

1 **Infection increases activity via *Toll* dependent and independent mechanisms in**

2 ***Drosophila melanogaster***

3

4 Crystal M. Vincent^{1,2*}, Esteban J. Beckwith^{1,2*†}, William H. Pearson^{1,2}, Katrin Kierdorf^{3,4,5},
5 Giorgio Gilestro², Marc S. Dionne^{1,2§}

6

7 * These two authors contributed equally.

8 † Current address: Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE),
9 UBA-CONICET, Buenos Aires, Argentina

10 § Author for correspondence. Email: m.dionne@imperial.ac.uk

11

12 1. MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London,
13 UK

14 2. Department of Life Sciences, Imperial College London, London, UK

15 3. Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg,
16 Germany

17 4. Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine,
18 University of Freiburg, Freiburg, Germany

19 5. CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg,
20 Freiburg, Germany

21

22 **Abstract**

23 Host behavioural changes are among the most apparent effects of infection. ‘Sickness
24 behaviour’ can involve a variety of symptoms, including anorexia, depression, and changed
25 activity levels. Here we use a real-time tracking and behavioural profiling platform to show
26 that, in *Drosophila melanogaster*, many systemic bacterial infections cause significant
27 increases in physical activity, and that the extent of this activity increase is a predictor of
28 survival time in several lethal infections. Using various bacteria and *D. melanogaster* immune
29 and activity mutants, we show that increased activity is driven by at least two different
30 mechanisms. Increased activity after infection with *Micrococcus luteus*, a Gram-positive

31 bacterium rapidly cleared by the immune response, strictly requires the *Toll* ligand *spätzle* and
32 Toll-pathway activity in the fat body and the brain. In contrast, increased activity after infection
33 with *Francisella novicida*, a Gram-negative bacterium that cannot be cleared by the immune
34 response, is entirely independent of either *spätzle* or the parallel IMD pathway. The existence
35 of multiple signalling mechanisms by which bacterial infections drive increases in physical
36 activity implies that this effect may be an important aspect of the host response.

37 **Introduction**

38 Some of the most apparent effects of infection are the sickness behaviours of the host. A variety
39 of infection-induced behavioural changes have been documented; in vertebrates, these
40 commonly include anorexia, lethargy, and social withdrawal (Dantzer, 2001; Shattuck and
41 Muehlenbein, 2015; Stockmaier et al., 2021). In insects, a partially-overlapping set of changes
42 have been described, including anorexia and foraging changes, behavioural fevers, and changes
43 in oviposition (Anderson et al., 2013; Masuzzo et al., 2019; Stahlschmidt and Adamo, 2013;
44 Surendran et al., 2017; Vale and Jardine, 2017). These changes in behaviour can in some cases
45 facilitate immune function, either in terms of pathogen clearance or host survival; in other
46 cases, the pathogen appears to benefit; and in some cases, there is no obvious beneficiary, and
47 the observed behavioural change may be a non-selected consequence of the interaction of two
48 or more complex physiological systems. In all of these cases, however, infection behaviours
49 have a strong effect on the well-being of the host, whether or not this effect is ultimately
50 manifested as a difference in infection outcome.

51 Whilst sickness behaviours are often described as being part of the host response to
52 infection, several studies have shown that behavioural changes during infection can also be the
53 result of pathogen manipulation of host biology, rather than the host responding to a pathogen
54 threat, *per se* (Adamo and Webster, 2013; Berdoy et al., 2000; Heil, 2016; Klein, 2003; Lafferty
55 and Shaw, 2013). The difference between a host response and parasite manipulation is not
56 simply a matter of semantics as the two can predict opposing evolutionary trajectories and
57 infection outcomes (Hart, 1988; Johnson, 2002; Klein, 2003). If hosts change their behaviour
58 in response to the physiological stresses associated with infection, we assume that said
59 behaviour will be of benefit to the host, usually by reducing pathology (Ayres and Schneider,
60 2009; Kuo and Williams, 2014; Vincent and Bertram, 2010; Wang et al., 2016). In contrast,
61 when pathogens manipulate host behaviour, we assume it serves the function of increasing

62 pathogen fitness, often via enhanced transmission (Andersen et al., 2009; Berdoy et al., 2000;
63 Biron et al., 2006; Shaw et al., 2009; Thomas et al., 2005, 2002; Webster et al., 1994).

64 Changes in sleep and activity are some of the most common behavioural manifestations
65 of infection, seen in vertebrates and invertebrates (Besedovsky et al., 2019; Kuo et al., 2010;
66 Shirasu-Hiza et al., 2007). The extensive crosstalk between sleep and immunity has led to many
67 suppositions regarding the value of sleep in maintaining a robust immune response and health
68 in the face of infection (Besedovsky et al., 2019; Imeri and Opp, 2009; Kuo et al., 2010; Majde
69 and Krueger, 2005; Opp, 2009). However, despite investigations of the interplay between sleep
70 and infection in insects, there remain inconsistencies in whether sleep (or activity) is induced
71 or inhibited during infection, and what effect these changes have on infection pathology
72 (Arnold et al., 2013; Kuo et al., 2010; Kuo and Williams, 2014; Mallon et al., 2014; Shirasu-
73 Hiza et al., 2007; Siva-Jothy and Vale, 2019). Whilst some of this incongruity may result from
74 the fact that in these studies flies were injected at different times of the day (Lee and Edery,
75 2008), they could also be caused by differences between pathogens used and therefore disparate
76 activation of immune factors (Hoffmann, 2003; Lemaitre et al., 1997, 1995; Tanji and Ip, 2005;
77 Wang and Ligoxygakis, 2006). The consequences of infection-induced changes in sleep and
78 activity are thus multifaceted and the effects of infection will depend on interaction between
79 host immune and nervous systems and the pathogen itself on multiple levels.

80 Using the real-time tracking and behavioural profiling platform, the ethoscope
81 (Geissmann et al., 2017), we test an array of various bacteria and *D. melanogaster* immune and
82 activity mutants, to determine whether pathogen recognition and immune pathway activation
83 contribute to the increase in activity observed during infection.

84 **Results**

85 **Bacterial infection leads to a marked increase in locomotor activity.**

86 We began by exploring the effects of *Francisella novicida* on physical activity in *Drosophila*
87 *melanogaster*; a Gram-negative bacterium that propagates both intra- and extra-cellularly in *D.*
88 *melanogaster*, ultimately resulting in host death after four days (Moule et al., 2010; Vincent et
89 al., 2020; Vonkavaara et al., 2008). This infection is particularly tractable for behavioural
90 studies because it presents an infection course in excess of three days (two days in some
91 immune mutants), allowing ample time for activity monitoring; near-synchronous mortality;
92 and strong immune activation, allowing identification of effects of immune activation on
93 activity (Moule et al., 2010; Vincent et al., 2020). We found that flies infected with *F. novicida*
94 spent 10% and 9% more time moving than mock injected and uninfected controls, respectively
95 (Figure 1A). This increase in activity intensified over the course of infection. Further
96 partitioning of activity data found that while there were subtle increases in micro-movements
97 such as grooming and feeding (Geissmann et al., 2019, 2017) (Figure 1B), the observed
98 increase in movement was primarily the result of increased time spent walking; these flies also
99 spent 12% and 11% less time sleeping (Figure 1C, D; Figure 1 – figure supplement 1A-C).
100 Importantly, despite spending proportionately more time active, infected flies did not cover a
101 greater total distance, indicating that the intensity of their activity was unaltered by infection
102 (Figure 1 – figure supplement 1D, E). Activity on the first day of infection was predictive of
103 lifespan, with more active flies exhibiting increased lifespan (Figure 1E). In addition, there was
104 a positive correlation between total activity and survival (Figure 1 – figure supplement 1F); we
105 used day one activity as a predictor because previous work has found immune activity to be
106 strongest at this time (De Gregorio et al., 2002a; Lemaitre et al., 1997; Schlamp et al., 2021)
107 and thus would be an appropriate metric in looking at infections of shorter duration.
108 Furthermore, day 1 activity levels were positively correlated with total activity levels (Figure

109 1 – figure supplement 1G), giving us confidence that activity on day 1 is representative of total
110 activity levels in assessing infections of longer duration.

111 To test whether greater activity following infection was specific to this infection or a
112 general consequence of immune activation, we infected wild-type flies with a phylogenetically
113 and pathogenically diverse panel of bacteria. We found that three of the five bacteria examined,
114 *Micrococcus luteus*, *Listeria monocytogenes*, and *Staphylococcus aureus*, induced increased
115 activity (Figure 2A-C; Figure 2 – figure supplement 1). Thus, including *F. novicida*, the four
116 bacteria able to drive hyperactivity include Gram-positives and Gram-negatives, as well as
117 microbes killed efficiently by the immune response and those able to survive within and outside
118 of host cells (Hanson et al., 2019; Moule et al., 2010; Nehme et al., 2011; Vincent et al., 2020).

119 As we found in *F. novicida*, activity on the first day of infection was predictive of lifespan,
120 with more active flies exhibiting increased lifespan during *L. monocytogenes* infection, but
121 decreased lifespan during infection with *S. aureus* (Figure 2D, E). Next, we screened a
122 selection of immune, locomotor and circadian mutants of *D. melanogaster* for activity levels
123 during *F. novicida* infection and observed increased locomotor activity in all mutants tested
124 (Figure 2 – figure supplement 2; Figure 2 – figure supplement table 1). Thus, we concluded
125 that the effect of infection on locomotor behaviour is a widespread phenomenon and may
126 represent a complex trait emerging as the result of the induction of multiple molecular
127 pathways.

128

129 **Increased activity is not a moribund behaviour and is affected by immune activation.**

130 We became particularly interested in the change in locomotor activity observed during
131 infection with *M. luteus* because, unlike the other bacteria examined, increased activity
132 following injection with *M. luteus* was transient (Figure 2A). That flies spend more time active
133 during *M. luteus* infection is particularly important because it demonstrates that infection-

134 induced activity is not a moribund behaviour: *M. luteus* infection is cleared by the immune
135 response and flies are not killed by this infection over the following four days (Figure 2 – figure
136 supplement 3); this contrasts with *F. novicida*, *L. monocytogenes* and *S. aureus*, which kill
137 more than half of all infected flies within four days (Figure 2 – figure supplement 3).

138 In *M. luteus* and *F. novicida*-infected flies, infection-dependent increases in activity
139 were roughly correlated with bacterial load. In flies infected with *M. luteus*, activity increased
140 during the early stages of infection when bacterial numbers were high and declined once
141 bacteria had been cleared. In *F. novicida*-infected flies, activity increased in parallel with the
142 bacterial load (Figure 2 – figure supplement 3). This parallel between these infections prompted
143 us to test whether bacterial detection by immune pathways and the subsequent signalling drove
144 increased activity. Previous work found that the NF κ B transcription factor RELISH which
145 plays a vital role in *D. melanogaster*'s immune response, is required for infection-induced sleep
146 (Kuo et al., 2010). We infected flies lacking the Toll and immune deficiency (IMD) pathways,
147 the primary microbe-detection pathways in *D. melanogaster* (De Gregorio et al., 2002b; Lau
148 et al., 2003; Lemaitre et al., 1995; Tanji and Ip, 2005). We found that ablation of IMD (*imd*¹⁰¹⁹¹)
149 and Toll signalling (*spz*^{eGFP}) had disparate effects during infection. Activity during *M. luteus*
150 infection was unaffected in *imd* mutants, but no increase in activity was observed following *M.*
151 *luteus* infection in *spz* mutants (Figure 3A, B), in keeping with the fact that *M. luteus* is
152 primarily an agonist of the Toll pathway (Irving et al., 2001; Lemaitre et al., 1997; Rutschmann
153 et al., 2002). To confirm this finding, we repeated this experiment using flies carrying a
154 different *spz* allele (Kenmoku et al., 2017) and found the same result (Figure 3C).

155 The absence of increased activity in *M. luteus*-infected Toll mutants indicates that Toll
156 signalling is required for hyperactivity during *M. luteus* infection. However, mutation of either
157 *imd* or *spz*, as well as the combination of the two (*imd*¹⁰¹⁹¹; *spz*^{eGFP}), did not affect the increase
158 in activity caused by *F. novicida* (Figure 3 – figure supplement 1), supporting our previous

159 results with *Tak1* mutants (Figure 2 – figure supplement 2; Figure 2 – figure supplement table
160 1). These findings demonstrate that in *F. novicida* infections, the activity phenotype is
161 independent of *Toll* and *imd* pathways. The dependence on Toll for increased activity in *M.*
162 *luteus* but not *F. novicida* infections indicates that infection induces activity via different
163 signalling pathways during these infections.

164

165 **Infection causes temporally-specific metabolic dysregulation, but infection-induced**
166 **activity is not a response to starvation**

167 Infection with *M. luteus* inhibits insulin signalling, as evidenced through a reduction in
168 phosphorylated AKT, and this metabolic shift is concomitant to a reduction in triglyceride
169 levels (DiAngelo et al., 2009). Similarly, infection with *F. novicida* leads to triglyceride loss
170 as well as hyperglycaemia and reduced levels of glycogen (Vincent et al., 2020). The interplay
171 between immune and metabolic signalling pathways is thought to be indicative of the metabolic
172 burden associated with infection and the need to redistribute available resources (Clark et al.,
173 2013; DiAngelo et al., 2009; Dionne et al., 2006). We therefore surmised that the metabolic
174 shifts observed during *M. luteus* and *F. novicida* infection could play a role in infection-induced
175 activity, despite the difference in the requirement of Toll signalling, and sought to determine
176 whether *F. novicida* and *M. luteus* infections led to similar metabolic phenotypes in flies.

177 We tested whether infection with *F. novicida* inhibits insulin signalling as has been
178 previously reported for *M. luteus* infection (DiAngelo et al., 2009). We found that infection
179 with *F. novicida* inhibits insulin signalling as determined through the observance of lower
180 levels of phosphorylated-AKT during late infection (72-80h post-injection; Figure 4A); these
181 flies were also hyperglycaemic and exhibited depleted triglyceride and glycogen stores (Figure
182 4B). Similarly, late in infection with *M. luteus*, flies had lower triglyceride and glycogen levels
183 but no change in circulating sugars. During early infection (24-30h post-injection), we

184 observed hypoglycaemia with *F. novicida*, but not *M. luteus*, decreased triglycerides with *M.*
185 *luteus*, but not *F. novicida*, and low levels of glycogen in both infections (Figure 4B). These
186 results confirm previous work showing that bacterial infection can lead to metabolic pathology
187 including hyperglycaemia and loss of triglyceride and glycogen stores and that these effects
188 are often limited to specific times over the course of an infection (Chambers et al., 2012;
189 Dionne et al., 2006; Vincent et al., 2020).

190 Because infected flies exhibit starvation-like effects on metabolite stores and insulin-
191 pathway activity, we tested whether hyperactivity during infection was linked to infection-
192 induced starvation signalling. Infection-induced anorexia has been observed in both mammals
193 and insects (Adamo, 2005; Ayres and Schneider, 2009; Langhans, 2000; Wang et al., 2016)
194 and hyperactivity is a known consequence of starvation in *D. melanogaster* (Keene et al., 2010;
195 Lee and Park, 2004; Yang et al., 2015; Yu et al., 2016). We tested whether two infections we
196 found were capable of increasing activity (*F. novicida* and *M. luteus*) also caused reduced food
197 consumption. Surprisingly, we found that *F. novicida*-infected flies consumed 19.4% more
198 food during infection compared to their mock controls and that food consumption was
199 unaffected by infection with *M. luteus* (Figure 4C). Thus, infection-induced activity does not
200 appear to be a by-product of anorexia.

201 Next, we tested the possibility that infection-induced increases in activity could be a
202 product of endocrine signalling disruptions that mimicked the effects of starvation. In *D.*
203 *melanogaster*, starvation increases activity via *adipokinetic hormone* (AKH) signalling in
204 neurons (Lee and Park, 2004; Yu et al., 2016). We infected flies with a pan-neural reduction
205 of the adiponokinetic hormone receptor (*nSyb>AkhR-IR*), a strategy previously shown to
206 obliterate starvation-induced hyperactivity (Yu et al., 2016). Neuronal knockdown of *AkhR* did
207 not affect activity during *F. novicida* infection, confirming that the infection-induced increase
208 in activity here observed is distinct from a starvation response (Figure 4D). This finding is

209 important because one of the proposed advantages of hyperactivity during starvation is greater
210 resource acquisition from increased foraging. Thus, despite the failure of these infections to
211 induce a starvation-like response via AKH, the results of these experiments are consistent with
212 the idea that increased activity during *F. novicida* infection could lead to greater resource
213 acquisition through increased feeding.

214

215 **Fat body derived *spz* contributes to *M. luteus* infection-induced activity.**

216 Bacterial peptidoglycan activates the Toll and IMD pathways, leading to the synthesis and
217 secretion of antimicrobial peptides (AMPs) by the fat body in *D. melanogaster* (De Gregorio
218 et al., 2002b; Lau et al., 2003; Lemaitre et al., 1995; Wang and Ligoxygakis, 2006). This
219 production of AMPs contributes to the control of most bacterial infections. Since the Toll
220 pathway is activated by Gram-positive bacteria (Hoffmann and Reichhart, 2002; Tanji and Ip,
221 2005), and we found that mutants of this pathway do not show an increase in activity during
222 infection with the Gram-positive bacterium *M. luteus* (Figure 3B, C), we predicted that Toll
223 signalling in the fat body played a role in infection-induced activity. To test this, we infected
224 flies carrying fat body knockdowns of *spz* (*c564>spz-IR*), the circulating ligand that directly
225 activates Toll; *MyD88* (*c564>MyD88-IR*), a key adaptor in the Toll pathway; and *Dif*
226 (*c564>Dif-IR*), the primary *Toll*-activated NF- κ B transcription factor in adult *Drosophila* (De
227 Gregorio et al., 2002b; Valanne et al., 2011; Wang and Ligoxygakis, 2006). *spz* is synthesized
228 and secreted as an inactive pro-protein where extracellular recognition factors initiate protease
229 cascades that ultimately result in its proteolysis to produce active *spz*. This ligand binds and
230 activates cell-surface Toll receptors (Alpar et al., 2018; An et al., 2010; Arnot et al., 2010;
231 Valanne et al., 2011). As observed in the whole-body Toll signalling mutants, restricted
232 knockdown of the Toll ligand *spz* to the fat body completely abolished the increase in activity
233 observed during *M. luteus* infection (Figure 5A). Flies with *MyD88* or *Dif* knocked down in

234 the fat body also exhibited reduced hyperactivity in response to *M. luteus* infection (Figure 5B,
235 C). Importantly, the genetic control (*c564>+*) shows the expected increase of activity after
236 bacterial infections (Figure 5 – figure supplement 1). These findings demonstrate that fat body-
237 derived *spz* and fat body Toll pathway activity play a crucial role in the modulation of
238 locomotor activity during infection.

239

240 **Neuronal KD of Toll signalling abrogates increased activity during *M. luteus* infection**

241 Given that neither *spz* mutants nor *spz* fat body KD flies exhibit infection-induced activity, we
242 thought that fat body-derived *spz* could be acting on another tissue to induce behavioural
243 activity and decided to test whether neuronal knockdown of Toll signalling would also affect
244 the activity phenotype. We infected flies with a pan-neural reduction of either *MyD88* (*nSyb>MyD88*-IR)
245 or *Dif* (*nSyb>Dif*-IR). We found that knockdown of either *MyD88* or *Dif* reduced
246 the increase in activity seen in *M. luteus* infected flies (Figure 5D, E), while the genetic control
247 (*nSyb>+*) present the expected increase (Figure 5 – figure supplement 1). This effect was not
248 complete—some increase in activity was still seen; this could reflect other mechanisms acting
249 in parallel or it could be due to residual *MyD88/Dif* function in neurons. In either case, this
250 finding lends support to our hypothesis that fat body-derived *spz* acts on other tissues – in this
251 instance, neurons – to increase activity during *M. luteus* infection.

252

253 **Discussion**

254 Here we show that bacterial infection in many cases leads to a marked increase in physical
255 activity in *D. melanogaster*. This enhanced level of activity is mostly explained by an increase
256 in walking (Figure 1). Though several bacteria induce activity upon infection in multiple fly
257 lines with mutations in their immune response, we see pathogen/immune pathway specificity,
258 as mutations in Toll signalling ablate activity-induction by some, but not all, bacteria. Finally,

259 we demonstrate that neuronal Toll signalling plays a role in infection-induced changes in
260 activity and propose that fat body-derived *spz* is required for this activation.

261 Immune activation has been shown to affect a range of behaviours and physiological
262 functions including sleep, reproduction, cognition and metabolism (An and Waldman, 2016;
263 Chambers et al., 2012; Dionne et al., 2006; Kobler et al., 2020; Kuo et al., 2010; Mallon et al.,
264 2014; Shirasu-Hiza et al., 2007; Vincent and Sharp, 2014). Infection-induced changes in the
265 host are often thought to be of benefit to either the host or the pathogen. Pathogen-mediated
266 changes in host behaviour can lead to decreased survival, transmission and terminal host
267 localisation (Adamo and Webster, 2013; Heil, 2016; Herbison et al., 2018; Lafferty and Shaw,
268 2013), whilst host-mediated changes during infection have been found to result in improved
269 resistance and colony/conspecific protection (Boltaña et al., 2013; Sauer et al., 2019;
270 Stroeymeyt et al., 2018; Ugelvig and Cremer, 2007). Interestingly, activity level within the first
271 day of infection had a strong correlation with survival, though the direction of this relationship
272 differed across bacterial strains (Figure 1E, Figure 2D, E). Whilst the reasons for the
273 dissimilarity in the effect of activity on survival across these infections are unknown, what is
274 consistent is the observation that early activity levels correlate with infection outcomes.

275 One well-documented change in host behaviour resulting from infection is anorexia
276 (Adamo, 2005; Ayres and Schneider, 2009; Wang et al., 2016). Animals often decrease feeding
277 in response to infection and this behaviour can be either harmful or beneficial to the host. In
278 addition to infection-induced anorexia, *D. melanogaster* exhibits striking wasting phenotypes
279 in a number of infections, characterized by decreased levels of glycogen and triglycerides
280 (Chambers et al., 2012; Dionne et al., 2006; Vincent et al., 2020). Given the strong associations
281 between infection and resource acquisition and utilization, one could imagine a scenario in
282 which rather than infection directly leading to increased activity, instead, the metabolic
283 dysregulation caused by infection signalled for increased activity as a means to acquire more

284 food resource (Yang et al., 2015; Yu et al., 2016). Whilst both *M. luteus* and *F. novicida*
285 infections led to strong wasting phenotypes, we found no evidence that starvation signalling
286 contributed to increased activity, though increased activity was associated with greater food
287 intake during *F. novicida* infection (Figure 4C).

288 While previous work found that bacteria-infected flies have poor quality sleep, as
289 assessed through number of sleep bouts and bout duration (Shirasu-Hiza et al., 2007), these
290 flies were not found to be more active than healthy controls. Infection with Gram-negative
291 bacteria in *D. melanogaster* yields contrasting findings, showing that these infections can both
292 reduce and increase sleep (Kuo et al., 2010; Kuo and Williams, 2014; Shirasu-Hiza et al.,
293 2007). One study found that increased sleep lead to greater survival and bacterial clearance,
294 but the flies studied were sleep deprived prior to infection, making it difficult to disambiguate
295 the effect of the earlier sleep deprivation from – and on – subsequent infection and
296 compensatory sleep. Interestingly, in that same study, flies in the control treatment – which
297 were not sleep deprived – exhibited increased activity following infection (Kuo and Williams,
298 2014). We attribute the discrepancy between this study and previous work in observing a
299 change in activity to differences between the annotative capabilities of the different activity
300 monitoring systems used, specifically the greater spatial and temporal resolution afforded by
301 the method employed here (Geissmann et al., 2017). Another potential explanation for the
302 discrepancy is that while previous work evaluated activity levels immediately after the
303 infection (Kuo et al., 2010; Kuo and Williams, 2014), we focus our attention on activity levels
304 several hours or even days following initiation of the systemic infection. Thus, the temporal
305 dynamics of the infection and the effects on behaviour may be intimately related.

306 Given the role of the fat body in the immune response, we predicted that pathogen
307 recognition and subsequent activation of immune signalling pathways could contribute to the
308 observed increase in activity; a supposition that was bolstered by the observation that both the

309 occurrence and magnitude of the increased activity was positively correlated with the presence
310 and number of bacteria. Disrupting the activity of the Toll pathway in the fat body phenocopied
311 the ablation of activity observed in whole-body *spz* mutants, confirming that immune signalling
312 in the fat body is vital during *M. luteus* infection. Whilst *spz* is secreted from tissues other than
313 the fat body, these results suggest that the contribution of fat body derived *spz* is necessary.
314 Our results leave open the possibility that fat body derived *spz* activates Toll signalling in
315 neurons but further work is needed to confirm this interaction.

316 Intercellular signalling via cytokines has been shown to be vital to the induction of
317 sickness behaviours (Dantzer, 2009, 2001; Davis and Raizen, 2017; Lasselin et al., 2020).
318 Thus, immune detection in any of an organism's organs has the potential to send signals to the
319 brain that ultimately affect behaviour. One study found that in *D. melanogaster*, fat body
320 derived *spz* was sufficient to induce sleep following infection (Kuo et al., 2010). Furthermore,
321 a recent study showed that knocking down Toll signalling in the sleep-regulating R5 neurons
322 suppressed the characteristic increase in sleep that is observed following sleep deprivation
323 (Blum et al., 2021). Collectively these findings support a model where *spz* originating from the
324 fat body, acts on a group of heretofore unidentified neurons to induce behavioural changes
325 during infection. It follows that as pathogen load decreases, leading to less Toll signalling, we
326 observe a corresponding extinction of infection-induced activity.

327 The role of increased activity during infection remains elusive but given that the
328 behaviour appears to be activated via multiple pathways suggests that it serves a function rather
329 than being the result of pleiotropy. Future work to discover other mechanisms involved has the
330 potential to address the question of underlying function. Furthermore, the diversity of bacteria
331 as well as the tools available to manipulate bacterial genomes, can be used to identify bacteria-
332 derived signals that contribute to this response.

333 **Methods**

334 **General experimental procedures**

335 *w¹¹¹* flies were used as wild-type flies throughout the study. A complete record of all other fly
336 lines used in this study can be found in the supplementary information (Figure 2 supplementary
337 table 1). For all experiments, male flies were collected following eclosion and kept in same-
338 sex vials for 5 - 7 days in groups of 20. Thus, all experiments were conducted on flies between
339 5 and 8 days old. Flies were maintained on a standard diet composed of 10% w/v yeast, 8%
340 w/v fructose, 2% w/v polenta, 0.8% w/v agar, supplemented with 0.075% w/v nipagin and
341 0.0825% vol propionic acid, at 25°C. Bacteria were grown from single colonies overnight at
342 37°C shaking with the exception of *L. monocytogenes* which was grown at 37°C without
343 shaking. Each fly was injected with 50 nanolitres of bacteria diluted in PBS. Control flies were
344 either injected with sterile PBS or were anaesthetized but otherwise unmanipulated, here
345 referred to as mock controls and uninfected, respectively. Injections were carried out using a
346 pulled-glass capillary needle and a Picospritzer injector system (Parker, New Hampshire, US).
347 Following injection flies were kept at 29°C.

348 **Behavioural experiments**

349 For all experiments, flies were sorted into glass tubes [70 mm × 5 mm × 3 mm (length × external
350 diameter × internal diameter)] containing the same food used for rearing. After 2 days of
351 acclimation under a regime of 12:12 Light:Dark (LD) condition in incubators set at 25°C
352 animals were subject to either bacterial injection, mock injection, or anaesthetization (as above
353 described), between zeitgeber time (ZT) 00 to ZT02 (the first 2h after lights ON) and
354 transferred to fresh glass tubes containing our lab's standard food as described above. Activity
355 recordings were performed using ethoscopes (Geissmann et al., 2017) under 12:12 LD
356 condition, 60% humidity at 29°C. Behavioural data analysis was performed in RStudio
357 (RStudio Team, 2015) employing the Rethomics suit of packages (Geissmann et al., 2017). All

358 behavioural assays were repeated at least twice with 20 – 60 flies/treatment/experiment. For
359 lethal infections, behavioural data were analysed for the period between the first and final 12h
360 of the assay; these windows of time were excluded as they encompass excessive noise due to
361 awakening from anaesthesia/acclimation and mortality leading to declining sample sizes,
362 respectively. For non-lethal infections, we analysed the 24h period following the initial 12h (t
363 = 12h – 36h post infection), this time encompasses the duration of *M. luteus* infection after
364 which live bacteria are no longer detected in flies.

365 **Bacterial quantification**

366 Bacteria were quantified either via qPCR or plating. For plating, one fly was homogenised in
367 100 μ l of sterile ddH₂O. Homogenates were serially diluted and plated onto LB agar plates
368 where they incubated for 16-18h. Following incubation, the number of individual bacterial
369 colonies observed on each plate was quantified and back-calculated to determine the number
370 of CFUs present in each fly. For qPCR, one fly was homogenised in a 100 μ l of Tris-EDTA,
371 1% Proteinase K (NEB, P8107S) solution. Homogenates were incubated for 3h at 55°C
372 followed by a ten-minute incubation at 95°C. Following incubation, we performed our qPCR
373 protocol as outlined below to determine the number of bacterial colony forming units (CFU).
374 All quantifications were repeated at least twice with 8-16 samples/treatment/experiment.

375 **Measurement of triglycerides**

376 Triglycerides were measured using thin layer chromatography (TLC) assays as described
377 elsewhere (Al-Anzi et al., 2009). Briefly, each sample consisted of 10 flies; flies were placed
378 in microcentrifuge tubes and stored at -80°C until the time of analysis. To perform the TLC
379 assay, samples were removed from the -80°C freezer and spun down (3 min at 13,000 rpm at
380 4°C) in 100 μ l of a chloroform (3) : methanol (1) solution. Flies were then homogenised and
381 subject to a further ‘quick spin’. Standards were generated using lard dissolved in the same
382 chloroform : methanol solution. We loaded 2 μ l of each standard and 20 μ l of each sample onto

383 a silica gel glass plate (Millipore). Plates were then placed into a chamber pre-loaded with
384 solvent (hexane (4) : ethyl ether (1)) and left to run until the solvent could be visualised 1cm
385 prior to the edge of the plate. Plates were then removed from the chamber, allowed to dry, and
386 stained with CAM solution. Plates were baked at 80°C for 15-25min and imaged using a
387 scanner. Analysis was conducted in ImageJ using the Gels Analysis tool. This assay was
388 repeated at least twice with four samples/treatment/experiment.

389 **Measurement of carbohydrates (glucose + trehalose and glycogen)**

390 Each sample contained three flies that were homogenised in 75µl of TE + 0.1% Triton X-100
391 (Sigma Aldrich). Samples were incubated for 20 min at 75°C and stored at -80°C. Prior to the
392 assay, samples were incubated for 5 min at 65°C. Following incubation, 10µl from each sample
393 was loaded into four wells of a 96-well plate. Each well was designated to serve as a
394 measurement for either: control (10µl sample + 190µl H₂O), glucose (10µl sample + 190µl
395 glucose reagent (Sentinel Diagnostics)), trehalose (10µl sample + 190µl glucose reagent +
396 trehalase (Sigma Aldrich)), or glycogen (10µl sample + 190µl glucose reagent +
397 amyloglucosidase (Sigma Aldrich)). A standard curve was generated by serially diluting a
398 glucose sample of known concentration and adding 190µl of glucose reagent to 10µl of each
399 standard. Standards were always run at the same time and in the same plate as samples. Plates
400 were incubated for 1h at 37°C following which the absorbance for each well at 492 nm was
401 determined using a plate reader. This assay was repeated at least twice with four
402 samples/treatment/experiment.

403 **Western Blots**

404 Each sample contained three flies that were homogenised directly in 75µl 2x Laemmli SDS-
405 PAGE buffer. The primary antibodies used were anti-phospho-Akt (Cell Signalling
406 Technologies 4054, used at 1:1000), anti-total-Akt (Cell Signalling Technologies 4691,
407 1:1000), and anti-α-tubulin (Developmental Studies Hybridoma Bank 12G10, 1:5000). The

408 secondary antibodies used were anti-rabbit IgG (Cell Signalling Technologies 7074, 1:5000)
409 and anti-mouse IgG (Cell Signalling Technologies 7076, 1:10,000). The chemiluminescent
410 substrate used was SuperSignalTM West Pico PLUS (Thermo Scientific 34580). Blots were
411 imaged using a Fuji LAS-3000 luminescent image analyser and images analysed in ImageJ.

412 **Feeding**

413 For each sample, eight flies were placed into a 50mL Falcon tube with a lid containing our
414 standard food (described above) with the addition of the food dye Erioglaucine sodium salt,
415 1% w/vol (Alfa Aesar) and left for 30 or 80h. To determine the amount of ingested food, flies
416 were homogenised in 200µL of Tris-EDTA 0.1% Triton-X. Following homogenisation
417 samples were spun down (20 minutes at 13 000 rpm, RT) and 100µL of the supernatant
418 removed (this contained predominantly suspended triglyceride). We then added 300µL of Tris-
419 EDTA 0.1% Triton-X to the sample and spun for 10 minutes at 13 000 rpm, RT. 200µL of each
420 suspension was placed into a 96-well plate. To determine the amount of excreted food, 1mL of
421 Tris-EDTA 0.1% Triton-X was added to each Falcon tube and the tube briefly vortexed.
422 Following vortex, tubes were placed on a roller for 5 minutes and then subject to a ‘quick-
423 spin’. 200µL was taken from each tube and placed into a 96-well plate. 96-well plates were
424 read at 620nm and normalized to the mean value of the uninfected controls. Data are presented
425 as a combination of excreted (Falcon tube) and ingested (fly homogenate) values. This assay
426 was repeated at least twice with four samples/treatment/experiment.

427 **Statistical analysis**

428 Data were analysed in R Studio with R versions 3.5.3 and 3.6.3 (RStudio Team, 2015).
429 Behavioural data were analysed using the Rethomics package (Geissmann et al., 2017); for all
430 other assays, we first tested for normality of data which dictated whether an ANOVA, t-test,
431 Kruskal-Wallis analysis of variance, or Mann-Whitney U test was used to calculate differences
432 between treatments. When appropriate, we performed *post hoc* Tukey, Nemenyi or Dunn

433 analyses to identify specific differences between treatments. All assays were repeated at least
434 twice with sample sizes as indicated within the reported statistics.

435

436 **Acknowledgements**

437 We are indebted to members of the Dionne and Gilestro labs for critical discussion. Q.
438 Geissmann provided invaluable feedback and support in the behavioural quantification. This
439 work was funded by Wellcome Trust Investigator Award 207467/Z/17/Z, MRC Research
440 Grants MR/R00997X/1 and MR/L018802/2, and BBSRC Research Grant BB/L020122/2 to
441 MSD, and BBSRC Research Grant BB/R018839/1 to GG. KK was supported by a DFG
442 fellowship. EJB was supported by the People Programme (Marie Curie Actions) of European
443 Union's Eighth Framework Programme H2020 under REA grant agreement 705930.

444

445 **The authors declare that they have no conflict of interest.**

446 References

447 Adamo SA. 2005. Parasitic suppression of feeding in the tobacco hornworm, *Manduca sexta*:
448 Parallels with feeding depression after an immune challenge. *Archives of Insect
449 Biochemistry and Physiology* **60**:185–197. doi:10.1002/arch.20068

450 Adamo SA, Webster JP. 2013. Neural parasitology: how parasites manipulate host behaviour.
Journal of Experimental Biology **216**:1–2. doi:10.1242/jeb.082511

452 Al-Anzi B, Sapin V, Waters C, Zinn K, Wyman RJ, Benzer S. 2009. Obesity-blocking
453 neurons in *Drosophila*. *Neuron* **63**:329–341. doi:10.1016/j.neuron.2009.07.021

454 Alpar L, Bergantiños C, Johnston LA. 2018. Spatially restricted regulation of Spätzle/Toll
455 signaling during cell competition. *Dev Cell* **46**:706–719.e5.
doi:10.1016/j.devcel.2018.08.001

457 An C, Jiang H, Kanost MR. 2010. Proteolytic activation and function of the cytokine Spätzle
458 in innate immune response of a lepidopteran insect, *Manduca sexta*. *FEBS J* **277**:148–
459 162. doi:10.1111/j.1742-4658.2009.07465.x

460 An D, Waldman B. 2016. Enhanced call effort in Japanese tree frogs infected by amphibian
461 chytrid fungus. *Biology Letters* **12**:20160018. doi:10.1098/rsbl.2016.0018

462 Andersen SB, Gerritsma S, Yusah KM, Mayntz D, Hywel-Jones NL, Billen J, Boomsma JJ,
463 Hughes DP. 2009. The Life of a Dead Ant: The Expression of an Adaptive Extended
464 Phenotype. *The American Naturalist* **174**:424–433. doi:10.1086/603640

465 Anderson RD, Blanford S, Jenkins NE, Thomas MB. 2013. Discriminating fever behavior in
466 house flies. *PLoS One* **8**:e62269. doi:10.1371/journal.pone.0062269

467 Arnold PA, Johnson KN, White CR. 2013. Physiological and metabolic consequences of viral
468 infection in *Drosophila melanogaster*. *J Exp Biol* **216**:3350.
doi:10.1242/jeb.088138

470 Arnot CJ, Gay NJ, Gangloff M. 2010. Molecular mechanism that induces activation of
471 Spätzle, the ligand for the *Drosophila* Toll receptor. *J Biol Chem* **285**:19502–19509.
doi:10.1074/jbc.M109.098186

473 Ayres JS, Schneider DS. 2009. The Role of Anorexia in Resistance and Tolerance to
474 Infections in *Drosophila*. *PLoS Biol* **7**:e1000150. doi:10.1371/journal.pbio.1000150

475 Berdoy M, Webster JP, Macdonald DW. 2000. Fatal attraction in rats infected with
476 *Toxoplasma gondii*. *Proceedings of the Royal Society of London Series B: Biological
477 Sciences* **267**:1591–1594. doi:10.1098/rspb.2000.1182

478 Besedovsky L, Lange T, Haack M. 2019. The Sleep-Immune Crosstalk in Health and
479 Disease. *Physiol Rev* **99**:1325–1380. doi:10.1152/physrev.00010.2018

480 Biron DG, Ponton F, Marché L, Galeotti N, Renault L, Demey-Thomas E, Poncet J, Brown
481 SP, Jouin P, Thomas F. 2006. ‘Suicide’ of crickets harbouring hairworms: a
482 proteomics investigation. *Insect Molecular Biology* **15**:731–742.
doi:<https://doi.org/10.1111/j.1365-2583.2006.00671.x>

484 Blum ID, Keleş MF, Baz E-S, Han E, Park K, Luu S, Issa H, Brown M, Ho MCW, Tabuchi
485 M, Liu S, Wu MN. 2021. Astroglial Calcium Signaling Encodes Sleep Need in
486 *Drosophila*. *Curr Biol* **31**:150–162.e7. doi:10.1016/j.cub.2020.10.012

487 Boltaña S, Rey S, Roher N, Vargas R, Huerta M, Huntingford FA, Goetz FW, Moore J,
488 Garcia-Valtanen P, Estepa A, MacKenzie S. 2013. Behavioural fever is a synergic
489 signal amplifying the innate immune response. *Proceedings of the Royal Society B:
490 Biological Sciences* **280**:20131381. doi:10.1098/rspb.2013.1381

491 Chambers MC, Song KH, Schneider DS. 2012. *Listeria monocytogenes* infection causes
492 metabolic shifts in *Drosophila melanogaster*. *PLoS ONE* **7**:e50679.
doi:10.1371/journal.pone.0050679

494 Clark RI, Tan SWS, Péan CB, Roostalu U, Vivancos V, Bronda K, Pilátová M, Fu J, Walker
495 DW, Berdeaux R, Geissmann F, Dionne MS. 2013. MEF2 Is an In Vivo Immune-
496 Metabolic Switch. *Cell* **155**:435–447. doi:10.1016/j.cell.2013.09.007

497 Dantzer R. 2009. Cytokine, Sickness Behavior, and Depression. *Immunol Allergy Clin North*
498 **Am** **29**:247–264. doi:10.1016/j.iac.2009.02.002

499 Dantzer R. 2001. Cytokine-induced sickness behavior: where do we stand? *Brain Behav*
500 *Immun* **15**:7–24. doi:10.1006/brbi.2000.0613

501 Davis KC, Raizen DM. 2017. A mechanism for sickness sleep: lessons from invertebrates.
502 *The Journal of Physiology* **595**:5415–5424. doi:10.1113/JP273009

503 De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B. 2002a. The Toll and Imd
504 pathways are the major regulators of the immune response in Drosophila. *EMBO J*
505 **21**:2568–2579. doi:10.1093/emboj/21.11.2568

506 De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B. 2002b. The Toll and Imd
507 pathways are the major regulators of the immune response in Drosophila. *EMBO J*
508 **21**:2568–2579. doi:10.1093/emboj/21.11.2568

509 DiAngelo JR, Bland ML, Bambina S, Cherry S, Birnbaum MJ. 2009. The immune response
510 attenuates growth and nutrient storage in Drosophila by reducing insulin signaling.
511 *Proc Natl Acad Sci U S A* **106**:20853–20858. doi:10.1073/pnas.0906749106

512 Dionne MS, Pham LN, Shirasu-Hiza M, Schneider DS. 2006. Akt and FOXO dysregulation
513 contribute to infection-induced wasting in Drosophila. *Curr Biol* **16**:1977–1985.
514 doi:10.1016/j.cub.2006.08.052

515 Geissmann Q, Beckwith EJ, Gilestro GF. 2019. Most sleep does not serve a vital function:
516 Evidence from Drosophila melanogaster. *Sci Adv* **5**:eaau9253.
517 doi:10.1126/sciadv.aau9253

518 Geissmann Q, Rodriguez LG, Beckwith EJ, French AS, Jamasb AR, Gilestro GF. 2017.
519 Ethoscopes: An open platform for high-throughput ethomics. *PLOS Biology*
520 **15**:e2003026. doi:10.1371/journal.pbio.2003026

521 Hanson MA, Dostálková A, Ceroni C, Poidevin M, Kondo S, Lemaitre B. 2019. Synergy and
522 remarkable specificity of antimicrobial peptides in vivo using a systematic knockout
523 approach. *eLife* **8**:e44341. doi:10.7554/eLife.44341

524 Hart BL. 1988. Biological basis of the behavior of sick animals. *Neuroscience &*
525 *Biobehavioral Reviews* **12**:123–137. doi:10.1016/S0149-7634(88)80004-6

526 Heil M. 2016. Host Manipulation by Parasites: Cases, Patterns, and Remaining Doubts. *Front*
527 *Ecol Evol* **4**. doi:10.3389/fevo.2016.00080

528 Herbison R, Lagrue C, Poulin R. 2018. The missing link in parasite manipulation of host
529 behaviour. *Parasit Vectors* **11**. doi:10.1186/s13071-018-2805-9

530 Hoffmann JA. 2003. The immune response of Drosophila. *Nature* **426**:33–38.
531 doi:10.1038/nature02021

532 Hoffmann JA, Reichhart J-M. 2002. Drosophila innate immunity: an evolutionary
533 perspective. *Nat Immunol* **3**:121–126. doi:10.1038/ni0202-121

534 Imeri L, Opp MR. 2009. How (and why) the immune system makes us sleep. *Nat Rev*
535 *Neurosci* **10**:199–210. doi:10.1038/nrn2576

536 Irving P, Troxler L, Heuer TS, Belvin M, Kopczynski C, Reichhart J-M, Hoffmann JA, Hetru
537 C. 2001. A genome-wide analysis of immune responses in Drosophila. *Proc Natl*
538 *Acad Sci U S A* **98**:15119–15124. doi:10.1073/pnas.261573998

539 Johnson RW. 2002. The concept of sickness behavior: a brief chronological account of four
540 key discoveries. *Vet Immunol Immunopathol* **87**:443–450. doi:10.1016/s0165-
541 2427(02)00069-7

542 Keene AC, Duboué ER, McDonald DM, Dus M, Suh GSB, Waddell S, Blau J. 2010. Clock
543 and cycle Limit Starvation-Induced Sleep Loss in *Drosophila*. *Current Biology*
544 **20**:1209–1215. doi:10.1016/j.cub.2010.05.029

545 Kenmoku H, Hori A, Kuraishi T, Kurata S. 2017. A novel mode of induction of the humoral
546 innate immune response in *Drosophila* larvae. *Disease Models & Mechanisms*
547 **10**:271–281. doi:10.1242/dmm.027102

548 Klein SL. 2003. Parasite manipulation of the proximate mechanisms that mediate social
549 behavior in vertebrates. *Physiol Behav* **79**:441–449. doi:10.1016/s0031-
550 9384(03)00163-x

551 Kobler JM, Rodriguez Jimenez FJ, Petcu I, Grunwald Kadow IC. 2020. Immune Receptor
552 Signaling and the Mushroom Body Mediate Post-ingestion Pathogen Avoidance.
553 *Current Biology* **30**:4693-4709.e3. doi:10.1016/j.cub.2020.09.022

554 Kuo T-H, Pike DH, Beizaeipour Z, Williams JA. 2010. Sleep triggered by an immune
555 response in *Drosophila* is regulated by the circadian clock and requires the NFκB
556 Relish. *BMC Neurosci* **11**:17. doi:10.1186/1471-2202-11-17

557 Kuo T-H, Williams JA. 2014. Increased Sleep Promotes Survival during a Bacterial Infection
558 in *Drosophila*. *Sleep* **37**:1077–1086. doi:10.5665/sleep.3764

559 Lafferty KD, Shaw JC. 2013. Comparing mechanisms of host manipulation across host and
560 parasite taxa. *Journal of Experimental Biology* **216**:56–66. doi:10.1242/jeb.073668

561 Langhans W. 2000. Anorexia of infection: current prospects. *Nutrition* **16**:996–1005.
562 doi:10.1016/s0899-9007(00)00421-4

563 Lasselin J, Karshikoff B, Axelsson J, Åkerstedt T, Benson S, Engler H, Schedlowski M,
564 Jones M, Lekander M, Andreasson A. 2020. Fatigue and sleepiness responses to
565 experimental inflammation and exploratory analysis of the effect of baseline
566 inflammation in healthy humans. *Brain, Behavior, and Immunity* **83**:309–314.
567 doi:10.1016/j.bbi.2019.10.020

568 Lau GW, Goumnerov BC, Walendziewicz CL, Hewitson J, Xiao W, Mahajan-Miklos S,
569 Tompkins RG, Perkins LA, Rahme LG. 2003. The *Drosophila melanogaster* Toll
570 pathway participates in resistance to infection by the Gram-Negative human pathogen
571 *Pseudomonas aeruginosa*. *Infect Immun* **71**:4059–4066. doi:10.1128/IAI.71.7.4059-
572 4066.2003

573 Lee G, Park JH. 2004. Hemolymph Sugar Homeostasis and Starvation-Induced Hyperactivity
574 Affected by Genetic Manipulations of the Adipokinetic Hormone-Encoding Gene in
575 *Drosophila melanogaster*. *Genetics* **167**:311–323. doi:10.1534/genetics.167.1.311

576 Lee J-E, Edery I. 2008. Circadian Regulation in the Ability of *Drosophila* to Combat
577 Pathogenic Infections. *Current Biology* **18**:195–199. doi:10.1016/j.cub.2007.12.054

578 Lemaitre B, Kromer-Metzger E, Michaut L, Nicolas E, Meister M, Georgel P, Reichhart JM,
579 Hoffmann JA. 1995. A recessive mutation, immune deficiency (imd), defines two
580 distinct control pathways in the *Drosophila* host defense. *Proc Natl Acad Sci USA*
581 **92**:9465–9469. doi:10.1073/pnas.92.21.9465

582 Lemaitre B, Reichhart JM, Hoffmann JA. 1997. *Drosophila* host defense: differential
583 induction of antimicrobial peptide genes after infection by various classes of
584 microorganisms. *Proc Natl Acad Sci USA* **94**:14614–14619.
585 doi:10.1073/pnas.94.26.14614

586 Majde JA, Krueger JM. 2005. Links between the innate immune system and sleep. *J Allergy*
587 *Clin Immunol* **116**:1188–1198. doi:10.1016/j.jaci.2005.08.005

588 Mallon EB, Alghamdi A, Holdbrook RTK, Rosato E. 2014. Immune stimulation reduces
589 sleep and memory ability in *Drosophila melanogaster*. *PeerJ* **2**:e434.
590 doi:10.7717/peerj.434

591 Masuzzo A, Manière G, Viallat-Lieutaud A, Avazeri É, Zugasti O, Grosjean Y, Kurz CL,
592 Royet J. 2019. Peptidoglycan-dependent NF-κB activation in a small subset of brain
593 octopaminergic neurons controls female oviposition. *Elife* **8**. doi:10.7554/eLife.50559

594 Moule MG, Monack DM, Schneider DS. 2010. Reciprocal Analysis of *Francisella novicida*
595 Infections of a *Drosophila melanogaster* Model Reveal Host-Pathogen Conflicts
596 Mediated by Reactive Oxygen and *imd*-Regulated Innate Immune Response. *PLOS*
597 *Pathogens* **6**:e1001065. doi:10.1371/journal.ppat.1001065

598 Nehme NT, Quintin J, Cho JH, Lee J, Lafarge M-C, Kocks C, Ferrandon D. 2011. Relative
599 Roles of the Cellular and Humoral Responses in the *Drosophila* Host Defense against
600 Three Gram-Positive Bacterial Infections. *PLoS One* **6**.
601 doi:10.1371/journal.pone.0014743

602 Opp MR. 2009. Sleeping to fuel the immune system: mammalian sleep and resistance to
603 parasites. *BMC Evolutionary Biology* **9**:8. doi:10.1186/1471-2148-9-8

604 RStudio Team. 2015. RStudio: Integrated Development for R. RStudio, Inc. Boston, MA.

605 Rutschmann S, Kilinc A, Ferrandon D. 2002. Cutting Edge: The Toll Pathway Is Required
606 for Resistance to Gram-Positive Bacterial Infections in *Drosophila*. *The Journal of*
607 *Immunology* **168**:1542–1546. doi:10.4049/jimmunol.168.4.1542

608 Sauer EL, Trejo N, Hoverman JT, Rohr JR. 2019. Behavioural fever reduces ranaviral
609 infection in toads. *Functional Ecology* **33**:2172–2179. doi:10.1111/1365-2435.13427

610 Schlamp F, Delbare SYN, Early AM, Wells MT, Basu S, Clark AG. 2021. Dense time-course
611 gene expression profiling of the *Drosophila melanogaster* innate immune response.
612 *BMC Genomics* **22**:304. doi:10.1186/s12864-021-07593-3

613 Shattuck EC, Muehlenbein MP. 2015. Human sickness behavior: Ultimate and proximate
614 explanations. *American Journal of Physical Anthropology* **157**:1–18.
615 doi:<https://doi.org/10.1002/ajpa.22698>

616 Shaw J c, Korzan W j, Carpenter R e, Kuris A m, Lafferty K d, Summers C h, Øverli Ø.
617 2009. Parasite manipulation of brain monoamines in California killifish (*Fundulus*
618 *parvipinnis*) by the trematode *Euhaplorchis californiensis*. *Proceedings of the Royal*
619 *Society B: Biological Sciences* **276**:1137–1146. doi:10.1098/rspb.2008.1597

620 Shirasu-Hiza MM, Dionne MS, Pham LN, Ayres JS, Schneider DS. 2007. Interactions
621 between circadian rhythm and immunity in *Drosophila melanogaster*. *Current Biology*
622 **17**:R353–R355. doi:10.1016/j.cub.2007.03.049

623 Siva-Jothy JA, Vale PF. 2019. Viral infection causes sex-specific changes in fruit fly social
624 aggregation behaviour. *Biology Letters* **15**:20190344. doi:10.1098/rsbl.2019.0344

625 Stahlschmidt ZR, Adamo SA. 2013. Context dependency and generality of fever in insects.
626 *Naturwissenschaften* **100**:691–696. doi:10.1007/s00114-013-1057-y

627 Stockmaier S, Stroeymeyt N, Shattuck EC, Hawley DM, Meyers LA, Bolnick DI. 2021.
628 Infectious diseases and social distancing in nature. *Science* **371**.
629 doi:10.1126/science.abc8881

630 Stroeymeyt N, Grasse AV, Crespi A, Mersch DP, Cremer S, Keller L. 2018. Social network
631 plasticity decreases disease transmission in a eusocial insect. *Science* **362**:941–945.
632 doi:10.1126/science.aat4793

633 Surendran S, Hückesfeld S, Wäschle B, Pankratz MJ. 2017. Pathogen-induced food evasion
634 behavior in *Drosophila* larvae. *J Exp Biol* **220**:1774–1780. doi:10.1242/jeb.153395

635 Tanji T, Ip YT. 2005. Regulators of the Toll and Imd pathways in the *Drosophila* innate
636 immune response. *Trends Immunol* **26**:193–198. doi:10.1016/j.it.2005.02.006

637 Thomas F, Adamo S, Moore J. 2005. Parasitic manipulation: where are we and where should
638 we go? *Behavioural Processes*, Host Manipulation by Parasites **68**:185–199.
639 doi:10.1016/j.beproc.2004.06.010

640 Thomas F, Schmidt-Rhaesa A, Martin G, Manu C, Durand P, Renaud F. 2002. Do hairworms
641 (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts?
642 *Journal of Evolutionary Biology* **15**:356–361. doi:<https://doi.org/10.1046/j.1420-9101.2002.00410.x>

643 Ugelvig LV, Cremer S. 2007. Social Prophylaxis: Group Interaction Promotes Collective
644 Immunity in Ant Colonies. *Current Biology* **17**:1967–1971.
645 doi:[10.1016/j.cub.2007.10.029](https://doi.org/10.1016/j.cub.2007.10.029)

646 Valanne S, Wang J-H, Rämet M. 2011. The *Drosophila* Toll Signaling Pathway. *The Journal
647 of Immunology* **186**:649–656. doi:[10.4049/jimmunol.1002302](https://doi.org/10.4049/jimmunol.1002302)

648 Vale PF, Jardine MD. 2017. Infection avoidance behavior: Viral exposure reduces the
649 motivation to forage in female *Drosophila melanogaster*. *Fly (Austin)* **11**:3–9.
650 doi:[10.1080/19336934.2016.1207029](https://doi.org/10.1080/19336934.2016.1207029)

651 Vincent CM, Bertram SM. 2010. Crickets groom to avoid lethal parasitoids. *Animal
652 Behaviour* **79**:51–56. doi:[10.1016/j.anbehav.2009.10.001](https://doi.org/10.1016/j.anbehav.2009.10.001)

653 Vincent CM, Sharp NP. 2014. Sexual antagonism for resistance and tolerance to infection in
654 *Drosophila melanogaster*. *Proc R Soc B* **281**:20140987. doi:[10.1098/rspb.2014.0987](https://doi.org/10.1098/rspb.2014.0987)

655 Vincent CM, Simoes da Silva CJ, Wadhawan A, Dionne MS. 2020. Origins of Metabolic
656 Pathology in Francisella-Infected *Drosophila*. *Front Immunol* **11**.
657 doi:[10.3389/fimmu.2020.01419](https://doi.org/10.3389/fimmu.2020.01419)

658 Vonkavaara M, Telepnev MV, Rydén P, Sjöstedt A, Stöven S. 2008. *Drosophila
659 melanogaster* as a model for elucidating the pathogenicity of *Francisella tularensis*.
660 *Cellular Microbiology* **10**:1327–1338. doi:[10.1111/j.1462-5822.2008.01129.x](https://doi.org/10.1111/j.1462-5822.2008.01129.x)

661 Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot J-D, Booth CJ, Medzhitov R. 2016.
662 Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral
663 Inflammation. *Cell* **166**:1512–1525.e12. doi:[10.1016/j.cell.2016.07.026](https://doi.org/10.1016/j.cell.2016.07.026)

664 Wang L, Ligoxygakis P. 2006. Pathogen recognition and signalling in the *Drosophila* innate
665 immune response. *Immunobiology* **211**:251–261. doi:[10.1016/j.imbio.2006.01.001](https://doi.org/10.1016/j.imbio.2006.01.001)

666 Webster JP, Brunton CFA, Macdonald DW. 1994. Effect of *Toxoplasma gondii* upon
667 neophobic behaviour in wild brown rats, *Rattus norvegicus*. *Parasitology* **109**:37–43.
668 doi:[10.1017/S003118200007774X](https://doi.org/10.1017/S003118200007774X)

669 Yang Z, Yu Y, Zhang V, Tian Y, Qi W, Wang L. 2015. Octopamine mediates starvation-
670 induced hyperactivity in adult *Drosophila*. *PNAS* **112**:5219–5224.
671 doi:[10.1073/pnas.1417838112](https://doi.org/10.1073/pnas.1417838112)

672 Yu Y, Huang R, Ye J, Zhang V, Wu C, Cheng G, Jia J, Wang L. 2016. Regulation of
673 starvation-induced hyperactivity by insulin and glucagon signaling in adult
674 *Drosophila*. *eLife* **5**:e15693. doi:[10.7554/eLife.15693](https://doi.org/10.7554/eLife.15693)

675

676

677 **Figure 1. Infection with *Francisella novicida* leads to increased locomotor activity. (A)**
678 Ethogram showing percentage of wild-type males moving over time. Alternating white and
679 black horizontal bar along the x-axis indicates day (12h light) and night (12h dark) cycles,
680 respectively. Uninfected and mock controls are represented by grey and black tracings,
681 respectively. Infected flies are in blue. Shaded areas surrounding solid lines represent the 95%
682 confidence intervals. Flies were injected within two hours of the beginning of their light cycle
683 ($t = 0$). Background area highlighted in grey indicates the time for which data were analysed
684 as represented in adjoining boxplot. Boxplots showing percentage of infected wild-type males
685 (**B**) engaging in micro-movements (e.g. feeding and grooming), (**C**) walking and (**D**) sleeping.
686 Markers indicate individual data points. Horizontal bar within each box represents the median.
687 The bottom and top lines of the box represent the 1st and 3rd quartiles, respectively. Whiskers
688 represent the smallest value between: highest and lowest values or 1.5x the interquartile range.
689 Boxes without common letters are significantly different. Sample sizes (n) are indicated under
690 the boxplots. Plots throughout have identical formatting, therefore a full description of
691 ethogram and boxplot features is omitted in subsequent legends. *Francisella novicida* infected
692 animals moved significantly more than both the uninfected and mock controls (Kruskal-Wallis
693 chi-square = 99.206, df = 2, n = 419, p = 2.2e-16; Dunn's *post hoc*: mock|*F. novicida* = 1.2e-
694 17, mock|uninfected = 0.41, uninfected|*F. novicida* = 1.4e-14). Infected flies **engaged in more**
695 **micro-movements** (Kruskal-Wallis chi-square = 33.287, df = 2, n = 419, p = 5.9e-08; Dunn's
696 *post hoc*: mock|*F. novicida* = 9.5e-05, **walked more** (Kruskal-Wallis chi-square = 88.383, df
697 = 2, n = 419, p = 2.2e-16; Dunn's *post hoc*: mock|*F. novicida* = 1.02e-15, mock |uninfected =
698 0.48, uninfected|*F. novicida* = 2.7e-13), mock |uninfected = 0.23, uninfected|*F. novicida* =
699 2.7e-07), and **spent less time sleeping** (Kruskal-Wallis chi-square = 99.206, df = 2, n = 419, p
700 = 2.2e-16; Dunn's *post hoc*: mock|*F. novicida* = 1.2e-17, mock|uninfected = 0.41, uninfected|*F.*
701 *novicida* = 1.4e-14) than both the mock and uninfected controls. (**E**) Activity level within the
702 first day of *F. novicida* infection was positively correlated with survival (Pearson's correlation,
703 $r = 0.282$; $t = 2.96$, df = 101, $p = 3.9e-03$). Data from multiple replicates are shown.

704 **Figure 2. Infection with multiple bacteria leads to increased activity in wild-type flies.**
705 Ethogram showing percentage of wild-type flies moving over time during infection with **(A)**
706 *Micrococcus luteus* **(B)** *Listeria monocytogenes* and **(C)** *Staphylococcus aureus*. Infected flies
707 moved significantly more than both the uninfected and mock controls (*M. luteus*: Kruskal-
708 Wallis chi-square = 42.22, df = 2, n = 226, p = 6.8e-10; Dunn's *post hoc*: mock|M. luteus =
709 7.02e-10, mock|uninfected = 0.07, uninfected|M. luteus = 3.0e-05; *L. monocytogenes*: Kruskal-
710 Wallis chi-square = 26.859, df = 2, n = 238, p = 1.5e-06; Dunn's *post hoc*:
711 mock|*L. monocytogenes* = 3.05e-05, mock|uninfected = 0.68, uninfected|*L. monocytogenes* =
712 8.7e-06; *S. aureus*: Kruskal-Wallis chi-square = 55.016, df = 2, n = 236, p = 1.1e-12; Dunn's
713 *post hoc*: mock|*S. aureus* = 1.2e-09, mock|uninfected = 0.49, uninfected|*S. aureus* = 1.1e-10).
714 Activity level within the first day of **(D)** *L. monocytogenes* and **(E)** *S. aureus* infection was
715 positively correlated with survival (*L. monocytogenes*: Pearson's correlation, $r = 0.408$; $t =$
716 3.13, df = 49, $p = 2.9e-03$; *S. aureus*: Pearson's correlation, $r = -0.309$; $t = -2.61$, df = 64, $p =$
717 0.0114). Data from multiple replicates are shown. Behavioural assays were performed at least
718 twice, data from all replicates are shown.

719 **Figure 3. Toll signalling mutants do not increase activity during *M. luteus* infection.**

720 Ethogram showing percentage of (A) *imd*¹⁰¹⁹¹, (B) *spz*^{eGFP} and (C) *spz*^{Δ8-1} flies moving over
721 time. *Micrococcus luteus* infected *imd*¹⁰¹⁹¹ flies – but not *spz*^{eGFP} – moved significantly more
722 than both the uninfected and mock controls (*imd*¹⁰¹⁹¹: Kruskal-Wallis chi-square = 32.93, df =
723 2, n = 238, p = 7.1e-08; Dunn's *post hoc*: mock|M. *luteus* = 6.9e-08, mock|uninfected = 0.1,
724 uninfected|M. *luteus* = 1.07e-04; *spz*^{eGFP}: Kruskal-Wallis chi-square = 2.99, df = 2, n = 239, p
725 = 0.22; *spz*^{Δ8-1}: Kruskal-Wallis chi-square = 1.28, df = 2, n = 120, p = 0.528). Data from
726 multiple replicates are shown.

727 **Figure 4. *Micrococcus luteus* and *Francisella novicida* infection similarly disrupt host**
728 **metabolism. (A)** Western blot of phosphorylated AKT (Ser505) during *F. novicida* infection
729 in wild-type flies. Total AKT and tubulin levels for each sample also shown. Boxplot shows
730 quantification of pAKT relative to α -tubulin using data from both repeats of the experiment.
731 **(B)** Levels of circulating and stored glycogen and triglyceride (TAG) and feeding activity **(C)**
732 during early (30h) and late (80h) infection. Mock controls are indicated in grey, whilst *F.*
733 *novicida* and *M. luteus* injections are indicated in blue and green, respectively. Data are plotted
734 relative to the mean of uninfected controls. **Metabolism 30h post infection:** There was a
735 significant effect of infection, such that glucose levels were significantly lower in *F. novicida*-
736 infected flies (AOV: $df = 2$, $n = 28$, $F = 3.449$, $p = 0.048$; Tukey's HSD: mock|*F. novicida* =
737 0.038, mock |*M. luteus* = 0.62, *M. luteus*|*F. novicida* = 0.29). Infection had a significant effect
738 on glycogen stores which were reduced in both infections (AOV: $df = 2$, $n = 29$, $F = 12.112$, p
739 = 2.1e-04; Tukey's HSD: mock|*F. novicida* = 0.049, mock |*M. luteus* = 1.4e-04, *M. luteus*|*F.*
740 *novicida* = 0.102), but only *M. luteus*-infected flies had a significant reduction in triglycerides
741 (AOV: $df = 2$, $n = 27$, $F = 18.763$, $p = 1.5e-05$; Tukey's HSD: mock|*F. novicida* = 0.073,
742 mock|*M. luteus* = 8.8e-06, *M. luteus*|*F. novicida* = 3.5e-03). **Metabolism 80h post infection:**
743 There was a significant effect of infection, such that glucose levels were significantly higher in
744 *F. novicida*-infected flies (AOV: $df = 2$, $n = 31$, $F = 6.883$, $p = 3.5e-03$; Tukey's HSD: mock|*F.*
745 *novicida* = 0.018, mock|*M. luteus* = 0.41, *M. luteus*|*F. novicida* = 3.4e-03). Infection led to a
746 significant reduction of both glycogen (AOV: $df = 2$, $n = 31$, $F = 17.315$, $p = 1e-05$; Tukey's
747 HSD: mock|*F. novicida* = 1.6e-04, mock |*M. luteus* = 1.1e-04, *M. luteus*|*F. novicida* = 0.99),
748 and triglycerides (AOV: $df = 2$, $n = 28$, $F = 21.622$, $p = 2.5e-06$; Tukey's HSD: mock|*F.*
749 *novicida* = 2.3e-06, mock|*M. luteus* = 2.7e-07, *M. luteus*|*F. novicida* = 0.066). **Feeding:** Neither
750 infection affected feeding within **30h** of injection (AOV: $df = 2$, $n = 26$, $F = 1.117$, $p = 0.35$),
751 but **80h** post-injection, *F. novicida*-infected flies fed significantly more than mock controls but
752 not more than *M. luteus*-infected flies (AOV: $df = 2$, $n = 29$, $F = 7.289$, $p = 4.2e-03$; Tukey's
753 HSD: mock|*F. novicida* = 9.2e-03, mock|*M. luteus* = 0.58, *M. luteus*|*F. novicida* = 0.082). **(D)**
754 Ethogram showing percentage of flies moving over time. Neuronal KD of adipokinetic
755 hormone did not eliminate *F. novicida* infection-induced activity, suggesting that this
756 phenotype is not resulting from starvation (Kruskal-Wallis chi-square = 39.461, $df = 2$, $n = 159$,
757 $p = 2.7e-09$; Dunn's *post hoc*: mock|*F. novicida* = 4.3e-09, mock|uninfected = 0.35,
758 uninfected|*F. novicida* = 1.4e-05). Data from multiple replicates shown.

759 **Figure 5. Fat body and neuronal Toll signalling is required for infection-induced activity**
760 **during *Micrococcus luteus* infection.** Ethogram showing percentage of flies moving over time
761 with fat body (A) *spz* (w; *c564*> w; *spz*-IR) (B) *MyD88* (w; *c564*> w; *MyD88*-IR) and (C) *Dif*
762 (w; *c564*> w; *Dif*-IR) knockdown. *Micrococcus luteus* infection had no effect on *spz*, nor
763 *MyD88* fat body KD flies (*c564>spz-IR*: Kruskal-Wallis chi-square = 0.96, df = 2, n = 239, p
764 = 0.62; *c564>MyD88-IR*: Kruskal-Wallis chi-square = 5.92, df = 2, n = 120, p = 0.052). *Dif*
765 fat body KD flies infected with *M. luteus* were significantly more active than mock-injected
766 but not uninfected controls (*c564>Dif-IR*: Kruskal-Wallis chi-square = 15.45, df = 2, n = 361,
767 p = 4.4e-04; Dunn's *post hoc*: mock|M. *luteus* = 2.6e-04, mock|uninfected = 0.077, uninfected|M.
768 *luteus* = 0.053). Pan-neural (A) *MyD88* (*nSyb*>*MyD88*-IR) and (B) *Dif* knockdown
769 (*nSyb*>*Dif*-IR) led to increased activity during infection (*nSyb>MyD88-IR*: Kruskal-Wallis
770 chi-square = 12.69, df = 2, n = 290, p = 1.8e-03 ; Dunn's *post hoc*: mock|M. *luteus* = 0.027,
771 mock|uninfected = 0.304, uninfected|M. *luteus* = 1.7e-03; *nSyb>Dif-IR*: Kruskal-Wallis chi-
772 square = 11.05, df = 2, n = 249, p = 3.9e-03; Dunn's *post hoc*: mock|M. *luteus* = 5.7e-03,
773 mock|uninfected = 0.68, uninfected|M. *luteus* = 0.018). Data from multiple replicates are
774 shown.

775 **Figure 1 - Supplementary Figure 1. Quantifying engagement in specific behaviours.**
776 Ethogram showing percentage of infected wild-type males **(A)** walking, **(B)** engaging in
777 micro-movements (e.g. feeding and grooming) and **(C)** sleeping. Boxplots show the
778 quantification of **(D)** total distance covered and **(E)** the total number of times that the flies
779 crossed the middle of the housing tube as a proportion of the time (in seconds) spent awake.
780 Uninfected and mock controls are represented by grey and black tracings, respectively. Infected
781 flies are in blue. **Distance covered when active** (Kruskal-Wallis chi-square = 6.496, df = 2, n
782 = 419, p = 0.039; Dunn's *post hoc*: mock|*F. novicida* = 0.033, mock |uninfected = 0.163,
783 uninfected|*F. novicida* = 0.460) and **midline crosses when active** (Kruskal-Wallis chi-square
784 = 5.453, df = 2, n = 419, p = 0.065; Dunn's *post hoc*: mock|*F. novicida* = 0.064, mock
785 |uninfected = 0.330, uninfected|*F. novicida* = 0.339) were not impacted by the infection. **(F)**
786 Activity level throughout *F. novicida* infection was not correlated with survival (Pearson's
787 correlation, $r = 0.313$; $t = 3.31$, df = 101, $p = 0.001$) and **(G)** activity levels on day 1 are
788 positively correlated with total activity (Pearson's correlation, $r = 0.744$; $t = 11.2$, df = 101, p
789 = 2.2e-16). Data from multiple replicates are shown.

790 **Figure 2 - Supplementary Figure 1. Not all bacteria induce activity in wild-type flies.**

791 Ethograms showing percentage of flies moving over time. Uninfected and mock controls are
792 represented by grey and black tracings, respectively. Infected flies are in orange. Neither of
793 these extracellular/Gram-negative bacteria, *Escherichia coli* and *Enterobacter cloacae* induced
794 activity (*E. coli*: Kruskal-Wallis chi-square = 3.699, df = 2, n = 300, p = 0.16; *E. cloacae*:
795 Kruskal-Wallis chi-square = 1.516, df = 2, n = 229, p = 0.47). Data from multiple replicates
796 are shown.

797 **Figure 2 - Supplementary Figure 2. *Francisella novicida* infection increases activity in**
798 **several immune and locomotor mutants.** Boxplots showing the percentage of flies moving
799 over time. Uninfected and mock controls are represented by grey and black tracings,
800 respectively. Infected flies are in blue. Previously characterized phenotypes and statistics of
801 studied mutants can be found in Figure 2 – Supplementary Tables 1 and 2. Data from
802 multiple replicates are shown.

803

804 **Figure 2 – figure supplement table 1. Phenotypes of activity mutants tested.**

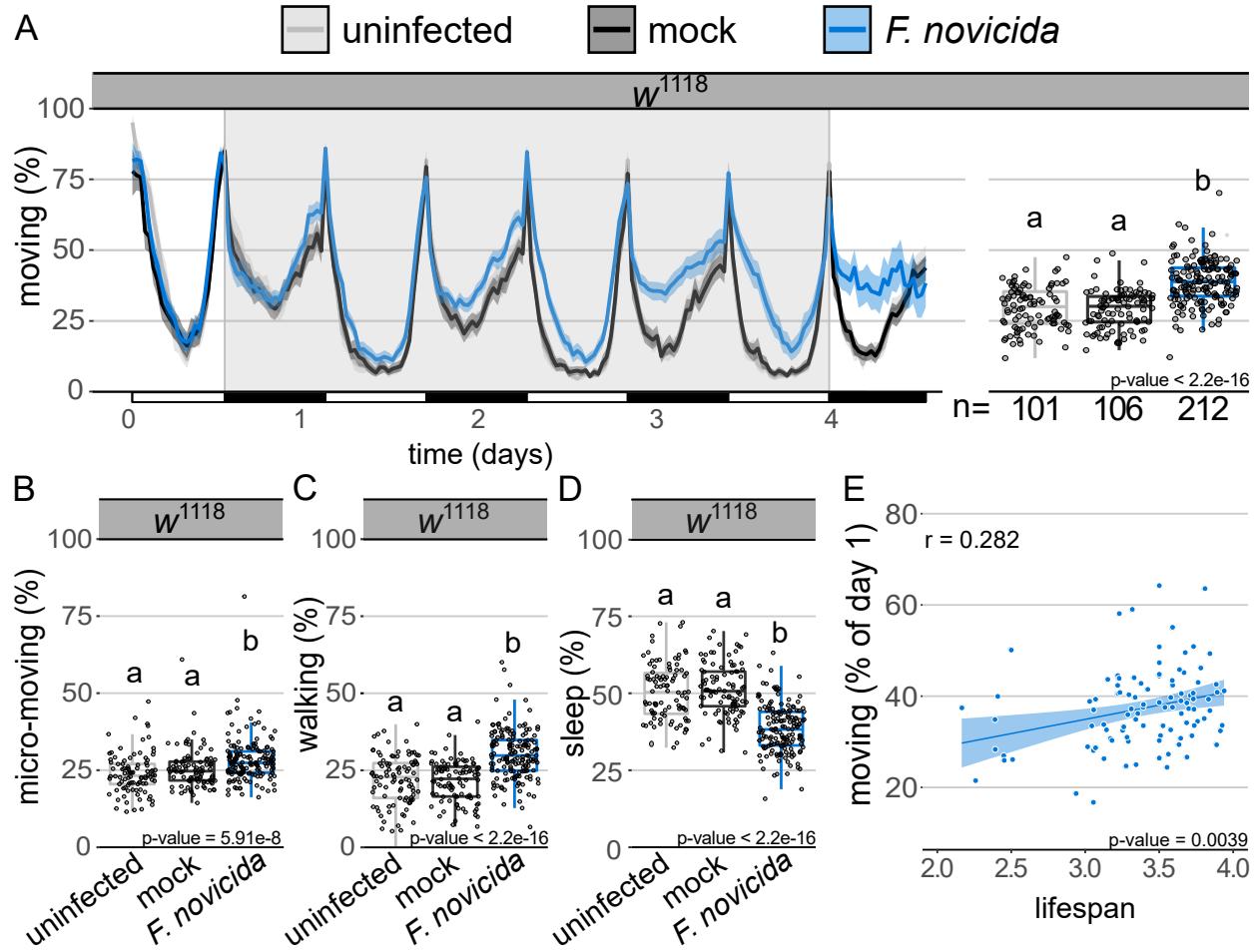
Gene	Published phenotype
<i>yw</i>	Alternative ‘control’ line; abnormal colour (yellow) & male courtship behaviour
<i>tak1</i> ¹	Highly susceptible to Gram negative bacteria
<i>upd2</i> ^Δ	Defective immune response
<i>pdf</i> ⁰¹	Locomotor & circadian behaviour defective
<i>dop1R2</i> ^{MB05108}	Hypoactive
<i>dopR1</i> ^{f2676}	Hyperactive
<i>iav</i> ³⁶²¹	Locomotor behaviour defective

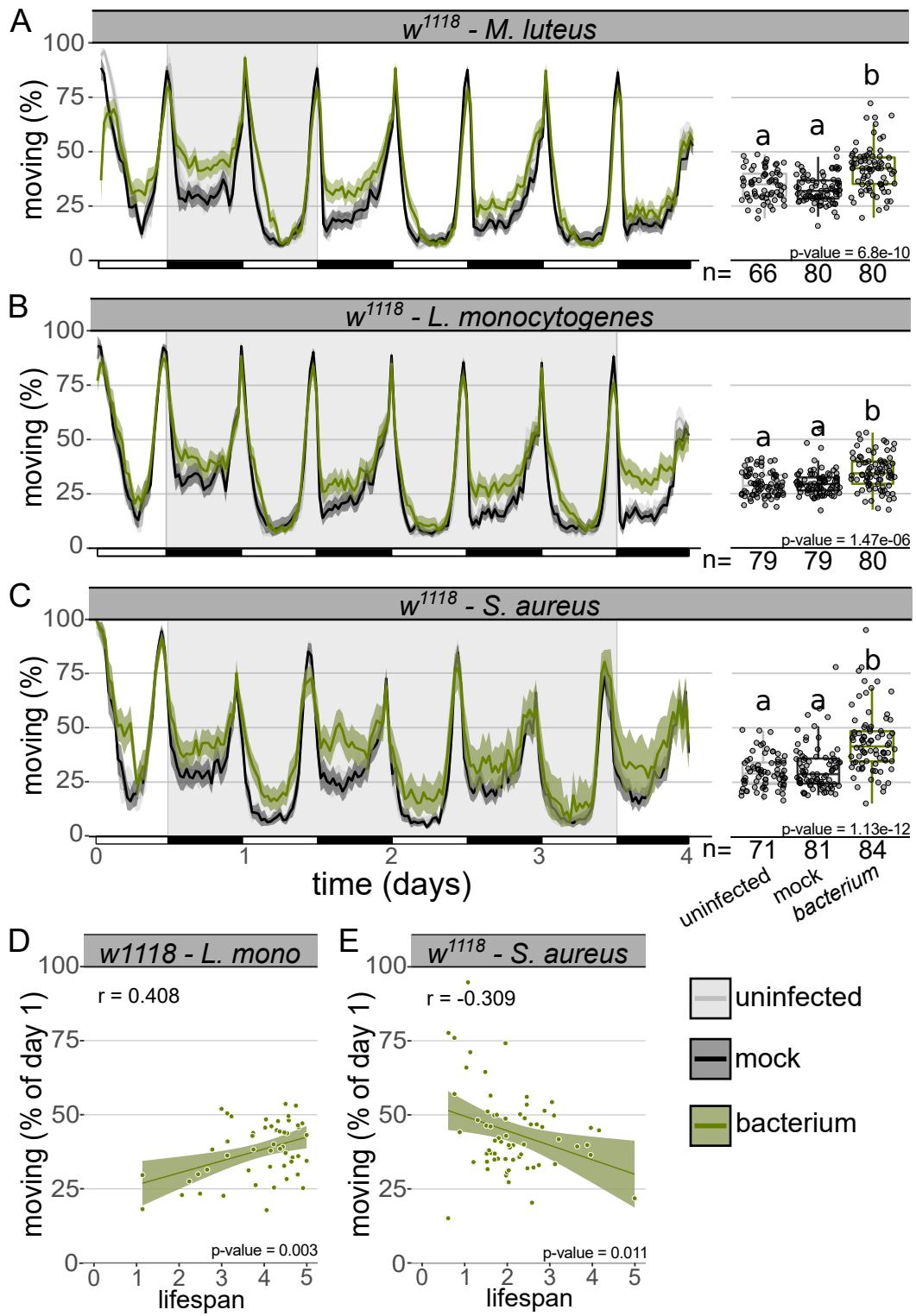
805 *references which cite each phenotype can be found via allele pages on FlyBase.

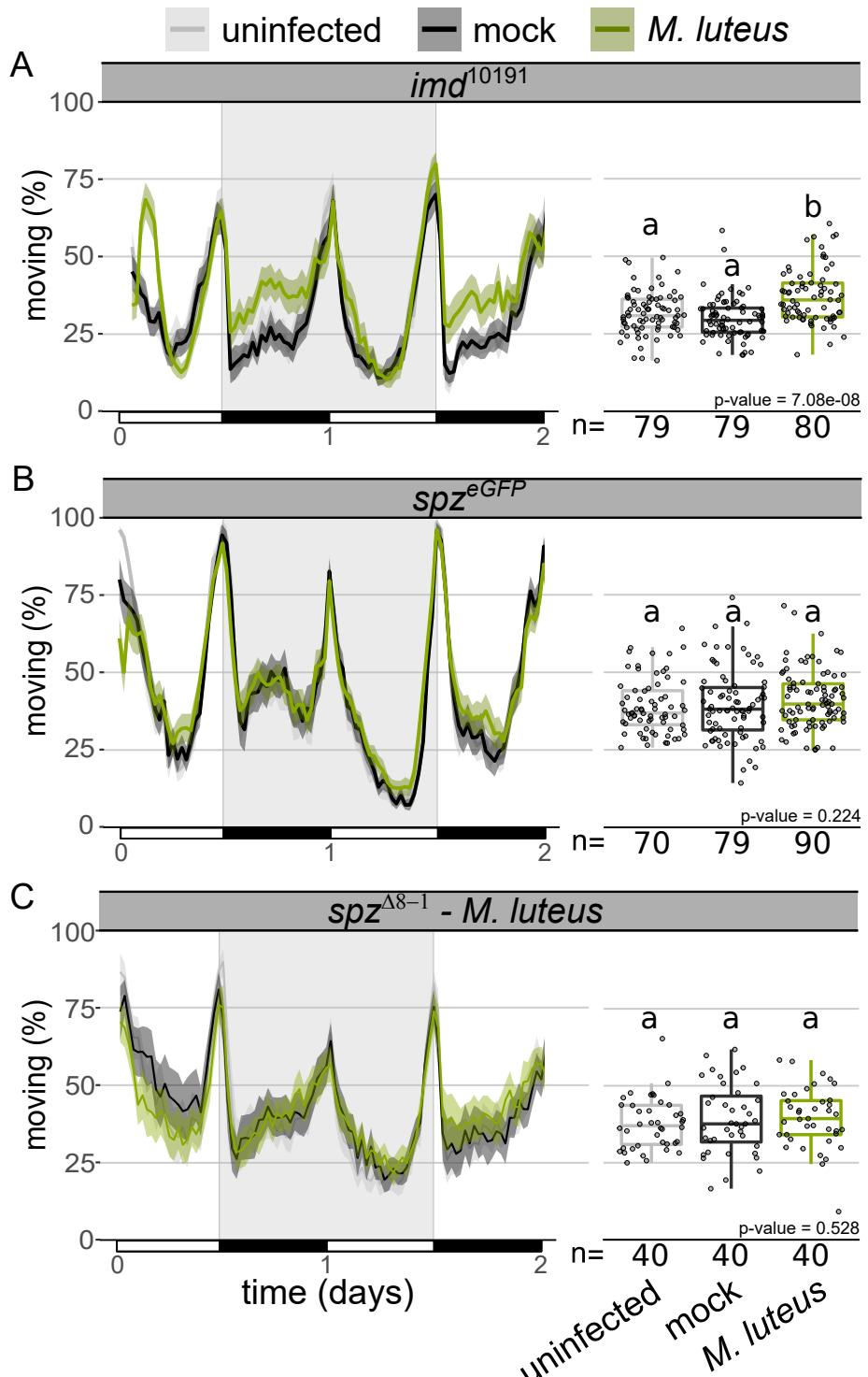
806

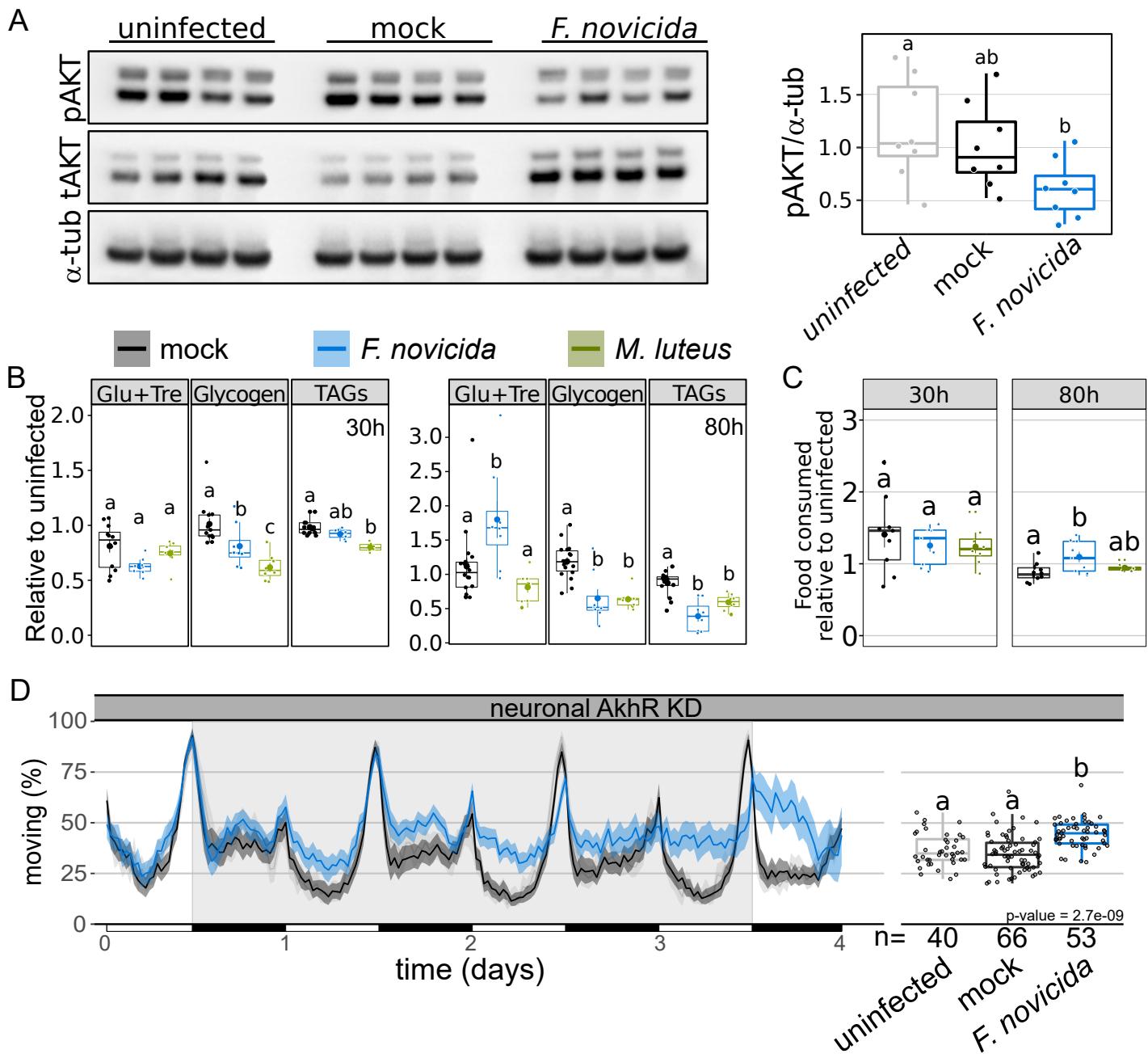
807 **Figure 2 – figure supplement table 2. Statistics from activity mutant assays.**

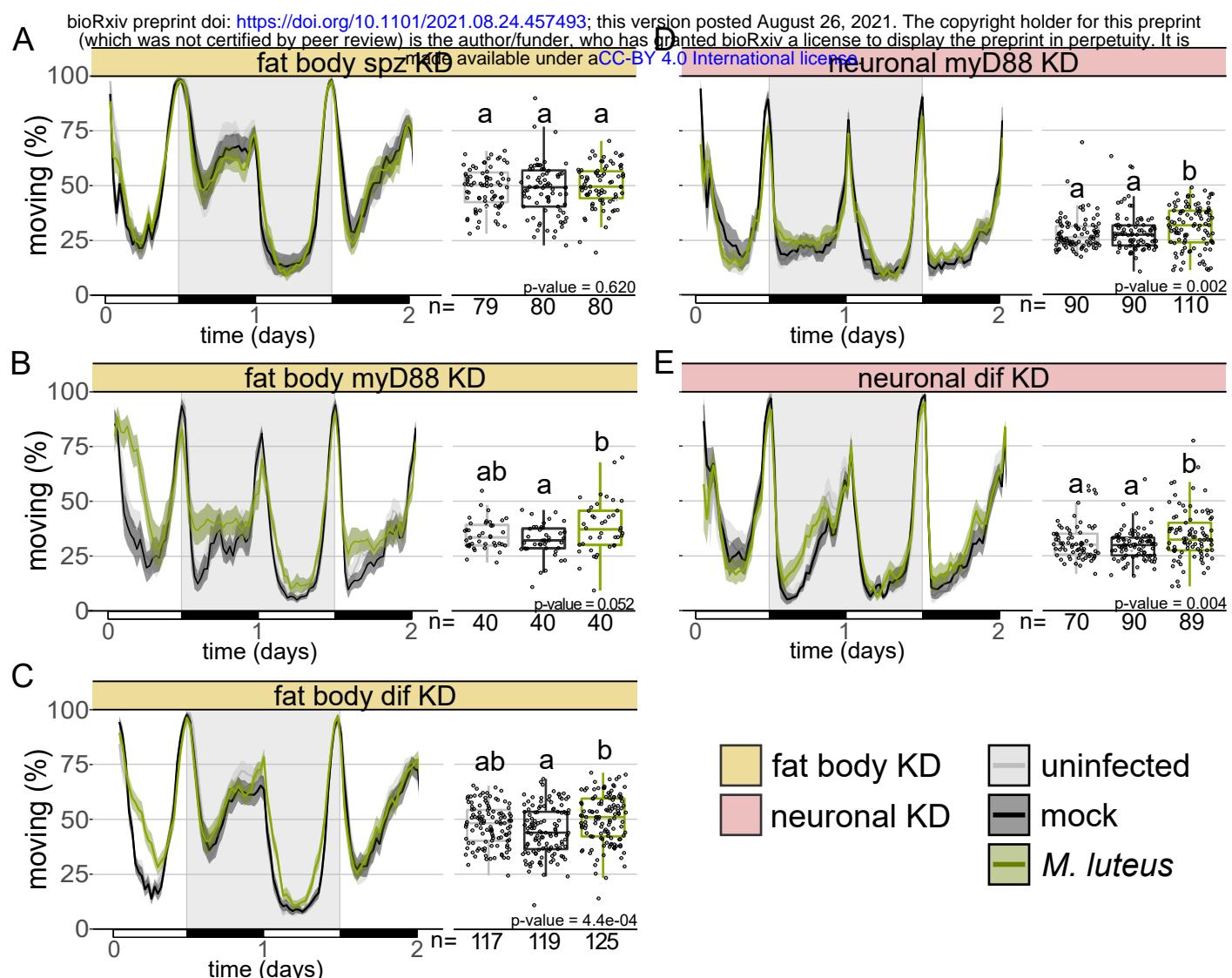
Genotype	Kruskal-Wallis Test Statistics	Uninfected PBS	Uninfected <i>F. novicida</i>	PBS <i>F. novicida</i>
<i>y,w;</i>	$X^2= 12.456, df= 2, n= 220, p= 1.8e-03$	$p = 0.14$	$p = 0.041$	$p = 1.3e-03$
<i>tak1</i> ¹ /FM7h;;	$X^2= 32.963, df= 2, n= 258, p= 6.9e-08$	$p = 0.77$	$p = 3.6e-07$	$p = 4.1e-06$
<i>w upd2</i> ^Δ ;;	$X^2= 66.744, df= 2, n= 237, p= 3.2e-15$	$p = 0.26$	$p = 1.4e-10$	$p = 1.5e-13$
<i>w;;pdf</i> ⁰¹	$X^2= 13.525, df= 2, n= 237, p= 1.2e-03$	$p = 0.27$	$p = 0.02$	$p = 1e-03$
<i>dop1R2</i> ^{MB05108}	$X^2= 15.524, df= 2, n= 90, p= 4.3e-04$	$p = 0.94$	$p = 1.1e-03$	$p = 1.6e-03$
<i>dopR1</i> ^{f2676}	$X^2= 44.393, df= 2, n= 130, p= 2.3e-10$	$p = 0.81$	$p = 1.4e-08$	$p = 1.1e-08$
<i>iav</i> ³⁶²¹ /FM7h	$X^2= 32.974, df= 2, n= 158, p= 6.9e-08$	$p = 0.36$	$p = 1.6e-05$	$p = 3.8e-07$


808


809


810 **Figure 2 – Supplementary Figure 3.** *Francisella novicida* and *Micrococcus luteus* differ in
811 **lethality.** In all plots, grey and black tracings represent uninfected and mock controls,
812 respectively. *F. novicida*, *Micrococcus luteus*, *Listeria monocytogenes* and *Staphylococcus*
813 *aureus* infections are shown in blue, green, orange and yellow, respectively. *Francisella*
814 *novicida* infection was lethal in all four genotypes. Infection with *M. luteus* did not result in
815 more lethality than either uninfected or mock controls, while *L. monocytogenes* and *S. aureus*
816 both lead to decreased survival. Median survival is indicated by dotted lines intersecting the y
817 and x axes at 50% survival and time (in days), respectively. Survival was calculated at the same
818 time as activity data and thus have the same sample size as indicated elsewhere. Data from
819 multiple replicates are shown. **Quantification of *M. luteus*** load markers (as indicated)
820 represent means and whiskers represent SE. Initial inoculum consisted of $\sim 10^3$ colony forming
821 units (CFUs). Within 30h bacterial numbers decreased to near-undetectable levels (average of
822 28-40 CFUs/fly). **Quantification of *F. novicida*.** Bacterial numbers increase over the course
823 of infection. All genotypes were injected with the same initial dose ($t = 0$; ~ 1700 CFUs). The
824 last measured timepoint was 24h prior to the onset of death for each genotype; this was 72h for
825 all genotypes except *imd*¹⁰¹⁹¹ which was 48h. Genotypes are represented by marker style and
826 line colour as indicated inset. Markers indicate means and whiskers represent SE. Bacterial
827 quantifications were repeated at least twice, $n = 16-22$ flies/genotype/timepoint; data from all
828 replicates are shown.


829 **Figure 3 – Supplementary Figure 1. Mutants of Toll and IMD pathways exhibit increased**
830 **locomotor activity during *Francisella novicida* infection.** Ethogram showing percentage of
831 **(A) *imd*¹⁰¹⁹¹ (B) *spz*^{eGFP} and (C) *imd*¹⁰¹⁹¹; *spz*^{eGFP}, flies moving over time.** *Francisella novicida*
832 infected animals moved significantly more than both the uninfected and mock controls (***imd*:**
833 Kruskal-Wallis chi-square = 111.32, df = 2, n = 482, p = 2.2e-16; Dunn's *post hoc*: mock|*F.*
834 *novicida* = 1.3e-20, mock|uninfected = 0.38, uninfected|*F. novicida* = 1.4e-18; ***spz*^{eGFP}:**
835 Kruskal-Wallis chi-square = 59.59, df = 2, n = 220, p = 1.1e-13; Dunn's *post hoc*: mock|*F.*
836 *novicida* = 1.7e-12, mock|uninfected = 0.36, uninfected|*F. novicida* = 1.6e-09; ***imd;spz*^{eGFP}:**
837 Kruskal-Wallis chi-square = 52.594, df = 2, n = 195, p = 3.8e-12; Dunn's *post hoc*: mock|*F.*
838 *novicida* = 5.6e-09, mock|uninfected = 0.45, uninfected|*F. novicida* = 1.9e-10). Data from
839 multiple replicates are shown.


840 **Figure 5 – Supplementary Figure 1. Fat body and pan-neural driver controls exhibit**
841 **increased locomotor activity during infection. (A)** Ethogram showing percentage of *c564*>+
842 flies moving over time. *Francisella novicida*-infected animals moved significantly more than
843 both the uninfected and mock controls (Kruskal-Wallis chi-square = 8.41, df = 2, n = 128, p =
844 0.015; Dunn's *post hoc*: mock|*F. novicida* = 0.049, mock|uninfected = 0.41, uninfected|*F.*
845 *novicida* = 0.015). *Micrococcus luteus*-infected animals moved significantly more than
846 uninfected controls but no more than mock controls (Kruskal-Wallis chi-square = 7.64, df = 2,
847 n = 136, p = 0.022; Dunn's *post hoc*: mock|*M. luteus* = 0.091, mock|uninfected = 0.35,
848 uninfected|*M. luteus* = 0.022). **(B)** *Francisella novicida*-infected *nSyb*>+ flies moved
849 significantly more than both the uninfected and mock controls (Kruskal-Wallis chi-square =
850 46.38, df = 2, n = 178, p = 8.5e-11; Dunn's *post hoc*: mock|*F. novicida* = 3.6e-08,
851 mock|uninfected = 0.56, uninfected|*F. novicida* = 1.8e-09). *Micrococcus luteus*-infected
852 animals moved significantly more than uninfected controls but no more than mock controls
853 (Kruskal-Wallis chi-square = 7.35, df = 2, n = 179, p = 0.025; Dunn's *post hoc*: mock|*M. luteus*
854 = 0.19, mock|uninfected = 0.24, uninfected|*M. luteus* = 0.021). *Francisella novicida* and
855 *Micrococcus luteus* data were analysed over 0.5d - 3.5d and 0.5d - 1.5d, respectively. Data
856 from multiple replicates are shown.

