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Abstract

Connections among brain regions allow pathological perturbations to spread from a single source re-
gion to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioral
variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how
bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we
investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by con-
nectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients,
247 controls) and sporadic bvFTD (70 patients, 123 controls). We first identify distributed atrophy
patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cy-
toarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and
functionally- connected neighbors, demonstrating that network structure shapes atrophy patterns. The
anterior insula was identified as the predominant group epicenter of brain atrophy using data-driven
and simulation-based methods, with some secondary regions in frontal ventromedial and antero-
medial temporal areas. Finally, we find that FTD-related genes, namely C9orf72 and TARDBP, confer
local transcriptomic vulnerability to the disease, effectively modulating the propagation of pathology
through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and
genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnera-
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bility.

Introduction

Frontotemporal dementia (FTD) is one of the most
common forms of early-onset dementia [39, 47]. The
behavioral variant of FTD (bvFTD), which presents with
various combinations of behavioral (apathy, disinhibi-
tion, compulsions and stereotypies), personality (de-
creased empathy and sympathy, altered personal prefer-
ences) and cognitive (executive dysfunction and social
cognitive deficits) changes, is the most common clini-
cal variant of FTD [39, 46]. Despite its distinctive clin-
ical presentation, bvFTD is pathologically heterogenous,
with the most common subtypes being related to the
accumulation of hyperphosphorylated aggregates of ei-
ther Tau or TAR DNA-binding protein 43 (TDP-43) [41].
This group of pathological proteinopathies causing FTD
are classified under the frontotemporal lobar degenera-
tion (FTLD) umbrella. Most cases are sporadic, however
around 20% are caused by an autosomal-dominant ge-
netic mutation including hexanucleotide repeat expan-
sions near the chromosome 9 open reading frame gene-
C9orf72, progranulin-GRN, and microtubule-associated
tau protein-MAPT, as the most common causative genes
[41].

FTLD pathology cause clinical bvFTD symptoms
through their predominant localization in frontal and an-
terior temporal brain regions [41]. Clinically this is re-
flected by progressive cortical atrophy, which is a cru-
cial biomarker for the diagnosis [21, 36]. While there
is major overlap in atrophy patterns between sporadic
and genetic bvFTD, each genetic subtype has distinctive
features including antero-medial atrophy in MAPT, pos-
terior frontal and parietal involvement in GRN and tha-
lamic/cerebellar volume loss in C9orf72 [13]. In recent
years, there has been an interest to understand how het-
erogeneous pathological changes could lead to similar
clinical and atrophy profiles [50].

In early work based on functional magnetic reso-
nance imaging (fMRI), it was hypothesized that atro-

phy in neurodegenerative diseases progresses predomi-
nantly along functional neural networks [65], with the
salience network being predominantly affected in bvFTD
[51, 66]. Within the salience network, the anterior
insula was identified as the most likely disease epi-
center [51, 65], a finding that was further supported
by pathologic accumulation of tau or TDP-43 aggre-
gates in fork cells and Von Economo neurons, which
are specific to this region [32]. While the anterior in-
sula clearly plays a significant role in the disease, other
studies using data-driven methods on structural atro-
phy patterns revealed distinct morphological subtypes
including two salience network-predominant subgroups
(a frontal/temporal subtype and a frontal subtype), a
semantic appraisal network-predominant group, and a
subcortical-predominant group [44, 45]. This opens the
possibility that there is not a single unique epicenter at
the origin of all bvFTD cases.

Emerging theories emphasize that connectome archi-
tecture shapes the course and expression of multiple neu-
rodegenerative diseases [15, 22, 30, 42, 60, 61]. Mis-
folding of endogenous proteins and their subsequent
trans-neuronal spread has been documented in FTLD,
Alzheimer’s, Parkinson’s, Huntington’s and amyotrophic
lateral sclerosis (ALS) [12]. Despite differences in origin
and the proteins involved in each disease, the spread of
the pathology appears to reflect brain network organi-
zation at the macroscale level. Namely, anatomical con-
nectivity is thought to support the propagation of toxic
protein aggregates, such that focal pathology can spread
between connected neuronal populations and infiltrate
distributed networks in the brain.

Two key questions remain unanswered about the
spread of pathology in bvFTD. First, the spread of pathol-
ogy is likely to occur via physical white matter connec-
tions but the contribution of structural connectivity to
atrophy progression has been less explored in bvFTD.
Evidence for transneuronal spread of FTLD pathology is
mostly based on extrapolation from functional imaging
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TABLE 1. Demographic and clinical characteristics of the FTLDNI and GENFI2 samples | CNCs in GENFI2 cohort correspond
to non-carrier first degree relative of a family member with a documented genetic mutation related to FTD. Genetic groups listed
for CNCs in the GENFI2 cohort refer to mutation present in the family of these non-carrier subjects. Values are expressed as
mean + standard deviation, median [interquartile range]. Data available is specified for each clinical variable as N, whereas N/A
indicates data not available from the original databases. (FTLDNI: frontotemporal lobar degeneration neuroimaging initiative;
GENFTI: genetic frontotemporal dementia initiative; bvFTD: behavioral-variant frontotemporal dementia; CNCs: cognitively normal
controls; MMSE: Mini Mental State Examination. FTLD-CDR: Frontotemporal lobar degeneration clinical dementia rating.)

FTLDNI (N=193) GENFI2 (N=322)
CNCs bvFTD p-value CNCs bvFTD p-value
N=123 (N=70) N=247 (N=75)
Total number of scans 326 156 409 119
Age mean (SD), y 6316 62+6 0.36 48+14 6448 < 0.001
Male sex no. (%) 53(43%) 47(67%) 0.001 |106(43%) 41(55%) 0.07
Education mean (SD), y 17.54+1.9 15.64+3.4 < 0.001|13.943.5 11.844.03 < 0.001
Estimated years of onset mean (SD), y N/A 5.245.7
Disease duration mean [min-max], y 5.1[3.5-8.2]
MMSE score mean (SD) 29.440.8 23.6+4.9 < 0.001|29.4+1.1 21.94+7.2 < 0.001
FTLD-CDR Score mean (SD) 0.04+0.2 6.3+3.3 < 0.001|0.2140.7 9.7+1.4 < 0.001
Genetic Group no. (%):
- C9orf72 39(52%)
- MAPT 17(22.7%)
- GRN 39(19(25.3%))

[50, 65], with some support from studies using animal
models [40], autopsy data [31] and prediction of atro-
phy patterns [10]. Although functional connectivity re-
flects the underlying structural connectivity patterns and
is sometimes used as a proxy for structural connectiv-
ity if no such data is available, the two modalities cap-
ture fundamentally different features of brain network
organization and are only moderately correlated with
each other [54]. Second, the role of local vulnerability
is poorly understood. Most connectome-based models
of neurodegeneration assume all neuronal populations
(network nodes) have the same vulnerability to the dis-
ease, eschewing the possibility that regional differences
in molecular and cellular make-up render some nodes
more or less vulnerable. In particular, recent reports in
other neurodegenerative diseases suggest that regional
differences in gene expression may confer vulnerability,
effectively guiding the pathological process through the
network [23, 43, 64]. Altogether, we hypothesize that
brain network architecture, in concert with local vulner-
ability conferred by expression of specific genes, shapes
the spatial distribution of atrophy patterns in brain dis-
orders, including FTD [51, 63, 64].

In the present report we test a structural network-
based atrophy propagation model in bvFTD across spo-
radic and genetic variants. Specifically, we test the hy-
pothesis that atrophy patterns in bvFTD reflect the un-
derlying network organization and local transcriptomic
vulnerability. We first estimate cortical atrophy patterns
as regional changes in tissue deformation in bvFTD pa-
tients. We then use structural and functional connec-
tivity networks derived from an independent sample of
healthy individuals, to investigate whether regions that

are connected with each other display similar atrophy
patterns. Finally, we identify potential disease epicen-
ters using a data-driven approach as well as a simulation-
based approach that models the spread of atrophy across
the brain network. We further explore the potential con-
tribution of FTD-related genes to the propagation of at-
rophy.

Results
Demographics

Table. 1 compares demographic and clinical vari-
ables between bvFTD and CNCs across the two research
databases. Subjects with bvFTDs were on average older
than CNCs in the GENFI2 cohort, but not in FTLDNI. As
expected, significantly lower MMSE and higher FTLD-
CDR average scores were observed in symptomatic sub-
jects compared to healthy controls.

Distribution of atrophy and resting state networks and
cytoarchitectonic classes

We used a linear mixed effects model to obtain a
group-level, bvFTD-related atrophy map, controlling for
age, sex and acquisition site. The voxel-level and parcel-
lated atrophy maps are depicted in Fig. Sla,b. In order
to assess whether distributed atrophy patterns are more
pronounced in specific brain systems, we used two brain
system definitions (Fig. 1): (1) intrinsic functional net-
works defined by Yeo and colleagues [62]; (2) a cytoar-
chitectonic classification of human cortex based on the
classic von Economo atlas [49, 56, 58, 59]. Nodes were
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Figure 1. Atrophy patterns in intrinsic networks and cytoarchitectonic classes | Mean network atrophy (i.e., t-value) was
calculated for Yeo intrinsic functional networks [62] (left column) and von Economo cytoarchitectonic classes [49, 56, 58, 59]
(right column). Higher t-values correspond to greater atrophy. The observed mean atrophy values are shown by filled circles for
each intrinsic network and cytoarchitectonic class. Network labels are then randomly permuted using 10,000 rotations from spin
tests, preserving the spatial autocorrelation in the data. The null distributions of means from spin tests are depicted using box plots
for intrinsic networks and cytoarchitectonic classes for both (a) FTLDNI and (b) GENFI datasets (10,000 repetitions; two-tailed
test). The bottom row displays the location of intrinsic networks (left) and cytoarchitectonic classes (right) on the cortex. List
of Yeo networks: visual (vis), somatomotor (sm), dorsal attention (da), ventral attention (va), limbic (lim), frontoparietal (fp),
default mode (dmn). List of von Economo classes: primary sensory cortex (ps), primary motor cortex (pm), primary/secondary
sensory cortex (pss), limbic (Ib), insular cortex (ic), association cortex (ac, ac2).
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first stratified according to their network assignments
based on the Yeo networks and von Economo classes.
We then calculated the mean atrophy values for each in-
trinsic network (Fig. 1, left) and cytoarchitectonic class
(Fig. 1, right) for FTLDNI (Fig. 1a) and GENFI (Fig. 1b)
datasets, separately. To assess the statistical significance
of network atrophy values, we compared the empirical
values to a distribution of means calculated from a set of
spatial autocorrelation-preserving null models (i.e., “spin
tests”[1, 35]; see Methods section for more details on
null model). Specifically, network labels were randomly
rotated while preserving the spatial autocorrelation and
the mean network atrophy values were calculated for
each rotation (10,000 repetitions; two-tailed test).

The observed mean network atrophy and the corre-
sponding null distribution of means are depicted for each
intrinsic network and cytoarchitectonic class in Fig. 1.
The anatomical distributions of intrinsic networks and
cytoarchitectonic classes are depicted in Fig. 1 (bottom
row). Note the difference in the definition of “limbic”
system between the intrinsic networks and cytoarchi-
tectonic classes. The intrinsic limbic network mainly
consists of the temporal poles and orbitofrontal cortex,
whereas the cytoarchitectonic limbic class mainly in-
cludes the cingulum. In terms of intrinsic networks, lim-
bic and default mode intrinsic networks were the most
affected (i.e., higher than expected atrophy) with rel-
ative preservation of somatomotor and visual intrinsic
networks (i.e., lower than expected atrophy). In terms
of cytoarchitectonic classes, the insular and association
cytoarchitectonic classes displayed greater atrophy com-
pared to nulls, with lower atrophy in primary sensory
cytoarchitectonic classes. While there are marginal vari-
ations in statistical significance of the findings, the over-
all trend of network atrophy patterns is consistent across
the two datasets.

Relationship between atrophy maps and connectivity

We next investigated whether atrophy patterns in
bvFTD are conditioned by network organization, such
that connected regions display similar atrophy patterns.
Specifically, we assessed whether the connectivity pro-
file of a node can predict the atrophy of its neigh-
bors by investigating the relationship between node and
neighbor atrophy values (Fig. 2a). Structural and func-
tional connectivity (SC and FC) networks (Fig. S1c), de-
rived from an independent sample of 70 healthy partic-
ipants [26], were used to estimate mean neighbor at-
rophy value for each region. The relationship between
node and neighbor atrophy was then examined by cor-
relating the mean neighbor atrophy with nodal atro-
phy (Fig. 2¢,d). Regional atrophy was significantly cor-
related with the mean atrophy of its connected neigh-
bors in both datasets. Fig. 2c (left panel) shows the re-
sults for FTLDNI dataset (high resolution parcellation:
r = 0.69, pspin = 0.0001 and r = 0.65, pspin = 0.0001, for
SC- and FC- defined neighbors respectively) and Fig. 2d
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(left panel) shows the results for GENFI dataset (high
resolution parcellation: r = 0.61, pspin = 0.001 and
r = 0.54, pspin = 0.0006, for SC- and FC- defined neigh-
bors respectively). To assess whether the relationship be-
tween node and neighbor atrophy is specifically driven
by network topology rather than spatial autocorrelation,
we used a spatial autcorrelation-preserving null model
to construct a null distribution of node-neighbor corre-
lations [1]. Fig. 2c,d (middle panel) displays the ob-
served correlation between node and neighbor atrophy
along with the corresponding null distribution of corre-
lations for both datasets. We also repeated all analyses
at a lower parcellation resolution to ensure that the find-
ings are robust to how network nodes are defined. The
relationship between node and neighbor atrophy was
consistent across resolutions and significantly greater in
empirical networks compared to null networks in both
datasets (Fig. 2¢,d; pspin < 0.05, two-tailed tests). The
results were consistent when binarized structural con-
nectivity network was used to defined SC- defined neigh-
bors (Fig. S2).

Data-driven epicenters analysis

Given that the distribution of atrophy patterns reflects
structural and functional network organization, we next
investigated whether there are brain regions that may
act as potential epicenters for bvFTD. We define an epi-
center as a high atrophy node that is connected to high
atrophy neighbors (Fig. 2b). Nodes were ranked based
on their atrophy and their neighbors’ mean atrophy val-
ues. Epicenter likelihood ranking was then estimated as
the mean node ranking across the two lists. Fig. 2c,d
(rightmost panel) shows the epicenter likelihood rank-
ings on the cortex for FTLDNI (Fig. 2c) and GENFI
(Fig. 2d) datasets, where the highly ranked regions are
associated with insular cortex, ventromedial cortex and
antero-medial temporal areas. Empirical epicenter like-
lihood rankings were then compared with rankings esti-
mated from spatial autocorrelation-preserving null mod-
els (10,000 spin tests [1]). Several regions were identi-
fied as potential epicenters including the anterior insular
cortex bilaterally, but also areas in the anterior tempo-
ral poles, in addition to ventromedial and dorsomedial
areas. The results were consistent when binarized struc-
tural connectivity network was used to defined SC- de-
fined neighbors (Fig. S2).

Dynamic spreading model

We next used an S.I.R model to explore how the brain’s
structural connectivity shapes the progressive spread of
FTLD changes. This model has been previously used to
study Parkinson’s disease-related atrophy [64] and works
by simulating the misfolding of normal proteins in the
cortex and their trans-neuronal spread through the struc-
tural connections between brain regions. The accumula-
tion of misfolded proteins, acting as pathogenic agents,
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Figure 2. Network-dependent atrophy | (a) Atrophy of a node, estimated by t-values, was correlated with the mean atrophy of its
connected neighbors to examine whether the distributed atrophy patterns in bvFTD reflect the underlying network organization.
(b) If atrophy of a node is related to the atrophy of its connected neighbors (panel a), a node with high atrophy whose neighbors
are also highly atrophied would be more likely to be a potential disease epicenter, compared to a high atrophy node with healthy
neighbors. To quantify the epicenter likelihood across the cortex, the nodes were first ranked based on their atrophy values and
their neighbors’ atrophy values. Epicenter likelihood ranking of each node was then defined as its mean ranking in the two lists.
(c, d) Left panel: Node atrophy value was correlated with the mean atrophy value of its structurally- and functionally-defined
neighbors (SC and FC) for FTLDNI (panel ¢) and GENFI (panel d) datasets. Scatter plots show the correlation for high parcellation
resolution. Middle panel: The observed correlation values (depicted by filled circles) were compared to a set of correlations
obtained from 10,000 spin tests (depicted by box plots). Asterisks denote statistical significance (pspin < 0.05, two-tailed). The
association between node and neighbor atrophy was consistent across resolutions and significantly greater in empirical networks
compared to null networks in both datasets. Right panel: Epicenter likelihood rankings are depicted across the cortex. The most
likely epicenters with high significant rankings are regions that are mainly located at the bilateral anterior insular cortex and
temporal lobes (10,000 spin tests).

leads to the atrophy of the afflicted regions (Fig. 3a). Epi-
centers are defined as those regions in which misfolded
proteins are introduced, allowing us to test which is the
most likely epicenter for the observed empirical patterns.
As misfolded agents spread through the network, we
measure the Pearson correlation between the simulated
and empirical (FTLDNI) patterns of atrophy (Fig. 3b; left
panel). A region’s maximal correlation (ry,,) is defined

as the largest correlation value observed across all values
of t. The three nodes with the largest r, ., are located
in the insular, superior-frontal and lateral orbito-frontal
cortex.

An important factor that can influence the probabil-
ity that a brain region is identified as the epicenter of
an atrophy pattern is its spatial location in the brain.
To isolate the role of structural connectivity, we com-
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(b) Left panel: the spreading process was initiated in every brain region and the correlation between the simulated and empirical
patterns of atrophy was computed. The three largest correlations were obtained by seeding regions of the insula (rma.x = 0.601;
red), the superior-frontal cortex (rmax = 0.473; blue) and lateral orbito-frontal cortex (rmax = 0.471; green). The correlations
for other brain regions are shown in gray. Right panel: to control for the potential effect of a brain region’s spatial embedding,
Tmax values were compared to rmax correlations obtained using rewired networks that preserve the wiring-cost of the empirical
structural network. Asterisks denote statistical significance (p < 0.05, two-tailed). The r,.x computed by seeding the insula of the

empirical network (rmax = 0.60) was significantly larger than

the rmax computed by seeding the insula of the rewired networks

(p < 0.002). (c) The largest fit (rmax) obtained by seeding each brain region is shown on the surface of the brain. Larger values

of rmax Were generally obtained by seeding insular and prefron
Middle panel: simulated pattern of atrophy producing the maxi

tal regions. (d) Left panel: empirical pattern of atrophy (FTLDNI).
mal fit. This pattern of atrophy was obtained with the insula as the

seed, and at t=4410 (see the arrow in panel b). Right panel: scatterplot of the relationship between standardized empirical and

simulated patterns of atrophy (r = 0.60, pspin = 0.0013).

pared these 7.« scores to those obtained by simulat-
ing the spread of misfolded proteins in rewired networks
that preserve the density, degree sequence and wiring
cost of the empirical structural network (Fig. 3b; right

panel). We find that the fit obtained by initiating the
spread in the insular region of the empirical network is
significantly larger than the fit obtained in the rewired
networks (r = 0.601, p < 0.002). In other words, the
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Figure 4. Contribution of gene expression | (a) Vectors of regional gene expression were generated for four genes that have
been associated with bvFTD: TARDBP, C9orf72, GRN and MAPT. These vectors of gene expression were incorporated into the S.I.R
model. The correlations between empirical atrophy and simulated atrophy, with the insula selected as the seed of the simulated
spreading process, were then computed for the FTLDNI dataset (b) and for the GENFI dataset (c). The maximal correlations scores
(rmax) obtained for each gene were compared to the maximal correlation scores (rmax) obtained with permuted gene expression
vectors (grey boxplots). Asterisks denote statistical significance (p < 0.05, two-tailed). For both datasets, we find that the rmax
scores obtained by incorporating information about the expression of C9orf72 and TARDBP are significantly larger than those
obtained with permuted gene expression vectors (p < 0.0001). The maximal correlations are also compared to the maximal

correlation scores obtained in null networks (white box plots).

fit observed by seeding the insula is significantly larger
than what would have been expected from its degree and
spatial position alone and can be attributed to its embed-
ding in the global topology of the network. This result
suggests that the topology of the structural connectome
plays a significant role in shaping patterns of simulated
atrophy that have a high correspondence with the empir-
ical atrophy.

More generally, by looking at the topographic distribu-
tion of 7. scores, we find that the brain regions that
show the largest fits are located in the insular, medial
prefrontal and anterior temporal cortices (Fig. 3¢). These
results are in accordance with our finding that these re-
gions have large epicenter likelihood rankings. Fig. 3d
shows the empirical pattern of atrophy for the FTLDNI

dataset. This pattern is compared to the simulated pat-
tern of atrophy producing the maximal fit. This largest
fit was obtained by seeding the insula and was measured
at t = 4410. We find a significant relationship between
the two distributions (r = 0.60, pspin = 0.0013). Results
are presented for the FTLDNI dataset, but similar results
are found in the GENFI dataset (Fig. S3).

Contribution of gene expression to network spreading

Given the contribution of genetic variants to bvFTD
[25], we next assessed whether the incorporation of gene
expression information into the S.I.R model can enhance
the fits. We used regional microarray expression data
from the Allan Human Brain Atlas [28] to generate vec-
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tors of gene expression for four genes that have been
previously associated with bvFTD: MAPT, GRN, C9orf72
and TARDBP [41]. Fig. 4a shows the topographic distri-
butions of these genes. We used this genetic information
to set regional heterogeneity for the clearance and syn-
thesis of proteins in the model. We used the insula as the
seed region of the spreading process as it is the region
that showed the largest fit to the empirical data.

For both FTLDNI (Fig. 4b) and GENFI (Fig. 4c)
datasets, we measured the ry,,, scores obtained by incor-
porating regional expression for each of the four genes.
With MAPT, GRN, C9orf72 and TARDBP, we obtain cor-
relation scores of rpax = 0.42, Tmax = 0.44, rmax = 0.61
and rp.x = 0.71 for the FTLDNI dataset, and 7. =
0.28, Tmax = 0.30, Tmax = 0.58 and rm,.x = 0.68 for
the GENFI dataset. We find that adding regional het-
erogeneity for synthesis and clearance using expression
of C9orf72 and TARDBP increased model fit while the
incorporation of information regarding the regional ex-
pression of GRN and MAPT decreased model fit. To in-
vestigate the significance of the findings, we randomly
permuted the vectors of gene expression 10,000 times to
generate null distributions of r,,x scores that we com-
pared to the empirical results. We find that the scores ob-
tained with C9orf72 and TARDBP are significantly larger
than those obtained with permuted gene expression vec-
tors (p < 0.0001). These results suggest that C9orf72 and
TARDBP may play a significant role in driving the spatial
patterning of the empirical atrophy.

To investigate the relationship between gene expres-
sion and the brain’s structural connectivity, we compared
the fits to those obtained using rewired networks pre-
serving the wiring-cost of the empirical network. For
C9orf72, we find that the fits obtained using the em-
pirical networks were significantly larger than the fits
obtained using rewired null networks, for both FTLDNI
(p < 0.002) and GENFI (p < 0.002). This result suggests
that for both sporadic bvFTD and genetic bvFTD, the
topology of the structural connectome has a positive in-
fluence on the increase in model fit observed when incor-
porating C9orf72 into our model. For TARDBP, we find
that the fits obtained using the empirical networks were
significantly larger than the fits obtained using rewired
null networks for FTLDNI (p = 0.014), but not for GENFI
(p = 0.508). This result suggests that the topology of the
structural connectome appears to have a positive influ-
ence on the increase in model fit observed when trying to
fit our model to empirical atrophy patterns associated to
sporadic bvFTD, but not when trying to fit our model to
empirical atrophy patterns associated to genetic bvFTD.

Discussion

The present report provides a comprehensive and sta-
tistically robust model supporting the theory of network-
based atrophy in bvFTD, both in sporadic and genetic
forms. Our findings are consistent across two datasets
and the genetic/sporadic heterogeneity. Namely, for both
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sporadic and genetic variants, there is a strong correla-
tion between node deformation and the mean of neigh-
bor deformation defined by both structural and func-
tional connectivity, supporting the theory that atrophy
progresses through network-based connections. Similar
findings were observed at small (219) and large (1000)
cortical parcellation resolutions. Data-driven epicenter
mapping identified the bilateral anterior insular cortex,
as well as ventromedial cortex and antero-temporal areas
as potential epicenters. The involvement of the antero-
medial areas as epicenters ties into previous research
showing that data-driven atrophy subtypes include a “se-
mantic appraisal network” predominant group [27, 44].
The genetic bvFTD cohort showed a very similar profile
of most likely epicenters, with the addition of some dor-
sal frontal areas. The role of these regions as epicen-
ters was further supported by the agent-based spreading
model.

The localization of cortical atrophy was most signifi-
cant in the limbic resting state network, and less present
in the visuospatial network (expectedly given its poste-
rior localization). There was significant atrophy in the
default mode network (DMN) in genetic FTD, with a pos-
itive trend in sporadic FTD. Of note, the salience network
which has been previously identified as being predomi-
nantly involved in bvFTD [51, 66] did not show statis-
tically significant atrophy. However, when looking at
von Economo cytoarchitectonic classes, the insular cor-
tex was the most affected, with relative sparing of the
primary sensory neurons. This suggests that the insular
cortex plays a central role in the disease, but not nec-
essarily by spreading through the entire ventral atten-
tion network including its most posterior regions. In ad-
dition, while there have been some reports of opposite
connectivity pattern of changes in the salience versus the
DMN in bvFTD and AD [66], our results rather suggest
that there is significant involvement of DMN regions in
bvFTD.

Finally, although exploratory, using a simulation-based
approach and gene expression profile data from the Allen
Human Brain Atlas, we identified that the C9orf72 and
TARDPB gene expression could play a role in the prop-
agation of atrophy in sporadic bvFTD. Indeed, factoring
an impact on clearance and synthesis of both genes re-
lated to TDP-43 improved the fit between the modeling
spreading models and the actual atrophy maps based on
DBM. While we cannot exclude that some subjects in the
FTLDNI had an unidentified C9orf72 mutation, the in-
volvement of TARDPB is of interest given that that mu-
tations in this gene constitute only a very small fraction
of genetic FTD. Results suggest that the activity of this
gene could play a role in sporadic bvFTD, which could
be of interest for future therapeutic avenues. In future
studies, it would be of interest to model the role of genes
in the spread of atrophy within each genetic subgroup
separately, including all clinical phenotypes.

This study has several strengths including the repli-
cation across two separate samples of genetic and spo-
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radic bvFTD. DBM is a robust method to capture at-
rophic changes in patients with neurodegenerative de-
mentia. The present findings were replicated in two sep-
arate samples of genetic and sporadic bvFTD and were
validated using a range of methodological choices. We
also confirmed that the findings are independent from
potential confounding factors such as spatial distance
and parcellation resolution. However, there are several
methodological considerations that need to be taken into
account when interpreting the findings. First, there are
no available molecular techniques to directly measure
FTLD changes in vivo. To overcome this limitation, we
opted to use DBM to estimate atrophy in bvFTD patients
since it is a robust method to capture local changes in
brain tissue volume. Second, diffusion spectrum imaging
and streamline tractography were used to estimate struc-
tural connectivity networks. Although this approach is
widely applied to reconstruct human structural connec-
tome using non-invasive neuroimaging data, it is prone
to false positives and negatives in defining white mat-
ter connections [29, 55]. Third, we identified potential
disease epicenters using cross sectional data and undi-
rected networks, therefore it is not possible to precisely
assess the propagation process of pathology across the
connectome architecture. Modeling disease progression
and spread of atrophy across brain networks over time
remains an exciting open question that could potentially
be addressed by investigating a longitudinal sample of
FTD patients using the methods presented here. Fourth,
the two datasets included in this study have different de-
mographics and clinical variables (e.g., age range, sex,
education, disease severity, etc.). However, the results
were mainly consistent across the two datasets, confirm-
ing that the findings are robust against those differences.
Finally, the structural and functional connectivity net-
works used in this study are measured in a sample of
young healthy population rather than FTD patients. We
used these networks as a healthy underlying architecture
that may allow pathogen transmission between the con-
nected regions. However, it is possible that the connec-
tome architecture itself would also be compromised dur-
ing the course of the disease progression, rerouting or
restricting the spread of pathology. This could be further
investigated in future studies using simultaneous mea-
sures of regional atrophy and changes in structural and
functional connectivity in a longitudinal sample of FTD
patients.

Summary

Altogether, structural and functional connectivity net-
works and rigorous statistical analyses that account for
spatial autocorrelation and network embedding are used
in the present study to demonstrate that bvFTD-related
neurodegeneration is conditioned by connectome archi-
tecture, accounting for 30-40% of variance in atrophy,
as well as local transcriptomic vulnerability. FTD-related
atrophy appears to be particularly targeting regions asso-
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ciated with the anterior insular cortex, but it is likely that
there are multiple potential epicenters leading to bvFTD
clinical phenotypes. The similarity between genetic and
sporadic forms of bvFTD suggests that multiple patholog-
ical changes are constrained by the network architecture
in the spread of atrophy, explaining why many different
pathological and genetic entity lead to the same clinical
syndrome. Although exploratory, our results suggest that
TARDPB gene expression could have a significant con-
tribution to disease progression, particularly in sporadic
bvFTD.

Methods
Participants

We retrieved data from subjects with bvFTD and cogni-
tively normal controls (CNCs) from the Frontotemporal
Lobar Degeneration Neuroimaging Initiative (FTLDNI)
database that had T1-weighted (T1w) MRI scans match-
ing with each clinical visit (http://4rtni-ftldni.ini.usc.
edu/). The inclusion criteria for bvFTD patients were
a diagnosis of possible or probable bvFTD according to
the FTD consortium criteria [46], resulting in 70 patients
with bvFTD (mostly sporadic) and 123 CNCs available
for analyses. Several patients had more than one scan
therefore there was a total of 156 scans in the bvFTD
group and the 326 in the CNC group. We also accessed
data from the third data freeze (12/2017) of the Ge-
netic Frontotemporal Dementia Initiative 2 (GENFI2 -
http://genfi.org.uk/), which includes 23 centers in the
UK, Europe and Canada [48]. GENFI2 participants in-
clude known symptomatic carriers of a pathogenic muta-
tion in C9orf72, GRN or MAPT and their first-degree rel-
atives who are at risk of carrying a mutation, but who did
not show any symptoms (i.e., at-risk subjects). Healthy
first-degree relatives who were found to be non-carriers
of a mutation are considered as CNCs. Since the aim
of the present study was to study network propagation
of atrophy in the bvFTD clinical phenotype, presymp-
tomatic carriers and symptomatic carriers whose clini-
cal diagnosis was other than bvFTD were excluded. This
GENFI2 cohort included 75 patients with bvFTD and 247
CNCs. Demographic and clinical characteristics of those
two cohorts are described in Table. 1. Two-sample t-
tests were conducted to examine demographic and clin-
ical variables at baseline. Categorical variables were an-
alyzed using chi-square analyses. Results are expressed
as mean =+ standard deviation and median [interquartile
range] as appropriate.

MRI acquisition and processing

For the FTLDNI cohort, 3.0T MRIs were acquired at
three sites (T1w MPRAGE, TR=2 ms, TE=3 ms, IT=900
ms, flip angle 9°, matrix 256x240, slice thickness 1mm,
voxel size 1mm?). For the GENFI2 sample, volumetric
T1w MPRAGE MRI was obtained at multiple centers us-
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ing the GENFI imaging protocol on either Siemens Trio
3T, SiemensSkyra3T, Siemensl.5T, Phillips3T, General
Electric (GE) 1.5T or GE 3T scanners. Scan protocols
were designed at the outset of the study to ensure ade-
quate matching between the scanners and image quality
control.

All T1w scans were pre-processed through our longi-
tudinal pipeline that includes image denoising, inten-
sity non-uniformity correction and image intensity nor-
malization into range (0-100) using histogram match-
ing [5, 14, 16, 53]. The image processing tools used
in this study were designed to process data from multi-
site studies to handle biases due to multi-site scanning
and they have been successfully applied to a number of
multi-site projects [9, 17, 18, 63]. Each native T1w vol-
ume from each time point was linearly registered first
to the subject-specific template which was then regis-
tered to the ICBM152 template. All images were then
non-linearly registered to the ICBM152 template using
ANTs diffeomorphic registration pipeline [6]. The im-
ages were visually assessed by two experienced raters
(MD and ALM) to exclude cases with significant imaging
artifacts (e.g., motion, incomplete field of view) or inac-
curate linear/nonlinear registrations. This visual quality
control was completed blind to the diagnosis. Out of
1724 scans, only 43 (2.5%, 36 scans in GENFI2, and 7 in
FTLDNI) were rejected. This resulted in a total of 515
subjects that were included to perform cross-sectional
morphometric analyses.

Deformation-based morphometry (DBM) analyses

DBM [3, 4] analysis was performed using Montreal
Neurological Institute (MNI) MINC tools [33]. The lo-
cal deformations, obtained from the non-linear transfor-
mations mapping the MNI-ICBM152-2009¢ template to
the subject’s MRI, encode the local tissue volume differ-
ence between the MNI average template and subject’s
brain. The determinant of the Jacobian of the deforma-
tion field is measured at each voxel. Determinant values
larger than 1.0 indicate that the local volume in the sub-
ject is larger than the average template (e.g., ventricular
or sulci enlargement in the case of FTD). Determinant
values smaller than one indicate that the local volume in
the subject is smaller than the template. The latter is of-
ten interpreted as tissue atrophy despite the use of only
cross-sectional data. DBM was used to assess voxel-wise
cross-sectional group related volumetric differences. To
obtain a voxel-wise map reflecting the patterns of dif-
ference between bvFTD and CNCs, the following mixed
effects model was applied on a voxel-by-voxel basis, sep-
arately for each dataset:

DBM ~ 1+ Dx+ AGE+ SEX 4+ (1/SITE) (1)
The mixed effects model included age as a continuous

fixed variable and diagnosis (Dz) and sex as fixed cat-
egorical variables. Site was included as a categorical
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random variable. The variable of interest was diagnosis,
reflecting the brain regions that were significantly differ-
ent between bvFTD and CNCs, controlling for age and
sex. Statistical t-maps were extracted from the model
and used for the rest of the analyses throughout the
manuscript. Finally, the t-statistics were multiplied by
-1 such that higher positive values correspond to higher
atrophy and negative values correspond to volume ex-
pansion.

Anatomical parcellation

Statistical t-maps obtained through DBM analysis and
mixed effects models were parcellated into 219 and 1000
approximately equally sized cortical regions or parcels
using the Cammoun atlas [11], a multiresolution exten-
sion of the anatomical Desikan-Killiany atlas [20]. We re-
fer to 219 and 1000 parcellation resolutions as low and
high parcellation resolutions, respectively. The parcel-
wise t-statistics (i.e., atrophy) were estimated as the
mean t-statistic of all the voxels that were assigned to
that parcel according to the atlas. We repeated all the
analyses at both parcellation resolutions to ensure that
results are replicable across multiple spatial scales.

Structural and functional network reconstruction

Connection patterns from healthy individuals are used
to represent the architecture of brain networks for the
distributed atrophy patterns that are observed in bvFTD
patients. Structural and functional connectivity data of
70 healthy individuals (mean age 28.8 + 9.1 years) were
obtained from a publicly available dataset [26]. Details
about data acquisition parameters and pre-processing
analysis are available in [26]. Briefly, the participants
were scanned in a 3T MRI scanner (Trio, Siemens Medi-
cal, Germany) using a 32-channel head-coil. The session
protocol included: (1) a magnetization-prepared rapid
acquisition gradient echo (MPRAGE) sequence sensitive
to white/gray matter contrast (1-mm in-plane resolu-
tion, 1.2-mm slice thickness); (2) a DSI (diffusion spec-
trum imaging) sequence (128 diffusion-weighted vol-
umes and a single by volume, maximum b-value 8,000
s/mm?, 2.2x2.2x3.0 mm voxel size); and (3) a gradi-
ent echo EPI sequence sensitive to BOLD (blood-oxygen-
level-dependent) contrast (3.3-mm in-plane resolution
and slice thickness with a 0.3-mm gap, TR 1,920 ms,
resulting in 280 images per participant). Diffusion spec-
trum imaging data and deterministic streamline tractog-
raphy were used to construct structural connectivity net-
works for each healthy individual. Each pair-wise struc-
tural connection was weighted by the log-transform of
the fiber density. Individual structural connectivity net-
works were parcellated into the low and high parcella-
tion resolutions using the Cammoun atlas described be-
fore. Resting-state functional MRI data collected in the
same healthy individuals (with eyes open) were used
to construct functional connectivity networks. The pre-
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processed resting-state functional MRI time series were
also parcellated using both the low and high resolution
versions of the Cammoun atlas and were correlated to
estimate functional connectivity between pairs of brain
regions using Pearson correlation coefficients. Finally, a
consensus group-average structural connectivity preserv-
ing the edge length distributions in individual networks
was constructed [8, 37, 38] and a group-average func-
tional connectivity was estimated as the mean pairwise
connectivity across individuals.

Network atrophy

Group-average structural and functional connectivity
networks were used to estimate average atrophy values
of neighbors of each brain region [52]. Briefly, neigh-
bors of a given brain region were defined as regions that
are connected to it with a structural connection for both
structurally- and functionally- defined neighbors. The
structurally-connected neighbor atrophy value of each
brain region was then estimated as the average weighted
atrophy values of all the neighbors of that region:

N
1 K2
Jj#4,5=1

where A; is the average neighbor atrophy value of brain
region or node ¢, a; is atrophy of j-th neighbor of node
i, SC;; is the strength of structural connection between
nodes i and j, and N; is the total number of neighbors
that are connected to node ¢ with a structural connec-
tion (i.e., node degree). Normalization by term N; en-
sures that the estimated neighbor atrophy value is in-
dependent from the node degree. The neighbor atro-
phy estimation excludes self-connections (j # ). The
functionally-connected neighbor atrophy values were es-
timated using the same equation as above, with the ex-
ception that regional atrophy values were weighted by
the strength of functional connections between nodes i
andj (FC”)

N;
Ay = Ni > a; x FCj 3)
' i#ig=1

For both structurally- and functionally-defined neigh-
bor atrophy estimates, neighbors were defined as nodes
that were structurally connected to the node under con-
sideration. Altogether, a single neighbor atrophy value
was estimated for each region. We used Pearson correla-
tion coefficients to assess the relationship between node
atrophy and mean neighbor atrophy for structurally- and

functionally-defined neighbors, separately (Fig. 2a).

Data-driven epicenter analysis

To identify potential disease epicenters, we hypothe-
sized that an epicenter would be a node with high atro-
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phy that is also connected to highly atrophied neighbors,
compared to a high atrophy node with healthy neigh-
bors, or a healthy node with atrophied neighbors. Using
a data-driven approach [52], we first ranked the nodes
based on their estimated regional atrophy values. We
also ranked the nodes based on the average atrophy val-
ues of their neighbors in a separate list. We then cal-
culated the average ranking of each node in the two lists
and identified nodes that were highly ranked in both lists
(i.e., nodes with both high local and neighborhood aver-
age rankings) as the potential epicenters (Fig. 2b).

Agent-based spreading model

Simulation-based epicenter analysis

To investigate the transneuronal spread hypothesis,
we simulated the spread of misfolded proteins on the
left hemisphere of the low-resolution weighted consen-
sus structural connectivity network (111 regions) us-
ing a Susceptible-Infected-Removed (S.I.R) agent-based
model [64]. Briefly, the model consists of simulating
the misfolding of normal proteins in the cortex and their
trans-neuronal spreading through the structural connec-
tions between brain regions. The accumulation of mis-
folded proteins, which act as pathogenic agents, then
leads to the atrophy of the afflicted regions. Impor-
tantly, this model incorporates synthesis and clearance
rates, which can heterogeneously vary across brain re-
gions. More details about the model’s main equations
can be found in the Supplemental Information. To ex-
plore the likelihood that a brain region acts as an epi-
center of this spreading process, we first used baseline
clearance and synthesis rates for all regions. We simu-
lated the spread of misfolded proteins and the resulting
atrophy using, one at a time, each individual brain region
as the seed of the process. For each seed region, and at
each time point, we then computed the Pearson corre-
lation between the simulated and empirical patterns of
atrophy.

Gene expression

To investigate the potential role of gene expression
in shaping the modelled patterns of atrophy, we ac-
cessed the Allen Human Brain Atlas (AHBA [28]; http:
//human.brain-map.org/), which provides regional mi-
croarray expression data from six post-mortem brains (1
female, ages 24-57, 42.5 + 13.38). We used the atlas
to generate vectors storing gene expression scores for
each of the 111 regional parcel of the left hemisphere.
More specifically, we focused on four vectors of gene
expression associated with genes that have been pre-
viously linked to bvFTD, namely MAPT, GRN, C9orf72
and TARDBP. Given that subjects were selected based on
their clinical phenotype (bvFTD) rather than on a specific
pathological subtype or genetic mutation, we explored
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the potential role of the expression of all four genes for
both synthesis and clearance. As such, vectors of gene
expression were used to specify the synthesis and clear-
ance rate of each brain region, such that a greater expres-
sion score entailed a greater synthesis and clearance rate.
Our objective was to identify potentially new mechanis-
tic processes underlying the spreading of atrophy, par-
ticularly in sporadic bvFTD where we do not have ade-
quate knowledge of the contribution of genes related to
the various proteinopathies.

The AHBA data was pre-processed and mapped to
the parcellated brain regions using the abagen toolbox
[34] (https://github.com/rmarkello/abagen). During
pre-processing, we first updated the MNI coordinates of
tissue samples to those generated via non-linear align-
ment to the ICBM152 template anatomy (https://github.
com/chrisgorgo/alleninf). We also reannotated the mi-
croarray probe information for all genes using data pro-
vided by [2]. We then filtered the probes by only re-
taining those that have a proportion of signal to noise
ratio greater than 0.5. When multiple probes indexed
the expression of the same gene, we selected the one
with the most consistent pattern of regional variation
across donors. Samples were then assigned to individ-
ual regions in the Cammoun atlas. If a sample was
not found directly within a parcel, the nearest sam-
ple, up to a 2mm-distance, was selected. If no sam-
ples were found within 2mm of the parcel, we used
the sample closest to the centroid of the empty parcel
across all donors. To reduce the potential for misas-
signment, sample-to-region matching was constrained by
hemisphere and gross structural divisions (i.e., cortex,
subcortex/brainstem, and cerebellum, such that e.g., a
sample in the left cortex could only be assigned to an
atlas parcel in the left cortex). All tissue samples not
assigned to a brain region in the provided atlas were dis-
carded. Tissue sample expression scores were then nor-
malized across genes using a scaled robust sigmoid func-
tion [24], and were rescaled to a unit interval. Expres-
sion scores were also normalized across tissue samples
using the same procedure. We then aggregated the mi-
croarray samples belonging to the same regions by com-
puting the mean expression across samples for individ-
ual parcels, for each donor. Regional expression profiles
were finally averaged across donors.

Null models

To assess the statistical significance of the node-
neighbor relationships and the epicenter analysis, we
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used a spatial autocorrelation preserving null model (i.e.,
“spin tests” [1, 35]). We first used the Connectome Map-
per toolkit ([19]; https://github.com/LTS5/cmp) to gen-
erate a surface-based representation of the Cammoun at-
las (both low and high resolution) on the Freesurfer fsav-
erage surface. We then defined the spatial coordinates of
each parcel by selecting the vertex on the spherical pro-
jection of the generated fsaverage surface that was clos-
est to the center of mass of the parcel [52, 57]. Finally,
we used the resulting parcel spatial coordinates to gen-
erate null models of brain maps (e.g., atrophy maps, epi-
center rankings) by randomly rotating the maps and re-
assigning node values with the values of closest parcels.
The rotations were first applied to one hemisphere and
the mirrored rotations were used for the other hemi-
sphere. This procedure was repeated 10,000 times to
generate a null distribution of brain maps with preserved
spatial autocorrelation.

To ensure that the observed correlation between the
empirical and simulated atrophy map from the agent-
based model is explained by the topological organiza-
tion of the structural connection between brain regions
and not solely by the spatial embedding of brain re-
gions, we generated surrogate networks that preserve
the geometry of the structural connectome. The edges
of the consensus network were first binned according
to inter-regional Euclidean distance. Within each length
bin, pairs of edges were then selected at random and
swapped [7]. This procedure was repeated 500 times,
generating a population of rewired structural networks
that preserve the degree sequence of the original net-
work and that approximately preserve the edge length
distribution (i.e., wiring cost) of the empirical network.
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Supplemental Information
The S.I.R model

The S.I.LR model has been previously used to explore
the spreading of pathological proteins in Parkinson dis-
ease [64]. The model is described at length in the
original paper. The code of the model can be found
at https://github.com/yingqiuz/SIR_simulator. This sec-
tion briefly summarizes the model’s main equations.

The initial step of this model consists in determining
the baseline regional density of some protein of interest
in individual parcels of the network. To do so, we incre-
ment the population of normal agents (i.e., proteins) in
region i, V;, with

ANZ = CEZSZAt - (1 - 6_'8iAt)Ni (4)
where «; and ; are respectively the synthesis and clear-
ance rate of the protein in region i. S; corresponds to the
size (voxel count) of region ¢ and At is the time interval
between two iterations, which is set to 0.02.

After the system reaches the stable point (error toler-
ance e < 10~7), the pathogenic spread of misfolded pro-
teins is initiated and the population of normal (N) and
misfolded (M) agent is updated with

ANZ :OéiSlAt — (1 — ei'BiAt)Ni
_ (efﬁiAt)(l _ e*’Y?MiAt)NZ_ )
AM; =(e Pidt)(1 — o Mt N,
( ) ) ©)

— (1 —e PN,

where 4! is the baseline transmission rate that measures
the likelihood that a single misfolded agent can transmit
the infection to other susceptible agents. This baseline
transmission rate was set to 1/.5;.

For each iteration, agents in region i may remain in
the region or may enter one of its edges according to a
multinomial distribution with probabilities

= pPi (7

Pregioniﬁregionj

Pregioni—>edge(i,j) = (1 - Pz) Z Wi (8
g

where w;; is the connection strength of edge (4, j). The
probability of remaining in the current region, p;, was

17

set to 0.99. Analogously, the agents in edge (7,;j) may
exit the edge or remain in the same edge per unit of time
with binary probabilities:

Pcdgc(i,j)‘?YCgion(j) =7 ®

Pcdgc(i,j)—mdgc(i,j) =1--— (10)

where [;; is the length of edge (i, 7).

We use NV; ; and M; ; to denote the normal/misfolded
population in edge (i, 7). For each interval of time At,
the increments of N;, M; in region i are

AN; =Y %N(j7i)At —(1-p)N:At QD)
j Lii

1
i I
Likewise,
ANy = (1= po) NAL— LNG AL (13)
i,5) = L — P i
(4,5) Zj w” lij Nij)

Z wz] l ij

L t,ar aa

Finally, we model neuronal tissue loss (L) as the re-
sult of 2 processes: direct toxicity from accumulation of
native misfolded proteins and deafferentation (reduction
in neuronal inputs) from neuronal death in neighboring
(connected) regions. The atrophy accrual at ¢ within At
in region i is given by the sum of the two processes:

AL,‘ :kl(l
Wij
+ ko Z = w”

_ eT‘,; (t)At)

.7’(t*1)At) (15)

Where r;(t) is the proportion of misfolded agents in re-
gion ¢ at time ¢. k; and ky are both set to 0.5 such that
the 2 processes have equal importance in modelling the
total atrophy growth. A list of the free parameters that
have been used can be found in Table. S1.
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TABLE S1. Parameters of the S.I.R model | Values of the free parameters of the S.I.R model used in this study are listed. For a
complete list of all the parameters or notations used in the model, see [64].

Notation = Name Expression or value Explanation
At time step At = 0.02 Time increments in the simulations
; synthesis rate in region 4 See Methods section Probability that a new normal agent gets synthesized in each voxel
of region ¢ per unit time
Bi clearance rate in region 4 See Methods section Probability that an existing agent (either normal or misfolded) in
region : gets cleared per unit time
pi the probability of remaining in p; = 0.99 for all ¢ Agents in region ¢ have equal probability of remaining in region 4
region ¢ or exiting region ¢ per unit time
k1 weight of atrophy accrual due k3 = k2 = 0.5 The contribution of native misfolded agents to total atrophy
to accumulation of misfolded growth
agents
ko weight of atrophy accrual due to k1 = k2 = 0.5 The contribution of deafferentation to total atrophy growth
deafferentation
wij Connection strength between re- Log-transform of streamline den-

gions 4 and j

Connection length between re-
gions ¢ and j

sity
Euclidean length of streamline
fibers
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Figure S1. bvFTD atrophy maps and healthy connectivity networks | Voxel-level and parcellated atrophy maps are shown for
(a) FTLDNI and (b) GENFI datasets. The voxel-level data are displayed on the MNI-ICBM152 template (z = —5, y = 13, z = —6).
Greater t-values correspond to greater atrophy in bvFTD patients relative to healthy control subjects. The parcellated data are
displayed on brain surface at 95% intervals for both low and high parcellation resolutions (219 and 1000 nodes, respectively). (c)
Group-average structural and functional connectivity networks, derived from an independent sample of 70 healthy participants
[26], are shown for low and high parcellation resolutions. Each pair-wise structural and functional connection correspond to the
mean log-transform of the fiber density and the mean Pearson correlation coefficient between regional resting-state functional MRI
time series across individuals, respectively.
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Figure S2. Network-dependent atrophy using binary structural connectivity | Binarized structural connectivity was used to
estimate the SC-defined mean neighbor atrophy (i.e., t-value) for (a) FTLDNI and (b) GENFI datasets. More specifically, the
neighbor atrophy values were not weighted by the strength of structural connectivity. Left panel: Atrophy of a node was correlated
with the mean atrophy of its connected neighbors. The observed correlation values (depicted by filled circles) were compared to a
set of correlations obtained from 10,000 spin tests (depicted by box plots). Asterisks denote statistical significance (pspin < 0.05,
two-tailed). The association between node and neighbor atrophy was consistent across resolutions and significantly greater in
empirical networks compared to null networks in both datasets. Right panel: Epicenter analysis was repeated using the binarized
structural connectivity network. Epicenter likelihood rankings are depicted across the cortex. The most likely epicenters with high
significant rankings are regions that are mainly located at the bilateral anterior insular cortex and temporal lobes (10,000 spin
tests). The results are consistent with the original analysis where SC-defined neighbors were weighted by structural connectivity
(Fig. 2).


https://doi.org/10.1101/2021.08.24.457538
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.24.457538; this version posted August 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

21
a | model fit
*
0.50 A i .
J 0.6 —— insula
0.25 - '—f ——— superior-frontal
r I'max 0.41 lateral orbito-frontal
0.00 -
® empirical network
-0.25 - 0.2 7 [] rewired networks
0 10000
t
b | r.., distribution c | best seed region (insula) r=0.52 p,,, = 0.03
4 1 ()
>
s
o 27
©
o
£ o
-0.18 (.52 -0.37 ssmm ) 83 0.45 /.89 -2
Fmax emp. atrophy sim. atrophy sim. atrophy

Figure S3. Simulation-based epicenter analysis using the GENFI dataset | (a) Left panel: the spreading process was initiated in
every brain region and the correlation between the simulated and empirical patterns of atrophy was computed. The colored lines
highlight the correlations obtained by seeding regions of the insula (rmax = 0.52; red), the superior-frontal cortex (rmax = 0.37;
blue) and lateral orbito-frontal cortex (rmax = 0.45; green). The correlations for other brain regions are shown in gray. Right panel:
to control for the potential effect of a brain region’s spatial embedding, rmax values were compared to rmax correlations obtained
using rewired networks that preserve the wiring-cost of the empirical structural network. Asterisks denote statistical significance
(p < 0.05, two-tailed). The rmax computed by seeding the insula of the empirical network (rmax = 0.52) was significantly larger
than the rmax computed by seeding the insula of the rewired networks (p = 0.006). (c) The largest fit (rmax) obtained by seeding
each brain region is shown on the surface of the brain. Larger values of r,.x were generally obtained by seeding insular and
prefrontal regions. (d) Left panel: empirical pattern of atrophy (GENFI). Middle panel: simulated pattern of atrophy producing
the maximal fit. This pattern of atrophy was obtained with the insula as the seed, and at ¢t = 5730 (see the arrow in panel b). Right
panel: scatter plot of the relationship between standardized empirical and simulated patterns of atrophy (r = 0.52, pspin = 0.03).
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