bioRxiv preprint doi: https://doi.org/10.1101/2021.08.25.457611; this version posted August 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Cerebrovascular super-resolution 4D Flow MRI — using deep learning to
non-invasively quantify velocity, flow, and relative pressure
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S. Schnell, C.A. Figueroa, D.A. NordslettenT, A.A. YoungT

ABSTRACT

The development of cerebrovascular disease is tightly coupled to changes in cerebrovascular
hemodynamics, with altered flow and relative pressure indicative of the onset, development,
and acute manifestation of pathology. Image-based monitoring of cerebrovascular
hemodynamics is, however, complicated by the narrow and tortuous vasculature, where
accurate output directly depends on sufficient spatial resolution. To address this, we present a
method combining dedicated deep learning and state-of-the-art 4D Flow MRI to generate
super-resolution full-field images with coupled quantification of relative pressure using a
physics-driven image processing approach. The method is trained and validated in a patient-
specific in-silico cohort, showing good accuracy in estimating velocity (relative error: 12.0 +
0.1%, mean absolute error (MAE): 0.07 + 0.06 m/s at peak velocity), flow (relative error: 6.6
+ 4.7%, root mean square error (RMSE): 0.5 £ 0.1 mL/s at peak flow), and with maintained
recovery of relative pressure through the circle of Willis (relative error: 11.0 + 7.3%, RMSE:
0.3 + 0.2 mmHg). Furthermore, the method is applied to an in-vivo volunteer cohort,
effectively generating data at <0.5mm resolution and showing potential in reducing low-
resolution bias in relative pressure estimation. Our approach presents a promising method to
non-invasively quantify cerebrovascular hemodynamics, applicable to dedicated clinical

cohorts in the future.
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I. INTRODUCTION

Changes in regional hemodynamics are intimately coupled to the manifestation of
cerebrovascular disease, making the quantification of flow and pressure critically important
for improving diagnostics. Variations in pressure throughout the cerebrovasculature have
been particularly highlighted in a number of clinical scenarios: the functional impact of
intracranial atherosclerosis linked to regional changes in intravascular pressure [1], the
likelihood of cerebral aneurysm growth related to regional pressure gradients [2], and
experimental work showing altered pressure variations in arteriovenous malformations [3].
While transcranial Doppler or 2D phase-contrast magnetic resonance imaging (PC-MRI)
provide limited information on regional flow, it is through time-resolved three-dimensional
phase-contrast magnetic resonance imaging (4D Flow MRI) that full-field hemodynamic
mapping can be achieved [4]. 4D Flow MRI has been used in a number of studies to capture
cerebrovascular flow phenomena [5], and in combination with physics-informed image
processing, quantification of relative pressure is permitted [6]. However, spatial resolution is
insufficient to accurately quantify both cerebrovascular flow [7] and relative pressures [6],
where vessel diameters <3 voxels, or dx >0.75 mm in the circle of Willis have been shown to
result in significant biases while current clinical systems are limited to around dx = 0.5-1
mm. Similarly, because image noise scales with resolution, high-resolution acquisitions
require extended scan times, making them clinically cumbersome. In summary, there remains
a definite need for effective approaches to achieve higher-resolution flow imaging for

cerebrovascular hemodynamic assessment.

To address the need for improved spatial resolution, high-Tesla approaches have been
proposed [8, 9], but are inherently limited to specialized imaging systems. Image-guided
computational fluid dynamics (CFD) modelling has also been explored [10, 11], however,
this approach generally puts high demand on available computational resources, and further

depends on boundary conditions typically requiring additional specialized imaging protocols

[11].

As an alternative to these deterministic approaches, deep learning methods have
recently been applied in the field of medical image enhancement. For MRI, deep learning
methods have been proven to enable data denoising [12], artefact compensation [13], and to
generate super-resolution anatomical reconstructions of the brain [14]. For flow-based MRI,

2D studies have shown the ability to generate accelerated reconstructions of phase-contrast
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images [15], as well as enable automatic flow quantification over network-segmented flow
domains [16]. For 4D Flow MRI, Ferdian et al. [17] proposed the so-called 4DFlowNet to
generate super-resolution 4D Flow MRI data from low-resolution input, with the network
trained on synthetic pairs of low/high-resolution images generated from aortic CFD
simulations. Other alternatives include Rutkowski et al. [12] using a convolutional neural
network (CNN), and Fathi et al. [18] using a Physics-Informed Neural Network (PINN), both
generating super-resolution 4D Flow images using CFD input data as ground truth for
training. Whilst 4DFlowNet was only tested on large-vessel aortic flows, both the CNN and
the PINN-based alternatives were implemented on either phantom-data resembling
cerebrovascular flow, or on selected in-vivo sets. However, no extended quantitative analysis
has been performed for in-vivo usage in a cerebrovascular setting. Furthermore, neither of the
above-mentioned networks (2D or 3D) have been tested with respect to functional pressure
measurements, and it remains unknown whether pressure changes through the image domain

are maintained or even improved by applying any of these super-resolution procedures.

The aim of this study is therefore to assess whether a dedicated cerebrovascular super-
resolution network could improve estimates of regional cerebrovascular velocities and flows,
and in particular, whether functional relative pressure estimates could be improved by means
of super-resolution image conversion. To achieve this, the existing super-resolution network
4DFlowNet is re-purposed to the cerebrovascular space using dedicated sets of
multiresolution input training data, originating from patient-specific CFD models with
relevant image features (magnitude, noise level) extracted from conjunctive, clinically
acquired 4D Flow MRI. After validating recovery of velocity, flow, and functional relative
pressures in-silico, the re-purposed network is applied to an in-vivo cohort of subjects
scanned at multiple resolutions, assessing the potential of super-resolution imaging in a more
clinical setting. In summary, our study explores the potential of non-invasive super-resolution
imaging for cerebrovascular usage, providing improved estimates of clinically relevant

functional hemodynamics metrics throughout the cerebrovasculature.
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II. METHODS
A. Deep learning framework for cerebrovascular super-resolution flow imaging

1) Deep learning network architecture

To achieve super-resolution flow images, we utilize the deep residual network
structure of 4DFlowNet [17]; a previously published network validated for large-vessel aortic
flows. Briefly, the architecture is based on a central upsampling layer (using bilinear
interpolation) surrounded by a series of stacked residual blocks (RB), with preceding RBs
denoising and pre-processing the input, and subsequent RBs refining and sharpening the
predicted output. As input, both low resolution magnitude and velocity phase image patches

were utilized. As output, super-resolution velocity patches were generated.

We used a similar design for the original 4DFlowNet structure [17], with the following

specific changes introduced for its application on cerebrovascular flow data:

1. Patch input size was changed from an original 16-voxel cube, to a 12-voxel cube,

accounting for the smaller vessel sizes encountered in the cerebrovascular space.

2. The original hyperbolic tangent activation functions at the output layers were
switched to linear activation functions. This was introduced to aid the network in reducing

overfitting whilst still allowing for unbounded output values.

3. The gradient terms were removed from the loss function, following improvements

observed in near-wall velocity estimates in preliminary data assessment.

The modified network was trained using an Adam optimizer, with a learning rate set to 10-4.
Batch sizes of 20 were used for training, with training completed after 60 epochs. The

network was implemented using Tensorflow 2.0 [19], utilizing a Keras backend.
2) Loss function definition

For the loss function, the optimization target was set to minimize the mean squared
error (MSE) between the generated super-resolution images, and the paired high-resolution
input data. The voxel-wise loss was defined as the mean of the squared sum of differences

between Cartesian velocity components, (Avy, Avy and Av}), given as

1
lysg = NZ?]:l AvE + Avy + Av? (D
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where N is the total number of voxels in the assessed image domain. To compensate for
imbalances between fluid and static tissue regions within a singular patch, the MSE was

calculated separately for fluid and static tissue in each region.

Lastly, to avoid network overfitting, an L2 regularization term was included. The

complete loss function was given as

— N 2
loss = lMSE—vessel + lMSE—non—vessel + AZi:lwi (2)

where Lysp_vesser aNd Ly sp—non-vesser are the voxel-wise MSE loss in fluid and static tissue,
respectively, and ) is a set coefficient (equal to 5 - 10~7) regularizing the network weights

w;.
3) Cerebrovascular training and testing data

To train the super-resolution network, sets of low and high resolution flow images
needed to be collected. Whilst acquired, matched, integer pairs of clinical 4D Flow MRI data
would represent a theoretically ideal training set, in practice it is very difficult to obtain such
high-resolution, high-SNR, artefact-free in-vivo ground truth data suitable for training.
Instead, we here propose a separate set of synthetic 4D Flow MRI originating from patient-
specific cerebrovascular flow simulations. To improve clinical relevance, simulated data are
combined with reference in-vivo scans, from which realistic noise levels and relevant

reference magnitude images can be extracted.
a) Patient-specific in-silico data

As a basis for training, anatomically accurate patient-specific CFD models of the
arterial cerebrovasculature were used, providing both realistic velocity, flow, and reference

pressure fields data [11].

In short, models were created using a combination of time-of-flight (TOF) MRI, 2D phase
contrast (PC) MRI, and MRI arterial spin labelling (ASL) [20], covering the vasculature from
the aortic root to the circle of Willis (CoW). A pulsatile velocity profile derived from PC-
MRI was prescribed at the inlet of the aortic root. Each outlet was coupled to a 3-element
Windkessel lumped parameter model and calibrated using a combination of PC-MRI and
ASL perfusion data [11]. 3D models were meshed using tetrahedral elements, and the
incompressible Navier-Stokes equations solved iteratively using a stabilized finite-element

formulation. Nodal velocity and pressure data were extracted after periodicity was reached
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(>4 cardiac cycles). The modelling and analysis were performed using the validated open-
source framework CRIMSON [21]. Further details on setup and model validation can be

found in [11]. Data from four different image sets were generated:

Subject 1 presenting without evidence of cerebrovascular disease, although exhibiting

an incomplete CoW through right and left posterior communicating artery hyperplasia.

Subject 2 presenting with a severe stenosis in the right proximal internal carotid artery

(ICA, 70-99% based on velocity criteria from duplex ultrasound) and a complete CoW.

Subject 3a presenting with a bilateral carotid stenosis (80-90% in the right proximal
ICA, and 60% in the left proximal ICA, based on CTA image criteria), and a CoW exhibiting
right P1 segment and distal right vertebral artery hypoplasia.

Subject 3b being the same subject as 3a following surgical re-opening of the stenosis
at the right proximal ICA.

From the above, synthetic 4D Flow MRI data was generated by sampling the nodal
CFD output onto a uniform voxelized image grid. With the aim of covering varying spatial
scales, data were generated for spatial samplings of dx = 1.5, 1.0, 0.75, 0.5, and 0.375 mm
isotropic, respectively (allowing for high/low resolution pairs of 1.5/0.75; 1.0/0.5; and
0.75/0.375 mm). A time step of dt = 1 ms was used to increase the amount of input data for
training. Data was consistently extracted for a region-of-interest (ROI) centered around the

intracranial vessels. An illustration of one of the utilized models is shown in Figure 1.
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Figure 1 - Overview of the in-silico input used for re-training of the 4DFlowNet network, showing one of the four used
models (Subject 3b). From left to right: model overview and patch generation through the proximal cerebrovascular ROI;
velocity field (color range 0 - 80 cm/s); pressure field (color range 120 - 130 mmHg). Note that examples are shown for the
low/high-resolution pair of 1.0/0.5 mm isotropic.
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b) Cerebrovascular in-vivo data

Using a cohort of 8 healthy volunteers (2 women, 6 men, 55 + 18 years), MRI
acquisitions were performed at 3T (Siemens Magnetom Skyra, Erlangen, Germany) using a
20-channel head/neck coil. Centering a ROI around the CoW, acquisitions started with a TOF
MRA sequence (TR = 21 ms; TE = 3.6 ms; flip angle = 18°), followed by 4D Flow MRI
(prospective k-t GRAPPA dual-venc (130/45 cm/s) acquisitions [22], dt = 95-104 ms). Flow
images were acquired at two different resolutions: dx = 1.1 mm isotropic, and dx = 0.8 mm
isotropic. Scan times were 10-15 minutes for all sequences, respectively. In all instances, data
were corrected for concomitant gradient fields, eddy currents, and noise. All clinical

acquisitions followed institutional review board (IRB) approval and informed consent.
¢) Training and testing data patch generation

To enhance clinical relevance of the training data, synthetic 4D Flow MRI from a)
were transformed into clinical-quality equivalents. In short, realistic velocity-to-noise ratios
(VNR) were extracted from the clinical data in b), equaling approximately VNR = 5.67 +
1.64 at dx = 1.1 mm, and VNR =2.97 + (.78 at dx = 0.8 mm. With data from a) treated as
effective phase information, and with clinical magnitude images from b) used as reference,
clinical-level noise was added to the synthetic 4D Flow MRI through k-space downsampling,
extracting complex numbers from the synthetic phase and clinical magnitude images,
respectively. Note that such noise was added to the low-resolution dataset only, resulting in a

network tasked not only with increasing resolution, but also removing noise.

To generate a larger number of training sets from the limited (n = 4) number of
models, the FOV was split into patches of restricted spatial extent. Specifically, from each
temporal frame patches of 123 voxels were extracted from random positions within the FOV
(enforcing a minimum flow region of >5%). Visualization of the distribution of patches is
shown in Figure 1. For every patch, data augmentation by rigid cartesian rotations

(90/180/270°) were applied.

Data from Subjects 1 and 2 were selected for training with a total of 42,900 patches,
Subject 3a for validation consisting of 2,730 patches, and Subject 3b for testing. Training was
performed on a Titan X GPU with 12GB memory. With training performed for 60 epochs,
lasting approximately 30 minutes each, complete training took about 30 hours. Super-

resolved velocity fields were predicted on a patch-basis, with complete volumes


https://doi.org/10.1101/2021.08.25.457611
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.25.457611; this version posted August 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

reconstructed by stitching patches together with a stride of n = 8 voxels in each Cartesian
direction, with n being an arbitrary patch size configurable during inference. Note that 4

voxels were stripped from each patch side, reducing data to the patch center

B. Validation of super-resolution performance, and recovery of cerebrovascular
relative pressure

1) In-silico validation of super-resolution velocity, flow, and relative pressure

To validate performance of the super-resolution network, the in-silico models and
corresponding synthetic 4D Flow MRI data from Section II.LA.3 (a) were utilized.
Performance was evaluated with respect to both super-resolved velocity fields and derived
flows, as well as functional recovery of relative pressures using coupled physics-informed

image processing.
a) Validation of super-resolution velocity and flow

For the super-resolved velocity fields, linear regression analysis was performed
against reference high-resolution velocity data from the CFD analysis, assessing Cartesian
velocity components and velocity magnitudes separately. Bland-Altman plots of the same
data were also extracted to assess potential network bias. For general quantification,
assessment of mean absolute error (MEA), root mean square error (RMSE), cosine similarity,
absolute magnitude error, and relative magnitude error were all performed, with the latter

extracted as per

/Av2+Av2 +Av2
1 @pN x 'y z
e= —Xisi—————— (3)

TN vl
with AvZ, Avy, and AvZ being Cartesian velocity components.

Furthermore, flow rates through three different planes cutting through sections of the
right ICA, mid-ICA, and MCA were also compared between super-resolved and high-
resolution reference synthetic 4D Flow MRI data. Quantification of RMSE and relative

errorwere also performed against high-resolution reference flow from the CFD analysis.
b) Validation of super-resolution relative pressure

A key component of our study was to assess whether network-based super-resolution

images also enabled accurate extraction of conjunctive, functional relative pressures. A
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variety of methods exist to derive relative pressures from image velocity data, each with
specific method assumptions and applicability in the cerebrovascular space. Here we use the
virtual work-energy relative pressure (VWERP) method, which allows for arbitrary probing
through narrow and bifurcating structures [23], with catheter-based validation underlining the
method’s potential. vVWERP has also been applied in a cerebrovascular setting, indicating

promising abilities whilst highlighting the importance of sufficient spatial resolution [6].

With details provided in previous work [23], vVWERP originates from a virtual work-
energy form of the Navier-Stokes equations, derived by introducing an auxiliary virtual field
w, and evaluating the resulting expression over the fluid domain of interest, Q. Doing so,

relative pressures can be derived as:

1 9K,
ap= -t @era vy @
with
Ke=p[,v-wdQ;A.=p [, - Vv) - wdQ;V, =u [, Vv:VwdQ;Q = [ w-ndl (%)

Here, each term represents different virtual energy components, including virtual
kinetic energy (K, ), virtual advective energy rate (4,), virtual viscous energy dissipation (1),
and the virtual flow (Q) going through a selected inlet plane (Ij). Introducing w as a
divergence-free field with w = 0 at all domain wall boundaries, relative pressures can then
be extracted directly from the imaged flow field v.

Using vWERP, relative pressures were estimated over four different cerebrovascular

sections in each synthetic 4D Flow MRI dataset, respectively: left / right ICA, going from the

cranial end of the cervical ICA to the mid-section of the petrous ICA, and left / right ICA-

middle cerebral artery (MCA), going from the mid-section of the petrous ICA to midway

along the Ml1-segment of the MCA. Based on previous analysis [6], estimations were
performed on low/high resolution pairs of 1.0/0.5 and 0.75/0.375 mm, as well as on
corresponding super-resolution data. In all instances, data were extracted with temporal

sampling of dt = 40 ms, to approximate a clinically realistic acquisition.

Just as in Section I1.B.1(a), linear regression analysis was performed for super-
resolved relative pressures against reference high-resolution pressure field data originating

from the simulated CFD output. Bland-Altman plots were also extracted to assess potential
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estimation bias. For general quantification, assessment of RMSE, cosine similarity, and

relative error was also performed, as per Section I1.B.1(a).

2) In-vivo implementation and possibilities for clinical cerebrovascular super-

resolution

Adding to the validation in Section II.B.1, super-resolved velocity fields were also
generated and assessed in the clinical 4D Flow MRI data from Section I1.A.3(b). Super-
resolution upsampling was performed by a factor of two on all datasets (converting 1.1 to

0.55 mm, and 0.8 to 0.4 mm, respectively).
a) Estimation of super-resolution velocity and flow

Native and super-resolved flow fields were qualitatively compared to assess visual
correspondence. Although data were not acquired in integer resolution pairs, through-plane
flow rates at the proximal section of the left and right MCAs were still compared between
resolution sets to quantify differences between native and super-resolved resolutions, as well

as changes in velocity-to-noise ratio (VNR).
b) Estimation of super-resolution relative pressure

To assess relative pressures in the in-vivo data, similar ICA-MCA sections as the ones
used in the in-silico analysis were identified. To achieve this, vessel segmentation was first
performed using a previously published analysis framework [24]. Second, inlet and outlet
planes for the relative pressure estimations were positioned based on relevant anatomical
landmarks along the right and left ICA and MCA, with planes visually co-aligned between
resolutions (1.1 and 0.8 mm, respectively). With planes and segmentations created, vVWERP
was used to extract relative pressures in all subjects. Whilst lacking reference pressures,
extracted measures were compared over different resolutions, assessing linear correlations
and Bland-Altman plots between the different sets (with and without super-resolution,

respectively).
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III. RESULTS
A. In-silico validation of super-resolution 4D Flow MRI

1) Validation of super-resolution velocity and flow

Complete evaluation was performed on one test subject (Subject 3b), using 1 mm
input data (low resolution, LR) to generate super-resolution equivalents at 0.5 mm (SR),
comparing output quality against high-resolution (HR) reference data at the same 0.5 mm
resolution. As apparent in Figure 2, significant noise reduction is achieved in the SR velocity
fields. Furthermore, SR flow rates indicate slight overestimation at the proximal-most (A)
section (mean shift of -0.33 + 0.14 mL/s), whilst showing a similar but opposite
underestimation of flow in the more distal (B) and (C) sections (0.34 + 0.16 mL/s, and 0.33 +
0.12 mL/s, respectively). Relative differences are however kept <10.3 % over the evaluated
sections (Figure 2 and Table 1). Isolating peak flow rates in all models, slight error reduction
is seen for conversion from LR (RMSE = 0.74 mL/s, relative error = 9.0 £ 6.2%) to SR
(RMSE = 0.56 mL/s, relative error = 6.6 + 4.7%).

N

Flow [mL/s] Flow [mL/s]
(&)}

Flow [mL/s]
S

0

I
0.0 Velocity [cm/s] 90

Figure 2 - Comparison between low resolution (LR), high resolution (HR), and super resolution (SR) images at three
different intersecting planes (A-C) and three different regional sections (D-F) all through the ICA-MCA. Insets are showing
the selected regions in magnified form and with views rotated to highlight velocity vectors. Comparison of flow rates
through the intersecting planes (A-C) are also shown. Note that the model insert at the bottom left is shown dorsally.
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Figure 3 shows linear regression plots and Bland-Altman representations for
generated super-resolution velocities. In general, excellent correlations are observed between
SR and HR velocities, with linear regression slopes and correlation coefficients of k>0.91 and
R2>0.96 reported for the vessel core region (all voxels apart from the outermost fluid layer),
and k>0.90 and R2>0.76 for the vessel wall region (the outermost layer of fluid voxels).
Slightly lower values are seen for velocity magnitudes (k=0.82 and R2=0.79 for core; k=0.69
and R2=0.52 for wall), although the Bland-Altman output corroborates the quality of the

results, with minimal bias indicated (consistent deviations of <0.02 m/s).

Isolating peak velocity magnitudes, measures in both vessel core (MAE = 0.07 + 0.06
m/s, relative error = 12.0 + 0.07%, cosine similarity = 0.99 + 0.06) and vessel wall regions
(absolute error = 0.12 + 0.11 m/s, and cosine similarity = 0.95 + 0.11) confirm the trends
noted above. Similar numbers are also observed for 0.75/0.375 mm resolution sets, as shown

in Supplementary Material A.
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Figure 3 — Top: Regression plot for each of the velocity components (vx, vy, and vz) and velocity magnitude between
ground truth and super-resolved image during the peak flow for in-silico test case (Subject 3b). Bottom: Bland-Altman plot

for each of the velocity components during peak flow. The plots show 5% of the data points (randomly selected) within the
vessel core (black) and vessel wall (red), respectively

Table 1 — Flow rate measurements on Subject 3b for the right MCA, mid-ICA, and ICA. For all sections, results were
measured by averaging 3 parallel cross-sectional slices.

LR flow HR flow SR-HR

Plane rate rai?[&cl’ys] rate flow rate Re%;)/d]lff'
[mL/s] [mL/s] [mL/s] 4
271 + 313+ -0.33 +
A 11 2.80+1.1 12 01 103+09
563+ 595+ 034+
B 26 6.29+29 )3 02 58+0.5
c 524+ 583427 550+ 033+ 64412

24 2.6 0.1
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2) Validation of super-resolution relative pressure

Figure 4 shows linear regression and Bland-Altman plots for estimations of relative
pressure across different resolutions and all models (example relative pressure traces are also
given in Supplementary Material B). Overall, significant underestimation is observed at LR
(1 mm), whilst accurate estimates are reported at the HR (0.5 mm) setting. Importantly,
distinct improvements in functional relative pressures are observed for the super-resolved SR
fields as compared to the LR input: relative error in peak relative pressure decreasing from
233+ 149 % at LR, to 11.0 = 7.3 % at SR, with 5.1 + 2.3 % at reference HR. Similarly, the
RMSE for the entire time series goes from 1.1 £ 1.7 mmHg at LR, to 0.3 £ 0.2 mmHg at SR,
compared to 0.2 + 0.1 mmHg at HR. Quantitative output for an ICA-MCA sections across all

different models are given in Table 2.

The above is also confirmed in Figure 4 with conversion from LR to SR increasing
the linear regression slope from k = 0.56 to 0.99, representing a virtual 1:1 correlation to
ground truth relative pressures (k = 0.98 at HR for reference). Likewise, the mean bias shift
in the LR set (mean shift of -0.85 + 1.43 mmHg) is significantly reduced by conversion into
SR data (mean shift of -0.17 £ 0.30 mmHg). The HR data show no estimation bias (mean
shift of 0.03 + 0.22 mmHg). Notice that similar improvements are observed when converting
0.75 mm base resolution sets into super-resolution equivalents (at 0.375 mm), with complete

data for this analysis shown in Supplementary Material A.
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Figure 4 — Linear regression (top row) and Bland-Altman plots (bottom row), comparing relative pressure estimates to
reference CFD equivalents using low resolution data (LR, 1 mm, left column), high resolution data (HR, 0.5 mm, middle
column), and super-resolution data (SR, converting 1 mm to 0.5 mm, right column). The colors depict different data sets
(training in blue (Subject 1 and 2), validation in red (Subject 3a), testing in green (Subject 3b)).
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Table 2 — Image-based peak relative pressure measurements through the right ICA-MCA section four all different subjects.

LR peak SR peak HR peak  SR-HR

Model Ap Ap Ap peak Ap Re;;,/f]lfﬁ
[mmHg]  [mmHg] _ [mmHg] [mmHg]
1 7.39 13.93 13.11 14.04 0.82
2 6.78 12.97 12.51 13.00 0.46
3a 2.51 291 2.81 2.88 0.10
3b 2.35 2.80 2.66 2.71 0.14

3) Comparison between original and re-trained networks

Super-resolution predictions were also computed using the original aortic 4DFlowNet.
With detailed results provided in Supplementary Material C, the aortic network shows
deviations from ground truth HR data when it comes to super-resolved velocity components
(linear regression slopes and correlation coefficients of k>0.73 and R2>0.55, and k>0.51 and
R2>0.29 are reported for vessel core and wall regions, respectively). The original aortic
4DFlowNet also shows lower accuracy for the recovery of cerebrovascular relative pressures
(k = 0.87 against reference data, and a mean bias shift of -0.41 + 0.58 mmHg). Peak relative
pressure estimates are given at a relative error of 14.8 £ 11.9 %, and a RMSE of 0.5 + 0.6
mmHg — all consistently higher than what is reported for the repurposed cerebrovascular

4DFlowNet. Again, complete data are provided in Supplementary Material C.

B. In-vivo implementation of cerebrovascular super-resolution 4D Flow MRI

1) Estimation of super-resolution velocity and flow

For the in-vivo dataset, visual inspection confirmed qualitative improvement with
regards to noise reduction and data appearance of the generated super-resolved 4D Flow MRI
data (see Figure 5). Specifically, VNR showed a 4-times increase in the 0.55 mm SR data
(going from VNR = 5.67 = 1.64 at dx = 1.1 mm to VNR 24.20 + 11.28 at dx = 0.55 mm), and
a 3-times increase in the 0.4 mm SR data (going from VNR = 2.97 + 0.78 at dx = 0.8 mm to
VNR 9.29 + 4.25 at dx = 0.4 mm).

Assessing flow rates through the left and right MCAs, the clinical base resolution data
indicated a flow rate range of 0.65 to 7.13 mL/s and peak flow rates of 4.96 + 1.52 mL/s at dx
= 1.1 mm, compared to a slightly reduced range of 0.67 to 5.53 mL/s and peak flow rates of
3.47 £ 1.01 mL/s at dx = 0.8 mm. Converting to SR equivalents (dx = 0.55 mm and 0.4 mm,
respectively) flow rates are only modestly modified, with slight downregulation observed in

both datasets (flow range of 0.58 to 6.93 mL/s and peak flow rates of 4.39 + 1.56 mL/s at dx
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= 0.55 mm; flow range of 0.64 to 5.13 mL/s and peak flow rates of 3.32 + 0.91 mL/s at dx =
0.4 mm).

LR (1.1 mm) SR (0.55 mm) LR (0.8 mm) SR (0.4 mm)

o T8

0.0 Velocity [cm/s] >0

Figure 5 — Visual comparison of an in-vivo case at low (LR) and super-resolution (SR) given for both sets of dx=1.1 and
0.55, and 0.8 and 0.4 mm, respectively. Improvements in VNR are apparent in the super-resolved phase images (A) as well
as in the flow visualizations (B). Direct velocity vectors comparison are given for a section through the right MCA for the
paired low resolution (1.1 mm)/super-resolution (0.55 mm) in (C), and for the paired low resolution (0.8 mm)/super-
resolution (0.4 mm) in (D), with vectors shown projected onto a visual2D plane. In general, broad view of the velocity
vectors only reveal minor differences between resolution sets, although detailed view reveals velocity vectors conforming
more to the anatomy of the vessel in the super-resolved images, including at the near-wall regions

2) Estimation of super-resolution relative pressure

Relative pressures were derived for all in-vivo subjects and sections. Overall,
estimates were within the range of -0.6 to 6.0 mmHg for the 1.1 mm data, with peak relative
pressures at 2.9 = 1.6 mmHg, compared to a range of -0.1 to 6.8 mmHg for the 0.8 mm data,

with peak relative pressures at 3.8 & 1.8 mmHg. Converting to SR, the ranges changes with
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estimates getting closer to one another: SR data at dx = 0.55 mm (input at dx = 1.1 mm)
exhibiting a range of -0.7 to 5.9 mmHg with peak relative pressures at 2.6 £ 1.4 mmHg; SR
data at dx = 0.4 mm (input at dx = 0.8 mm) exhibits a range of -0.5 to 4.3 mmHg with peak

relative pressures at 2.9 = 1.1 mmHg.

Although lacking in-vivo reference pressure, Figure 6 shows linear regression and
Bland-Altman plots comparing LR and HR data to its SR equivalents. At base resolutions
(LR vs. HR) a systematic bias shift in relative pressure is observed between the two
resolutions (k = 0.64; R2 = 0.81; mean shift = -0.93 + 0.93 mmHg). Converting to super-
resolved equivalents, however, the shift is reduced, although without completely recovering a

1:1 correlation between the two datasets (k = 0.81; R2 = 0.77; mean shift = -0.47 + 0.72
mmHg).
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Figure 6 — Linear regression and Bland-Altman plots for the in-vivo cerebrovascular 4D Flow MRI data, showing the
relationship between relative pressure estimated at base resolutions (AP, two left-most plots, comparing 1.1 mm and 0.8 mm
data) and at equivalent super-resolutions (AP*, two rightmost plots, comparing super-resolved 0.55 mm vs. 0.4 mm data).
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IV.  DISCUSSION

In this study, we evaluated the utility of super-resolution 4D Flow MRI in the setting
of cerebrovascular hemodynamics, showcasing how super-resolved intracranial velocity
fields and regional flows can be recovered from low-resolution input data using a re-trained
version of the 4DFlowNet architecture. Furthermore, we showed how super-resolution 4D
Flow MRI in combination with the physics-informed vWERP algorithm successfully
recovers functional relative pressures through regional cerebrovascular sections, with the
super-resolved data effectively reducing estimation bias otherwise observed in the low-
resolution input data. With non-invasive cerebrovascular assessment intrinsically complicated
by the narrow and tortuous vasculature, our results highlight the potential of super-resolution

4D Flow MRI to improve quantitative functional cerebrovascular hemodynamic assessment.

A. In-silico validation of cerebrovascular super-resolution 4D Flow MRI to quantify

velocity, flow, and relative pressure

In-silico super-resolved flows and velocity fields both conform closely to high-
resolution reference data. For super-resolved velocities, slightly reduced accuracy was
identified along near-wall voxels. This behavior is similar to what has been previously
reported [12], and is not entirely surprising: near-wall voxels suffer from reduced input
information (being surrounded by ‘information-depleted’ static tissue), and will be inherently
linked to reduced signal quality. Dedicated neural networks have been explored for the
recovery of near-wall velocities in 2D flow data [25], although application in 4D Flow MRI

data remains to be performed.

Furthermore, a major part of our work focused on whether super-resolved flow fields
enable accurate estimation of functional relative pressures; an entity directly dependent on
utilized spatial resolution [6]. As reported in Section III.A.2), the combination of a super-
resolution network (4DFlowNet) and a physics-informed analysis algorithm (VWERP) allow
for accurate estimation of cerebrovascular relative pressures. This not only indicates the
utility of the vVWERP algorithm but also highlights that the 4DFlowNet architecture allows
for accurate estimation of the complete fluid mechanical environment, with precise recovery

of both velocity and velocity gradients needed to accurately extract relative pressures.

Another benefit of the repurposed 4DFlowNet is the ability to significantly improve

VNR. Deterministic multi-venc sequences have been explored to enhance VNR [22],
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however, using a post-processing super-resolution approach in principle enables maintained

signal quality even at reduced scan times, as highlighted in other super-resolution work [12].
B. Re-training 4DFlowNet for cerebrovascular usage

The importance of re-training is highlighted in Section III.A.3 and Supplementary
Material C, where distinct performance differences are highlighted between the original
(aortic) and repurposed (cerebrovascular) 4DFlowNet. Here, it is important to appreciate the
fundamental differences in input training data that exist between the aortic and the
cerebrovascular 4DFlowNet. In the original work, patches containing purely aortic flows
from CFD were shown during training, with hemodynamics dominated by transient flows
[26] guided through a large vessel structure. On the contrary, cerebrovascular hemodynamics
is a joint resultant of transient, advective, and viscous behavior [6], with flow restricted by
the narrow, tortuous vasculature. Additionally, the cerebrovascular training data contain
synthetically generated magnitude images, as such carrying more realistic image properties
and noise characteristics. Hence, the original network was never exposed to patches
containing the same image characteristics, or entailing similarly small vessels or tortuous
near-wall gradients, and performance is likely reduced when attempting cerebrovascular data

recovery.

The fact that re-training resolved estimation bias also demonstrates that the core
4DFlowNet architecture is robust to different types of flows, and that it is rather the
information contained in the training data (i.e. vessel sizes, noise characteristics) that
determines final performance. This also indicates that further re-training might be necessary
if attempting super-resolution imaging in yet another cardiovascular domain (e.g. intracardiac
flow fields), although as long as anatomical structures are similar in size (e.g. cerebral vs.
hepatic vessels) maintained accuracy is plausible. To overcome the need for constant
retraining, one could envision combining training data from multiple domains to create a
network handling both large and small vessel anatomies, as well as fast and slow flows. The

performance of such a network, however, remains to be determined.

C. In-vivo feasibility of cerebrovascular super-resolution 4D Flow MRI to quantify

flow, velocity, and relative pressure

In Section III.B, super-resolution images and functional relative pressure estimations

were performed in a select in-vivo cohort. Although ground truth high-resolution scans or
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reference pressure measurements were unavailable, the behavior indicated in-silico seems
replicated in-vivo. Specifically, super-resolved flow fields did not introduce any bias shifts,
and estimates of both flows and relative pressures indicate slight convergence at upsampled
resolutions. Nevertheless, even though derived relative pressure magnitudes coincide with
what has been reported in previous cerebrovascular work [27], a desired 1:1 relation between
resolutions is not achieved. Here, comparably coarse temporal resolution (dt > 95 ms),
cardiovascular variations between scans, or temporal intra-scan mis-match could all
contribute to this slight discrepancy. Further validation of in-vivo work would be beneficial to

understand the clinical translation of the combined 4DFlowNet and vVWERP approach.
D. Contextualizing cerebrovascular super-resolution 4D Flow MRI

It is worth contrasting our re-purposed 4DFlowNet to previously published work
within the same space. Whilst few studies exist attempting super-resolution recovery of
directly imaged flow [12, 17], only a handful have attempted the same for functional
hemodynamic recovery. Kissas et al. [28] proposed a PINN-based network to recover
absolute pressure in simplified arterial model sections; however, application in
cerebrovascular geometries was never attempted. Shit et al. [29] similarly proposed the
PINN-based ‘Velocity-to-Pressure’ net; however, super-resolution abilities were never
included. In comparison, our work combines the super-resolution utility of 4DFlowNet with
the functional recovery of the physics-informed deterministic vVWERP approach, being
previously benchmarked across different cardiovascular domains, including the

cerebrovasculature [6, 23, 30].

Continuing into the cerebrovascular space, a few very recent works have shown how
merging physics-informed analysis, machine learning, and imaging can have particular
promise for improving non-invasive cerebrovascular assessment. Fathi et al. [18] used a
patient-specific PINN to recover regional flow and pressure from input 4D Flow MRI,
promising virtually unrestricted spatiotemporal refinements on recovered velocity fields.
Similarly, Rutkowski et al. [12] recently presented a CNN-based network to reconstruct
super-resolution 4D Flow MRI in a cerebrovascular setting, using patient-specific in-vitro
models for both training and testing. Along these very same lines, our work also highlights
the significant potential of super-resolution 4D Flow MRI in the cerebrovascular space.
Within this setting, our study extends these previous works by showing how a combination of

super-resolution utilities with the physics-informed vVWERP algorithm provides accurate
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recovery of relative pressures, overcoming inherent resolution bias otherwise observed in
clinical-level image sets [6] and allowing for the accurate recovery of this established
biomarker through the challenging cerebrovascular space. Whilst technical differences exist
in utilized network design or loss function, the combination of our data and the above
reviewed works all point to the increasing interest shown in network-driven super-resolution
4D Flow MRI, with the cerebrovascular space being a prime target of where such utilities can

have direct clinical impact.
E. Limitations

A number of limitations are worth pointing out. Firstly, clinical in-vivo validation
against catheter based pressure data remains to be performed. Acquiring invasive pressure
data in the cerebrovascular space is challenging as intracranial arterial catheterization still
awaits regulatory approval in the US. Furthermore, clinical validation of super-resolution
utilities is inherently limited in clinical practice. With both 4DFlowNet and the vVWERP
algorithm validated in other domains [23, 30], its potential in improving cerebrovascular
quantification is evident. Still, experimental validation in patient-specific in-vitro models (as
recently attempted in other super-resolution work [12]) or in a pre-clinical setting would

bring important additional information as to the clinical utility of the presented work.

Secondly, a modest number of in-silico models were used for training, where
additional data could enhance network versatility. Similarly, combining the original aortic
and cerebrovascular datasets could generate a more general-purpose utility, although

performance of such would have to be evaluated separately.

Thirdly, it is worth noting that the training of the super-resolution network also
depends on the accuracy of the utilized CFD models to capture realistic cerebral flow and
pressure. Realistic CFD modeling of cerebral flow is generally challenging due to difficulties
in assigning patient-specific boundary conditions. In this work, however, we overcame these
challenges by using a previously presented CFD calibration strategy based on cerebral
perfusion (non-selective ALS) and flow (PC-MRI) data [11]. Specifically, the utilized CFD
models were validated by comparing the blood supply in the CoW against territorial
perfusion data from vessel-selective ALS, where observed high correlations underline the

accuracy and applicability of the utilized models.
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Lastly, a practical limitation is the increasing data storage required by the super-
resolution conversion. Due to the uniformly sampled data representation, a two-fold
resolution increase leads to an eight-fold increase in disk space usage. Adaptable grid
representations or graph-based networks [31] may offer improved future possibilities

circumventing this issue, and may be explored in future work.
F. Clinical outlook and future work

The expansion of quantitative hemodynamic imaging for cerebrovascular applications
promises improved clinical abilities [1-3], and the usage of super-resolution 4D Flow MRI
presents an effective way of quantifying such hemodynamic markers in the brain, with our
work highlighting its accurate recovery of both direct and functional hemodynamic metrics.
Importantly, super-resolution imaging circumvents intrinsic obstacles otherwise related to
non-invasive cerebrovascular flow quantification (limited spatial coverage; challenging
vascular anatomies; etc.), and its clinical potential is therefore particularly evident within this

vascular domain.

Numerous, future directions can be envisioned to extend and clarify the capabilities
highlighted in our study: additional training data expanding network capabilities, modified
architecture improving predictions in near-wall regions, or extended clinical validation
against acquired 4D Flow MRI or experimentally derived invasive catheter data. Clinically
oriented studies evaluating the potential of super-resolution imaging to improve clinical risk
stratification by means of improved relative pressure estimations could also be envisioned in
the future. Nevertheless, our data highlights the potential of super-resolution 4D Flow MRI

and coupled physics-informed image analysis in the cerebrovascular space.
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V. CONCLUSION

In this study, we have shown how dedicated super-resolution 4D Flow MRI and
physics-informed image analysis can together be effectively used to accurately quantify
cerebrovascular hemodynamics, including regional velocities, flows, and functional relative
pressures. Using dedicated patient-specific in-silico data, we have shown how the existing
4DFlowNet network can be effectively repurposed into the cerebrovascular space,
successfully converting low-resolution input data into high-resolution equivalents with
maintained precision and effective noise-reduction. Furthermore, in combination with the
physics-informed deterministic image analysis algorithm vWERP, we have shown how
conversion into super-resolution data successfully reduces estimation biases in functional
relative pressures otherwise observed in the utilized low-resolution input data. Lastly,
implementation in an exemplary in-vivo cohort shows how improvements in velocity-to-
noise-ratio, preserved flow, and converging relative pressures estimates are achievable in a

clinical setting.
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