

1 **A modular platform for on-demand vaccine self-assembly enabled by decoration**
2 **of bacterial outer membrane vesicles with biotinylated antigens**

3
4 Kevin B. Weyant¹, Julie Liao³, Mariela Rivera-De Jesus², Thapakorn Jaroentomeechai¹,
5 Tyler D. Moeller¹, Steven Hoang-Phou⁵, Sukumar Pal⁴, Sean F. Gilmore⁵, Riya Singh¹,
6 David Putnam^{1,2}, Christopher Locher³, Luis M. de la Maza⁴, Matthew A. Coleman⁵ and
7 Matthew P. DeLisa^{1,2,6*}

8
9 ¹Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University,
10 Ithaca, NY 14853 USA

11 ²Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University,
12 Ithaca, NY 14853 USA

13 ³Versatope Therapeutics, Inc., 110 Canal Street, Lowell, MA 01852 USA

14 ⁴Department of Pathology and Laboratory Medicine, Medical Sciences, Room D440,
15 University of California, Irvine, Irvine, CA 92697 USA

16 ⁵Lawrence Livermore National Laboratory, Livermore, CA 94550 USA

17 ⁶Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853 USA

18
19 *Address correspondence to: Matthew P. DeLisa, Robert Frederick Smith School of
20 Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA.
21 Tel: 607-254-8560; Email: md255@cornell.edu

22

23

24

25

26

27

28

29

30

31

1 **Abstract**

2 Engineered outer membrane vesicles (OMVs) derived from laboratory strains of
3 bacteria are a promising technology for the creation of non-infectious, nanoparticle
4 vaccines against diverse pathogens. As mimics of the bacterial cell surface, OMVs offer
5 a molecularly-defined architecture for programming repetitive, high-density display of
6 heterologous antigens in conformations that elicit strong B and T cell immune
7 responses. However, antigen display on the surface of OMVs can be difficult to control
8 and highly variable due to bottlenecks in protein expression and localization to the outer
9 membrane of the host cell, especially for bulky and/or complex antigens. To address
10 this shortcoming, we created a universal approach called AddVax (avidin-based dock-
11 and-display for vaccine antigen cross (x)-linking) whereby virtually any antigen that is
12 amenable to biotinylation can be linked to the exterior of OMVs whose surfaces are
13 remodeled with multiple copies of a synthetic antigen receptor (SNARE) comprised of
14 an outer membrane scaffold protein fused to a member of the avidin family. We show
15 that SNARE-OMVs can be readily decorated with a molecularly diverse array of
16 biotinylated subunit antigens, including globular and membrane proteins, glycans and
17 glycoconjugates, haptens, lipids, and short peptides. When the resulting OMV
18 formulations were injected in wild-type BALB/c mice, strong antigen-specific antibody
19 responses were observed that depended on the physical coupling between the antigen
20 and SNARE-OMV delivery vehicle. Overall, these results demonstrate AddVax as a
21 modular platform for rapid self-assembly of antigen-studded OMVs with the potential to
22 accelerate vaccine generation, respond rapidly to pathogen threats in humans and
23 animals, and simplify vaccine stockpiling.

24

25

26

27

28

29

30

31

1 **Introduction**

2 Outer membrane vesicles (OMVs) are spherical bilayered nanostructures (~20-250 nm)
3 ubiquitously released from the cell envelope of Gram-negative and Gram-positive
4 bacteria and their production represents a *bona fide* bacterial secretion process (1, 2).
5 As derivatives of the cell envelope, OMVs mimic the structural organization and
6 conformation of the bacterial cell surface while also containing periplasmic luminal
7 components. Natively produced OMVs mediate diverse functions such as increasing
8 pathogenicity in the host environment (3), promoting bacterial survival under conditions
9 of stress (4), and controlling interactions within microbial communities (5).

10 In addition to their natural biological roles, OMVs have enabled a spectrum of
11 bioengineering applications, most notably in drug and vaccine delivery, that exploit the
12 unique structural and functional attributes of these nanoparticle systems (6-9). OMVs
13 are especially attractive as a vaccine platform because they are non-replicating,
14 immunogenic facsimiles of the producing bacteria and thus contain the pathogen-
15 associated molecular patterns (PAMPs) present on bacterial outer membranes (6, 7).
16 These PAMPs endow OMVs with intrinsic immunostimulatory properties that strongly
17 stimulate innate and adaptive immune responses (10-13). In addition to this in-built
18 adjuvanticity, OMVs are right-sized for direct drainage into lymph nodes and
19 subsequent uptake by antigen presenting cells and cross-presentation (14). From a
20 translational perspective, OMVs can be readily produced at high quantities and
21 commercial scales via standard bacterial fermentation, and their clinical use has already
22 been established in the context of OMVs from pathogenic *Neisseria meningitidis*
23 serogroup B (MenB), also known as outer membrane protein complexes (OMPCs), that
24 are the basis of a polyribosylribitol phosphate (PRP) conjugate vaccine approved for
25 *Haemophilus influenzae* type b called PedvaxHIB® (15) and are a component of the
26 MenB vaccine Bexsero® (16).

27 To generalize and expand the vaccine potential of OMVs, we and others have
28 leveraged recombinant DNA technology and synthetic biology techniques to engineer
29 OMVs with heterologous protein and peptide cargo (17, 18). By targeting expression to
30 the outer membrane or the periplasm of an OMV-producing host strain, both surface
31 display as well as payload encapsulation are possible, providing versatility as

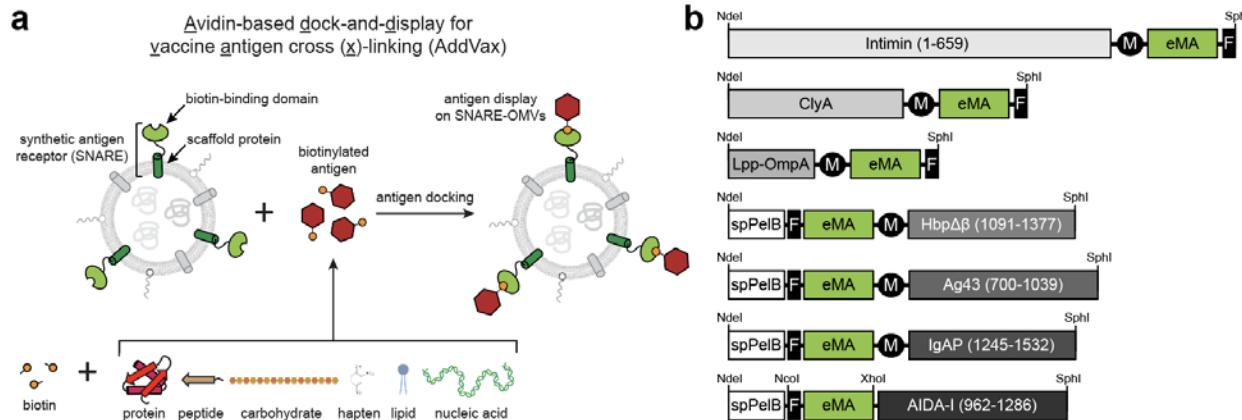
1 biomedical research tools and vaccines. Typically, this involves genetic fusion of a
2 protein or peptide of interest (POI) to an outer membrane scaffold protein (e.g., the *E.*
3 *coli* cytolysin ClyA), with the resulting POI accumulating in released OMVs that can be
4 readily recovered from the culture supernatant. These methods have made it possible to
5 enlist non-pathogenic, genetically tractable bacteria such as *Escherichia coli* K-12 for
6 the production of designer OMVs that are loaded with foreign antigens of interest (6,
7 19). When inoculated in mice, such engineered OMVs stimulate antigen-specific
8 humoral B cell and dendritic cell (DC)-mediated T cell responses including activation of
9 CD4⁺ and CD8⁺ T cells (10, 20-22). Importantly, the immune responses triggered by
10 antigen-loaded OMV vaccines have proven to be protective against a range of foreign
11 pathogens including bacteria and viruses (23-26) as well as against malignant tumors
12 (27). While proteins and peptides remain the focus of most OMV-based vaccine efforts,
13 advances in bacterial glycoengineering have enabled decoration of OMV exteriors with
14 heterologous polysaccharide antigens, giving rise to a new class of glycoconjugate
15 vaccines that can effectively deliver pathogen-mimetic glycan epitopes to the immune
16 system and confer protection to subsequent pathogen challenge (28-30). Collectively,
17 these and other studies have revealed that the repetitive, high-density arrangement of
18 antigens on the OMV surface enhances the response to otherwise poorly immunogenic
19 epitopes such as small peptides and polysaccharides, which likely results from induction
20 of strong B-cell receptor clustering.

21 These successes notwithstanding, the classical approach to loading OMVs with
22 foreign antigens prior to their isolation from bacterial cultures is not without its
23 challenges. For example, many antigens that are desirable from a vaccine standpoint
24 are incompatible with recombinant expression in the lumen or on the surface of OMVs.
25 While there can be many reasons for this, the most common bottlenecks include
26 misfolding, proteolytic degradation, and/or inefficient bilayer translocation of the POI,
27 especially for those that are very bulky and/or structurally complex. Because there are
28 currently no effective tools for predicting *a priori* the expressibility of OMV-directed
29 antigens, the creation of heterologous OMV vaccines remains very much a time-
30 consuming trial-and-error process that often must be repeated for each new antigen.
31 Even when a foreign antigen can be successfully localized to OMVs, it may lack

1 important post-translational modifications that are formed inefficiently (or not at all) in
2 the bacterial expression host. In addition, it can be difficult or even impossible to
3 precisely control the quantity of OMV-associated antigen, thereby excluding antigen
4 density as a customizable design parameter. It should also be noted that while it is
5 possible to integrate polypeptide and polysaccharide biosynthesis with the vesiculation
6 process (6, 19), it has yet to be demonstrated whether biosynthesis of other
7 biomolecules can be similarly integrated, thereby limiting the spectrum of cargo that can
8 be packaged in OMVs.

9 To address these shortcomings, reliable strategies are needed for modular OMV
10 functionalization in which OMV vectors and structurally diverse target antigens are
11 separately produced and then subsequently linked together in a controllable fashion.
12 Along these lines, direct chemical conjugation of proteins and polysaccharides to
13 OMVs/OMPCs following their isolation has been reported (15, 31); however, this
14 technique involves non-specific attachment of antigens to unknown OMV components
15 and thus is heterogeneous and difficult to predict or analyze. Moreover, non-uniform
16 coupling of antigen to particulate carriers may result in sub-optimal immunogenicity. For
17 more precise, homogenous antigen attachment, site-specific conjugation methods are
18 preferable. To this end, two groups recently demonstrated specific bioconjugation on
19 OMVs by adapting a “plug-and-display” approach that had previously been developed
20 for decorating virus-like particles with protein and peptide antigens (32). This approach
21 involved the use of the SpyTag/SpyCatcher protein ligation system to covalently attach
22 purified SpyTag-antigen (or SpyCatcher-antigen) fusion proteins onto cognate
23 SpyCatcher-scaffold (or SpyTag-scaffold) fusions that were expressed on the surface of
24 OMVs (33, 34). While this enabled loading of exogenous antigens on OMVs, with one
25 report even demonstrating specific anti-tumor immune responses (33), the protein
26 ligation strategy is limited to proteinaceous antigens that are compatible with isopeptide
27 bond formation.

28 To develop a more universal strategy for tethering virtually any biomolecular
29 cargo to the exterior of OMVs, we created AddVax (avidin-based dock-and-display for
30 vaccine antigen cross (x)-linking) whereby biotinylated antigens are linked to the
31 exterior of ready-made OMVs whose surfaces are remodeled with biotin-binding


1 proteins. The method involves producing OMV vectors that repetitively display multiple
2 copies of a synthetic antigen receptor (SNARE) comprised of an outer membrane
3 scaffold protein fused to a member of the avidin family. Following their production and
4 isolation, SNARE-OMVs can be readily decorated with a wide range of biotinylated
5 subunit antigens, including globular and membrane proteins, glycans and
6 glycoconjugates, haptens, lipids, and short peptides. Importantly, antigen-studded
7 SNARE-OMVs promote strong antigen-specific antibody responses that compare
8 favorably to the responses measured for classically prepared OMV formulations (i.e.,
9 cellular expression of antigen-scaffold fusions). Overall, our results demonstrate that
10 AddVax is a highly modular and versatile platform for on-demand vaccine creation that
11 should enable rapid cycles of development, testing, and production of new OMV-based
12 vaccines for numerous diseases.

13

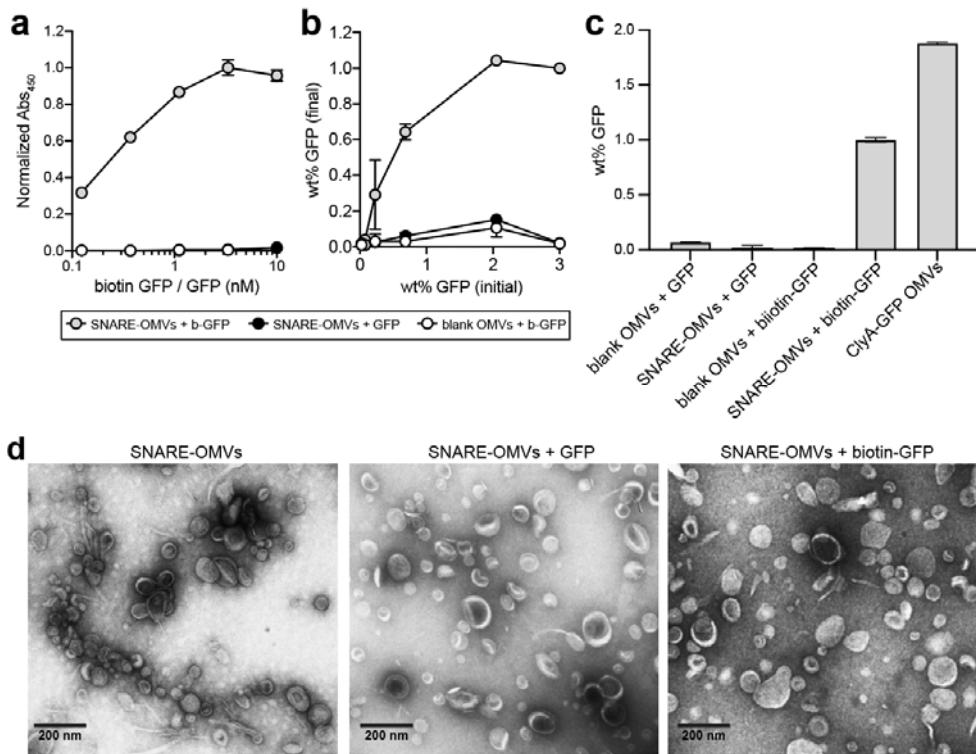
14 **Results**

15 **A modular framework for self-assembly of antigens on OMV surfaces.** As a first
16 step towards developing a universal platform for rapidly assembling antigens of interest
17 on the surface of OMVs, we constructed SNAREs by translationally fusing a cell surface
18 scaffold protein to a biotin-binding protein (**Fig. 1a**). A panel of cell surface scaffold
19 modules were chosen based on their ability to direct passenger proteins to the *E. coli*
20 outer membrane. These included cytolysin ClyA (18), hybrid protein Lpp-OmpA (35),
21 and the autotransporter β-domains derived from the N-terminus of intimin (Int) (36) and
22 the C-termini of adhesin involved in diffuse adherence (AIDA-I), antigen-43 (Ag43),
23 hemoglobin-binding protease (Hbp), and immunoglobulin A protease (IgAP) (37).
24 Initially, each scaffold was fused in-frame to enhanced monoavidin (eMA) (**Fig. 1b**), a
25 derivative of dimeric rhizavidin (RA) that was designed to be monomeric with highly
26 stable, biotin-binding properties (38), and subsequently expressed from the arabinose-
27 inducible plasmid pBAD24 in hypervesiculating *E. coli* strain KPM404 Δnpl (39). This
28 strain is an endotoxin-free BL21(DE3) derivative (sold as ClearColiTM by Lucigen) that
29 we previously engineered to vesiculate through knockout of the *npl* gene (40). Using
30 this strain, OMVs were readily produced that contained full-length SNARE chimeras,
31 with Lpp-OmpA-eMA and Int-eMA showing the strongest expression albeit with

1 significant amounts of higher and lower molecular weight species that likely
2 corresponded to aggregation and degradation products, respectively (**Supplementary**
3 **Fig. 1a**).

4 **Figure 1. A modular platform for rapid self-assembly of OMV-based vaccine candidates.** (a) Schematic of AddVax technology whereby ready-made OMVs displaying a synthetic antigen receptor (SNARE-OMVs) are remodeled with biotinylated antigens-of-interest. Using AddVax, the surface of SNARE-OMVs can be remodeled with virtually any biomolecule that is amenable to biotinylation including peptides, proteins, carbohydrates, glycolipids, glycoproteins, haptens, lipids, and nucleic acids. (b) Genetic architecture of SNARE constructs tested in this study. Numbers in parentheses denote amino acids of the scaffold that were fused to the biotin-binding eMA domain and used for membrane anchoring. Additional features include: export signal peptide from PeIB (spPeIB); c-Myc epitope tag (M); FLAG epitope tag (F), and Ndel, SphI, and Ncol restriction enzyme sites used for cloning.

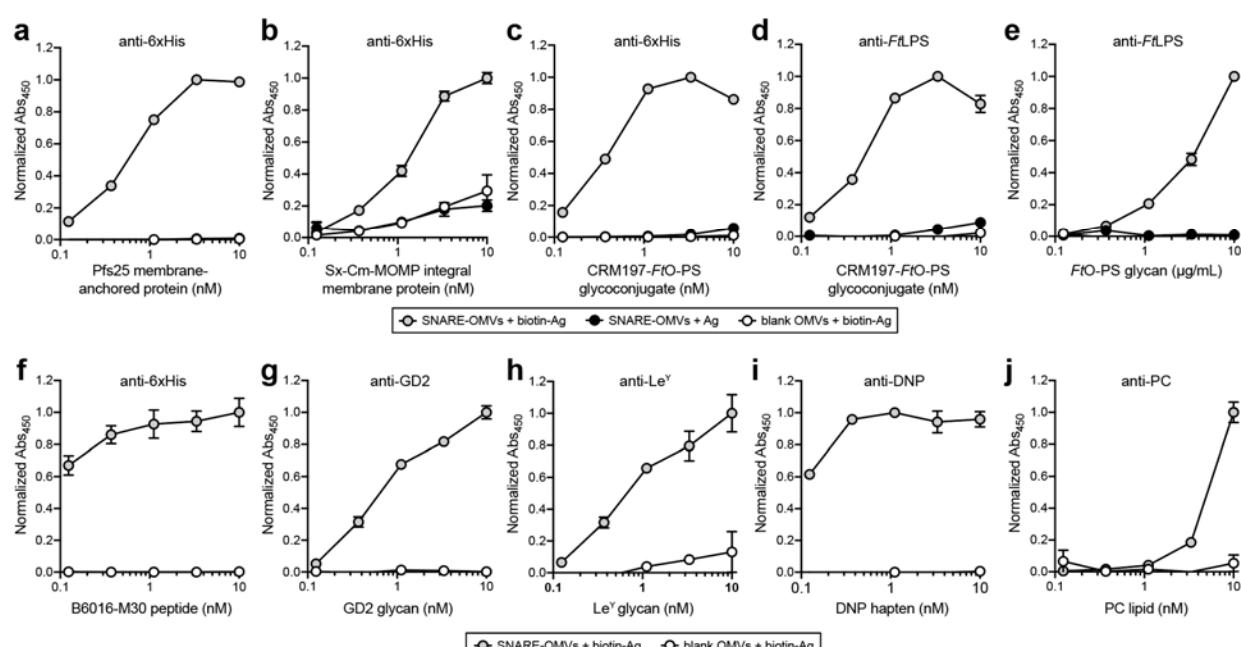
5 To evaluate antigen docking, we initially focused on biotinylated green
6 fluorescent protein (biotin-GFP) as the target antigen (**Supplementary Fig. 2a**), which
7 enabled facile
8 and quantitative prototyping of the different SNARE-OMV designs. When biotin-GFP
9 was incubated with 100 ng SNARE-OMVs coated on ELISA plates, all exhibited dose-
10 dependent binding up to ~10 nM of biotin-GFP except for the eMA-AIDA-I β and ClyA-
11 eMA receptors, which appeared saturated at low levels of biotin-GFP (**Supplementary**
12 **Fig. 1b**). The lack of binding for these two SNAREs was not entirely surprising given
13 that these constructs exhibited very weak expression compared to the other SNAREs
14 (**Supplementary Fig. 1b**). Importantly, there was no detectable binding of unmodified
15 GFP by any of the SNARE-OMVs, indicating that antigen capture was entirely
16 dependent upon the presence of the biotin moiety. Next, the two most effective
17 SNAREs in terms of


1 biotin-GFP binding, namely eMA-IgAP β and Lpp-OmpA-eMA, were evaluated over a
2 range of conditions to identify parameters (e.g., growth temperature, culture density at
3 time of induction, inducer level, etc.) that affected GFP docking levels (**Supplementary**
4 **Results** and **Supplementary Fig. 3**). Overall, the engineered Lpp-OmpA-eMA receptor
5 outperformed eMA-IgAP β in terms of biotin-GFP binding capacity (**Supplementary Fig.**
6 **3a**); however, expression of this construct from pBAD24 using standard amounts of L-
7 arabinose (0.2% or 13.3 mM) was detrimental to the host cells based on the observation
8 that the final culture densities hardly changed, and in some cases even decreased, from
9 the densities at the time of induction, which was not the case for eMA-IgAP β
10 (**Supplementary Fig. 3b**). Given the different biogenesis pathways of the IgAP
11 autotransporter versus the Lpp-OmpA β -barrel outer membrane protein, we suspected
12 that the host cell toxicity associated with Lpp-OmpA might result from inducer levels that
13 were too strong. In support of this notion, when Lpp-OmpA-eMA constructs were
14 induced with ~50-times less inducer, the post-induction cell growth was markedly
15 improved, with Lpp-OmpA-eMA-expressing cells reaching a final density on par with
16 that of cells expressing eMA-IgAP β (**Supplementary Fig. 3c**). Importantly, the Lpp-
17 OmpA-eMA SNARE-OMVs isolated from these healthier host cells captured significantly
18 more biotin-GFP compared to eMA-IgAP β SNARE-OMVs. An even higher level of
19 biotin-GFP binding was obtained by moving the Lpp-OmpA-eMA construct into the L-
20 rhamnose-inducible plasmid pTrham (**Supplementary Fig. 3d-f**), which is known for its
21 tighter expression control compared to pBAD vectors and can help to overcome the
22 deleterious saturation of membrane and secretory protein biogenesis pathways (41, 42).

23 To determine the effect of the biotin-binding module on antigen loading and to
24 further highlight the modularity of AddVax, we constructed a panel of Lpp-OmpA-based
25 SNAREs comprised of alternative biotin-binding domains including dimeric RA,
26 tetrameric streptavidin (SA), and monomeric streptavidin with a lowered off-rate
27 (mSA^{S25H}) (43). The SNAREs comprised of RA and mSA^{S25H} both captured biotin-GFP
28 at a level that was nearly identical to the eMA-based receptor, while the SA-based
29 receptor showed binding that was barely above background, a result that appears to be
30 due to the poor expression of this SNARE compared to the others (**Supplementary Fig.**
31 **4a and b**). Given the similarity in antigen capture efficiency for the eMA, RA, and

1 mSA^{S25H} SNAREs as well as post-induction culture growth (**Supplementary Fig. 4a**),
2 we chose the more extensively characterized Lpp-OmpA-eMA SNARE (expressed from
3 plasmid pTrham with 0.5 mM L-rhamnose inducer) for all further studies.
4 **Antigen loading capacity of SNARE-OMVs.** To determine the loading capacity of Lpp-
5 OmpA-eMA SNARE-OMVs, the OMV fractions were first subjected to extensive
6 washing with ultracentrifugation to recover washed OMVs, and then irreversible
7 aggregates were removed by filtration through 0.45 µm pores. Next, we quantified
8 bound antigen by mixing Lpp-OmpA-eMA SNARE-OMVs with biotin-GFP in solution
9 and subsequently measuring the amount of OMV-bound GFP in an ELISA-style format.
10 This assay was designed to mirror the process of vaccine self-assembly, whereby
11 ready-made SNARE-OMVs are mixed with biotinylated antigens in an on-demand
12 fashion. Importantly, the dose-response profile for pre-binding biotin-GFP on SNARE-
13 OMVs in solution was in relative agreement with the dose-response curve generated by
14 capturing biotin-GFP on the surface of immobilized SNARE-OMVs (**Fig. 2a**). The
15 maximum amount of biotin-GFP that was captured on the SNARE-OMV surface was
16 ~1% by mass when ~2 wt % biotin-GFP was input to the mixture, with the addition of
17 higher amounts of biotin-GFP leading to no significant increase in biotin-GFP binding
18 (**Fig. 2b**). In both assay formats, the combination of SNARE-OMVs with non-biotinylated
19 GFP or biotin-GFP with blank OMVs lacking a SNARE resulted in little to no detectable
20 binding (**Fig. 2a, b**). We also found that the maximum biotin-GFP loading on SNARE-
21 OMVs was lower but on par with the amount of GFP that was displayed on the surface
22 of OMVs following cellular expression of a scaffold-antigen fusion, ClyA-GFP (**Fig. 2c**)
23 (18). Despite this difference, an advantage of SNARE-OMVs was the ability to vary the
24 antigen loading density over a wide biotin-GFP concentration range, thereby providing a
25 level of control that is more difficult to achieve with cellular expression of scaffold-
26 antigen fusions. When visualized by transmission electron microscopy (TEM), SNARE-
27 OMVs decorated with biotin-GFP had a size (~50 nm) and overall appearance that was
28 indistinguishable from unloaded SNARE-OMVs (**Fig. 2d**) and consistent with previous
29 TEM images of engineered OMVs (18, 22, 25) including those from the same
30 hypervesiculating host strain used here (40). These findings indicate that controllable

1 vesicle loading could be achieved using the AddVax approach without significantly
2 impacting OMV ultrastructure.


3 **Decoration of OMV surfaces with structurally diverse antigens.** To demonstrate the
4 universality of the approach, we next investigated decoration of SNARE-OMVs with a
5 diverse array of biotinylated antigens. Some of these were chosen because their
6 incorporation into the OMV structure through cellular expression as a scaffold-antigen
7 fusion protein was predicted to be difficult or impossible. For example, *Plasmodium*
8 *falciparum* Pfs25 protein (Pfs25), a glycoprophosphidylinositol (GPI)-anchored protein

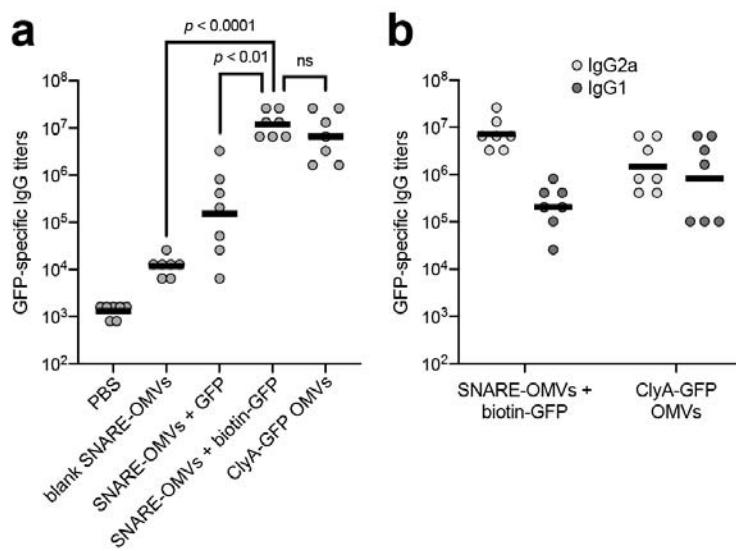
9
10 **Figure 2. Chimeric Lpp-OmpA-eMA SNARE enables controllable antigen loading on OMVs.** (a)
11 Dose-response curve generated by loading biotin-GFP or unmodified GFP on SNARE-OMVs isolated
12 from hypervesiculating *E. coli* strain KPM404 $\Delta nlpI$ expressing the Lpp-OmpA-eMA construct from
13 plasmid pTrham (induced with 0.5 mM L-rhamnose). Blank OMVs were isolated from plasmid-free
14 KPM404 $\Delta nlpI$ cells. Binding activity was determined by ELISA in which Lpp-OmpA-eMA SNARE-OMVs
15 were immobilized on plates and subjected to varying amounts of biotin-GFP, after which plates were
16 extensively washed prior to detection of bound biotin-GFP using anti-polyhistidine antibody to detect C-
17 terminal 6xHis tag on GFP. Data were normalized to the maximum binding signal corresponding to Lpp-
18 OmpA-eMA SNARE-OMVs in the presence of 3.3 nM biotin-GFP. (b) Same OMVs as in (a) but dose-
19 response was generated by first incubating OMVs with biotin-GFP or unmodified GFP in solution,
20 washing to remove unbound protein, and determining GFP levels by ELISA-based detection. (c)
21 Comparison of GFP levels on Lpp-OmpA-eMA SNARE-OMVs versus ClyA-GFP OMVs. ClyA-GFP OMVs
22 were isolated from KPM404 $\Delta nlpI$ cells expressing ClyA-GFP fusion construct from plasmid pBAD18 as
23 described in Kim et al. (18). Binding data are the average of triplicate measurements, and all error bars
24 represent the standard deviation of the mean. (d) Transmission electron micrograph of Lpp-OmpA-eMA

1 SNARE-OMVs alone or following incubation with unmodified GFP or biotin-GFP as indicated. The scale
2 bar represents 200 nm.
3
4 expressed on the surface of zygotes and ookinetes, is a promising malaria
5 transmission- blocking vaccine antigen (44). However, Pfs25 could not be expressed in
6 soluble form in *E. coli* likely due to its 11 disulfide bonds (45), and thus is incompatible
7 with conventional cellular expression techniques for OMV engineering. Along similar
8 lines, *Chlamydia* major outer membrane protein (MOMP) is a β -barrel integral
9 membrane protein (IMP) that accounts for ~60% of the mass of the outer membrane of
10 *Chlamydia* spp. (46, 47) and is highly antigenic (48), making it an attractive subunit
11 vaccine candidate (49). However, expression of MOMP in the *E. coli* cytoplasm results
12 in aggregation and the formation of inclusion bodies (50, 51) while expression in the *E.*
13 *coli* outer membrane results in significant cell toxicity (50, 52, 53). To incorporate these
14 two challenging membrane protein antigens into SNARE-OMVs required generation of
15 soluble versions of each antigen. For Pfs25, soluble expression was achieved using a
16 baculovirus-insect cell expression system (**Supplementary Fig. 2b**), while for MOMP
17 from *Chlamydia trachomatis* mouse pneumonitis (MoPn) biovar (strain Nigg II; now
18 called *Chlamydia muridarum*), soluble expression was achieved using a protein
19 engineering technology known as SIMPLEx (solubilization of IMPs with high levels of
20 expression) (54) in which sandwich fusion between an N-terminal “decoy” protein,
21 namely *E. coli* maltose-binding protein (MBP), and C-terminal truncated human
22 apolipoprotein AI (ApoAI*) transformed *C. muridarum* MOMP (Cm-MOMP) into a water-
23 soluble protein that was expressed at high levels in the *E. coli* cytoplasm
24 (**Supplementary Fig. 2a**). Following incubation of SNARE-OMVs with biotinylated
25 versions of insect cell-derived Pfs25 and *E. coli*-derived SIMPLEx-Cm-MOMP (Sx-Cm-
26 MOMP), we observed efficient OMV decoration that depended on both the presence of
27 the chimeric Lpp-OmpA-eMA receptor on OMVs and the biotin moiety on each antigen
28 (**Fig. 3a and b**). In the case of Sx-Cm-MOMP, we observed a low but reproducible
29 signal for both controls (SNARE-OMVs with non-biotinylated Sx-Cm-MOMP and blank
30 OMVs with biotinylated Sx-Cm-MOMP) that may correspond to a small amount of auto-
31 insertion of Sx-Cm-MOMP into OMVs.

1 We next investigated carbohydrate structures such as lipopolysaccharide (LPS)
2 antigens that represent appealing molecules for vaccine development owing to their
3 ubiquitous presence on the surface of diverse pathogens and malignant cells. A
4 challenge faced with most polysaccharides is that they make poor vaccines on their own
5 because they are unable to interact with the receptors on T cells in germinal centers
6 (GCs) (55). This can be overcome by covalent attachment of a polysaccharide to a
7 carrier protein, which provides T cell epitopes that can induce polysaccharide-specific
8 IgM-to-IgG class switching, initiate the process of affinity maturation, and establish long-
9 lived memory (56). Despite the widespread success of glycoconjugates, there is an
10 unmet need to identify formulations that elicit stronger primary antibody responses after
11 a single immunization, especially in primed or pre-exposed adolescents and adults, and
12 achieve

13
14 **Figure 3. Rapid self-assembly of OMV vaccine candidates decorated with diverse biomolecular**
15 **antigens.** (a-j) Dose-response curves generated by loading biotinylated or non-biotinylated antigens on
16 SNARE-OMVs isolated from hypervesiculating KPM404 Δnpl cells expressing the Lpp-OmpA-eMA
17 construct from plasmid pTrham (induced with 0.5 mM L-rhamnose). Blank OMVs were isolated from
18 plasmid-free KPM404 Δnpl cells. Binding activity was determined by ELISA in which Lpp-OmpA-eMA
19 SNARE-OMVs were immobilized on plates and subjected to varying amounts of unbiotinylated or
20 biotinylated antigen, after which plates were extensively washed prior to detection of bound antigen using
21 the antibodies indicated at top of each panel. Data were normalized to the maximum binding signal in
22 each experiment. All binding data are the average of triplicate measurements and error bars represent
23 the standard deviation of the mean.
24

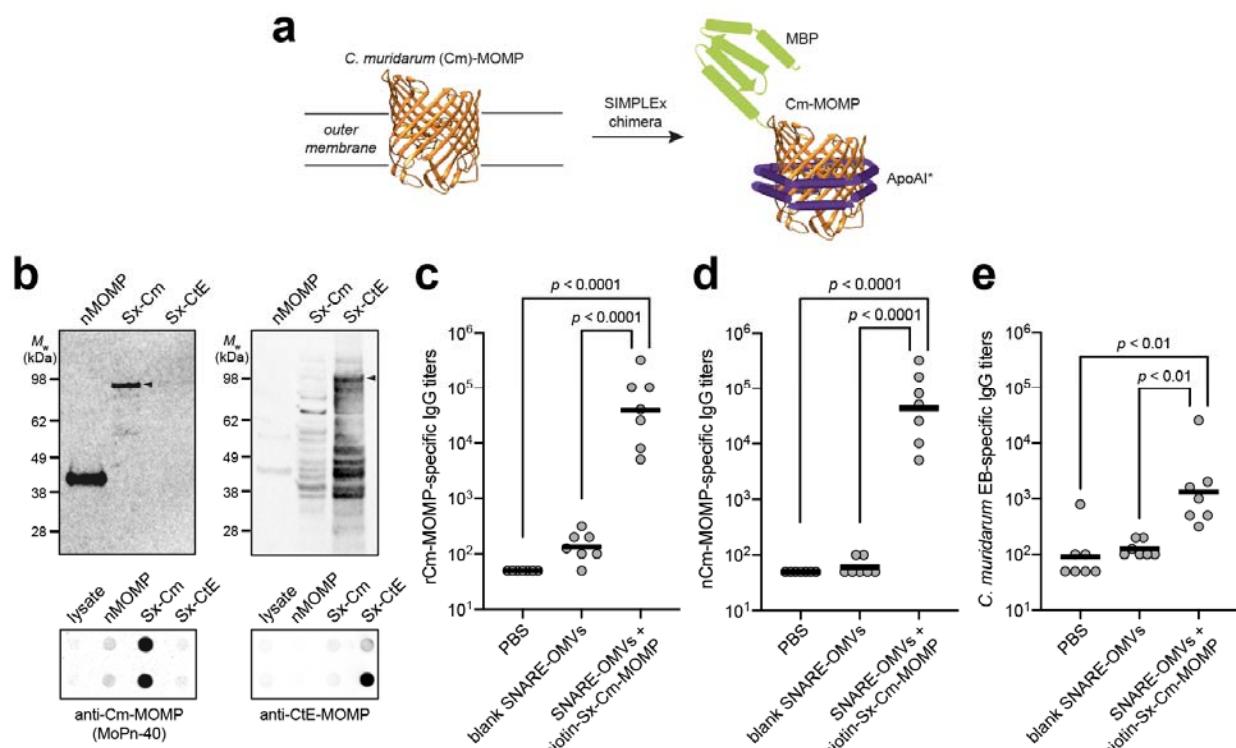
1 prolonged vaccine efficiency (56). To this end, we speculated that AddVax would
2 provide a convenient strategy for combining glycoconjugates with the intrinsic adjuvant
3 properties of OMVs (10-12). Such an approach would provide a simpler alternative than
4 attempting to combine OMV biogenesis with cellular expression of glycoconjugate
5 vaccine candidates in *E. coli* (57), a feat that has yet to be reported. Thus, we attempted
6 to adorn SNARE-OMVs with biotinylated glycoconjugates by leveraging an engineered
7 *E. coli* strain (58) to produce the carrier protein CRM197 that was glycosylated at its C-
8 terminus with a recombinant mimic of the *Francisella tularensis* SchuS4 O-antigen
9 polysaccharide (*Ft*O-PS) (**Supplementary Fig. 2c**). Decoration of SNARE-OMVs with a
10 biotinylated version of this glycoconjugate was readily detected by immunoblotting
11 against both the CRM197 carrier and its covalently linked *Ft*O-PS antigen (**Fig. 3c and**
12 **d**, respectively). We also demonstrated an alternative strategy for combining OMVs with
13 polysaccharide antigens whereby a biotinylated version of *F. tularensis* SchuS4 LPS
14 (*Ft*LPS) was directly bound to the exterior of SNARE-OMVs (**Fig. 3e**). This formulation
15 was motivated by the fact that a protein providing T cell help only needs to be in close
16 proximity to the polysaccharide in order to target the same B cell and does not have to
17 be covalently linked to the polysaccharide to induce class switching and T-cell activation
18 (28, 29, 59). Indeed, the co-delivery of non-covalently linked proteins and
19 polysaccharides present on the exterior of OMVs is sufficient to make a polysaccharide
20 immunogenic (15, 28, 29).


21 The final group of antigens that we investigated were small-sized biomolecules
22 that are known to be weakly immunogenic by themselves and therefore require carrier
23 molecules to increase chemical stability and adjuvanticity for the induction of a robust
24 immune response. This group included: (i) B16-M30 peptide, a CD4⁺ T-cell neoepitope
25 expressed in the B16F10 melanoma as a consequence of a mutation in the *kif18b* gene
26 (60); (ii) ganglioside GD2 glycan, a pentasaccharide antigen found on human tumors
27 including melanoma, neuroblastoma, osteosarcoma, and small-cell lung cancer, that
28 was highly ranked (12 out of 75) in a National Cancer Institute pilot program that
29 prioritized the most important cancer antigens (61); (iii) Lewis Y (Le^Y), a tetrasaccharide
30 extension of the H blood group galactose-glucosamine that has been shown to be
31 overexpressed on tumors (62); (iv) 2,4-dinitrophenol (DNP), a model hapten to which

1 the immune system is unresponsive (63); and (v) phosphocholine (PC), a major lipid
2 component of myelin and one of the main antigenic targets of the autoimmune response
3 in multiple sclerosis, with lipid-reactive antibodies likely contributing to disease
4 pathogenesis (64). In each case, we observed clearly detectable antigen binding on the
5 surface of SNARE-OMVs that was significantly above the background seen with blank
6 OMVs lacking biotin-binding receptors (**Fig. 3f-j**). Collectively, these results illustrate the
7 potential of the AddVax approach for modular self-assembly of candidate OMV vaccines
8 decorated with diverse biomolecular cargo.

9 **Immunogenicity of SNARE-OMVs loaded with model GFP antigen.** We next sought
10 to assess the immunological potential of SNARE-OMVs displaying biotin-GFP.
11 Specifically, BALB/c mice were immunized via subcutaneous (s.c.) injection of SNARE-
12 OMVs decorated with biotin-GFP or other control formulations after which blood was
13 collected at regular intervals. Negative controls included blank SNARE-OMVs, SNARE-
14 OMVs that were mixed with non-biotinylated GFP, and PBS. ClyA-GFP-containing
15 OMVs generated by cellular expression, which were previously reported to elicit high
16 antibody titers following immunization in mice (22), served as a positive control.
17 Importantly, SNARE-OMVs displaying biotin-GFP elicited robust IgG responses to GFP
18 that were significantly higher ($p < 0.0001$) than the titers measured for control mice
19 immunized with blank SNARE-OMVs or PBS (**Fig. 4a**). It is particularly noteworthy that
20 the total IgG titers triggered by SNARE-OMVs were indistinguishable from those
21 measured in response to ClyA-GFP-containing OMVs, validating the antigen docking
22 strategy as a potent alternative to cellular expression of scaffold-antigen fusions for
23 boosting the immunogenicity of foreign subunit antigens, in particular those that are
24 weakly immunogenic on their own such as GFP (22, 65). Interestingly, the IgG response
25 elicited by non-tethered GFP that was mixed with SNARE-OMVs gave a significantly
26 lower ($p < 0.01$) antigen-specific IgG response compared to biotin-GFP that was docked
27 on OMVs, indicating that the physical coupling of the antigen to the surface of the OMV
28 is essential for exploiting the full intrinsic adjuvanticity of OMVs. To determine whether
29 the immune responses were Th1 or Th2 biased (66), IgG antibody titers were further
30 broken down by analyzing IgG1 and IgG2a subclasses. Mice immunized with different
31 GFP-containing OMVs showed robust mean titers of both GFP-specific IgG1 and IgG2a

1 antibodies (**Fig. 4b**). For the groups immunized with ClyA-GFP OMVs, the relative titers
2 of IgG1 and IgG2a subclasses were comparable, consistent with our earlier work and in
3 line with responses typically seen with traditional subunit vaccines (21). In contrast,
4 biotin-GFP-studded SNARE-OMVs elicited an IgG2a-dominant humoral response,
5 suggesting induction of a Th1-biased immune response consistent with heightened
6 cellular immunity stimulation.


7 **Immunogenicity of SNARE-OMVs loaded with validated Cm-MOMP antigen.**
8 Encouraged by the immunostimulation observed for SNARE-OMVs remodeled with the
9 model GFP antigen, we next investigated the humoral immune response to SNARE-
10 OMVs that were decorated with Cm-MOMP, a validated subunit vaccine candidate (49,
11 51). Prior to immunization, we first tested the antigenicity of our Sx-Cm-MOMP
12 construct (**Fig. 5a**) that was engineered as described above for soluble, high-level
13 expression. Immunoblots of purified Sx-Cm-MOMP were probed with anti-Cm-MOMP-
14 specific monoclonal antibody (mAb) MoPn-40, which was generated by inoculation of
15 BALB/c mice with *C. muridarum* followed by isolation of hybridomas producing
16 antibodies against

17
18 **Figure 4. SNARE-OMVs decorated with biotin-GFP boost GFP-specific IgG titers.** (a) GFP-specific
19 IgG titers in endpoint (day 56) serum of individual mice (gray dots) and geometric mean titers of each
20 group (horizontal black lines). Five groups of BALB/c mice, seven mice per group, immunized s.c. with the
21 following: PBS, SNARE-OMVs isolated from KPM404 $\Delta nlpI$ cells expressing the Lpp-OmpA-eMA
22 construct, SNARE-OMVs mixed with non-biotinylated or biotinylated GFP, and ClyA-GFP isolated from
23 KPM404 $\Delta nlpI$ cells expressing ClyA-GFP fusion. Mice received prime injections containing an equivalent
24 amount of OMVs (20 μ g total protein) on day 0 and were boosted on day 21 and 42 with the same doses.
25 (b) Geometric mean IgG subclass titers measured from endpoint serum with IgG1 titers in dark gray and

1 IgG2a in light gray. Statistical significance of antibody titers for SNARE-OMVs + biotin-GFP against blank
2 SNARE-OMVs and SNARE-OMVs + GFP indicates statistically significant difference ($p < 0.0001$ and $p <$
3 0.01, respectively; unpaired t test with Welch's correction) between the groups; ns – not significant.
4

5 Cm-MOMP (67). We observed that mAb MoPn-40 specifically recognized the water-
6 soluble Sx-Cm-MOMP construct but not a SIMPLEx control construct comprised of a
7 different MOMP from *C. trachomatis* serovar E (Sx-CtE-MOMP) in both denatured
8 immunoblots and non-denatured dot blots (**Fig. 5b**), indicating that water-soluble Sx-
9 Cm-MOMP retained conformational antigenicity. Next, BALB/c mice were immunized
10 s.c. with SNARE-OMVs decorated with biotinylated Sx-Cm-MOMP. When the resulting
11 immune sera was analyzed for reactivity against either a recombinant or native
12 preparation of Cm-MOMP (rCm-MOMP and nCm-MOMP, respectively) (51), we
13 observed strong cross-reaction to both antigens with total IgG titers that were
14 significantly greater ($p < 0.0001$) than the titers elicited by blank SNARE-OMVs and
15 PBS control groups (**Fig. 5c and d**). It is also worth noting that the IgG responses
16 triggered by Sx-Cm-MOMP docked on SNARE-OMVs were *Chlamydia*-specific as
17 evidenced by the binding to *C. muridarum* elementary bodies (EBs), which was
18 significantly above the binding measured for blank

1 **Figure 5. SNARE-OMVs decorated with biotinylated Sx-Cm-MOMP elicit pathogen-specific IgGs.**

2 (a) Schematic of SIMPLEx strategy for converting integral membrane proteins into water-soluble proteins
3 that can be expressed at high titers in the cytoplasm of host cells. Here, the β -barrel outer membrane
4 protein Cm-MOMP was fused at its N-terminus with *E. coli* maltose-binding protein (MBP) and at its C-
5 terminus with truncated ApoAI (ApoAI*). Structural analysis indicates that ApoAI* adopts a belt-like
6 conformation around the membrane helices of proteins to which it is fused, effectively shielding these
7 highly hydrophobic segments from water (54). (b) (left blot) Antigenicity of Sx-Cm-MOMP construct
8 evaluated by immunoblot analysis using mAb MoPn-40. Native Cm-MOMP (nCm-MOMP) served as a
9 positive control while Sx-CtE-MOMP served as a negative control. (right blot) The latter construct was
10 detected with commercial antibody specific for CtE-MOMP, which did not react with Sx-Cm-MOMP or
11 nMOMP. Expected location of full-length SIMPLEx fusion proteins are denoted by black arrows.
12 Molecular weight (M_w) ladder is indicated at left. (c) Total IgG titers against recombinant preparations of
13 Cm-MOMP (rCm-MOMP) in endpoint (day 56) serum of individual mice (gray dots) and median titers of
14 each group (horizontal black lines). Three groups of BALB/c mice, seven mice per group, immunized s.c.
15 with the following: PBS, SNARE-OMVs isolated from KPM404 $\Delta nlp1$ cells expressing the Lpp-OmpA-eMA
16 construct, and SNARE-OMVs mixed with biotinylated Sx-Cm-MOMP. Mice received prime injections
17 containing an equivalent amount of OMVs (20 μ g total protein) on day 0 and were boosted on day 21 and
18 42 with the same doses. (d, e) Same as in (c) but with either (d) a native preparation of Cm-MOMP (nCm-
19 MOMP) or (e) elementary bodies (EBs) as immobilized antigens. Statistical significance of antibody titers
20 for SNARE-OMVs + biotin-Sx-Cm-MOMP against blank SNARE-OMVs and PBS indicates statistically
21 significant differences ($p < 0.0001$ for ELISAs with rCm-MOMP and nCm-MOMP; $p < 0.01$ for ELISA with
22 EBs; unpaired t test with Welch's correction) between the groups.

23

24 SNARE-OMVs and PBS control groups (Fig. 5e). As expected, antibody titers to rCm-
25 MOMP and nCm-MOMP were similar while titers to EBs were lower. It should be
26 pointed out that comparing titers between MOMP and EBs is not possible because the
27 amount of MOMP present in EBs was not quantitated. Nonetheless, these data are
28 significant because they demonstrate that the immune system of the mouse was able to
29 recognize Cm-MOMP in the context of an OMV-tethered SIMPLEx construct. Taken
30 together, these results confirm that dock-and-display of SIMPLEx-solubilized variants of
31 membrane proteins on SNARE-OMVs is a unique approach for rapidly engineering
32 vaccines based on difficult-to-obtain membrane-bound protein antigens without
33 compromising antigenicity or immunogenicity.

34

35 **Discussion**

36 In this study, we have developed a universal platform called AddVax for rapidly
37 assembling antigens of interest on the surface of OMVs. The method involves site-
38 specific docking of biotinylated antigens to the exterior of ready-made OMVs displaying
39 multiple copies of highly modular receptors called SNAREs, which are engineered by
40 fusing an outer membrane scaffold domain to a biotin-binding domain. As we showed
41 here, SNARE-OMVs can be readily adorned with virtually any antigen that is amenable

1 to biotinylation including globular and membrane proteins, glycans and glycoconjugates,
2 haptens, lipids, and short peptides. The ability to precisely and homogenously load
3 OMVs with a molecularly diverse array of subunit antigens differentiates the AddVax
4 method from previous covalent conjugation strategies that are largely restricted to
5 protein and peptide antigens (31, 33, 34). Moreover, our dock-and-display approach
6 side-steps many of the challenges associated with display on OMVs using conventional
7 genetic fusion and cellular expression technology, thereby opening the door to
8 important vaccine subunit antigens such as malarial Pfs25 and *Chlamydia* Cm-MOMP
9 that are refractory to soluble expression and outer membrane localization in *E. coli* (45,
10 50-53). While the separate preparation of a biotinylated antigen adds an extra step, it
11 affords an opportunity to generate protein antigens using different expression systems,
12 which can be chosen based on their ability to promote high yields and desired
13 conformations including post-translational modifications.

14 When injected in wild-type BALB/c mice, SNARE-OMV formulations displaying
15 GFP or a water-soluble variant of Cm-MOMP were capable of triggering strong antigen-
16 specific humoral responses that depended on the physical linkage between the antigen
17 and the SNARE-OMV delivery vehicle. Importantly, the GFP-specific IgG titers elicited
18 by GFP-studded SNARE-OMVs rivaled that of ClyA-GFP-containing OMVs generated
19 by conventional cellular expression technology (22). This ability of SNARE-OMVs to
20 amplify the immunogenicity of GFP, a weakly immunogenic protein by itself (22, 65),
21 without the need for potentially reactogenic adjuvants indicates that the inbuilt
22 adjuvanticity of OMVs is preserved in the context of our dock-and-display strategy. In
23 the case of the validated subunit vaccine candidate, Cm-MOMP (49, 51), we
24 demonstrate the potential of AddVax to be readily combined with SIMPLEx, a
25 technology for solubilizing integral membrane proteins (54, 68), leading to an entirely
26 new strategy for formulating difficult-to-obtain antigens without compromising
27 immunogenicity. Future adaptations of AddVax could also be pursued as needed such
28 as increasing antigen density with tandemly repeated biotin-binding modules or
29 enabling multi-antigen display with SNAREs comprised of multiple orthogonal protein-
30 ligand binding pairs. Along these lines, we previously engineered a trivalent protein
31 scaffold containing three divergent cohesin domains for the position-specific docking of

1 a three-enzyme cascade on the exterior of OMVs (69), which provides a conceptual
2 starting point for next-generation SNARE-OMVs.

3 The AddVax technology is based on the extraordinarily high affinity of avidin for
4 the small molecule biotin and was found to be compatible with a range of different
5 biotin-binding modules including eMA, RA, and mSA^{S25H}. Although the binding affinity of
6 our preferred biotin-binding domain, eMA, toward free biotin is measurably weaker than
7 tetrameric SA ($K_d = 31 \times 10^{-12}$ M for eMA versus $\sim 10^{-14}$ M for SA), eMA is reported to
8 have almost multimeric avidin-like binding stability toward biotin conjugates (38), making
9 it an incredibly useful module for capturing diverse subunit antigens as we showed here.
10 Moreover, its small, monomeric design resulted in significantly better expression and
11 OMV localization of the Lpp-OmpA-eMA SNARE compared to Lpp-OmpA-SA, which in
12 turn resulted in far superior antigen capture. Another notable trait of eMA is its ability to
13 be stored at -20°C without visible aggregation or loss of binding function (38), which
14 could prove useful in the future for long-term vaccine storage. It should be noted that
15 the versatility of the avidin-biotin technology has been previously leveraged as a
16 building material in other types of vaccine formulations, enabling the attachment of
17 antigens onto virus-like particles (VLPs) (70-72) and the self-assembly of
18 macromolecular complexes comprised of vaccine antigens (73, 74). However, to our
19 knowledge, our study is the first to repurpose avidin-biotin for antigen self-assembly and
20 display on OMVs.

21 Overall, the AddVax platform enables creation of antigen-studded OMVs with the
22 potential to impact many important facets of vaccine development. For example, the
23 simplicity and modularity of vaccine self-assembly using AddVax enables rapid cycles of
24 development and testing, which could be useful for evaluating large numbers and
25 different combinations of pathogen-derived antigens for their ability to combat the most
26 intractable diseases such as malaria or tuberculosis. Moreover, the fact that AddVax is
27 based on an identical, easy-to-decorate SNARE-OMV scaffold that can be readily mass
28 produced could shorten the time from development to manufacturing and accelerate
29 regulatory review for each new vaccine candidate. The universal scaffold also affords
30 the ability to share production costs across multiple antigens and diseases, which in
31 combination with the favorable manufacturing economics of *E. coli*-based production,

1 could help to meet the target of US \$0.15 per human vaccine dose set by the Bill and
2 Melinda Gates Foundation. In addition, pre-production of modular OMV scaffolds that
3 can be stably stored at -20°C and then only need to be mixed with good manufacturing
4 practice (GMP)-grade biotinylated antigens could enable rapid responses to pathogen
5 outbreaks or pandemics. One major remaining obstacle is the fact that OMVs derived
6 from laboratory strains of *E. coli* have yet to enter the clinic. It should be noted,
7 however, that OMVs/OMPCs from *Neisseria meningitidis* serogroup B are the basis of
8 two licensed vaccines, PedvaxHIB® and Bexsero®, that are approved for use in
9 humans (15, 16). Hence, although more testing of SNARE-OMV vaccine candidates is
10 clearly required, including broader immunogenicity testing and pathogen challenge
11 studies, we anticipate that clinical translation may not be far off.

12

13 **Materials and Methods**

14 **Strains, growth media, and plasmids.** All OMVs in this study were isolated from the
15 hypervesiculating *E. coli* strain KPM404 $\Delta nlpI$ (40), which contains several genetic
16 modifications that render its LPS less reactogenic. *E. coli* strain BL21(DE3) (Novagen)
17 was used to express GFP and rCm-MOMP. The SIMPLEx constructs Sx-Cm-MOMP
18 and Sx-CtE-MOMP were produced in two different ways, cell-based expression with
19 BL21(DE3) or cell-free expression using an *E. coli*-based translation kit (RTS 500
20 ProteoMaster *E. coli* HY kit, Biotechrabbit GmbH) as described previously (75). Both
21 methods yield comparable amounts of similar quality products as assessed by SDS-
22 PAGE and immunoblot analysis. *E. coli* strain CLM24 was used to produce CRM197
23 conjugated with *FtO*-PS (58) while strain JC8031 (76) was used to produce recombinant
24 *FtLPS*. Recombinant GFP used for serum antibody titering was expressed and purified
25 from *Saccharomyces cerevisiae* strain SEY6210.1 to avoid cross-reaction of serum
26 antibodies with contaminating host proteins present in protein preparations derived from
27 *E. coli* cultures. The *C. muridarum* strain Nigg II (ATCC VR-123) was used to produce
28 nCm-MOMP and EBs utilized in serum antibody titering experiments.

29 For cloning and strain propagation, *E. coli* strains were grown on solid Luria-
30 Bertani LB (10 g/L tryptone, 10 g/L NaCl, and 5 g/L yeast extract) supplemented with
31 agar (LBA) and yeast strain SEY6210.1 was grown on synthetic defined media without

1 uracil (SD-URA; MP Biomedicals) supplemented with agar. For OMV production,
2 hypervesiculating *E. coli* were grown in terrific broth (TB) (12 g/L tryptone, 24 g/L yeast
3 extract, 0.4% v/v glycerol, 0.17 M KH₂PO₄ and 0.72 M K₂HPO₄). For production of
4 recombinant antigens using *E. coli*, cells were grown in LB media. SEY6210.1 was
5 grown in SD-URA or yeast extract-peptone-dextrose (YPD) media (20 g/L peptone, 10
6 g/L yeast extract and 2% w/v glucose). *C. muridarum* cells were grown as described
7 (77) (78).

8 All plasmids used in this study are described in **Supplementary Table 1**.
9 Standard restriction enzyme-based cloning methods were used and sequences were
10 confirmed through Sanger sequencing performed by the Cornell Biotechnology
11 Resource Center (BRC) unless specified otherwise. For expression of SNARE
12 constructs in OMVs, eMA fusions to ClyA, Lpp-OmpA, and the membrane-associated
13 transporter domains of the autotransporters Int, Hbp, Ag43, and IgAP were codon-
14 optimized for *E. coli* expression, synthesized, and cloned into plasmid pBAD24 (79)
15 between EcoRI and SphI restriction sites with an NdeI site at the start codon by
16 GenScript. SNARES involving ClyA, Lpp-OmpA and Int were cloned with eMA fused to
17 the 3' end of the scaffold while SNAREs involving Hbp, Ag43 and IgAP were cloned with
18 eMA fused to the 5' end of the scaffold (**Fig. 1b**). For the latter set of constructs, DNA
19 encoding a Sec-dependent export signal peptide derived from PelB (spPelB), identical
20 to the sequence in pET22b (Novagen), was introduced at the 5'-end of the eMA-scaffold
21 gene fusions. For all of these constructs, DNA encoding c-Myc (EQKLISEEDL) and
22 FLAG (DYKDDDDK) epitope tags was introduced at the 5' and 3' ends of eMA as
23 depicted in **Fig. 1b**. In the case of the autotransporter AIDA-I, the transporter unit
24 (amino acids 962 through 1286) was PCR-amplified from pIB264 (80) and ligated into
25 pBAD24 between Xhol and SphI restriction sites. A “gBlock” (Integrated DNA
26 Technologies, IDT) encoding eMA with a 5' FLAG tag (IDT) was ligated between Ncol
27 and Xhol restriction sites, after which a gBlock encoding spPelB (IDT) was ligated
28 between EcoRI and Ncol.

29 To construct L-rhamnose inducible plasmids, DNA encoding Lpp-OmpA-eMA
30 and eMA-IgAP was digested from the respective pBAD24 expression vectors and
31 ligated into pTrham (Amid Biosciences) between NdeI and SphI sites, yielding plasmids

1 pTrham-Lpp-OmpA-eMA and pTrham-eMA-IgAP, respectively. To construct SNAREs
2 based on alternative avidin domains, *Rhizobium etli* RA, *Streptomyces avidinii* SA, and
3 an optimized version of monomeric streptavidin, namely mSA^{S25H}, with a lowered off-
4 rate (43) were codon-optimized and synthesized as gBlocks with flanking BbsI and
5 HindIII restriction sites (IDT). The sequences were then used to replace the eMA
6 sequence in the pTrham-Lpp-OmpA-eMA vector, resulting in plasmids pTrham-Lpp-
7 OmpA-RA, pTrham-Lpp-OmpA-SA, and pTrham-Lpp-OmpA-mSA.

8 For expression of GFP antigen for docking on OMVs, the gene encoding FACS-
9 optimized GFPmut2 with a C-terminal 6xHis tag was cloned in pET24a(+-)Cm^R between
10 SacI and HindIII restriction sites, yielding pET24-GFP. For yeast expression of GFP
11 used in serum antibody titering, a codon-optimized gene encoding GFPmut2 was
12 synthesized as a double-stranded DNA fragment or gBlock (IDT) with a 5' Kozak
13 sequence and 3' 6xHis tag and ligated into the yeast-expression plasmid pCM189
14 (ATCC) between BamHI and PstI sites, yielding pCM-GFP. For expression of the Sx-
15 Cm-MOMP antigen for OMV docking studies, the sequence encoding codon-optimized
16 Cm-MOMP, which was designed previously (75), was synthesized as a gBlock (IDT)
17 and ligated into the SIMPLEx plasmid pET21d-Sx (68) between NdeI and EcoRI
18 restriction sites, yielding pET21-Sx-Cm-MOMP. A modified strategy was used to
19 generate plasmid pIVEX-Sx-CtE-MOMP encoding the Sx-CtE-MOMP construct. Briefly,
20 codon optimized CtE-MOMP was generated in-house following a previously described
21 strategy for Cm-MOMP (75). PCR products corresponding to CtE-MOMP, MBP, and
22 ApoAI* (human ApoAI with 49 N-terminal amino acids removed) were cloned into
23 pIVEX-2.4d using the following restriction enzyme strategy: NdeI-MBP-Xhol-MOMP-
24 Nsil-ApoA1-SacI. The plasmid sequence was confirmed through Sanger sequencing
25 performed by ElimBiopharm.

26 **Protein purification.** For production of GFP and Sx-Cm-MOMP protein antigens,
27 BL21(DE3) cells containing plasmids corresponding to each antigen were grown
28 overnight at 37°C in 5 mL LB supplemented with the appropriate antibiotic and
29 subcultured 1:100 into the same media. Protein expression was induced with 0.1 mM
30 isopropyl-β-D-1-thiogalactopyranoside (IPTG) when culture densities reached an
31 absorbance at 600 nm (Abs₆₀₀) of ~1.0 and proceeded for 16 h at 30°C. Cells were then

1 harvested and lysed by homogenization, and proteins were purified by Ni-NTA resin
2 (Thermo-Fisher) following the manufacturer's protocol. For Sx-Cm-MOMP, Ni-NTA resin
3 elute was immediately diluted with PBS containing 1 mM EDTA (PBS-E) and incubated
4 with amylose resin (New England Biolabs) for 30 min, followed by washing with 10 resin
5 volumes of PBS-E and elution with 10 mM maltose in PBS-E. All purified proteins were
6 buffer exchanged into PBS using PD-10 desalting columns (Cytiva), filter-sterilized,
7 quantified by Lowry (MilliporeSigma), and stored at 4°C for up to 2 months or at -80°C
8 for longer term storage. Pfs25 was expressed and purified from a baculovirus
9 expression system using *Spodoptera frugiperda* SF9 cells and P2 virus by Genscript.

10 To produce CRM197-*FtO*-PS glycoconjugate, *E. coli* strain CLM24 was
11 transformed with plasmid pTrc99S-spDsbA-CRM197^{4xDQNT} encoding the CRM197
12 carrier protein modified at its C-terminus with four tandemly repeated DQNT
13 glycosylation motifs (81), plasmid pGAB2 encoding the *FtO*-PS biosynthesis pathway
14 (58), and plasmid pMAF10-PglB encoding the *Campylobacter jejuni*
15 oligosaccharyltransferase PglB for transfer of the *FtO*-PS (82). Overnight cultures were
16 subcultured 1:100 into fresh LB containing appropriate antibiotics. When culture
17 densities reached Abs₆₀₀ of ~0.8, PglB expression was induced with 0.2% arabinose for
18 16 h at 30°C, at which point CRM197^{4xDQNT} expression was induced with 0.1 mM IPTG
19 and cells were grown for an additional 8 h at 30°C. Cells were then harvested and
20 purified as described above for GFP.

21 To purify GFP for serum antibody titering, yeast strain SEY6210.1 was
22 transformed with pCM189-GFP-6xHis and grown on SD-URA agar plates at 30°C for
23 two days. Afterwards, a colony was picked and grown overnight at 30°C in 5 mL of SD-
24 URA media containing tetracycline, subcultured 1:10 into YPD, and grown for 20 h at
25 30°C. Yeast cells were lysed by homogenization and protein was purified by Ni-NTA
26 resin as above. For Cm-MOMP serum antibody titering, rCm-MOMP was expressed
27 recombinantly in *E. coli* while nCm-MOMP was extracted from *C. muridarum* strain Nigg
28 II as described previously (51).

29 **Antigen biotinylation.** Purified GFP, Pfs25, Sx-Cm-MOMP, and CRM197-*FtO*-PS were
30 mixed at 1 mg/mL (0.25-1 mg total protein) with 1.5x molar excess EZ-Link Sulfo-NHS-
31 LC biotin (Thermo-Fisher) in PBS and incubated on ice for 2-3 h. Afterwards, the

1 reaction mix was passed five times over PBS-equilibrated monomeric avidin resin
2 (Thermo-Fisher). Final flow-through fractions were concentrated and saved for repeat
3 biotinylation reactions as needed. Following 6 washes each with one resin volume of
4 PBS, biotinylated protein was eluted 6 times each with one resin volume of 2 mM D-
5 biotin (MilliporeSigma) in PBS. Elutions were pooled and diluted to 6 mL with PBS and
6 concentrated to <200 µL using 6-mL, 10-kDa cut-off protein concentrators (Pierce).
7 Dilution and concentration was repeated three more times to remove the D-biotin. The
8 final concentrated biotinylated proteins were filter-sterilized, quantified by Lowry, and
9 stored at 4°C for up to 2 months.

10 To biotinylate *F. tularensis* LPS, we first purified *Ft*LPS as described previously
11 (28) with the addition of DNase-I (0.5 mg/mL; MilliporeSigma) in the Proteinase K
12 treatment step. To remove sugar monomers and short polysaccharide chains, *Ft*LPS
13 was buffer exchanged into PBS using PD-10 columns and quantified by the Purpald
14 assay (83). Biotinylation was performed as described previously using 1-cyano-4-
15 dimethylaminopyridinium tetrafluoroborate (CDAP) as the activation reagent linking EZ-
16 Link-Amine-PEG3-Biotin (Pierce) to hydroxyl groups on the polysaccharide (73). A 27-
17 amino acid B16-M30 peptide with N-terminal biotin and C-terminal polyhistidine (6xHis)
18 motif for antibody-based detection was synthesized by Biomatik to ~85% purity, and a 1
19 mg/mL stock was prepared in dimethyl sulfoxide (DMSO). Biotinylated GD2 ganglioside
20 oligosaccharide and biotinylated Le^Y oligosaccharide were purchased from Elicityl,
21 biotinylated DNP containing a polyethylene glycol (PEG) linker was purchased from
22 Nanocs, and 1-oleoyl-2-[12-biotinyl(aminododecanoyl)]-sn-glycero-3-phosphocholine
23 (18:1-12:0 biotin PC) powder was purchased from Avanti Polar Lipids. The biotin-GD2,
24 biotin-Le^Y, and biotin-DNP were dissolved in sterile water (1-5 mg/mL) while biotin-PC
25 was suspended in DMSO (1 mg/mL). All stocks were diluted in PBS for avidin binding
26 studies.

27 **OMV preparation.** KPM404 *ΔnlpI* cells containing pBAD24 or pTrham expression
28 plasmids were spread from -80°C glycerol stocks onto LBA plates supplemented with
29 100 µg/ml carbenicillin and grown overnight at 37°C (~20 h). On the following day, cells
30 were suspended from the agar using TB and subcultured to Abs₆₀₀ of ~0.06 in 50-100
31 mL TB supplemented with carbenicillin. Cells were grown at 37°C and 220 rpm and

1 induced when Abs_{600} reached ~0.6 to ~1.8 with varying concentrations of L-arabinose
2 (pBAD24) or L-rhamnose (pTrham). Following induction, cells were grown for 16 h at
3 28°C followed by 6 h at 37°C, after which cells were pelleted via centrifugation at 10,000
4 $\times g$ for 15 min. Supernatants were filtered through 0.2 μm filters and stored overnight at
5 4°C. OMVs were isolated by ultracentrifugation at 141,000 $\times g$ for 3 h at 4°C and
6 resuspended in sterile PBS. For quantitative analysis and immunizations, resuspended
7 OMVs were diluted in sterile PBS and ultracentrifuged a second time to remove residual
8 media and soluble proteins. Following a second resuspension in PBS, large irreversible
9 aggregates were removed by centrifuging for 2 min at 3,000 $\times g$ in a microcentrifuge
10 and filtering the supernatant using sterile 4-mm, 0.45- μm syringe filters
11 (MilliporeSigma). Total OMV proteins were quantified by Lowry (Peterson's modification;
12 MilliporeSigma) using bovine serum albumin (BSA) as protein standard. OMVs were
13 stored for up to 1 month at 4°C for binding analysis and up to 2 weeks prior to
14 immunizations.

15 **Immunoblot analysis.** Biotinylated and non-biotinylated protein antigens and OMVs
16 were mixed with loading buffer containing β -mercaptoethanol and boiled for 10 min prior
17 to loading onto Mini-PROTEAN TGX polyacrylamide gels (Bio-Rad). To determine
18 protein purity, gels were stained with Coomassie G-250 stain (Bio-Rad) following the
19 manufacturer's protocol. For immunoblot analysis, proteins were transferred to
20 polyvinylidene difluoride (PVDF) membranes and blocked with 5% milk followed by
21 probing with antibodies, which were all used at 1:5,000 dilution. Avidin expression on
22 OMVs was analyzed with horseradish peroxidase (HRP)-conjugated anti-c-Myc
23 (Abcam; Cat # ab19312) or HRP-conjugated anti-DDDDK (Abcam; Cat # ab1162)
24 antibodies that recognized c-Myc and FLAG epitope tags, respectively. Proteins and
25 peptides bearing C-terminal 6xHis tags were detected with mouse anti-6xHis antibody
26 clone AD1.1.10 (BioRad; Cat # MCA1396GA) while detection of glycosylated CRM197-
27 *Ft*O-PS was with anti-*F. tularensis* LPS antibody clone FB11 (Invitrogen; Cat # MA1-
28 21690) that is specific to *Ft*LPS (28). HRP-conjugated goat anti-mouse (Abcam; Cat #
29 ab6789) was used as needed. All membranes were developed using Clarity ECL
30 substrate (Bio-Rad) and visualized using a ChemiDoc imaging system (Bio-Rad).

1 For probing antigenicity of SIMPLEx constructs, Sx-Cm-MOMP and Sx-CtE-
2 MOMP were mixed with loading buffer containing DTT and boiled for 10 min before
3 loading onto 4-12% NuPAGE Bis-Tris gels (Thermo-Fisher). For denaturing immunoblot
4 analysis, proteins were transferred to PVDF membranes and blocked with 5% BSA
5 (Sigma) followed by probing with mAb MoPn-40 (1:1,000) (67) or anti-CtE-MOMP
6 (1:2,000; Novus Biologicals; Cat # NB100-66403) antibodies. For non-denaturing dot
7 blot analysis, purified Sx-Cm-MOMP and Sx-CtE-MOMP proteins were spotted directly
8 onto nitrocellulose membranes and incubated for 5 min before being blocked with 5%
9 BSA (Sigma) and probing with the same primary antibodies. IRDye 800CW-conjugated
10 goat anti-mouse secondary antibodies (1:10,000; Li-Cor; Cat # 926-32210) were used
11 to detect primary antibody binding and membranes were visualized using an Odyssey
12 Li-Cor Fc imaging system.

13 **TEM analysis of OMVs.** Ultrastructural analysis of OMVs was performed via TEM as
14 previously described (22) with a few modifications. Briefly, OMVs were diluted to 100
15 $\mu\text{g/mL}$ and negatively stained with 1.5% uranyl acetate and deposited on 300-mesh
16 Formvar carbon-coated copper grids. Imaging was performed using a FEI Tecnai 12
17 BioTwin transmission electron microscope.

18 **ELISA.** For qualitative assessment of antigen binding by SNARE-OMVs, OMV samples
19 were diluted to 2 $\mu\text{g/mL}$ in PBS, coated on Costar 9018 high-binding 96-well plates (50
20 μL per well), and incubated overnight at 4°C. Plates were blocked with 2% BSA in PBS
21 (100 $\mu\text{L}/\text{well}$) for 3 h at room temperature and subsequently washed two times with
22 PBST (PBS pH 7.4 with 0.005% Tween-20 and 0.3% BSA). To analyze relative binding
23 capacities, biotinylated or unbiotinylated antigens were serially diluted in triplicate by a
24 factor of 3 in PBST, starting from 10 nM, and incubated for 90 min at room temperature
25 (50 $\mu\text{L}/\text{well}$). Unbound antigen was removed by washing twice with PBST. Bound
26 antigen was labeled by incubating with primary antibody for 1 h in PBST followed by two
27 more PBST washes and a 1-h incubation with HRP-conjugated secondary antibody.
28 After three final washes with PBST, 3,3'-5,5'-tetramethylbenzidine substrate (1-Step
29 Ultra TMB-ELISA; Thermo-Fisher) was added and the plate was incubated at room
30 temperature for 30 min in the dark. The reaction was stopped with 2M H_2SO_4 and
31 absorbance was measured via microplate spectrophotometer (Molecular Devices) at

1 Abs₄₅₀. The absorbance reading from OMVs incubated with PBST without antigen was
2 subtracted from the signal in all wells with antigen added. The resulting values were
3 normalized to the highest average absorbance value among all antigen concentrations,
4 including unbiotinylated antigen controls. Primary anti-6xHis and anti-*FtLPS* antibodies
5 and HRP-conjugated anti-mouse secondary antibody were identical to those used for
6 immunoblotting above and were used at the same dilutions. The remaining antigens
7 were detected with the following antibodies: GD2 was detected with mouse anti-
8 ganglioside GD2 antibody (1:1,000; Abcam; Cat # ab68456); Le^Y was detected with
9 mouse anti-Lewis Y antibody clone H18A (1:1,000; Absolute Antibody; Cat # Ab00493-
10 1.1); DNP was detected with goat anti-DNP (1:5,000; Bethyl Laboratories; Cat # A150-
11 117A); and PC was detected with anti-phosphorylcholine antibody clone BH8 (1:250;
12 MilliporeSigma; Cat # MABF2084). HRP-conjugated donkey anti-goat secondary was
13 used as needed (1:5,000; Abcam; Cat # ab97110).

14 For quantification of antigen binding capacity on SNARE-OMVs, 50 µg OMVs
15 were diluted to 0.1 mg/mL in PBS, mixed with unbiotinylated or biotinylated GFP at
16 concentrations between 0 and 100 pmol/mL (0 to 1 pmol antigen/µg OMV), and
17 incubated at room temperature for 1 h. Mixtures were then diluted to 30 mL in PBS and
18 ultracentrifuged for 141,000 x g for 3 h at 4°C. After discarding the supernatant, the
19 pellet was resuspended with 100 µL PBS, and the washed OMVs were quantified by
20 Lowry (Peterson's modification). An ELISA-based method that could be applied to a
21 variety of molecules was then used to quantify the amount of antigen remaining.
22 Specifically, washed OMVs were diluted to 2 µg/mL and coated on high-binding ELISA
23 plates (Costar 9018) in triplicate (50 µL per well). Known standards were prepared by
24 mixing blank SNARE-OMVs at 2 µg/mL with 1:2 serial dilutions of unbiotinylated or
25 biotinylated GFP, starting from 1 pmol GFP/µg OMV, and coating each antigen
26 concentration in triplicate on the ELISA plates (50 µL per well). Following overnight
27 coating at 4°C, plates were blocked with 2% BSA in PBS for 3 h (100 µL per well) at
28 room temperature and subsequently washed two times with PBST. Antibody and
29 substrate incubations were identical to the qualitative binding ELISA described above.
30 The final Abs₄₅₀ signals of the OMV mixtures containing known amounts of
31 unbiotinylated or biotinylated antigen were used to generate standard curves from which

1 the amount of antigen remaining in each unknown washed OMV sample was
2 calculated. The amount of GFP displayed on positive-control ClyA-GFP OMVs was
3 quantified by fluorescence as described previously (22).

4 **Mouse immunizations.** One day prior to immunization (day -1), different OMV
5 formulations were diluted to 0.1 mg/mL in sterile PBS pH 7.4. For the formulations
6 involving docked antigens, antigens and OMVs were mixed to a final concentration of
7 100 pmol/mL and 0.1 mg/mL, respectively, corresponding to 1 pmol antigen/µg OMV
8 (~3 wt% for GFP). All formulations were immediately stored at 4°C. On day 0, 200 µL
9 (20 µg) OMVs were injected subcutaneously into six-week-old BALB/c mice (7 mice per
10 group). Identical booster injections were administered on days 21 and 42, and blood
11 was drawn from the mandibular sinus on days -1, 28 and 49. Mice were euthanized on
12 day 56, which was immediately followed by blood collection via cardiac puncture and
13 spleen collection. The protocol number for the animal trial was 2012-0132 and was
14 approved by the Institutional Animal Care and Use Committee (IACUC) at Cornell
15 University.

16 **Serum antibody titers.** Sera was isolated from the blood of immunized mice by
17 centrifugation at 5,000 x g for 10 min and stored at -20°C. Antigen-specific antibodies in
18 the sera were measured using indirect ELISA as described previously (28) with a few
19 modifications. Briefly, high-binding 96-well plates (Costar 9018) were coated with
20 purified antigen (5 µg/mL in PBS, pH 7.4) and incubated overnight at 4°C, followed by
21 overnight blocking with 5% non-fat dry milk (Carnation) in PBS. Serum samples were
22 serially diluted in triplicate by a factor of two in blocking buffer, starting from 1:100, and
23 incubated on the antigen-coated plates for 2 h at 37°C. Plates were washed 3 times
24 with PBST and incubated for 1 h at 37°C in the presence of one of the following HRP-
25 conjugated antibodies: goat anti-mouse IgG (1:10,000; Abcam Cat # ab6789); anti-
26 mouse IgG1 (1:10,000; Abcam Cat # ab97240), or anti-mouse IgG2a (1:10,000; Abcam
27 Cat # ab97245). Following 3 final washes with PBST, 1-Step Ultra TMB-ELISA
28 (Thermo-Fisher) was added and the plate was incubated at room temperature for 30
29 min in the dark. The reaction was stopped with 2M H₂SO₄, and absorbance was
30 quantified via microplate spectrophotometer (Molecular Devices) at Abs₄₅₀. Serum

1 antibody titers were determined by measuring the highest dilution that resulted in signal
2 three standard deviations above no-serum background controls.

3 The *Chlamydia*-specific antibody titers in sera from mice immunized with Sx-Cm-
4 MOMP were determined by ELISA as previously described (51). Briefly, 96-well plates
5 were coated with 2 µg/ml of rCm-MOMP or nCm-MOMP, or 100 µL/well of *C.*
6 *muridarum* EBs containing 10 µg/mL of protein in PBS. Next, 100 µL of serum was
7 added per well in serial dilutions. Following incubation at 37°C for 1 h, the plates were
8 washed, and HRP-conjugated goat anti-mouse IgG (1:10,000; BD Biosciences Cat #
9 554002) was added. The plates were incubated and washed, and the binding was
10 measured in an ELISA reader (Labsystem Multiscan) using 2,2'-azino-bis-(3-
11 ethylbenzthiazoline-6-sulfonate) as the substrate.

12 **Statistical analysis.** Statistical significance between groups was determined by
13 unpaired *t*-test with Welch's correction using GraphPad Prism software (version 9.0.2).
14 Statistical parameters including the definitions and values of *n*, *p* values, and SDs are
15 reported in the figures and corresponding figure legends.

16

17 **Data availability.** All data needed to evaluate the conclusions in the paper are present
18 in the paper and/or the Supplementary Information.

19

20 **Acknowledgements.** We thank the PATH Malaria Vaccine Initiative (MVI) for providing
21 the Pfs25 construct. This work was supported by the Bill and Melinda Gates Foundation
22 (OPP1217652), the Defense Threat Reduction Agency (grant HDTRA1-20-10004), the
23 National Institutes of Health (grants R01GM137314 and R01GM127578 to M.P.D. and
24 U19AI144184 to S.P., L.M.M., and M.A.C.), and the National Science Foundation
25 (grants CBET-1605242 and CBET-1936823 to M.P.D.). The work was also supported
26 by seed project funding (to M.P.D.) through the National Institutes of Health-funded
27 Cornell Center on the Physics of Cancer Metabolism (supporting grant #
28 U54CA210184-01). The content is solely the responsibility of the authors and does not
29 necessarily represent the official views of the National Cancer Institute or the National
30 Institutes of Health. K.B.W. was supported by a National Science Foundation Graduate
31 Research Fellowship (grant DGE-1650441) and a Cornell Fleming Graduate

1 Scholarship. T.J. was supported by a Royal Thai Government Fellowship and a Cornell
2 Fleming Graduate Scholarship. T.D.M. was supported by a training grant from the
3 National Institutes of Health NIBIB (T32EB023860) and a Cornell Fleming Graduate
4 Scholarship.

5
6 **Author Contributions.** K.B.W. designed research, performed research, analyzed data,
7 and wrote the paper. T.J., T.D.M., S.H.-P., S.P., S.F.G., M.R.-D.J., R.S., and J.L.
8 designed research, performed research, and analyzed data. C.L. and D.P. wrote the
9 paper. L.M.M., M.A.C. and M.P.D. designed and directed research, analyzed data, and
10 wrote the paper.

11
12 **Competing Interests Statement.** M.P.D. and D.P. have a financial interest in
13 Versatope Therapeutics, Inc. and M.P.D. also has a financial interest in Glycobia, Inc.,
14 SwiftScale, Inc. and UbiquiTx, Inc. M.P.D.'s and D.P.'s interests are reviewed and
15 managed by Cornell University in accordance with their conflict of interest policies. All
16 other authors declare no competing interests.

17

18 **References**

- 19 1. C. Schwechheimer, M. J. Kuehn, Outer-membrane vesicles from Gram-negative
20 bacteria: biogenesis and functions. *Nat Rev Microbiol* **13**, 605-619 (2015).
- 21 2. A. Kulp, M. J. Kuehn, Biological functions and biogenesis of secreted bacterial
22 outer membrane vesicles. *Annual review of microbiology* **64**, 163-184 (2010).
- 23 3. M. L. Vidakovics *et al.*, B cell activation by outer membrane vesicles--a novel
24 virulence mechanism. *PLoS Pathog* **6**, e1000724 (2010).
- 25 4. A. J. McBroom, M. J. Kuehn, Release of outer membrane vesicles by Gram-
26 negative bacteria is a novel envelope stress response. *Mol Microbiol* **63**, 545-558
27 (2007).
- 28 5. S. J. Biller *et al.*, Bacterial vesicles in marine ecosystems. *Science* **343**, 183-186
29 (2014).
- 30 6. Y. M. D. Gnop, H. C. Watkins, T. C. Stevenson, M. P. DeLisa, D. Putnam,
31 Designer outer membrane vesicles as immunomodulatory systems -
32 Reprogramming bacteria for vaccine delivery. *Adv Drug Deliv Rev* **114**, 132-142
33 (2017).
- 34 7. J. A. Rosenthal, L. Chen, J. L. Baker, D. Putnam, M. P. DeLisa, Pathogen-like
35 particles: biomimetic vaccine carriers engineered at the nanoscale. *Curr Opin
36 Biotechnol* **28**, 51-58 (2014).

1 8. L. P. Jahromi, G. Fuhrmann, Bacterial extracellular vesicles: Understanding
2 biology promotes applications as nanopharmaceuticals. *Adv Drug Deliv Rev* **173**,
3 125-140 (2021).

4 9. M. Li *et al.*, Bacterial outer membrane vesicles as a platform for biomedical
5 applications: An update. *J Control Release* **323**, 253-268 (2020).

6 10. R. C. Alaniz, B. L. Deatherage, J. C. Lara, B. T. Cookson, Membrane vesicles
7 are immunogenic facsimiles of *Salmonella typhimurium* that potently activate
8 dendritic cells, prime B and T cell responses, and stimulate protective immunity
9 in vivo. *J Immunol* **179**, 7692-7701 (2007).

10 11. H. Sanders, I. M. Feavers, Adjuvant properties of meningococcal outer
11 membrane vesicles and the use of adjuvants in *Neisseria meningitidis* protein
12 vaccines. *Expert Rev Vaccines* **10**, 323-334 (2011).

13 12. T. N. Ellis, S. A. Leiman, M. J. Kuehn, Naturally produced outer membrane
14 vesicles from *Pseudomonas aeruginosa* elicit a potent innate immune response
15 via combined sensing of both lipopolysaccharide and protein components. *Infect*
16 *Immun* **78**, 3822-3831 (2010).

17 13. M. Kaparakis-Liaskos, R. L. Ferrero, Immune modulation by bacterial outer
18 membrane vesicles. *Nat Rev Immunol* **15**, 375-387 (2015).

19 14. M. F. Bachmann, G. T. Jennings, Vaccine delivery: a matter of size, geometry,
20 kinetics and molecular patterns. *Nat Rev Immunol* **10**, 787-796 (2010).

21 15. P. P. Vella *et al.*, Immunogenicity of a new *Haemophilus influenzae* type b
22 conjugate vaccine (meningococcal protein conjugate) (PedvaxHIB). *Pediatrics*
23 **85**, 668-675 (1990).

24 16. M. M. Giuliani *et al.*, A universal vaccine for serogroup B meningococcus. *Proc*
25 *Natl Acad Sci U S A* **103**, 10834-10839 (2006).

26 17. N. C. Kesty, M. J. Kuehn, Incorporation of heterologous outer membrane and
27 periplasmic proteins into *Escherichia coli* outer membrane vesicles. *J Biol Chem*
28 **279**, 2069-2076 (2004).

29 18. J. Y. Kim *et al.*, Engineered bacterial outer membrane vesicles with enhanced
30 functionality. *J Mol Biol* **380**, 51-66 (2008).

31 19. J. L. Baker, L. Chen, J. A. Rosenthal, D. Putnam, M. P. DeLisa, Microbial
32 biosynthesis of designer outer membrane vesicles. *Curr Opin Biotechnol* **29**, 76-
33 84 (2014).

34 20. S. T. T. Schetters *et al.*, Outer membrane vesicles engineered to express
35 membrane-bound antigen program dendritic cells for cross-presentation to
36 CD8(+) T cells. *Acta Biomater* **91**, 248-257 (2019).

37 21. J. A. Rosenthal *et al.*, Mechanistic insight into the TH1-biased immune response
38 to recombinant subunit vaccines delivered by probiotic bacteria-derived outer
39 membrane vesicles. *PLoS One* **9**, e112802 (2014).

40 22. D. J. Chen *et al.*, Delivery of foreign antigens by engineered outer membrane
41 vesicle vaccines. *Proc Natl Acad Sci U S A* **107**, 3099-3104 (2010).

42 23. M. Muralinath, M. J. Kuehn, K. L. Roland, R. Curtiss, 3rd, Immunization with
43 *Salmonella enterica* serovar *Typhimurium*-derived outer membrane vesicles
44 delivering the pneumococcal protein PspA confers protection against challenge
45 with *Streptococcus pneumoniae*. *Infect Immun* **79**, 887-894 (2011).

- 1 24. L. Fantappie *et al.*, Antibody-mediated immunity induced by engineered
- 2 Escherichia coli OMVs carrying heterologous antigens in their lumen. *J Extracell*
- 3 *Vesicles* **3**, (2014).
- 4 25. C. G. Rappazzo *et al.*, Recombinant M2e outer membrane vesicle vaccines
- 5 protect against lethal influenza A challenge in BALB/c mice. *Vaccine* **34**, 1252-
- 6 1258 (2016).
- 7 26. E. Bartolini *et al.*, Recombinant outer membrane vesicles carrying Chlamydia
- 8 muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. *J*
- 9 *Extracell Vesicles* **2**, (2013).
- 10 27. A. Grandi *et al.*, Synergistic protective activity of tumor-specific epitopes
- 11 engineered in bacterial outer membrane vesicles. *Front Oncol* **7**, 253 (2017).
- 12 28. L. Chen *et al.*, Outer membrane vesicles displaying engineered glycotopes elicit
- 13 protective antibodies. *Proc Natl Acad Sci U S A* **113**, E3609-3618 (2016).
- 14 29. J. L. Valentine *et al.*, Immunization with outer membrane vesicles displaying
- 15 designer glycotopes yields class-switched, glycan-specific antibodies. *Cell Chem*
- 16 *Biol* **23**, 655-665 (2016).
- 17 30. T. C. Stevenson *et al.*, Immunization with outer membrane vesicles displaying
- 18 conserved surface polysaccharide antigen elicits broadly antimicrobial
- 19 antibodies. *Proc Natl Acad Sci U S A* **115**, E3106-E3115 (2018).
- 20 31. Y. Wu *et al.*, Sustained high-titer antibody responses induced by conjugating a
- 21 malarial vaccine candidate to outer-membrane protein complex. *Proc Natl Acad*
- 22 *Sci U S A* **103**, 18243-18248 (2006).
- 23 32. K. D. Brune *et al.*, Plug-and-Display: decoration of virus-like particles via
- 24 isopeptide bonds for modular immunization. *Sci Rep* **6**, 19234 (2016).
- 25 33. K. Cheng *et al.*, Bioengineered bacteria-derived outer membrane vesicles as a
- 26 versatile antigen display platform for tumor vaccination via Plug-and-Display
- 27 technology. *Nat Commun* **12**, 2041 (2021).
- 28 34. H. B. van den Berg van Saparoea, D. Houben, M. I. de Jonge, W. S. P. Jong, J.
- 29 Luijink, Display of recombinant proteins on bacterial outer membrane vesicles by
- 30 using protein ligation. *Appl Environ Microbiol* **84**, (2018).
- 31 35. J. A. Francisco, C. F. Earhart, G. Georgiou, Transport and anchoring of beta-
- 32 lactamase to the external surface of Escherichia coli. *Proc Natl Acad Sci U S A*
- 33 **89**, 2713-2717 (1992).
- 34 36. W. S. Jong, A. Sauri, J. Luijink, Extracellular production of recombinant proteins
- 35 using bacterial autotransporters. *Curr Opin Biotechnol* **21**, 646-652 (2010).
- 36 37. W. S. P. Jong, M. Schillemans, C. M. Ten Hagen-Jongman, J. Luijink, P. van
- 37 Ulsen, Comparing autotransporter beta-domain configurations for their capacity
- 38 to secrete heterologous proteins to the cell surface. *PLoS ONE* **13**, e0191622
- 39 (2018).
- 40 38. J. M. Lee *et al.*, A rhizavidin monomer with nearly multimeric avidin-like binding
- 41 stability against biotin conjugates. *Angew Chem Int Ed Engl* **55**, 3393-3397
- 42 (2016).
- 43 39. U. Mamat *et al.*, Detoxifying Escherichia coli for endotoxin-free production of
- 44 recombinant proteins. *Microb Cell Fact* **14**, 57 (2015).
- 45 40. H. C. Watkins *et al.*, Safe recombinant outer membrane vesicles that display M2e
- 46 elicit heterologous influenza protection. *Mol Ther* **25**, 989-1002 (2017).

- 1 41. M. J. Giacalone *et al.*, Toxic protein expression in *Escherichia coli* using a
2 rhamnose-based tightly regulated and tunable promoter system. *Biotechniques*
3 **40**, 355-364 (2006).
- 4 42. A. Hjelm *et al.*, Tailoring *Escherichia coli* for the l-rhamnose PBAD promoter-
5 based production of membrane and secretory proteins. *ACS Synth Biol* **6**, 985-
6 994 (2017).
- 7 43. D. Demonte, E. J. Drake, K. H. Lim, A. M. Gulick, S. Park, Structure-based
8 engineering of streptavidin monomer with a reduced biotin dissociation rate.
9 *Proteins* **81**, 1621-1633 (2013).
- 10 44. D. C. Kaslow *et al.*, A vaccine candidate from the sexual stage of human malaria
11 that contains EGF-like domains. *Nature* **333**, 74-76 (1988).
- 12 45. S. M. Lee *et al.*, Assessment of Pfs25 expressed from multiple soluble
13 expression platforms for use as transmission-blocking vaccine candidates. *Malar
14 J* **15**, 405 (2016).
- 15 46. H. D. Caldwell, J. Kromhout, J. Schachter, Purification and partial
16 characterization of the major outer membrane protein of *Chlamydia trachomatis*.
17 *Infect Immun* **31**, 1161-1176 (1981).
- 18 47. T. P. Hatch, D. W. Vance, Jr., E. Al-Hossainy, Identification of a major envelope
19 protein in *Chlamydia* spp. *J Bacteriol* **146**, 426-429 (1981).
- 20 48. W. Baehr *et al.*, Mapping antigenic domains expressed by *Chlamydia*
21 *trachomatis* major outer membrane protein genes. *Proc Natl Acad Sci U S A* **85**,
22 4000-4004 (1988).
- 23 49. L. M. de la Maza, T. L. Darville, S. Pal, *Chlamydia trachomatis* vaccines for
24 genital infections: where are we and how far is there to go? *Expert Rev Vaccines*,
25 1-15 (2021).
- 26 50. L. E. Hoelzle, K. Hoelzle, M. M. Wittenbrink, Expression of the major outer
27 membrane protein (MOMP) of *Chlamydophila abortus*, *Chlamydophila pecorum*,
28 and *Chlamydia suis* in *Escherichia coli* using an arabinose-inducible plasmid
29 vector. *J Vet Med B Infect Dis Vet Public Health* **50**, 383-389 (2003).
- 30 51. G. Sun, S. Pal, J. Weiland, E. M. Peterson, L. M. de la Maza, Protection against
31 an intranasal challenge by vaccines formulated with native and recombinant
32 preparations of the *Chlamydia trachomatis* major outer membrane protein.
33 *Vaccine* **27**, 5020-5025 (2009).
- 34 52. J. E. Koehler, S. Birkeland, R. S. Stephens, Overexpression and surface
35 localization of the *Chlamydia trachomatis* major outer membrane protein in
36 *Escherichia coli*. *Mol Microbiol* **6**, 1087-1094 (1992).
- 37 53. Z. Wen *et al.*, Recombinant expression of *Chlamydia trachomatis* major outer
38 membrane protein in *E. coli* outer membrane as a substrate for vaccine research.
39 *BMC Microbiol* **16**, 165 (2016).
- 40 54. D. Mizrachi *et al.*, Making water-soluble integral membrane proteins *in vivo* using
41 an amphipathic protein fusion strategy. *Nat Commun* **6**, 6826 (2015).
- 42 55. F. Y. Avci, D. L. Kasper, How bacterial carbohydrates influence the adaptive
43 immune system. *Annu Rev Immunol* **28**, 107-130 (2010).
- 44 56. R. Rappuoli, Glycoconjugate vaccines: Principles and mechanisms. *Sci Transl
45 Med* **10**, (2018).

1 57. E. Kay, J. Cuccui, B. W. Wren, Recent advances in the production of
2 recombinant glycoconjugate vaccines. *NPJ Vaccines* **4**, 16 (2019).

3 58. J. Cuccui *et al.*, Exploitation of bacterial N-linked glycosylation to develop a novel
4 recombinant glycoconjugate vaccine against *Francisella tularensis*. *Open Biol* **3**,
5 130002 (2013).

6 59. A. Thanawastien, R. T. Cartee, T. J. t. Griffin, K. P. Killeen, J. J. Mekalanos,
7 Conjugate-like immunogens produced as protein capsular matrix vaccines. *Proc
8 Natl Acad Sci U S A* **112**, E1143-1151 (2015).

9 60. S. Kreiter *et al.*, Mutant MHC class II epitopes drive therapeutic immune
10 responses to cancer. *Nature* **520**, 692-696 (2015).

11 61. M. A. Cheever *et al.*, The prioritization of cancer antigens: a national cancer
12 institute pilot project for the acceleration of translational research. *Clin Cancer
13 Res* **15**, 5323-5337 (2009).

14 62. Y. S. Kim *et al.*, Expression of LeY and extended LeY blood group-related
15 antigens in human malignant, premalignant, and nonmalignant colonic tissues.
16 *Cancer Res* **46**, 5985-5992 (1986).

17 63. M. Feldman, Induction of immunity and tolerance to the dinitrophenyl determinant
18 in vitro. *Nat New Biol* **231**, 21–23 (1971).

19 64. M. C. Sadaba *et al.*, Serum antibodies to phosphatidylcholine in MS. *Neurol
20 Neuroimmunol Neuroinflamm* **7**, (2020).

21 65. M. L. Koser *et al.*, Rabies virus nucleoprotein as a carrier for foreign antigens.
22 *Proc Natl Acad Sci U S A* **101**, 9405-9410 (2004).

23 66. A. M. Collins, IgG subclass co-expression brings harmony to the quartet model of
24 murine IgG function. *Immunol Cell Biol* **94**, 949-954 (2016).

25 67. S. Pal, J. Bravo, E. M. Peterson, L. M. de la Maza, Protection of wild-type and
26 severe combined immunodeficiency mice against an intranasal challenge by
27 passive immunization with monoclonal antibodies to the *Chlamydia trachomatis*
28 mouse pneumonitis major outer membrane protein. *Infect Immun* **76**, 5581-5587
29 (2008).

30 68. D. Mizrachi *et al.*, A water-soluble DsbB variant that catalyzes disulfide-bond
31 formation in vivo. *Nat Chem Biol* **13**, 1022-1028 (2017).

32 69. M. Park, Q. Sun, F. Liu, M. P. DeLisa, W. Chen, Positional assembly of enzymes
33 on bacterial outer membrane vesicles for cascade reactions. *PLoS One* **9**,
34 e97103 (2014).

35 70. S. Chiba *et al.*, Multivalent nanoparticle-based vaccines protect hamsters against
36 SARS-CoV-2 after a single immunization. *Commun Biol* **4**, 597 (2021).

37 71. S. Thrane *et al.*, A novel virus-like particle based vaccine platform displaying the
38 placental malaria antigen VAR2CSA. *PLoS ONE* **10**, e0143071 (2015).

39 72. B. Chackerian, D. R. Lowy, J. T. Schiller, Conjugation of a self-antigen to
40 papillomavirus-like particles allows for efficient induction of protective
41 autoantibodies. *J Clin Invest* **108**, 415-423 (2001).

42 73. F. Zhang, Y. J. Lu, R. Malley, Multiple antigen-presenting system (MAPS) to
43 induce comprehensive B- and T-cell immunity. *Proc Natl Acad Sci U S A* **110**,
44 13564-13569 (2013).

45 74. P. Leblanc *et al.*, VaxCelerate II: rapid development of a self-assembling vaccine
46 for Lassa fever. *Human vaccines & immunotherapeutics* **10**, 3022-3038 (2014).

1 75. W. He *et al.*, Cell-free production of a functional oligomeric form of a Chlamydia
2 major outer-membrane protein (MOMP) for vaccine development. *J Biol Chem*
3 **292**, 15121-15132 (2017).

4 76. A. Bernadac, M. Gavioli, J. C. Lazzaroni, S. Raina, R. Lloubes, *Escherichia coli*
5 tol-pal mutants form outer membrane vesicles. *J Bacteriol* **180**, 4872-4878
6 (1998).

7 77. C. Nigg, An unidentified virus which produces pneumonia and systemic infection
8 in mice. *Science* **95**, 49-50 (1942).

9 78. S. Pal, T. J. Fielder, E. M. Peterson, L. M. de la Maza, Protection against
10 infertility in a BALB/c mouse salpingitis model by intranasal immunization with the
11 mouse pneumonitis biovar of *Chlamydia trachomatis*. *Infect Immun* **62**, 3354-
12 3362 (1994).

13 79. L. M. Guzman, D. Belin, M. J. Carson, J. Beckwith, Tight regulation, modulation,
14 and high-level expression by vectors containing the arabinose PBAD promoter. *J*
15 *Bacteriol* **177**, 4121-4130 (1995).

16 80. I. Benz, M. A. Schmidt, AIDA-I, the adhesin involved in diffuse adherence of the
17 diarrhoeagenic *Escherichia coli* strain 2787 (O126:H27), is synthesized via a
18 precursor molecule. *Mol Microbiol* **6**, 1539-1546 (1992).

19 81. J. C. Stark *et al.*, On-demand biomanufacturing of protective conjugate vaccines.
20 *Sci Adv* **7**, (2021).

21 82. M. F. Feldman *et al.*, Engineering N-linked protein glycosylation with diverse O
22 antigen lipopolysaccharide structures in *Escherichia coli*. *Proc Natl Acad Sci U S*
23 **A** **102**, 3016-3021 (2005).

24 83. D. R. Leitner *et al.*, Lipopolysaccharide modifications of a cholera vaccine
25 candidate based on outer membrane vesicles reduce endotoxicity and reveal the
26 major protective antigen. *Infect Immun* **81**, 2379-2393 (2013).

27