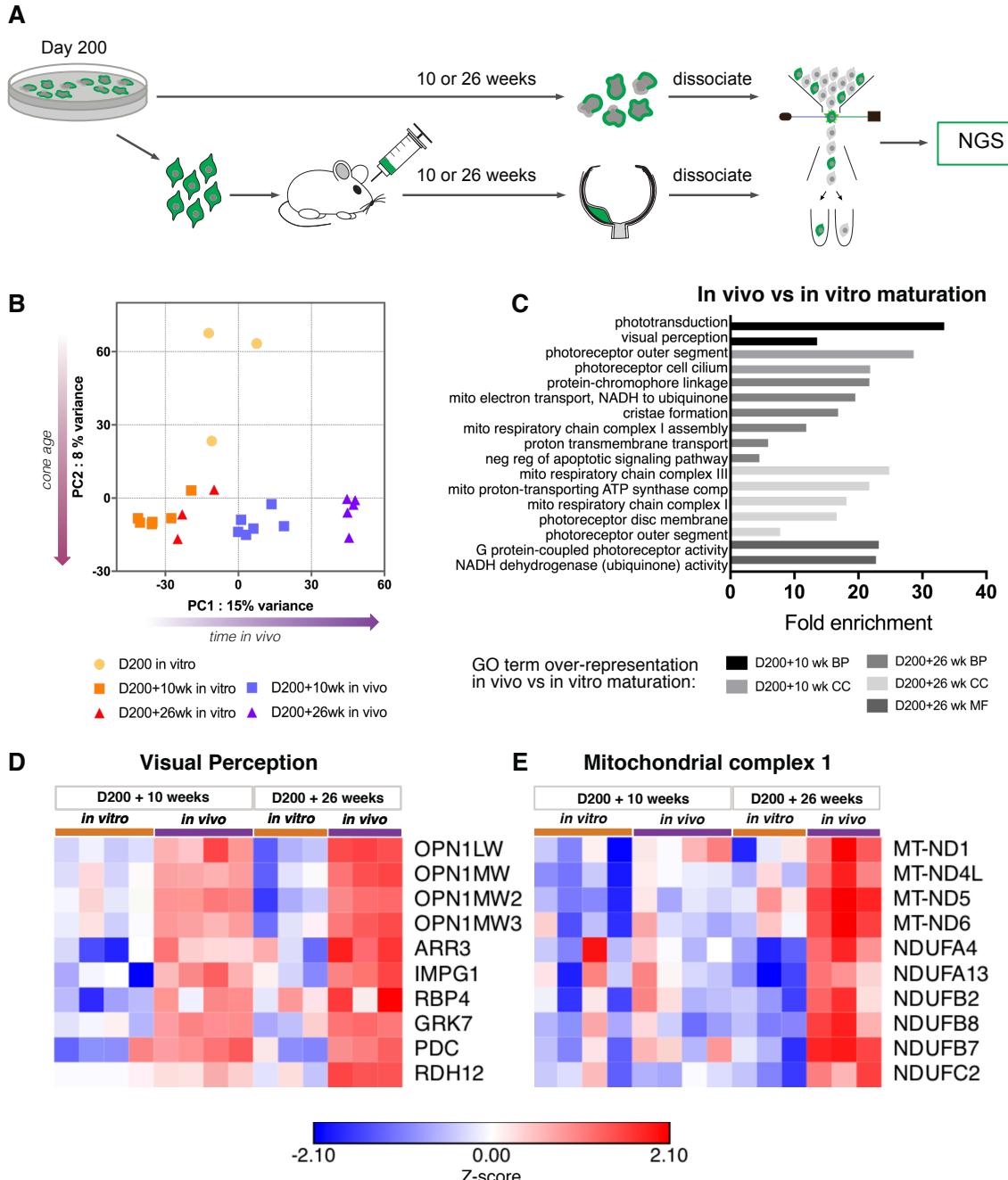
848 Figure 1: Generation and characterisation of a cone specific reporter line – D240 mCar-GFP derived retinal
 849 organoid cryosections show (A) co-staining of mCar-driven GFP with cone (ARR3, S-Opsin, L/M-opsin) and
 850 photoreceptor specific (CRX, recoverin) proteins. (B) Heat map of z-scores in major retinal cell type marker gene
 851 expression in GFP+ and GFP- cells sorted from mCar-GFP reporter organoids at D200, D270 and D370 post
 852 differentiation. (C) Gene ontology term cellular compartment over-representation analysis of D270 GFP+ cells
 853 compared with D200 GFP+ cells. (D) Proportion of GFP+ cells with organoid age. (E) Immunocytochemistry of
 854 GFP, recoverin and ARR3 expression in GFP+ and GFP- FAC-sorted fractions and quantification of
 855 immunocytochemical staining of (F) recoverin and (G) cone arrestin in unsorted, GFP+ and GFP- sorted fractions.
 856 Scale bars in all immunohistochemical images 50 μ m.


857

858 Figure 2: Extensive incorporation of transplanted cones into the Cpf1 host retina with increased time since
859 transplantation – Cryosections of retina transplanted with mCar-GFP⁺ cells at D200 post-differentiation stained
860 with GFP, recoverin, human mitochondria and DAPI show (A) minimal donor-host interaction 3 weeks post-
861 transplantation and (B) large cell clusters incorporated into the host retina at 10 weeks post-transplantation,
862 with areas of round mitochondria rich outgrowths towards the RPE and axon like extensions projected towards
863 the inner nuclear layer (see zoomed area). (C) By 26 weeks, grafts displayed even more abundant mitochondria
864 rich outgrowths (see zoomed area). Scale bars in all immunohistochemical images 50 µm. RPE: retinal pigment
865 epithelium, DAPI: 4',6-diamidino-2-phenylindole
866


867

868 Figure 3: Graft development, polarisation and inner and outer segment formation – Cryosections of retina
 869 transplanted with D200 mCar-GFP⁺ cells were stained with (A) PNA showing more localised PNA binding with
 870 longer transplantation times. (B) PRPH2 shows most abundant staining at 26 weeks post-transplantation. TEM
 871 of ultrathin sections of eyes transplanted with D200 cones revealed (C) inner segments (purple) at 10 weeks post
 872 transplantation, (D) inner (purple) and outer segments (orange) and (E) occasionally basal bodies (green arrows)
 873 and connecting cilium (blue overlay) at 26 weeks post-transplantation. Cryosections of retina transplanted with
 874 mCar-GFP⁺ cells at day 250 post-differentiation showed (F) minimal donor-host interaction and few mitochondria
 875 rich outgrowths, (G) dispersed PNA binding and (H) little PRPH2 staining. TEM of the D250 transplanted cones
 876 showed (I) few inner segments and (J) occasional disorganized outer segments. Scale bars in all
 877 immunohistochemical images 50 μ m and for all TEM images 2 μ m. IS: Inner segment, OS: Outer segment, BB:
 878 Basal body, CC: Connecting cilium, TEM: Transmission electron microscopy, PNA: Peanut agglutinin, PRPH2;
 879 Peripherin2


880

881 Figure 4: Host Müller glia interaction with human cone grafts – Cryosections of retina transplanted with mCar-
882 GFP+ cells at D200 or D250 post-differentiation showed (A) Müller glia beginning to extend processes into areas
883 where the graft contacted host ONL (D200+3 weeks, D250+10 weeks), and extensively intermingling with grafts
884 (D200+10 and D200+26 weeks) which had incorporated into the host ONL. (B) Phalloidin staining indicates that
885 a common continuous OLM forms when the human cones incorporate into the host ONL. (C) Immunogold
886 labelling confirms the formation of a common OLM between mouse and human photoreceptors. Dark green
887 arrows indicate examples of immunogold 10nm labelling of human ARR3, thick orange line indicates the position
888 of the OLM, yellow strokes indicate adherens junctions between mouse Müller glia and both mouse and human
889 photoreceptors. (D) 3D reconstruction of GFAP positive Müller glia processes extending around human cones.
890 Scale bars in all immunohistochemical images 50 µm, for CLEM images 6 µm and in 3D reconstruction grid lines
891 are 50 µm. OLM: outer limiting membrane

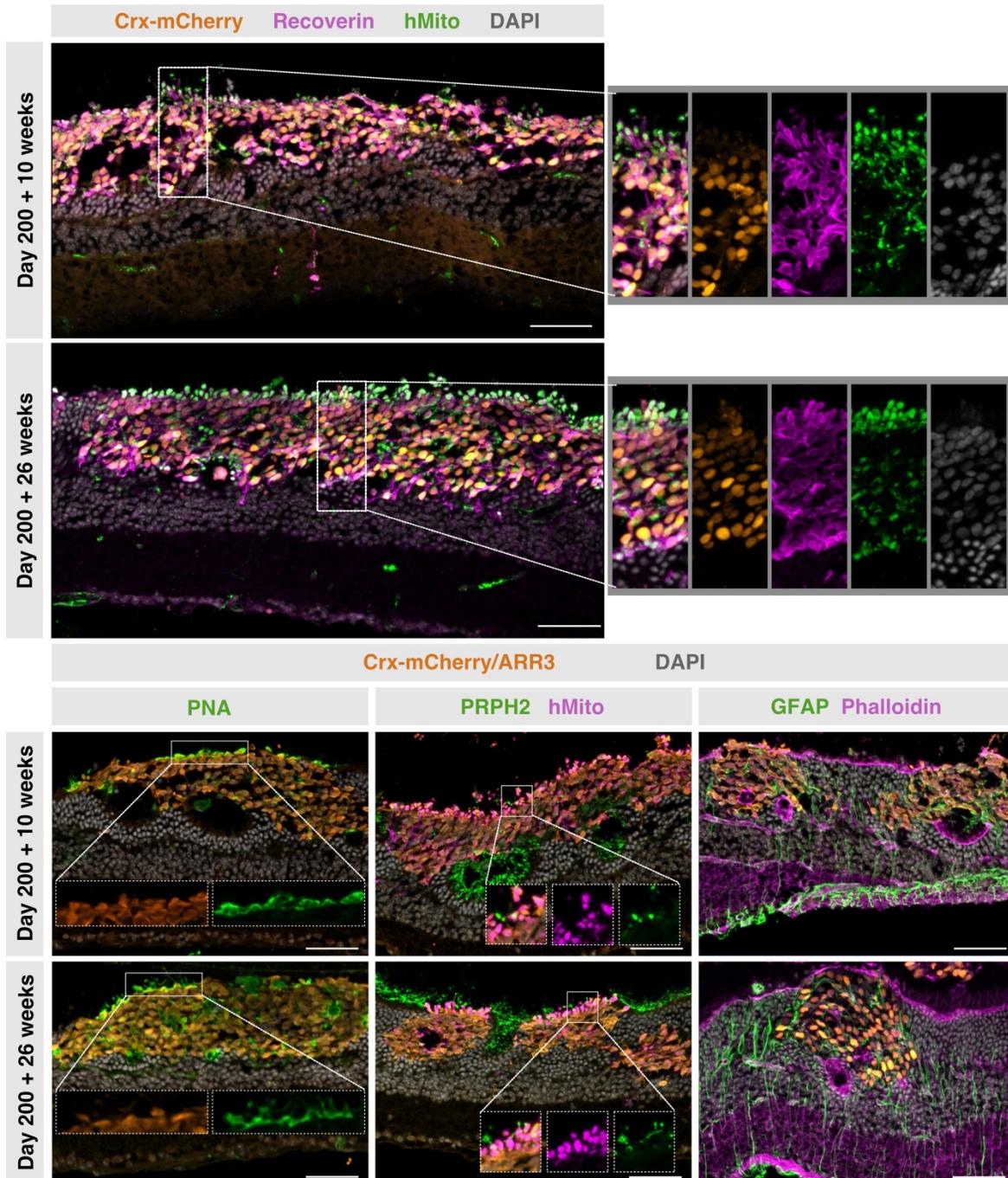

892
893
894
895
896
897
898
899
900
901
902
903

Figure 5: Interactive grafts more readily develop inner segments – Representative TEM of ultrathin retinal sections where some cone clusters (green overlay) within the same mouse eye (A) remain in the subretinal space or (B) incorporate into the host ONL (mouse photoreceptors orange overlay) and develop inner segments (purple overlay). (C) Schematic representation and example retinal cryosections for the classification of donor-host interaction into ONL contact, partially or fully incorporated. (D) Quantification of retinal cluster interaction with the host retina by area (n=3-4 eyes). (E) Number of mitochondria rich presumed IS at each timepoint (n=3-4 eyes). Scale bars in all immunohistochemical images 50 μ m and for all TEM images 10 μ m. IS: Inner segment, ONL: Outer nuclear layer, TEM: Transmission electron microscopy. Data displayed as mean and SD *p<0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001

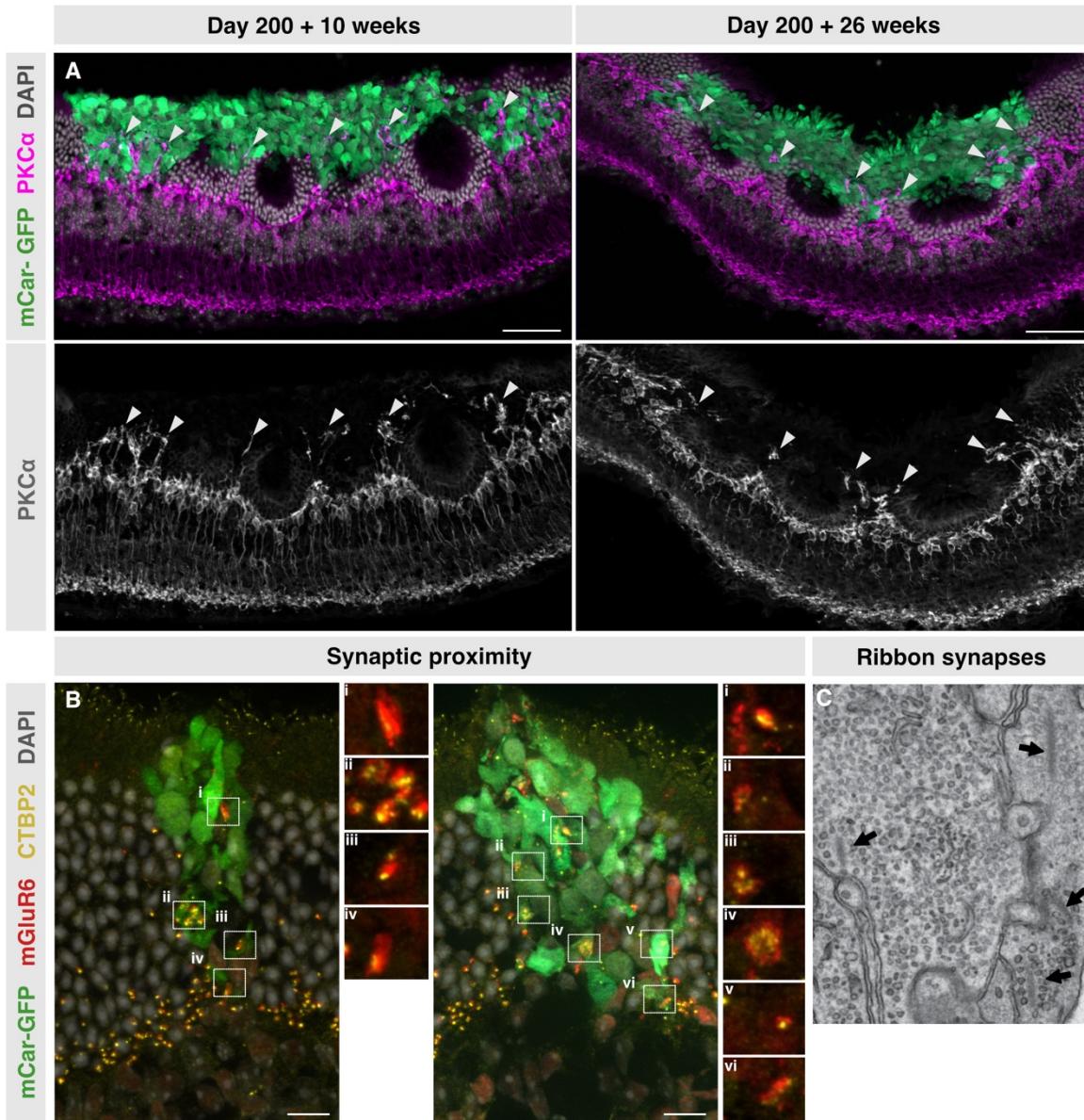
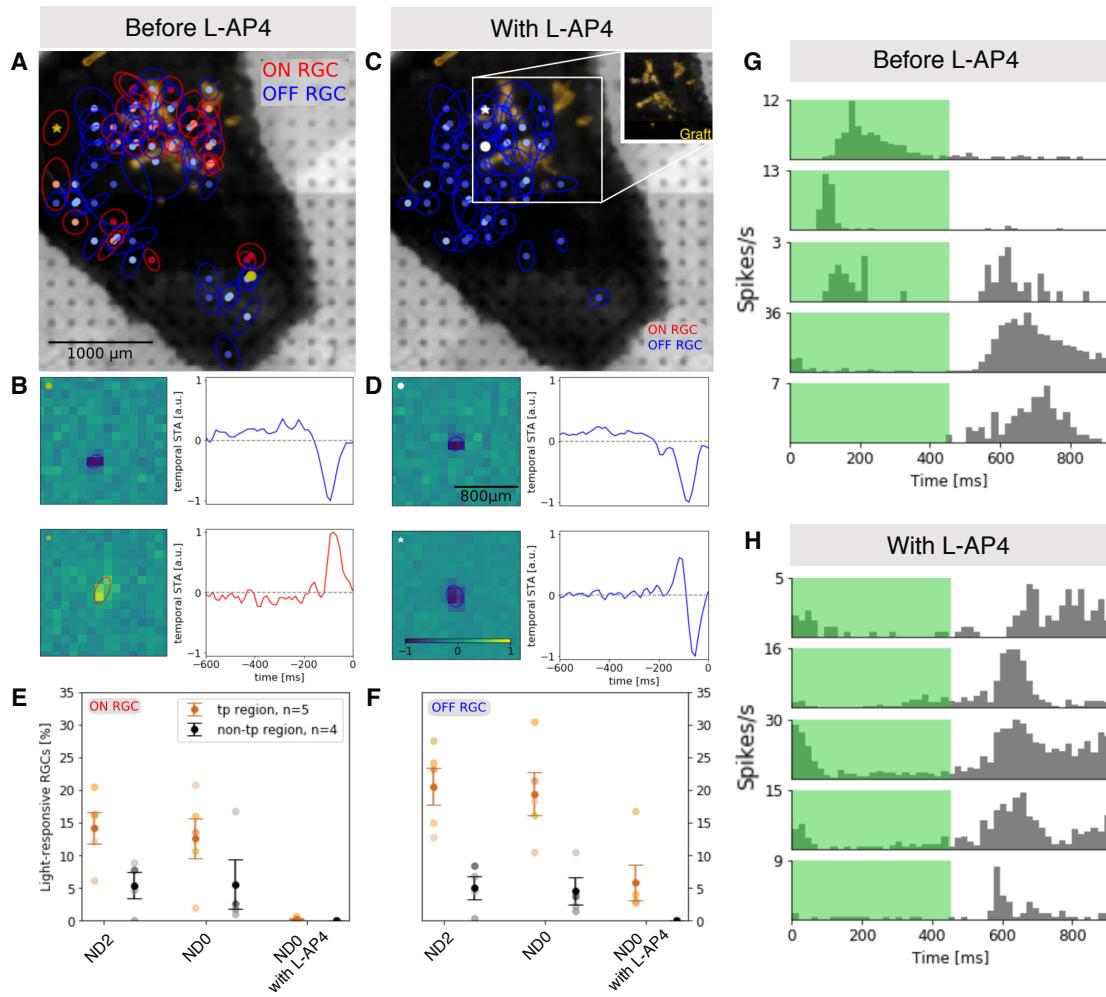

904
905
906
907
908
909

Figure 6: Transcriptional profiling of transplanted cones compared to age-matched organoid derived cones – (A) Schematic representation of mCar-GFP⁺ cone sequencing work-flow. (B) principal component analysis of the top 500 differentially regulated genes. (C) GO term pathway over representation analysis of in vivo matured vs in vitro matured cones. Heat maps of z-scores for genes involved in (D) visual perception and (E) mitochondrial complex 1.

910
911


912 Figure 7: Crx-mCherry⁺ grafts also display extensive incorporation and polarisation – Retinal cryosections of Crx-
913 mCherry⁺ grafts transplanted at D200 stained with recoverin, human mitochondria and DAPI shows (A) by 10
914 weeks large cell clusters incorporate into the host retina with areas of round mitochondria rich outgrowths
915 towards the RPE and axon like extensions projected towards the inner nuclear layer (see zoomed area). (B) By
916 26 weeks grafts displayed even more abundant mitochondria rich outgrowths (see zoomed area). (C) PNA is
917 bound in a more localised fashion towards the RPE. (D) Peripherin-2 is more extensively expressed at 26 weeks
918 post transplantation and (D) Müller glia processes intermingle throughout the graft. Scale bars in all
919 immunohistochemical images 50 μ m

920
921

922 Figure 8: Putative synapse formation between transplanted human cones and host bipolar cells –
923 Immunolabelled cryosections of Cpf1 retina transplanted with mCar-GFP+ cells show (A) extensive dendrite
924 extensions into the cone cell graft from PKC α + rod bipolar cells. White arrowheads indicate areas of dendrite
925 extensions. (B) Close association of the presynaptic ribbon synapse marker CTBP2 and the bipolar postsynaptic
926 marker mGluR6. (C) Representative ribbons and vesicles, components of the photoreceptor presynapse,
927 highlighted by arrows in a TEM image of an incorporated graft. Scale bars in all immunohistochemical images 50
928 μ m and TEM 500 nm
929
930
931
932
933
934
935
936
937
938
939

940

941
942
943
944
945
946
947
948
949
950
951
952
953

Figure 9: Increased RGC activity after Crx-mCherry⁺ photoreceptor transplantation – (A) Receptive Fields for ON and OFF RGCs detected following photopic stimulation (ND0). (B) Exemplary receptive fields and temporal STA for the two cells labeled with * and ◊ in (A). (C) Receptive Fields where only OFF RGCs remain following photopic stimulation after addition of L-AP4 (ND0 after L-AP4). (D) Exemplary receptive fields and temporal STA for the two cells labeled with * and ◊ in (C). Percentage of light responsive (E) ON RGCs and (F) OFF RGCs detected under mesopic (ND2), photopic (ND0) and photopic stimulation with the addition of L-AP4 (ND0 after L-AP4). (G-H) Response of 5 different RGCs during full-field photopic (ND0) ON-OFF flicker stimulation. The bin width is 20 ms and in total a number of 120 stimulus repetitions were performed. (G) Distinct ON, OFF and ON-OFF RGC responses to flicker stimulation before addition of L-AP4. (H) Distinct OFF RGC responses to flicker stimulation with addition of L-AP4 only remain in regions with transplant. RGC: Retinal ganglion cell, L-AP4: L-2-amino-4-phosphonobutyric acid.