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HIGHLIGHTS

e Multi-region, multi-modal profiling of malignant and immune cell phenotypes in ovarian
cancer

e Anatomic site specificity is a determinant of cancer cell and intratumoral immune phenotypes
e Tumor mutational processes impact mechanisms of immune control and immune evasion

e Spatial topology of HR-deficient tumors is defined by immune interactions absent from

immune inert HR-proficient subtypes

ABSTRACT

High-grade serous ovarian cancer (HGSOC) is an archetypal cancer of genomic instability patterned
by distinct mutational processes, intratumoral heterogeneity and intraperitoneal spread. We
investigated determinants of immune recognition and evasion in HGSOC to elucidate co-
evolutionary processes underlying malignant progression and tumor immunity. Mutational processes
and anatomic sites of tumor foci were key determinants of tumor microenvironment cellular
phenotypes, inferred from whole genome sequencing, single-cell RNA sequencing, digital
histopathology and multiplexed immunofluorescence of 160 tumor sites from 42 treatment-naive
HGSOC patients. Homologous recombination-deficient (HRD)-Dup (BRCA1 mutant-like) and HRD-
Del (BRCAZ2 mutant-like) tumors harbored increased neoantigen burden, inflammatory signaling and
ongoing immunoediting, reflected in loss of HLA diversity and tumor infiltration with highly-
differentiated dysfunctional CD8" T cells. Foldback inversion (FBI, non-HRD) tumors exhibited
elevated TGF@ signaling and immune exclusion, with predominantly naive/stem-like and memory T
cells. Our findings implicate distinct immune resistance mechanisms across HGSOC subtypes which

can inform future immunotherapeutic strategies.

Keywords: high-grade serous ovarian cancer; genomic instability; immune phenotypes; single cell;

spatial topologies
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INTRODUCTION

Genomic instability is a hallmark of human cancer, which often occurs due to impaired DNA repair
mechanisms such as homologous recombination (HR), leading to chromosomal copy number
alterations and structural genomic rearrangements. The nature of genomic instability has
fundamental relevance to cancer etiology and evolution, and anti-tumor immune responses.
Increasingly, the role of structural alterations in eliciting immune response and escape has been
highlighted 2. These and other advances have prompted open questions about how anti-tumor
adaptive immunity is impacted by specific genomic instability mutational processes, defined by

acquired structural variation patterns in cancer genomes >,

High-grade serous ovarian cancer (HGSOC) is an archetypal tumor of genomic instability. The
principal defining features of HGSOCs are profound structural variations in the form of copy number
alterations and genomic rearrangements on a genetic background of near ubiquitous mutations in
TP53, rendered bi-allelic through loss of heterozygosity of chromosome arm 17p ®°. Somatic and
germline alterations in the HR repair pathway genes such as BRCA7 and BRCAZ2 mutations, lead to
HR deficiency (HRD) in approximately half of HGSOCs '°. Beyond gene alterations, recent work by
our group and others has identified distinct patient strata associated with endogenous mutational
processes inferred from structural variation patterns in whole genome sequencing. These include
HRD subtypes (BRCA1-associated tandem duplications: HRD-Dup; BRCAZ2-associated interstitial
deletions: HRD-Del), CCNE1-amplified associated foldback-inversion (FBI) bearing tumors and
CDK12-associated tandem duplicators (TD) ""'2, amongst related mutational processes defined by
copy number alteration ”. Notably, the mutational processes are associated with different outcomes,

with FBI and TD tumors exhibiting the worst prognosis *>'"'2,

Another distinctive property of HGSOC is that patients often present with widespread disease at

13,14

diagnosis. HGSOC is thought to originate in the fimbriated end of fallopian tube epithelium and

a long latency allows for broad periods of genomic instability, clonal diversification and tumor-
immune interactions to unfold in the heterogeneous microenvironments of the peritoneal cavity ">,
Little is known about how the local tissue microenvironment determines anti-tumor immunity.
Furthermore, underlying relationships between mutational processes, tumor signaling,
microenvironment composition, and immune cell phenotypes remain poorly understood.
Accordingly, improved definition and enumeration of the constituent cell types, their derivative
cellular phenotypes and their localization both within and between patients are key steps to
understanding malignant cell and tumor microenvironment interactions, and ultimately responses to
immunotherapeutic interventions. We hypothesized that cellular composition, topology and
phenotypic states comprising TMEs differ according to their underlying mutational processes and
spatial context. To address this, we designed a prospective multi-modal, multi-site study, capturing

mutational processes from whole genome sequencing, disaggregated single cell transcriptome and
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in situ cellular imaging of protein measurements in HGSOC at scale. Our findings reveal that distinct
immunostimulatory and immunosuppressive mechanisms co-segregate with both site of disease and
underlying mutational process, yielding new insights into malignant-immune microenvironment
interactions for cancers of genomic instability with implications for personalized therapeutic

strategies.

RESULTS

Patient cohort and multi-region, multi-modal profiling

We studied tumors from treatment-naive, newly diagnosed HGSOC patients (Tab. S1) consented to
a biospecimen banking protocol approved by the institutional review board. We collected multi-site
tissue biopsies (n=160) from pre-treatment patients (n=42) undergoing laparoscopy or primary
debulking surgeries over a 24-month period. Anatomic site collections included adnexa (ovary and
fallopian tube), omentum, peritoneum, bowel, ascites and other intraperitoneal sites (Fig. 1A).

Clinical characteristics of all patients are summarized in Fig. 1B and Tab. S1.

We profiled patient samples with five different data modalities (Fig. 1A). (1) Fresh tissue samples
were collected, dissociated, flow-sorted for live CD45" and CD45 cells to enrich immune cell
populations, and processed for transcriptomic profiling using 10x 3’ single-cell RNA sequencing
(scRNA-seq) from multiple sites (n=156) of 41 patients, within a one-day workflow from surgery to
sequencing library preparation (Methods). This yielded a total of 929,686 quality-filtered single cell
transcriptomes with an average of ~23k per patient (~6k per site), including data from CD45" and
CD45 populations (Tab. S4). (2) Formalin fixed paraffin embedded tissues (FFPE) were employed
for whole-slide hematoxylin and eosin (H&E) staining. For each specimen with scRNA-seq, 101 site-
matched H&E sections from 35 patients were digitally scanned and annotated for computational
analysis of lymphocytic infiltration. (3) For each specimen with scRNA-seq, site-matched FFPE
tissue sections adjacent to the H&E section were stained and imaged by multiplexed
immunofluorescence (mplF) for major cell types and immunoregulatory markers (DAPI, panCK +
CK8/18, CD8, CD68, TOX, PD1, PDL1) on the AkoyaBio Vectra platform (Methods). A total of
10,663,919 cells from 1,194 quality-filtered fields of view across 90 tissue samples from 35 patients
were identified for downstream spatial topology analysis. (4) FDA-approved clinical sequencing of
468 cancer genes (MSK-IMPACT) was obtained on DNA extracted from FFPE tumor and matched
normal blood specimens to establish mutational status of known high prevalence alterations in
HGSOC: TP53 (100%), BRCA1 (12%), BRCAZ2 (2%), CCNET1 high level amplification (12%), MYC
high level amplification (17%), CDK12 (10%), and RB1 (10%) (Fig. 1B), comprising a representative
set of the cohort profiled by MSK-IMPACT (Fig. $1). (5) Lastly, where available, snap-frozen tissues
were processed to obtain matched tumor-normal whole genome sequencing (WGS) on a single

representative site of the subset of 41 patients with scRNA-seq to derive mutational processes from
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single nucleotide and structural variant mutational signatures. We assigned established mutational
signatures by WGS, yielding 13 HRD-Dup, 6 HRD-Del, 10 FBI and 2 TD patients, as well as 5
additional HRD cases labelled HRD-Other, which we identified based on Myriad HRD testing or the
presence of inactivating mutations in HR genes detected by MSK-IMPACT (Fig. 1B, Tab. S1,
Tab. S2, Methods).

Cellular constituents of the HGSOC tumor microenvironment vary by patient and site

We first constructed a cell map from the scRNA-seq data, organized into nine broad cellular lineages:
251,837 epithelial cells, 289,952 lymphoid cells (T cells, B cells, plasma cells, NK cells), 207,288
myeloid cells (monocytes/macrophages, dendritic cells, mast cells) and 180,609 stromal cells
(fibroblasts, endothelial cells) (Fig. 2A,B). Non-malignant cells were well separated by cell type in
UMAP space with cells from different patients intermixed. In contrast, ovarian cancer cells were
mainly separated by patient, quantified through patient specificity scores with a shared nearest
neighbor graph (SNN) (Methods). We attributed the high degree of patient specificity of ovarian
cancer cells (Fig. 2A,C) to tumor cell-specific somatic copy number alterations driving concomitant
gene dosage effects. Fibroblasts and myeloid cells also exhibited patient specificity, which we
interpreted as unique tumor-associated responses (Fig. 2C). Notably, patient variation in malignant
cells was not attributed to previously reported bulk expression signatures '®'° (Fig. 2D). Cancer cells
were primarily classified into the proliferative (19.5%) and differentiated (78.8%) subtypes (Fig. 2D),
depending on whether they were cycling or not. Myeloid cells were most commonly classified into
the immunoreactive subtype (76.6%). None of the other immune cell types contributed to the
immunoreactive subtype and were mainly assigned to the proliferative (4%-23.2%) or differentiated
(62.9%-87.1%) subtypes (Fig. 2D). Endothelial cells were likewise comprised of cells classified as
proliferative (23.7%) or differentiated (69.8%). However, fibroblasts were the only cell type to show
enrichment for mesenchymal classification (62.6%). We thus concluded that gene expression
signatures defining previously reported transcriptional subtypes of HGSOC predominantly reflect cell

type composition, rather than intrinsic variation in malignant cell phenotypes.

We next analyzed cell type composition variation with respect to anatomic sites within patients,
ranging between 322,649 cells derived from adnexal samples to 52,094 from the upper quadrants
(Fig. 2E). We compared the relative proportions of cell types in the adnexa (i.e. potential primary
lesions of the fallopian tube and ovary), ascites, and distal sites throughout the peritoneal cavity.
CD45" samples ranged from myeloid-rich to lymphoid-rich within and between patients, with adnexal
samples significantly depleted for T cells (Mann-Whitney U test, BH-corrected, g-value = 0.0195), B
cells (g-value = 0.0041) and dendritic cells (g-value = 0.0060), while in contrast, ascites samples
were enriched for T cells (g-value = 0.0195) and dendritic cells (g-value < 0.0001). Notably, T cell
fractions in distant intraperitoneal sites were consistently higher than in adnexal samples (22 of 32

patients) (Fig. 2F,G). This was corroborated with site-matched whole-slide H&E analyses, where
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intratumoral lymphocyte proportions were increased in distant non-adnexal sites compared with
paired adnexal sites in 17 out of 22 patients (Fig. 2F,H), and enriched for intratumoral CD8" T cells
in paired non-adnexal over adnexal samples in 14 out of 21 patients (Fig. 2F,l) from site-matched

mplF.

Phenotypic differentiation of T cells exhibits inter-site heterogeneity

We next assessed variation of constituent T cell subtypes and functional states at distinct tumor
sites. We identified 41 distinct T and NK cell clusters, broadly defining CD4"* T cells (clusters 1-14),
CD8" T cells (clusters 15-22), yd T cells (cluster 23), NK cells (clusters 24-33) and cycling cells
(clusters 34-41) (Fig. 3A-B; Fig. S3A,C). We found a graded enrichment and depletion of specific T
and NK cell clusters across UMAP space (Fig. 3A, bottom) in adnexal and non-adnexal sites.
Generalized linear modeling (GLM) revealed pronounced site-specific differences in cluster
composition, with the biggest differences between adnexal and ascites samples (Fig. 3B, Methods).
In particular, CD4" naive/stem-like and central memory T cells (clusters 1-2) were depleted in the
adnexal samples but were enriched in ascites samples (Fig. S3B, log> oddscpa 1 naive. memjadnexa = -0.49,
logz 0ddScp4.T.naive memjascites = +0.91). Conversely, dysfunctional CD4" and CD8" T cells (clusters 4-6
and 18-20) were depleted in ascites samples (1092 0ddscpa.1.dysjascites = -0.62, 1092 0ddScps.T.dysjascites =
-0.85) but enriched in adnexal samples. This is consistent with chronic antigen exposure leading to
dysfunction at higher rates in the adnexa (logz 0ddscp4.1.qysjadnexa = +0.12, log2 0ddScos T.dysjadnexa =
+0.37). Regulatory T cell (8-10) and regulatory NK cell clusters (27-33) were likewise enriched in the
adnexal samples, suggesting that they may carry out immunomodulatory feedback at these sites
(Fig. 3B). Notably, when ranked by relative fraction of naive/stem-like and central memory T cells or
dysfunctional T cells, we observed a high inter- and intra-patient variability in the relative composition
of the T cell clusters (Fig. 3C, top). Distributions of scaled ranks reflected a marked inter-site
variation in tumor infiltration (Fig. 3C, box plot panel). Within patients, adnexal samples were
depleted for naive/stem-like and central memory T cells in 26 out of 32 patients and enriched for

dysfunctional T cells in 23 out of 32 patients.

To identify the differentiation trajectories of the cell populations identified by unsupervised clustering,
we employed diffusion manifolds to map CD8" T cell clusters along two principal divergent branches
representing the terminally differentiated populations, namely dysfunctional T cells and T cells
expressing interferon-stimulated genes (ISG) (Fig. 3D). Assessment of scaled module scores with
respect to differentiation pseudotime identified progressive loss of expression of naive T cell markers
and progressive acquisition of cytotoxic and dysfunctional traits (Fig. 3E). These, in turn, were
associated with progressive loss of expression of transcription factors associated with naive and
central memory T cells (TCF1 and LEF1), and gradual acquisition of gene expression related to type
I IFN (/ISG15), cytotoxic function (GZMK), and T cell dysfunction (TOX, CXCL13, and PDCD1)

(Fig. S3B). Similar to the findings from T cell cluster abundance, expression gradients also differed
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across sites, with ascites samples exhibiting high naive module scores, contrasted by low
dysfunctional T cell and JAK-STAT pathway scores (Fig. 3F).

Macrophages and dendritic cells exhibit site-specific phenotypic enrichment

We next analyzed the composition and site distribution of the remaining major immune cell types.
We identified four different dendritic cell (DC) states (Fig. 3G), including DCs of the myeloid lineage
separated into cDC1, cDC2 and mature conventional dendritic cells (mDC), defined by expression
of CLEC9A, S100B and BIRC3 respectively (Fig. S3C, Tab. S§3), and plasmacytoid DCs (pDC),
marked by expression of PTGDS. Macrophage clusters were described with respect to their classical
(M1-type) or alternative (M2-type) polarization. Six different clusters encompassing both classical
and alternatively-activated macrophages were identified, as well as a cluster of cycling (Cycling.M)
and a cluster of actively phagocytic macrophages (Clearing.M) (Fig. 3G). The M1-type and M2-type
clusters were labeled according to the top genes defining the clusters (M1.S100A8, M2.CXCL10,
M2.SELENOP, M2.MARCO, M2.COL1A1, M2.MMP9) (Fig. S3C, Tab. S3) *?'. Notably, the
M2.CXCL10 cluster was characterized by expression of both M1 (e.g. CXCL10) and M2 markers
(e.g. PDL1, C1QC), highlighting that macrophage polarization represents a dynamic range of

macrophage states rather than discrete functional phenotypes.

Both GLM and kernel density estimates highlighted inter-site differences in the relative composition
of some of the largest myeloid cell clusters (2, 6, 8) (Fig. 3H,l) including DC enrichment in the ascites
(log2 odds = +0.89), and depletion in the adnexa (Fig. 3J left, Fig. S3D, log> odds =-0.21). Similarly,
among macrophages, M1.S100A8 fractions were decreased in adnexa (log, odds = -0.41) and
increased in ascites samples (log. odds = +1.50), while M2.SELENOP fractions demonstrated an
opposite pattern (Fig. 3J middle and right), depleted in ascites (log> odds = -1.28) and suggestive of
a more immunosuppressive TME in the adnexa (logz odds = +0.50). Altogether, our analyses of the
T cell and myeloid cell compartments highlight that intra-patient variation in the tumor immune
composition is common in HGSOC, with adnexal sites exhibiting evidence of reduced immune

response and enrichment for specific functional immunosuppressive states.

Mutational processes impact cancer cell intrinsic signaling states and expression of immuno-

modulatory genes

We next focused on cancer cells to identify distinct cell-intrinsic phenotypic states. After
normalization and regressing out patient-specific variation, clustering of 251,837 epithelial cells from
scRNA-seq resulted in 10 clusters with cell-intrinsic differential expression of known marker genes
(Fig. 4A, Tab. S3). Elevated TNFa, NF-kB and JAK-STAT signaling was observed in Cancer.cell.3
(including CXCL10 and ISG15), elevated TGFB signaling in Cancer.cell.4, and hypoxia in
Cancer.cell.6. We note parenthetically that p53 signaling activity in Ciliated.cell.1 and Ciliated.cell.2
suggested presence of non-malignant epithelial cells in the tumor microenvironment. Distinct cluster
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enrichments were identified in association with patients stratified by genomic subtype (Fig. 1B,
Fig. 4C,D, Fig. S4A): Cancer.cell.3 in HRD-Dup (logz odds = +1.17), Cancer.cell.2 in HRD-Del (log:
odds = +0.34), and Cancer.cell.6 in FBI cases (log> odds = +0.26). Among the three pathways with
high activity in Cancer.cell.3, JAK-STAT signaling was significantly increased across HRD-Dup
cases compared to HRD-Del and FBI cases (Fig. 4E, Fig. S4B, P =0.0034; 0.026). NF-kB and TNFa
signaling activity was increased in HRD-Dup and HRD-Del patients over FBI patients (P = 0.0073;
0.017; 0.012; 0.096) while TGF signaling was higher in FBI patients (P < 0.0001). In addition, cancer
cell clusters differed by expression of major histocompatibility complex (MHC)- encoding genes
(Fig. 4F left, Fig. S4D,E). MHC class | encoding genes (HLA-A, HLA-B, HLA-C and B2M) were
highly expressed in Cancer.cell.3 (log fold changes of 0.77, 0.81, 0.69 and 0.78 respectively). MHC
class Il encoding genes (HLA-DRA and HLA-DRB1) were also increased (logz fold changes of 0.36,
0.41). Consistent with higher Cancer.cell.3 distributions in HRD-Dup, we observed upregulation of
HLA-A, HLA-DRA, HLA-DRB1, and B2M in HRD-Dup relative to FBI tumors (Fig. 4F, right). Whereas
HLA gene expression suggests that Cancer.cell.3 cluster may be more immunogenic, we also noted
upregulated expression of CD274 which encodes PDL1 (Fig. 4G, P = 0.0028). Together, these
findings imply that underlying genomic subtypes are associated with differential cancer cell-intrinsic
signaling activation, with increased JAK-STAT signaling and upregulation of immune-activating and

immune-inhibitory targets being more prevalent in HRD-Dup subtype.

Genomic and microenvironment properties of HRD and FBI tumors identify mechanisms of

immune recognition and escape

To evaluate the genomic and TME features conferring increased immunogenicity to HRD tumors,
we evaluated the presence of novel mutant peptides, or neoantigens, in each genomic subtype.
Using WGS, we predicted neoantigen burden on the basis of increased binding affinity of mutant
peptides to patient-specific HLA types when compared to wild-type peptides, resulting in median 7
neoantigens per tumor sample (range 0 to 36, Fig. 5A). HRD-Dup and HRD-del cases exhibited
significantly higher neoantigen burden (median 9 and 20.5 per sample, respectively) relative to FBI
and TD cases (3 and 7 per sample, respectively, P < 0.05) (Fig. 5B), suggesting that inactivation of
DNA repair triggers the accumulation of neoantigens. We then examined the relationship between
genomic subtype and functional states of the tumor-infiltrating immune cells. Notably, mutational
signatures were associated with relative proportions of naive and dysfunctional T cells through kernel
density estimates in UMAP space (Fig. 5C). Quantitative modeling of T cell cluster compositions
using GLM revealed FBI tumors were enriched for naive/stem-like and central memory T cell clusters
(2-3, 15-16; logz oddsre = +0.29) and depleted for dysfunctional T cell clusters (4-6, 18-20; log:
oddsrsi = -0.42) (Fig. 5D, Fig. S5C). Conversely, HRD and TD tumors were enriched for
dysfunctional T cells (logz oddstrp-pup = +0.17, logz oddsro-per = +0.39, log2 oddstp = +0.15) and

depleted for naive/stem-like and central memory T cells (log> oddshrp-ouwe = -0.23, log> oddsmp = -
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0.23). This was also reflected in the enrichment of module scores across samples in general
(Fig. 5E, Fig. S5A), and along differentiation trajectories of T-cell phenotypes in particular (Fig. 5F).
In addition, the 1ISG-expressing T cell group (defined by high JAK-STAT pathway score) was
negatively associated with FBl and HRD-Del subtypes, but was positively associated with HRD-Dup
and TD subtypes (Fig. 5E,F, Fig. S5B). Comparison of JAK-STAT signaling in CD8" T cells and
matched cancer cells from the same samples, revealed strong association between T cell-intrinsic

and cancer-cell intrinsic JAK-STAT signaling across the mutational subtypes (Fig. 5G).

We next tested if heightened immune signaling in HRD tumors could be attributed to reciprocal
interactions between cancer cells and the associated immunophenotypes in the TME. We analyzed
the physical proximity of individual T cell phenotypes to the tumor-stroma boundary using the in situ
mplF data obtained from the site-matched tumor samples. Cell density estimates inferred from site-
matched mplF data as a function of distance to the tumor-stroma boundary revealed that CD8" T
cells were enriched within tumor regions of HRD subtypes (Fig. S5D), among which activated
CD8'PD1'TOX T cells were especially prevalent (Fig. 5H). Similarly, terminally dysfunctional
CD8'PD1*TOX" T cells were also co-localized within the tumor in HRD-Dup and HRD-Del cases,
and also in the peritumoral stroma of HRD-Del cases, potentially reflecting tumor reactivity. In
contrast, both CD8"PD1*TOX and CD8'PD1*TOX" T cells were less abundant and were evenly
distributed within the tumor and stromal compartments in the FBI tumors, implying minimal T cell-

antigen interaction in this subtype (Fig. 5H).

The balance of M1- and M2-type macrophage polarization states was similarly shaped by tumor
mutational signatures (Fig. 51, Fig. S5E), with a significant depletion of M2 macrophages in HRD-
Del cases (log> oddsHro-nel = -0.27). We observed enrichment of M2.CXCL10 macrophages in the
HRD-Dup cases (log> oddstrp-ouwp = +0.33), and depletion in the FBI tumors (logz> oddsrs = -0.46),
with FBI tumors also exhibiting decreased percentages of PDL1 (CD274) positive macrophages
(Fig. 5J). Consistent with CXCL 10 being a target of JAK-STAT signaling, macrophages in HRD-Dup
cases were enriched for JAK-STAT pathway activity, whereas most FBI cases were depleted for
JAK-STAT activation (Fig. 5J).

Overall, these findings imply that JAK-STAT pathway activation in all cell subtypes in the HRD-Dup
tumors may be mediated by a common upstream effector. Given the role of type | IFNs in activation
of JAK-STAT signaling, we examined type | IFN pathway activation in DCs, which commonly serve
as a dominant source of type | IFN production. We observed higher levels of IFN regulatory factors
(IRFs) in DCs from HRD-Dup cases, resulting in upregulation of the overall IFN regulators module
score (Fig. 5K). There was a strong positive correlation between the IFN regulators module score in
the DCs and JAK-STAT pathway activation in cancer cells, T cells, and macrophages (Fig. 5L).
These findings may suggest that increased type | IFN activation in DCs in HRD-Dup tumors may be

responsible for the upregulated JAK-STAT signaling and phenotypic changes in all major cell types,
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including HLA upregulation in cancer cells and PDL1 upregulation in macrophages.

Immunoediting in HR-deficient tumors is mediated by HLA loss of heterozygosity

We next determined if genomic mechanisms of immune evasion across the mutational signature
subtypes could explain the variation in immunophenotypes. Genomic loss of HLA presentation
machinery through somatic alterations is a common mechanism for malignant cells to evade immune
control by reduction of MHC class | allelic diversity . To examine how somatic HLA diversity varies
as a function of genomic subtype, we identified allele-specific copy number alterations from scRNA-
seq using heterozygous SNPs from matched normal whole genomes (Methods). Aggregating
counts of heterozygous SNPs across each chromosome arm we inferred loss of heterozygosity
(LOH) of either allele of chromosome arm 6p, harboring HLA class | and class Il genes, at the single
cell level (Fig. 6A). As expected, LOH of the 6p arm were only detected in cancer cells, indicating
high specificity of the method (Fig. 6A,B, Fig. S6A). B-allele frequency (BAF) estimates revealed
marked inter-patient heterogeneity in 6p allelic imbalance (Fig. 6B, Fig. S6B). Clonal LOH of
chromosome 6p was seen in 4 out of 41 patients (10%), and subclonal 6p LOH was observed in 7
out of 41 patients (17%, Fig. 6C left). The prevalence of site-specific 6p LOH (Fig. 6C right) was low
within most patients, with the exception of site-specific losses in 4 out of 41 cases (Fig. 6C right,
Fig. S6B) indicating potential selection for immune evasive mechanisms determined by local
microenvironments. We note that clonal LOH of 6p was primarily observed in HRD cases (17%, 4/24
cases) (Fig. 6C,D). Losses of HLA class | alleles harbored in 6p were validated using clinical panel
sequencing of the MSK-IMPACT HGSOC cohort (n=1,111 patients). Patients with BRCA1, BRCA?2,
and CDK12 loss of function mutations and CCNE1 amplification were identified as representative
cases of HRD-Dup, HRD-Del, TD and FBI signature groups, respectively. Overall, we observed HLA
LOH in 333 out of 1,111 MSK-IMPACT HGSOCs (30%) (Fig. 6D, Fig. S6C). BRCA1-altered HGSOC
cases showed more frequent HLA LOH than CCNE 1-amplified cases (30% vs 22% of altered cases;
P < 107"3, two-sided x? test), consistent with the findings identified by scRNA-seq. Validation of 6p
BAF estimates from scRNA-seq were additionally corroborated by concordant HLA LOH status in
site-matched MSK-IMPACT tumor samples (Fig. S6D).

We then analyzed whether 6p LOH impacted tumor cell-intrinsic JAK-STAT pathway activation and
phenotypic states of tumor-infiltrating T cells. We found that HRD-Dup tumors with 6p LOH frequently
exhibited concomitant activation of JAK-STAT signaling (Fig. 6E, Fig. S6E). Furthermore, presence
of dysfunctional CD4" and CD8" T cells was increased in tumors with clonal 6p LOH (Fig. 6F),
consistent with loss of allelic diversity at the chromosome 6p locus resulting from evolutionary
selective pressure exerted by infiltrating T cells. In contrast, the microenvironment of tumors with
high prevalence of naive T cells did not impose a strong selective pressure of immune predation,
evidenced by the retention of both 6p alleles in cancer cells (Fig. 6F). M1 macrophages and DCs

were similarly more frequently observed in tumors with 6p LOH, though the association was not
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statistically significant (Fig. S6F).

Spatial topology and site composition influence malignant cell selection and immune pruning

The single-cell analyses above point to an interrelationship between the cancer cell-intrinsic immune
signaling, TME composition, and phenotypes of tumor-infiltrating immune cells that vary as a function
of the underlying mutational signatures. Accordingly, cell-cell interaction analysis revealed co-
expression of PDL1 (CD274) in cancer cell and myeloid clusters detected by scRNA-seq, and PD1
(PDCD1) in T and NK cell clusters (Fig. 7A). We noted higher expression of PDL1 in myeloid cell
clusters and in Cancer.cell.3 cluster in HRD-Dup cases, associated with higher fraction of PD1-
expressing T cells (Fig. 7A). Using mplF stains from site-matched FFPE sections highlighting the
principal immune cell subtypes and their phenotypic states, we then investigated whether these
interrelationships are reflected in the in situ interactions between the individual cell components in
tumors and stroma. We measured major immune cell subtypes (tumor cells, T cells, macrophages),
markers of T cell dysfunctional states (PD1, TOX), and PDL1 expression as a functional downstream

marker of type | and type Il IFN signaling (Fig. 7B).

Nearest-neighbor analysis between cells revealed proximal interaction patterns between CD8"PD1"
TOX, CD8'PD1'TOX, CD8'PD1'TOX" T cells, defined as naive/memory, activated/pre-
dysfunctional and dysfunctional T cells, respectively, and PDL1-expressing cancer cells and
macrophages (panCK*PDL1*, CD68*PDL1*) within a 30 um radius (Fig. 7C, Fig. S7A). Spatial
proximity of antigen-experienced PD1* T cells to PDL1" cancer cells was commonly observed in
HRD-Dup and HRD-Del cases. However, these interactions were rare or absent in FBI tumors. The
overall spatial organization, median distances between the individual T cell subtypes and the nearest
panCK*PDL1" cancer cells varied as a function of the mutational type, with the closest median
distances observed in the HRD-Dup subtype, particularly in the activated/pre-dysfunctional and
dysfunctional T cell compartments (Fig. 7D,E). The proximity of pre-dysfunctional and dysfunctional
T cells to PDL1-expressing cancer cells supports the hypothesis that PDL1 is a functional biomarker
induced as a negative feedback mechanism in response to activated T cells in HRD tumors. Similar
interactions were noted between the T cells and CD68"PDL1* macrophages, which were particularly
prevalent in the HRD-Del cases, likely due to their overall enrichment for macrophages (Fig. S7B,C,
Fig. 5H). These spatial associations in HRD subtypes revealed a highly immunoreactive TME, where
PDL1 induction in cancer cells and macrophages was prevalent within ~50 ym of T cells (Fig. 7E).
Conversely, spatial correlations between T cells and PDL1* cancer cells quickly decayed in FBI

cases, reflecting insufficient T cell activation to mediate the local TME changes.
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DISCUSSION

Here, we outline both anatomic site and mutational processes as determinants of within and between
patient variation of immune cell functional states in HGSOC. Our study reveals for the first time
distinct immune evasion phenotypes in HR-deficient and HR-proficient HGSOC genomic subtypes.
The marked degree of intra-patient tumor microenvironment heterogeneity across tumor sites
highlights that interfaces of cancer cells and their surrounding immune compartment can be site-
specific within patients. Specifically, adnexal sites exhibit the lowest levels of T cell infiltration and a
marked increase in T cell dysfunction. The biology underlying distinct immunophenotypes in adnexal
samples is unclear. However, our results may indicate immune privilege of the ovaries and fallopian
tubes as protective environments against inflammation and immune pruning. Furthermore, we show
that cancer and immune cell states in the ascites samples are distinct from the rest of the tumors,
implying that the phenotypes of ascitic sample cells might not reflect intact tumor tissues. We find
that ascites are enriched for T cells exhibiting predominantly naive-like and central memory
signatures, while being depleted for activated and dysfunctional T cells. This is supported by prior
findings® and is consistent with the requirement for chronic antigen stimulation to elicit differentiation
of dysfunctional T cells. Similarly, we find that ascitic fluid is uniquely enriched for cDC1 and cDC2
dendritic cell subsets relative to tumors, consistent with recent findings demonstrating that ascitic

myeloid cells can be rapidly adapted to serve as antigen-presenting cells in vaccine preparation?>.

Most notably, our study demonstrates that different mutational processes associated with HGSOC
engender distinct immune evasion mechanisms. FBI tumors exhibit overall low immunogenicity
associated with low neoantigen burden, reduced expression of HLA genes, and increased TGFf
signaling activity, with predominance of naive/stem-like and central memory T cells, likely driven by
exclusion of T cells from the tumor compartment. In contrast, HRD tumors demonstrate evidence of
intrinsic immunogenicity, including neoantigen accrual, upregulation of JAK-STAT/type | IFN
signaling and increased expression of HLA genes, with associated infiltration of tumors with T cells
exhibiting signatures of dysfunction, likely elicited by chronic interaction with tumor antigens.
Critically, as FBI tumors have worse prognosis, these tumors represent a high-risk group that are
immunologically inert and thus should be investigated as a high priority group of patients for

emerging immuno-stimulatory agents.

Data from preclinical studies of ovarian cancer suggests that immunogenicity in HRD tumors may
lead to improved responses to immune checkpoint blockade (ICB) or combinations of ICB with
chemotherapy and PARP inhibitors ?*-?”. However, clinical evidence for this is lacking. In our recent
analysis of ovarian cancer patients treated with ICB, no association between HRD status, tumor
mutational burden (TMB) and response to immunotherapy was observed 2. Furthermore, two large
randomized clinical trials evaluating combination of platinum-based chemotherapy with PDL1

inhibition in the newly-diagnosed ovarian cancer patients failed to identify benefit from the addition
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of PDL1 inhibitor 2°*°, while subset analyses from at least one of the trials showed no evidence of
improved response in the subset of patients carrying tumors with evidence of BRCA1/2 mutations
(Lederman et al., IGCS 2020). These findings highlight that data from pre-clinical models may not
accurately reflect the evolution of human HGSOCs, where despite evidence of apparent
immunogenicity, HR-deficient tumors potentially develop antagonizing mechanisms of immune
resistance. Furthermore, our data are consistent with distinct immune escape mechanisms between
non-HRD and HRD tumors, thus indicating that distinct strategies for immunotherapeutic
reprogramming may be required for these cancer types. Increased TGFf signaling observed in FBI
tumors has been shown to restrict T-cell infiltration and is associated with insensitivity to anti-PDL1
treatment *'*2. Hence, blocking TGFB signaling in HGSOC patients of FBI subtype might help to
overcome the immune exclusion, as has been suggested for TGFB-high colorectal cancer patients
%, In HRD tumors, the tumors exhibit inherent immunogenicity, consistent with ongoing immune
response eliciting co-evolution of cancer cells with their microenvironment, and leading to immune
evasion through selection of HLA LOH in these cancers. Lastly, a high degree of inter-tumor
microenvironment heterogeneity in all genetic subtypes highlights that the mechanisms of immune
resistance might not be universal in a given patient and that evolution of immune response in
individual tumors may lead to acquisition of additional resistant mechanisms in these tumors, as
evidenced by heterogeneity in HLA LOH observed across tumors in some patients and intrinsic
differences in anatomic sites. Notably, tumor heterogeneity defined by radiomic measures has been

demonstrated to be associated with resistance to immunotherapy in HGSOC *.

In addition to well-studied mechanisms of immune evasion, we identified concomitant and potentially
chronic upregulation of type | IFN signaling in T cells, cancer cells and cancer-associated myeloid
cells, particularly enriched for tumors of HRD-Dup subtype. Expression of type | IFN signaling target
genes in such a wide range of cell types implies a potentially common source of type | interferons
eliciting these signatures in all cell populations. The significance of this finding at present is unknown,
but possibly related to cancer cell-intrinsic genomic instability eliciting type | IFN production through
generation of cytosolic DNA or upregulation of noncoding elements **%. As chronic type | IFN
production is associated with upregulation of immune suppressive mechanisms and T cell

dysfunction, particularly within the context of chronic virus infections and cancers *"*

, We suspect
that this finding represents yet another mechanism driving the differentiation of dysfunctional T cells

and immune escape.

Altogether, our study provides an extensive multi-modal resource mapping the cellular constituents
of HGSOC tumor microenvironments and linking them to mutational processes and spatial context.
We suggest these findings represent an opportunity to understand the adaptive immune response
in other cancers with genomic instability through similar approaches. Whether anatomic site of tumor
foci or structural variation mutational processes in other cancers are determinants of immune

response remain open questions. However, the data presented here can be leveraged to
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contextualize mechanistic insights of immunotherapeutic response across other cancers of genomic

instability.

Data availability

Raw sequencing data and gene expression counts for 10x 3’ scRNA-seq will be available from the
NCBI GEO database prior to publication. MSK-IMPACT and WGS data will be released on the NCBI
SRA and on cBioPortal upon publication. H&E and mplF images will be available from the Biolmage

Archive.
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METHODS

Experimental methods

Sample collection

All enrolled patients were consented to an institutional biospecimen banking protocol and MSK-
IMPACT %, and all analyses were performed per a biospecimen research protocol. All protocols were
approved by the Institutional Review Board (IRB) of Memorial Sloan Kettering Cancer Center.
Patients were consented following the IRB-approved standard operating procedures for informed
consent. Written informed consent was obtained from all patients before conducting any study-
related procedures. The study was conducted in accordance with the Declaration of Helsinki and the
Good Clinical Practice guidelines (GCP).

We collected fresh tumor tissues from 42 HGSOC patients at the time of upfront diagnostic
laparoscopic or debulking surgery. Ascites and tumor tissue from multiple metastatic sites, including
bilateral adnexa, omentum, pelvic peritoneum, bilateral upper quadrants, and bowel were procured
in a predetermined, systemic fashion (median of 4 primary and metastatic tissues per patient) and
were placed in cold RPMI for immediate processing. Blood samples were collected pre-surgery for
the isolation of peripheral blood mononucleated cells (PBMCs) for normal whole genome sequencing
(WGS). The isolated cells were frozen and stored at -80°C. In addition, tissue was snap frozen for
bulk DNA extraction and tumor WGS. Tissue was also subjected to formalin fixation and paraffin-
embedding (FFPE) for histologic, immunohistochemical and multiplex immunophenotypic

characterization.

Single cell RNA sequencing

Tissue dissociation

Tumor tissue was immediately processed for tissue dissociation. Fresh tissue was cut into 1 mm
pieces and dissociated at 37°C using the Human Tumor Dissociation Kit (Miltenyi Biotec) on a
gentleMACS Octo Dissociator. After dissociation, single cell suspensions were filtered and washed
with Ammonium-Chloride-Potassium (ACK) Lysing Buffer. Cells were stained with Trypan Blue and
cell counts and viability were assessed using the Countess Il Automated Cell Counter

(ThermoFisher) (for detailed protocol see *°).

Cell sorting

Freshly dissociated cells were stained with a mixture of GhostRed780 live/dead marker (TonBo
Biosciences) and Human TruStain FcX™ Fc Receptor Blocking Solution (BioLegend). The stained
samples were then incubated and stained with Alexa Fluor® 700 anti-human CD45 Antibody

(BioLegend). Post staining, they were washed and resuspended in RPMI + 2% FCS and submitted
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for cell sorting. The cells were sorted into CD45 positive and negative fractions by fluorescence
assisted cell sorting (FACS) on a BD FACSAria™ 11l flow cytometer (BD Biosciences). Positive and
negative controls were prepared and used to set up compensations on the flow cytometer. Cells

were sorted into tubes containing RPMI + 2% FCS for sequencing.

Library preparation

Flow sorted tumor cells were stained with Trypan blue and Countess Il Automated Cell Counter
(ThermoFisher) was used to assess both cell number and viability. Following QC, the single cell
suspension was loaded onto Chromium Chip B (10x Genomics PN 2000060). GEM generation,
cDNA synthesis, cDNA amplification, and library preparation of 1,400-5,000 cells proceeded using
the Chromium Single Cell 3' Reagent Kit v3 (10x Genomics PN 1000075) according to the
manufacturer’s protocol. cDNA ampilification included 12 cycles and 0.4-419 ng of the material was

used to prepare sequencing libraries with 8-14 cycles of PCR.

Sequencing

Equimolar amounts of indexed libraries were pooled and sequenced on a HiSeq 2500 in Rapid Mode
or NovaSeq 6000 in a 28bp/91bp, 100bp/100bp, or 150bp/150bp paired end run using the HiSeq
Rapid SBS Kit v2 or NovaSeq 6000 SP/S1/S2/S4 Reagent Kit (100/200/300 cycles) (lllumina).

Bulk whole genome sequencing (WGS)

WGS Bulk Tumor

Frozen banked tissue was cut into sections on charged microscope slides. Following histologic
review, tumor tissue was microdissected if required to enrich for neoplastic cells *!, and subjected to
DNA extraction for bulk WGS. Genomic DNA was extracted using the DNeasy Blood & Tissue kits
(Qiagen) and quantified on the Qubit 3 Fluorometer using Qubit™ 1X dsDNA HS Assay Kit

(Invitrogen).

WGS Bulk Normal

PBMCs were brought up to 15 mL volume in cold PBS and DNA was isolated with the DNeasy Blood
& Tissue Kit (Qiagen catalog # 69504) according to the manufacturer’s protocol with 1 hour of
incubation at 55°C for digestion. DNA was eluted in 0.5x Buffer AE.

Whole Genome Sequencing

DNA quantity was measured using the Quant-iT PicoGreen dsDNA Assay (ThermoFisher catalog #
P11496), and DNA quality was assessed by TapeStation D1000 ScreenTape (Agilent catalog #
5067-5582). After PicoGreen quantification and quality control by Agilent BioAnalyzer, 500ng of
genomic DNA were sheared using a LE220-plus Focused-ultrasonicator (Covaris catalog # 500569)
and sequencing libraries were prepared using the KAPA Hyper Prep Kit (Kapa Biosystems KK8504)

with modifications. Briefly, libraries were subjected to a 0.5x size select using aMPure XP beads
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(Beckman Coulter catalog # A63882) after post-ligation cleanup. Libraries were not amplified by PCR
and were pooled equivolume and quantitated based on their initial sequencing performance.
Samples were run on a NovaSeq 6000 in a 150bp/150bp paired end run, using the NovaSeq 6000
SBS v1 Kit and an S1, S2, or S4 flow cell (lllumina).

Preparation, review and scanning of histopathology slides

Archived formalin-fixed paraffin-embedded (FFPE) tissues were used for histologic review, including
the assessment of spatial topology and tumor-infiltrating lymphocytes, as well as for
immunohistochemical characterization and multiplex immunofluorescence analysis for mapping of
the tumor microenvironment in the Advanced Immunomorphology Platforms Laboratory. Slides were
originally reviewed by gynecologic pathologists for diagnosis and FIGO (International Federation of
Gynecology and Obstetrics) stage assignment. Representative hematoxylin and eosin (H&E)-
stained slides from each site of interest were digitally scanned to produce virtual slides. Two senior
gynecologic pathologists (R.A.S., L.H.E.) then reviewed these images for the presence and location
of serous tubal intraepithelial carcinoma (STIC), SET architecture (solid, pseudo-endometrioid and
transitional cell-like patterns), micropapillary architecture “2, presence of a fimbrial ball, architectural
patterns of metastatic disease **, mitotic counts (per 10 high power fields, HPFs) and tumor cell
content (viable %). Regions with tumor-infiltrating lymphocytes (TILs) were also assessed with a
quantitative TIL score (low: <42 TILs per 1 HPF in a hotspot; high: 42 or more TILs per 1 HPF in a
hotspot) *2. Histopathology slides were scanned into whole-slide images using a Leica Aperio AT2
scanner (Leica Biosystems) at 20x magnification. The most representative tissue block was selected

for slide scanning.

Multiplexed immunofluorescence

Overview

We carried out multi-parameter quantification of epithelial and immune cell subsets and activation
markers using the AkoyaBio Vectra Automated Imaging system at the MSKCC Parker Institute for
Cancer Immunotherapy. We stained whole slides of formalin fixed paraffin embedded (FFPE) tissue
for markers of ovarian cancer cells (panCK + CK8-CK18) and of specific leukocyte subsets, including
macrophages (CD68), and cytotoxic T cells (CD8), known immune inhibitory proteins (PD-L1) and
activation/exhaustion status of CD8 T cells (PD-1, TOX). Fields of view were chosen to include either
entire tissue with minimal field overlap if the tissue was small, or a distribution of fields with 50%
stroma/tumor at the edge plus some central areas of tumor dense fields. Marker intensities were
QC’ed to fall in the range 5-30 a.u., and helped guide spectral unmixing. Lower values may be close

to background and higher values prompted to check for channel spillage.
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Tissue staining

Primary antibody staining conditions were optimized using standard immunohistochemical staining
on the Leica Bond RX automated research stainer with DAB detection (Leica Bond Polymer Refine
Detection DS9800). Using 4 um formalin-fixed, paraffin-embedded tissue sections and serial
antibody titrations, the optimal antibody concentration was determined followed by transition to a
seven-color multiplex assay with equivalency. Optimal primary antibody stripping conditions between
rounds in the seven-color assay were performed following 1 cycle of tyramide deposition followed
by heat-induced stripping (see below) and subsequent chromogenic development (Leica Bond
Polymer Regine Detection DS9800) with visual inspection for chromogenic product with a light
microscope by a senior pathologist (T.J.H.). Multiplex assay antibodies and conditions are described
in Tab. S5.

Tissue sections were baked for 3 hours at 62°C in vertical slide orientation with subsequent
deparaffinization performed on the Leica Bond RX followed by 30 minutes of antigen retrieval with
Leica Bond ER2 followed by 6 sequential cycles of staining with each round including a 30-minute

combined block and primary antibody incubation (Akoya antibody diluent/block ARD1001).

For panCK and CK8-CK18, detection was performed using a secondary horseradish peroxidase
(HRP)-conjugated polymer (Akoya Opal polymer HRP Ms + Rb ARH1001; 10-minute incubation).
Detection of all other primary antibodies was performed using a goat anti-mouse Poly HRP
secondary antibody or goat anti-rabbit Poly HRP secondary antibody (Invitrogen B40961/2; 10-
minute incubation). The HRP-conjugated secondary antibody polymer was detected using
fluorescent tyramide signal amplification using Opal dyes 520, 540, 570, 620, 650 and 690 (Akoya
FP1487001KT, FP1494001KT, FP1488001KT, FP1495001KT, FP1496001KT, FP1497001KT).
The covalent tyramide reaction was followed by heat induced stripping of the primary/secondary
antibody complex using Perkin Elmer AR9 buffer (AR900250ML) and Leica Bond ER2 (90% ER2
and 10% AR9) at 100°C for 20 minutes preceding the next cycle (1 cycle of stripping for CD68, PD1,
PDL1, CD8, panCK/CK8/18 and two cycles for TOX). After 6 sequential rounds of staining, sections
were stained with Hoechst (Invitrogen 33342) to visualize nuclei and mounted with ProLong Gold

antifade reagent mounting medium (Invitrogen P36930).

Imaging and spectral unmixing

Seven color multiplex stained slides were imaged using the Vectra Multispectral Imaging System
version 3 (Perkin Elmer). Scanning was performed at 20x (200x final magnification). Filter cubes
used for multispectral imaging were DAPI, FITC, Cy3, Texas Red and Cy5. A spectral library
containing the emitted spectral peaks of the fluorophores in this study was created using the Vectra
image analysis software (Perkin Elmer). Using multispectral images from single-stained slides for

each marker, the spectral library was used to separate each multispectral cube into individual
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components (spectral unmixing) allowing for identification of the seven marker channels of interest

using Inform 2.4 image analysis software.

Computational methods

Single-cell RNA sequencing

Overview
The pipeline is built using 10x Genomics Martian language and computational pipeline framework.
CellRanger software (version 3.1.0) was used to perform read alignment, barcode filtering, and UMI

quantification using the 10x GRCh38 transcriptome (version 3.0.0) for FASTQ inputs.

Quality control

CellRanger filtered matrices are loaded into individual Seurat objects using the Seurat R package
(version 3.0.1) ***5, The resulting gene by cell matrix is normalized and scaled for each sample. Cells
retained for analysis had a minimum of 500 expressed genes and 1,000 UMI counts and less than
25% mitochondrial gene expression. Cell cycle phase was assigned using the Seurat
CellCycleScoring function. Scrublet (version 0.2.1) was used to calculate and filter cells with a
doublet score greater than 0.25. Sample matrices are merged by patient and subsequently

renormalized and scaled using the default Seurat functions.

Major cell type identification

Maijor cell type assignments were computed on each patient with CellAssign (version 0.99.2) *6 using
a set of curated marker genes. Marker genes were compiled for nine major cell types related to high-
grade serous ovarian cancer (Tab. S$3). These major cell types are defined as T cells, B cells, plasma
cells, myeloid cells, dendritic cells, mast cells, endothelial cells, fibroblasts and ovarian cancer cells.
Prior to running CellAssign, cells with zero expression for all marker genes were removed from the
count matrix. Cell specific size factors are computed using scran (version 3.11). Default CellAssign
parameters are used with a design matrix of patient batch labels. CellAssign returns a probability
distribution over the major cell types and individual cells are labeled by the resulting most probable

cell type.

Dimensionality reduction

Principal component analysis (PCA) was performed on the filtered feature by barcode matrix. UMAP
embeddings including cohort-level and patient-level embeddings of all major cell types are based on
the first 50 principal components. UMAP embeddings of major cell type supersets (see below) were
based on the 50 batch-corrected harmony components. Diffusion map embeddings and pseudotime
estimates were computed using R package destiny (v3.0.1) for the subset of CD8" T cells (Angerer
et al. 2015).
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Batch correction and integration

Major cell types identified across samples were split into six supersets: (1) T cells; (2) B cells and
plasma cells; (3) myeloid cells, dendritic cells and mast cells; (4) fibroblasts; (5) endothelial cells; (6)
ovarian cancer cells. For each superset, R package harmony (version 0.1) was used for batch

correction to account for patient-specific effects *’.

Clustering and cell subtype identification

Graph-based clustering is performed for each superset using the Louvain algorithm implemented in
Seurat (version 3.0.1) at three different resolutions (0.1, 0.2, 0.3). Differential expression between
identified clusters was computed using a Wilcoxon rank sum test as implemented in Seurat
FindMarkers. Final results are filtered on log fold change > 0.25 and Benjamini-Hochberg adjusted
P-value < 0.05. Clusters were annotated based on marker genes identified in differential gene

expression analysis.

Gene signature scores

Cell state scores were calculated for the exhausted phenotype within the set of T cells using a
manually curated list of genes as input to the Seurat AddModuleScore method *®. The curated list of
genes was derived from a review of single-cell analyses of CD8" T cell states in human cancers *°
(Tab. S3).

Patient specificity and TCGA subtyping

Patient specificity scores were computed with employing a shared nearest neighbour graph. For a
given cell, patient specificity was defined as the observed fraction of nearest neighbors divided by
the expected fraction of nearest neighbors in the patient subgraph. Here, the expected fraction of
neighbors from the same patient was defined as the global fraction of cells for each patient. Scores
were logz-transformed. Hence, a positive patient specificity score indicates an overrepresentation of
cells derived from the same patient among its nearest neighbours, a negative score indicates an
underrepresentation of same-patient cells and a score of 0 would reflect a perfectly mixed
neighbourhood of patient labels. Consensus TCGA transcriptional subtypes were called using R

package consensusOV (version 1.8.1) *°,

Generalized linear models of cluster composition

To estimate the effect of mutational signatures and tumor site specificity on the composition of cell
clusters, we considered a generalized linear model (GLM) where we included interactions between
signature, site and cluster identity for each major cell type defined in the scRNA, H&E and mplF
data. The data matrix includes the counts of every cluster ¢ representing a cell type or cell state,
sampled from site s in a patient with mutational signature subtype m. Using a binomial linear model

one can analyze counts of repeated observations of cell types or cell states as binary choices,

N, ~ Bin(p., N)
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where N; is the count for cluster ¢ in a sample, N is the total number of cells in the sample, and the

Pe
log =pX
probability to detect the cluster can be described by the logit function, 1 —pc :

To account for the effect of mutational signature and anatomic tumor site on cluster abundance
observed in scRNA data, we formulate a GLM of the observed cell counts Ve for a cluster ¢ described

by the logit function, which is distributed as

Pc

" N (Bo + Bete + Bnm + BsTs + Bemem + Besels, 07)

log

where 5o is a shared constant baseline per cluster that must be inferred, Be, Bm, Bs are individual
fixed-effect terms to be inferred, Bem and Bes are cluster-signature and cluster-site interaction effects
to be inferred, Z¢, m and 7s are elements of the model design matrix X, and a: represents
measurement noise. We note that for each cluster ¢ we have multiple measurement replicates of Ve
across signatures and sites. This formulation is used to fit a GLM of major cell types (Fig. 2), as well
as to separately fit GLMs of cluster composition of cell states within each major cell type superset

(cancer cells, Fig. 4; T cells, Figs. 3,5; myeloid cells, Figs. 3,5).

To model the abundance of major cell types in scRNA data from CD45" and CD45  samples, the
GLM includes a covariate for CD45"" flow sorting with additional fixed-effect sorting coefficients By
and additional cluster-sorting interactions Ber to be inferred, plus an additional element 7 in the
model design matrix (Fig. 2F). Similarly, GLMs for H&E and mplF data account for differences in cell
type abundance observed in the tumor and stroma regions, incorporating a covariate for the tumor
or stroma region counts with additional fixed-effect region coefficients Br and additional cluster-
region coefficients Ber to be inferred, plus an additional element Z» in the model design matrix
(Fig. 2F).

Bulk whole genome sequencing

Alignment
Sequencing reads were aligned to the human genome reference GRCh37 (hg19) using the Burrows—
Wheeler Aligner (BWA-MEM) v0.7.17-r1188 (https://sourceforge.net/projects/bio-bwa/).

SNVs and indels
Single nucleotide variant (SNV) and indels were called using mutationSeq (version 4.3.8; model

v4.1.2.npz) available at https://github.com/shahcompbio/mutationseq. We also used Strelka (version

2.8.2) with default parameter settings to identify somatic SNVs and indels *'. Both SNVs and indels
were then annotated for variant effects and gene-coding status using SnpEff4 (version 5.0e). We
identified a set of high confidence SNVs by taking the intersection of the high probability calls
predicted from mutationSeq (with probability = 0.9) and the somatic SNVs predicted from Strelka.
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The high confidence set of SNVs were further filtered by removing the positions that fell within either
of the following regions: (i) the UCSC Genome Browser blacklists (Duke and DAC), and (ii) defined
in the 'CRG Alignability 36mer track’ with more than two nucleotide mismatches, requiring a 36-
nucleotide fragment to be unique in the genome even after allowing for two differing nucleotides.
Post processing on this set of high confidence SNVs and somatic indels from Strelka involved
removing the known variants (both SNVs and indels) that were obtained from the 1000 Genomes
Project (release 20130502) and dbSNP (version dbsnp 142.human 9606). The set of high confidence
somatic SNVs and indels passing the above filters were then used in feature computation for
mutational signature analysis, and high confidence somatic SNVs were also used for neoantigen

prediction.

Rearrangements
Rearrangement breakpoints were predicted using lumpy (version 0.2.12) %2 executed by SpeedSeq
version 0.1.08 %, and destruct (version 0.4.18) derived from nFuse °%, available at

https://github.com/amcpherson/destruct. In brief, destruct extracted discordant and non-mapping

reads from BAM files and realigned the reads using a seed-and-extend strategy. Split alignment
across a putative breakpoint was attempted for reads that did not fully align to a single locus.
Discordant alignments were clustered according to the likelihood they were produced from the same
breakpoint. Multiple mapped reads were assigned to a single mapping location using previously
described methods *°. Finally, heuristic filters removed predicted breakpoints with poor discordant

read coverage of sequence flanking predicted breakpoints.

We applied a stringent 3-step filtering criteria to identify high confidence breakpoint calls for

downstream analysis, as follows:
Step 1: Breakpoints that were predicted by both algorithms, lumpy and destruct, were taken.

Step 2: We removed (i) the breakpoints from the poor mappability regions, (ii) events with break
distance <30 bp, (iii) breakpoints annotated as deletion with breakpoints size <1,000 bp.
Furthermore, only high confidence breakpoints that had at least five supporting reads in tumor and
no read support in the matched normal sample were used in the analysis. The breakpoints were
further filtered by removing the positions in either of the following regions: (i) UCSC Genome Browser
blacklists (Duke and DAC), and (ii) defined in the 'CRG Alignability 36mer track’ with more than two
nucleotide mismatches, requiring a 36-nucleotide fragment to be unique in the genome even after

allowing for two differing nucleotides.

Step 3: Predictions with small break distance and low number of supporting reads in tumor samples

were excluded.
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Myriad HRD test

We used a commercial assay (Myriad Genetics ‘myChoice CDXx’) to test for genome-wide LOH, the
number of chromosomal breakpoints in large scale state transitions and telomeric allelic imbalance.

If the resulting HRD score is greater than 42 the sample was deemed HR-deficient.

Targeted sequencing (MSK-IMPACT)

Genomic DNA isolated from FFPE tumor tissue and matched normal blood was subjected to
hybridization capture and sequenced with deep coverage (700x) 6. Variant calling for the MSK-
IMPACT gene panel and copy number analysis was performed using the MSK-IMPACT clinical
pipeline (https://github.com/mskcc/Innovation-IMPACT-Pipeline).

Mutational signatures

We analyzed mutational signatures by integrating point mutations and structural variations detected
by bulk whole genome sequencing in a unified probabilistic approach called multi-modal correlated
topic models (MMCTM) ''. MMCTM analysis enables robust determination of mutational signatures,
their correlation structure and the delineation of sub-groupings on the basis of point mutation

signatures " and structural variations.

We estimated signature probabilities for bulk WGS samples in the SPECTRUM cohort (n=21) using
the MMCTM, based on SNV and SV signatures inferred from HGSOC (n=170) and triple-negative
breast cancer (n=139) bulk whole genomes (total n=309) (Fig. S4A). By clustering the SPECTRUM
cohort samples together with the 309 HGSOC and TNBC samples using UMAP and HDBSCAN 8,
we assigned the 21 SPECTRUM samples into one of 9 strata defined solely by SNV and SV
signature probabilities. These strata include those with samples enriched for: i) BRCA7-associated
homologous recombination deficient (HRD) point mutation signatures accompanied by tandem
duplications (HRD-Dup), ii) BRCA2-associated HRD point mutation signatures accompanied by
interstitial deletions (HRD-Del), iii) CDK12-associated tandem duplications (TD) and iv) foldback-
inversions mediated by the breakage-fusion bridge process (FBI) (Fig. S4A). These strata are

associated with distinct prognostic profiles under standard of care treatment '2.

Mutational signatures for cases without bulk WGS data were assigned based on gene-level
mutations in MSK-IMPACT, based on the presence of BRCA1 (HRD-Dup), BRCA2 (HRD-Del) and
CDK12 (TD) loss-of-function mutations or homozygous deletions, and CCNE1 amplifications (FBI).
Additionally, cases with Myriad Genetics ‘myChoice CDx’ data were labelled as HRD-Other based

on a positive test score.

Consensus mutational signatures were preferentially derived based on: i) MMCTM signatures
derived from bulk WGS, ii) gene-level annotations in MSK-IMPACT, and iii) Myriad ‘myChoice CDx’
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test results. Mutational signatures for two cases without other informative data (patients 037 and

112) were resolved based on single-cell whole genome sequencing.

Neoantigen prediction

To predict the peptide binding affinity of neoantigens in silico using tumor and matched normal WGS
samples (n=21), candidate nonsynonymous SNVs were used to generate a list of peptides of amino
acid length 8, 9, 10 and 11. The binding affinity of each mutant peptide and its corresponding wildtype
peptide to the patient’s germline HLA alleles were predicted using NetMHCpan v4.1 in pVACtools

6 Peptides with inferred mutant binding affinities below 1,000 nM are defined as neoantigens.

HLA loss of heterozygosity

To detect allele-specific copy number loss of heterozygosity (LOH) of the HLA locus in single cells
profiled by scRNA-seq, we inferred allele-specific alterations in chromosome arm 6p which harbors
HLA class | and Il genes using schnapps *°. We first called germline heterozygous SNPs in the
scRNA-seq tumor data using cellSNP ®°. As input, we used the set of heterozygous SNPs identified
in the corresponding normal WGS dataset for each sample. The liftover script provided in cellSNP
was used to lift over SNP coordinates from the GRCh37 (hg19) to the GRCh38 reference genome.
Following genotyping, we aggregated SNP counts across all cells and defined the B allele as the
allele with lowest allele frequency for each SNP. As SNP counts are very sparse in scRNA-seq, we
then aggregated cell-level counts of the B-allele across chromosome arms in order to compute the
BAF for each arm in each cell. We then generated a cell by chromosome arm BAF matrix and
incorporated this into the Seurat gene expression objects. To assign allelic imbalance states
(balanced, imbalanced, LOH) to chromosome arms in each cell we used the mean BAF of each arm
per cell as follows: balanced (BAF = 0.35); imbalanced (0.15 < BAF < 0.35); LOH (BAF < 0.15).

Documentation and code is available at https://shahcompbio.github.io/schnapps/.

To validate our observations of allele-specific alterations in chromosome arm 6p in relation to the
HLA locus, we detected gene-level HLA class | LOH from tumor and matched normal MSK-IMPACT
data using LOHHLA (McGranahan et al., 2017). Tumor samples from 1,111 cases in the MSK-
IMPACT cohort with HGSOC histology were selected, based on a HGSOC or HGSFT OncoTree
classification ©'. This cohort is a superset that includes samples from MSK SPECTRUM patients.
Patient HLA references were built from tumor and normal MSK-IMPACT reads using Polysolver v4
62 Tumor purity and ploidy were estimated using FACETS ©® and used for subsequent HLA LOH
analysis. HLA LOH was called for an allele in the tumor sample using LOHHLA. LOH was observed
for each HLA gene if the estimated copy number was < 0.2 and the significance of allelic imbalance
was P < 0.01, which tests for pairwise differences in logR values between the two HLA homologs

(paired t-test).
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Digital histopathology

We built a training dataset of cellular annotations of scanned H&E images. Expert delineation and
quantification of cell and tissue types present in the H&E slides was carried out on MSK Slide Viewer,
a computational pathology interface for review and annotation of histopathology images. Nuclear
segmentation was carried out using StarDist, a method for nuclear detection based on the U-Net
neural network architecture ®°. Membrane segmentation was approximated using a cell expansion
of 3 um of the nuclear boundary. The training dataset encompasses a set of 61 slides from a
representative set of patients and sites. To classify regions of tumor, stroma, vasculature and
necrosis, we trained an ANN-based pixel classifier using QuPath v0.2.3 %, which operates on higher-
order pixel features over multiple channels and scales within the image. In addition, lymphocytes
and “other” cells were annotated in 19 of these slides by a researcher using MSK Slide Viewer. After
importing these annotations into QuPath, along with cellular segmentations and feature vectors
generated from StarDist, we then trained an ANN-based cellular classifier which operates over
cellular measurements to identify lymphocytes. We then applied these models for inference across
whole-slide H&E images over the larger cohort, and used these model outputs to compute statistics

on lymphocytic densities and other spatially-derived measurements.

Multiplexed immunofluorescence

We carried out nuclear segmentation based on DAPI intensity using the watershed algorithm in
QuPath v0.2.3 %, setting a minimum DAPI threshold of 1 a.u. with an expected nucleus area ranging
between 5 um? and 100 ym?. Membrane segmentation was approximated using a cell expansion of
3 um of the nuclear boundary. Starting from 1,194 quality-filtered FOVs across 90 tissue samples
from 35 patients, segmentation yielded a total of 9,257,609 cells. To annotate regions of tumor and
stroma, we trained a pixel classifier with examples of panCK"* (tumor) and panCK" regions (stroma).
Following nuclear segmentation, we extracted the pixel intensities per cell for functional markers
expressed in the cytoplasm (panCK, CD68, CD8, PD1, PDL1) and in the nucleus (TOX) in order to
define cell types and cell states. All channels were manually thresholded in at least one field of view
(FOV) per slide, and marker positivity was determined by setting these thresholds on the mean pixel
intensity. Segmented objects which were double- or triple-positive for multiple cell type markers
(panCK, CD68, CD8) were counted as separate cells, yielding a total of 10,663,919 single cells.
Marker assignments were used to define cell states of epithelial cells (panCK*PDL1", panCK*PDL1%),
macrophages (CD68'PDL1", CD68*PDL1*) and CD8" T cells (CD8'PD1°TOX, CD8'PD1'TOX,
CD8'PD1'TOX").

Analysis of spatial topology comprised estimation of spatial densities and inter-cellular nearest-
neighbor distances. Spatial density estimates as a function of distance to the tumor-stroma boundary

were obtained by aggregating cell counts within 10 ym distance bands from the boundary in each
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FOV, grouped across FOVs, and normalized by the total number of cells for a given phenotype of

interest. Error bars were calculated as the standard error of the probability p to observe a given

phenotype as V p(l— p)/N, where N is the total number of cells in that distance band. Inter-cellular
distances between nearest neighbors are calculated using the distance matrix r; between cells i and
J, where the value of the (j, j) element in the matrix is the radial distance from cell i to cell j. Once the
per-cell nearest neighbors have been computed, the summary statistics over nearest neighbor
distances per phenotype can be estimated. Proximity counts between phenotypes within a fixed

radius R can also be determined based on the per-cell nearest neighbors.
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FIGURES

Figure 1  Multi-region, multi-modal profiling of malignant cells and the TME.
Figure 2  The site-specific tumor microenvironment of HGSOC at single-cell resolution.

Figure 3 Adnexal samples exhibit increased T cell dysfunction and are enriched for
immunosuppressive macrophages.

Figure 4 HR deficiency alters the landscape of cancer cell signaling states.

Figure 5 HR deficiency is associated with increased antigen burden and dysfunctional T cell
phenotypes.

Figure 6 HR deficiency is associated with tumor immunogenicity and immune evasion.

Figure 7  Spatial topology and site composition influences malignant cell selection and immune
pruning.

Figure S1 Prevalence of germline and somatic mutations. Related to Fig. 1.

Figure S2 Quality control of scRNA-seq data and cell type abundance profiled by scRNA-seq,
H&E and mplF. Related to Fig. 2.

Figure S3 Anatomic site specificity and marker gene expression of T, NK and cell myeloid
phenotypes. Related to Fig. 3.

Figure S4 Mutational signatures and their impact on cancer cell-intrinsic signaling. Related to Fig.
4.

Figure S5 HR deficiency and tumor immunogenicity impact T cell phenotypes. Related to Fig. 5.

Figure S6 Intratumor heterogeneity of HLA loss of heterozygosity and its impact on immune
phenotypes. Related to Fig. 6.

Figure S7 Spatial topology of interactions between T cells and macrophages. Related to Fig. 7.
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Figure 1. Multi-region, multi-modal profiling of malignant cells and the TME

A) Schematic of the MSK SPECTRUM specimen collection workflow including surgery, single-cell
suspensions for scRNA-seq and biobanking of snap-frozen and FFPE samples. B) Cohort overview.
Top panel: Oncoprint of selected somatic and germline mutations per patient and cohort-wide
prevalence by MSK-IMPACT. Patient data include mutational signature subtype, patient age, staging
following FIGO Ovarian Cancer Staging guidelines, and type of surgical procedure. Bottom panel:
Sample and data inventory indicating number of co-registered multi-site datasets: single-cell RNA
sequencing, H&E whole-slide images, multiplexed immunofluorescence, whole genome sequencing

and targeted panel sequencing (MSK-IMPACT).
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Figure 2. The site-specific tumor microenvironment of HGSOC at single-cell resolution

A) UMAP of cells profiled by scRNA-seq colored by patient. Cell types as defined by CellAssign &’
are highlighted with grey outlines. B) Number of cells identified per cell type next to UMAP colored
by cell type. C) Patient specificity per cell type computed as the number of observed neighboring
cells coming from the same patient over the number of expected neighboring cells coming from the
same patient with zero indicating a uniform distribution. D) Upper: UMAP colored by TCGA
transcriptional subtype. Lower: Fraction of cells assigned to a given TCGA transcriptional subtype
per cell type. Columns in the heatmap add up to 100%. E) Number of cells profiled per tumor site
next to UMAP colored by tumor site. F) Site-specific enrichment of cell type composition in sScCRNA,
H&E and mplF data fitted using a generalized linear model (GLM). GLMs for H&E and mplF data
are separated by tumor and stroma regions. Color gradient indicates log> odds ratios (enrichment:
red, depletion: blue) and sizes indicate the BH-corrected -log(p value). G) Cell type composition
based on scRNA for CD45 samples (left) and CD45" samples (right). Upper panels: Absolute and
relative cell type numbers. Middle panels: Box plot distributions of sample ranks with respect to tumor
site. Lower panels: Dot plot of sample ranks grouped by patient. Colored arrows indicate enrichment
(red) or depletion (blue) of ovarian cancer cells (left) and T cells (right) in non-adnexal over adnexal
samples. H) Cell type composition based on H&E with lymphocyte ranks in tumor-rich (left) and
stroma-rich (right) compartments. Panels analogous to Fig. 2G. 1) Cell type composition based on
mplF with CD8" T cell ranks in tumor-rich (left) and stroma-rich (right) compartments. Panels
analogous to Fig. 2G. *P<0.05, **P<0.01.
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Figure 3. Adnexal samples exhibit increased T cell dysfunction and are enriched for

immunosuppressive macrophages

A) Upper: UMAP of T and NK cell clusters profiled by scRNA-seq. Clusters are colored and
numbered to reference cluster labels in B). Lower: Kernel density estimates in UMAP space for
adnexal-enriched (red) over non-adnexal enriched (blue) clusters. B) Heatmap of PROGENYy
signaling pathway activity scores (left) and T cell state module scores (middle) across CD4" T, CD8*
T, yoT, NK and Cycling cell clusters. Dot plot panel (right) shows site-specific enrichment of T/NK
cell clusters using GLM. Color gradient indicates log, odds ratios (enrichment: red, depletion: blue)
and sizes indicate the BH-corrected -logio(p value). C) T/NK cell cluster composition based on
scRNA ranked by fraction of T naive/memory clusters (left) or fraction of T dysfunctional clusters
(right). Panels analogous to Fig. 2G-l. D) Left: Diffusion maps of the subset of CD8" T cells profiled
by scRNA-seq, colored by CD8" T cell cluster. Right: Relative expression of genes marking CD8" T
cell clusters in diffusion space. E) Scaled module scores with respect to pseudotime inferred from
diffusion components. F) Analogous to E), separated out by tumor site. G) UMAPs of dendritic cells
and mast cells (left) and macrophages (right) profiled by scRNA-seq, colored and numbered by
cluster as in H). H) Site-specific enrichment of myeloid cell clusters using GLM, analogous to B). I)
Differences in kernel density estimates in UMAP space for macrophages in adnexal enriched (red)
over non-adnexal enriched (blue) samples. J) Myeloid cell cluster composition panels analogous to
C). Ranked by fraction of dendritic cells (left), M1.S1008 cells (middle) and M2.SELENOP cells
(right). **P<0.01, ***P<0.001.
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Figure 4. HR deficiency alters the landscape of cancer cell signaling states

A) Left: UMAP of epithelial cells colored by cluster. Clusters are numbered to reference cluster labels
in heatmap. Right: Heatmap of scaled marker gene expression (averaged per cluster), showing
differentially expressed genes in rows and clusters in columns. Top 2 genes per cluster are
highlighted. B) Left: Heatmap of average signaling pathway activity scores. Right: UMAP colored by
signaling pathway activity scores of interest. C) Relative kernel densities showing enrichment (red)
and depletion (blue) in UMAP space for a given mutational signature. D) Left: Estimated effects of
mutational signature on cancer cell cluster composition based on GLM. Color gradient indicates log>
odds ratios (enrichment: red, depletion: blue) and sizes indicate the BH-corrected -logio(p value).
Right: Epithelial cluster compositions ranked by Cancer.cell.3 fractions. Box plot panels show
distributions of scaled sample ranks by mutational signature. E) Distributions of signaling pathway
activity scores with respect to mutational signature. F) Left: Heatmap of average HLA gene
expression across clusters. Right: Distributions of HLA gene expression with respect to mutational
signature. G) CD274 (PDL1) gene expression in UMAP space (left) and as box plot distributions
(right) with respect to cluster and mutational signature respectively. *P<0.05, **P<0.01, ***P<0.001,

****P<0.0001. Brackets: Wilcoxon pairwise comparisons.
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Figure 5. HR deficiency is associated with increased antigen burden and dysfunctional T cell

phenotypes

A) Neoantigen burden detected by whole genome sequencing. Bar graphs indicate the total count
per tumor sample of neoepitopes exhibiting mutant binding affinity of <1,000 nM. B) Pairwise
comparisons of neoantigen burden with respect to HR status and mutational signature. C)
Differences in kernel density estimates in UMAP space for HRD (red) over HRP (blue) samples. D)
Estimated effects of mutational signature on T and NK cell cluster composition based on GLM. Color
gradient indicates log> odds ratios (enrichment: red, depletion: blue) and sizes indicate the BH-
corrected -logio(p value). E) Distributions of CD8" T cell state module scores and JAK-STAT
signaling pathway activity scores with respect to mutational signature. F) Scaled module scores
within the subset of CD8" T cells with respect to pseudotime and mutational signature. G) Correlation
of JAK-STAT signaling scores in CD8" T cells in CD45" samples and scores in cancer cells in
matched CD45 samples. H) Spatial density of CD8" T cell phenotypes as a function of distance to
the tumor-stroma interface, grouped by mutational signature (Methods). I) Estimated effects of
mutational signature on myeloid cell cluster composition using GLM, analogous to D). J) Fraction of
macrophages expressing CD274 (PDL1) and CXCL10 and JAK-STAT pathway activity with respect
to mutational signature. K) Left: Fraction of dendritic cells expressing interferon regulating factors.
Right: Module score of all IFN regulators. L) Correlation of IFN regulators expressed in dendritic cells
with JAK-STAT signaling scores in cancer cells, T cells and macrophages. *P<0.05, **P<0.01,

***P<(0.001, ****P<0.0001. Brackets: Wilcoxon pairwise comparisons.
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Figure 6. HR deficiency is associated with tumor immunogenicity and immune evasion

A) Density distribution of 6p BAF per cell in cancer cells compared to non-malignant cells, ranked
by median 6p BAF per cell type (left panel). Allelic imbalance in 6p BAF across cancer cell clusters
(right panel). White vertical lines indicate the median 6p BAF. B) UMAP of cancer cells profiled by
scRNA-seq colored by BAF of chromosome arm 6p. C) Left: Percentage of cancer cells with LOH in
chromosome 6p per patient. Right: Site- and clone-specific percentage of 6p LOH in cancer cells.
D) Distributions over percentage of 6p LOH in cancer cells per sample as a function of mutational
signature subtype. E) Percentage of patients with HLA LOH of any HLA class | gene in the MSK-
IMPACT HGSOC cohort (n=1,111 patients) for BRCA1, BRCA2, CDK12 mutant and CCNE1
amplified tumors, mapping to HRD-Dup, HRD-Del, TD, and FBI signatures respectively. Error bars
are 95% binomial confidence intervals F) Normalized density contours of 6p BAF and JAK-STAT
pathway activity in cancer cells comparing HR status and mutational signature. G) Fraction of naive
and dysfunctional T cells as a function of clonality of 6p LOH in cancer cells. Percentage allelic loss
of chromosome 6p arm in cancer cells per site is used to bin samples according to their 6p LOH
status (heterozygous: % 6p LOH < 20%, clonal LOH: % 6p LOH > 80%). In panels A)-F), only BAF
estimates from cells with 210 reads aligning to chromosome arm 6p are considered, and allelic
imbalance states are assigned per cell based on the mean 6p BAF per cell as balanced (BAF =
0.35), imbalanced (0.15 < BAF < 0.35) or LOH (BAF < 0.15) (Methods). *P<0.05. Brackets: Wilcoxon

pairwise comparisons.
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Figure 7. Spatial topology and site composition influences malignant cell selection and

immune pruning

A) Interaction network diagrams depicting ligand-receptor co-expression across cell types faceted
by mutational signature. Nodes show mean PD1 (PDCD1) expression in CD4" T, CD8" T and NK
clusters, and mean PDL1 (CD274) expression in cancer cell and myeloid cell clusters in scRNA data,
depicted by circle size. Arrows join ligand-expressing sender clusters to receptor-expressing receiver
clusters and are weighted by frequency of co-expression of PD1 and PDL1 in sender and receiver
clusters. B) Representative mplF fields of view highlighting common features of the tumor
microenvironment of mutational signature subtypes. First column: Raw pseudocolor images; second
column: cellular phenotypes of segmented cells; remaining columns: proximity of pairs of
phenotypes, highlighting ligand-receptor interactions between PDL1 and PD1 with color-coded
phenotypes, and edges depicting distances. Only edges joining pairs of cells within 250 ym are
shown. C) Proximity analysis between CD8" T cell phenotypes and panCK*PDL1* cancer cells based
on mplF data, ranking samples by the fraction of CD8"PD1"TOX T cells (left), CD8*PD1"TOX T cells
(middle) or CD8"PD1*TOX" T cells (right) with 21 panCK*PDL1" cell within 30 um. Upper panels:
absolute abundance of CD8" T cell states; middle panels: fraction of CD8" T cell phenotypes with 21
panCK*PDL1" cell within 30 um; bottom panels: box plot distributions of sample ranks with respect
to mutational signature. D and E) Nearest-neighbor distance from CD8" T cell phenotypes to
panCK*PDL1" cancer cells aggregated across fields of view, grouped by mutational signature

subtype. Vertical lines indicate the median nearest-neighbor distance.
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Figure S1. Prevalence of germline and somatic mutations, related to Fig. 1

A) Recurrent alterations in oncogenes and tumor-suppressor genes in the MSK SPECTRUM cohort,
detected by MSK-IMPACT. Bars indicate the percentage of cases harboring different classes of
genomic alterations. Mutation types are broken down into missense variants, truncating variants
(nonsense mutations, frameshift indels, splice site variants) and inframe variants. Mutations shown
are somatic except those highlighted as germline variants. Labels on the top indicate the mutational
signature subtype, patient age, staging, and type of surgical procedure. Patients were staged
following FIGO Ovarian Cancer Staging guidelines. Patients in the neoadjuvant setting were given
a clinical stage based on pre-treatment imaging, and patients that received up-front surgery (staging

or primary debulking) were given a pathological stage based on the specimens collected.
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Figure S2. Quality control of scRNA-seq data and cell type abundance profiled by scRNA-
seq, H&E and mplF, related to Fig. 2

A) UMAPs of cells profiled by scRNA-seq colored by different QC metrics: logz transformed number
of UMIs and genes, fraction of mitochondrial reads, cell cycle phase. B) Distributions of QC metrics
per cell type. C) Color legend for D)-F). D) Absolute and relative cell type compositions and TCGA
subtype compositions of CD45 (top) and CD45" (bottom) sorted samples based on scRNA,
separated by patient, ranked by fraction of ovarian cancer cells and T cells respectively. E) Absolute
and relative cell type compositions based on H&E, ranked by lymphocyte fractions for tumor-rich
(top) and stroma-rich (bottom) compartments. Panels analogous to D). F) Absolute and relative cell
type compositions based on mplF, ranked by CD8" T cell fractions in tumor-rich (top) and stroma-

rich (bottom) compartments. Panels analogous to D).
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Figure S3. Anatomic site specificity and marker gene expression of T, NK and cell myeloid

phenotypes, related to Fig. 3

A) Heatmap of scaled marker gene expression (averaged per cluster) for T and NK cell clusters,
showing differentially expressed genes in columns and clusters in rows. Genes are grouped by
cluster. Top 2 genes per cluster are highlighted. B) Site-specific enrichment of coarse-grained T/NK
cell clusters using GLM. Color gradient indicates log, odds ratios and sizes indicate the BH-corrected
-log1o(p value). C) Marker gene expression heatmap for myeloid cells (dendritic cells, mast cells and
macrophage clusters). D) Site-specific enrichment of coarse-grained myeloid cell clusters using GLM
analogous to B). E) UMAPs of T and NK cells showing scaled expression of marker genes of interest.
F) UMAPs of macrophage cells showing scaled expression of marker genes of interest. G) Genes

of interest in subsets of CD8" T cells along pseudotime axis.
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Figure S4. Mutational signatures and their impact on cancer cell-intrinsic signaling, related
to Fig. 4

A) Heatmap of standardized probabilities for genomic features used to infer mutational signature
subtypes from whole genome sequencing. Patients (in columns) are grouped by mutational
signature. Features used for inference (in rows) are grouped into single nucleotide variant (SNV)
and structural variation (SV) features. SV features include duplications (S-Dup, M-Dup, L-Dup),
deletions (S-Del, L-Del), unclustered and clustered foldback inversions (FBI/Inv, Clust-FBI),
clustered rearrangements (Clust-SV) and translocations (Tr). Bar graphs indicate total number of
SNVs and SVs per tumor sample. B) Single cell distributions of PROGENy pathway activity per
patient. C) Single cell distributions of PROGENy pathway activity per cluster (top subpanel) and HR
status (bottom subpanel). D) Single cell distributions of HLA class | and class Il gene expression per
patient. E) Single cell distributions of HLA gene expression per cluster (top subpanel) and HR status
(bottom subpanel). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Brackets: Wilcoxon pairwise

comparisons.
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Figure S5. HR deficiency and tumor immunogenicity impact T cell phenotypes, related to
Fig. 5

A) Single cell distributions of T cell module scores per patient. B) Single cell distributions of T cell
module scores as a function of patient age groups. C) Signature-specific enrichment of coarse-
grained T/NK cell clusters using GLM. Color gradient indicates log. odds ratios and sizes indicate
the BH-corrected -log+o(p value). D) Spatial density of cancer cells, CD8" T cells and macrophages
as a function of distance to the tumor-stroma interface, grouped by mutational signature. Counts
within 10 uym distance bands are grouped across FOVs from each mutational signature subtype, and
are normalized by the total number of cells. E) Signature-specific enrichment of coarse-grained
myeloid cell clusters using GLM analogous to C). *P<0.05. Brackets: Wilcoxon pairwise

comparisons.
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Figure S6. Intratumor heterogeneity of HLA loss of heterozygosity and its impact on immune

phenotypes, related to Fig. 6

A) Allelic state of chromosome arm 6p. Allelic imbalance states per cell are assigned based on the
mean 6p BAF per cell as balanced (BAF = 0.35), imbalanced (0.15 < BAF < 0.35) or LOH (BAF <
0.15) (Methods). B) UMAPs of cancer cells profiled by scRNA-seq from representative patients of
each mutational subtype, highlighting intratumor heterogeneity in 6p B-allele frequency (BAF). From
left to right, UMAPs are colored by 6p BAF, tumor site and tumor clone. Clones are defined using
patient-level Louvain clustering of cancer cells. Density plots show site-specific and clone-specific
6p BAF distributions. Only sites with 210 cancer cells are shown. C) Percentage of patients with LOH
of HLA class | genes in the MSK-IMPACT HGSOC cohort (n=1,111 patients). D) Validation of median
6p BAF estimates in cancer cells profiled by scRNA-seq using HLA LOH status in site-matched MSK-
IMPACT samples. 27 out of 41 patients profiled by scRNA-seq have site-matched MSK-IMPACT
data. E) Normalized density contours of 6p BAF and JAK-STAT pathway activity in cancer cells for
each patient. F) Fraction of M1 macrophages, M2 macrophages and dendritic cells as a function of
clonality of 6p LOH in cancer cells. Percentage allelic loss of chromosome 6p arm in cancer cells
per site is used to bin samples according to their 6p LOH status (heterozygous: % 6p LOH < 20%,
clonal LOH: % 6p LOH > 80%). In panels D)-F), only BAF estimates from cells with 210 reads aligning
to chromosome arm 6p are considered, and allelic imbalance states are assigned per cell based on
the mean 6p BAF per cell as balanced (BAF = 0.35), imbalanced (0.15 < BAF < 0.35) or LOH (BAF
< 0.15) (Methods).
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Figure S7. Spatial topology of interactions between T cells and macrophages, related to Fig. 7

A) Proximity analysis between CD8" T cell phenotypes and CD68*PDL1" macrophages based on
mplF data, ranking samples by the fraction of CD8"PD1"TOX T cells (left), CD8"PD1*TOX T cells
(middle) or fraction of CD8*PD1*TOX" T cells (right) with =1 CD68*PDL1" cell within 30 um. Vertically
aligned subpanels share the same x-axis. Upper panels: Bar graphs show absolute abundance of
CD8" T cell states. Middle panels: Bar graphs show the fraction of CD8" T cell phenotypes with 21
CD68'PDL1" cell within 30 um. Bottom panels: Box plot distributions of sample ranks with respect
to mutational signature. B and C) Nearest-neighbor distance from CD8" T cell phenotypes to
CD68'PDL1" macrophages aggregated across fields of view, grouped by mutational signature

subtype. Vertical lines indicate the median nearest-neighbor distance.
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TABLES

Table S$1 Clinical overview of the MSK SPECTRUM patient cohort. Related to Figure 1.

Table S2 Sample inventory. Metadata associated with scRNA-seq, H&E, mplF, bulk tumor and
normal WGS, Myriad HRD tests, and tumor and normal MSK-IMPACT datasets.
Related to Figure 1.

Table S3 Cell type and cell subtype markers. Clusters are annotated based on marker genes
identified in differential gene expression analysis. Related to Figures 2-7.

Table S4 Mutational signature proportions and mutational subtype assignments from WGS
datasets for SPECTRUM patients. Related to Figures 1-7.

Table S5 Antibodies and staining conditions for multiplexed immunofluorescence. Related to
Figures 2 and 7.
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