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HIGHLIGHTS 

● Multi-region, multi-modal profiling of malignant and immune cell phenotypes in ovarian 
cancer 

● Anatomic site specificity is a determinant of cancer cell and intratumoral immune phenotypes  

● Tumor mutational processes impact mechanisms of immune control and immune evasion 

● Spatial topology of HR-deficient tumors is defined by immune interactions absent from 

immune inert HR-proficient subtypes 

ABSTRACT 

High-grade serous ovarian cancer (HGSOC) is an archetypal cancer of genomic instability patterned 

by distinct mutational processes, intratumoral heterogeneity and intraperitoneal spread. We 

investigated determinants of immune recognition and evasion in HGSOC to elucidate co-

evolutionary processes underlying malignant progression and tumor immunity. Mutational processes 

and anatomic sites of tumor foci were key determinants of tumor microenvironment cellular 

phenotypes, inferred from whole genome sequencing, single-cell RNA sequencing, digital 

histopathology and multiplexed immunofluorescence of 160 tumor sites from 42 treatment-naive 

HGSOC patients. Homologous recombination-deficient (HRD)-Dup (BRCA1 mutant-like) and HRD-

Del (BRCA2 mutant-like) tumors harbored increased neoantigen burden, inflammatory signaling and 

ongoing immunoediting, reflected in loss of HLA diversity and tumor infiltration with highly-

differentiated dysfunctional CD8+ T cells. Foldback inversion (FBI, non-HRD) tumors exhibited 

elevated TGFβ signaling and immune exclusion, with predominantly naive/stem-like and memory T 

cells. Our findings implicate distinct immune resistance mechanisms across HGSOC subtypes which 

can inform future immunotherapeutic strategies. 

Keywords: high-grade serous ovarian cancer; genomic instability; immune phenotypes; single cell; 

spatial topologies  
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INTRODUCTION 

Genomic instability is a hallmark of human cancer, which often occurs due to impaired DNA repair 

mechanisms such as homologous recombination (HR), leading to chromosomal copy number 

alterations and structural genomic rearrangements. The nature of genomic instability has 

fundamental relevance to cancer etiology and evolution, and anti-tumor immune responses. 

Increasingly, the role of structural alterations in eliciting immune response and escape has been 

highlighted 1,2. These and other advances have prompted open questions about how anti-tumor 

adaptive immunity is impacted by specific genomic instability mutational processes, defined by 

acquired structural variation patterns in cancer genomes 3–7. 

High-grade serous ovarian cancer (HGSOC) is an archetypal tumor of genomic instability. The 

principal defining features of HGSOCs are profound structural variations in the form of copy number 

alterations and genomic rearrangements on a genetic background of near ubiquitous mutations in 

TP53, rendered bi-allelic through loss of heterozygosity of chromosome arm 17p 8,9. Somatic and 

germline alterations in the HR repair pathway genes such as BRCA1 and BRCA2 mutations, lead to 

HR deficiency (HRD) in approximately half of HGSOCs 10. Beyond gene alterations, recent work by 

our group and others has identified distinct patient strata associated with endogenous mutational 

processes inferred from structural variation patterns in whole genome sequencing. These include 

HRD subtypes (BRCA1-associated tandem duplications: HRD-Dup; BRCA2-associated interstitial 

deletions: HRD-Del), CCNE1-amplified associated foldback-inversion (FBI) bearing tumors and 

CDK12-associated tandem duplicators (TD) 11,12, amongst related mutational processes defined by 

copy number alteration 7. Notably, the mutational processes are associated with different outcomes, 

with FBI and TD tumors exhibiting the worst prognosis 5,11,12. 

Another distinctive property of HGSOC is that patients often present with widespread disease at 

diagnosis. HGSOC is thought to originate in the fimbriated end of fallopian tube epithelium 13,14 and 

a long latency allows for broad periods of genomic instability, clonal diversification and tumor-

immune interactions to unfold in the heterogeneous microenvironments of the peritoneal cavity 15–17. 

Little is known about how the local tissue microenvironment determines anti-tumor immunity.  

Furthermore, underlying relationships between mutational processes, tumor signaling, 

microenvironment composition, and immune cell phenotypes remain poorly understood. 

Accordingly, improved definition and enumeration of the constituent cell types, their derivative 

cellular phenotypes and their localization both within and between patients are key steps to 

understanding malignant cell and tumor microenvironment interactions, and ultimately responses to 

immunotherapeutic interventions. We hypothesized that cellular composition, topology and 

phenotypic states comprising TMEs differ according to their underlying mutational processes and 

spatial context. To address this, we designed a prospective multi-modal, multi-site study, capturing 

mutational processes from whole genome sequencing, disaggregated single cell transcriptome and 
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in situ cellular imaging of protein measurements in HGSOC at scale. Our findings reveal that distinct 

immunostimulatory and immunosuppressive mechanisms co-segregate with both site of disease and 

underlying mutational process, yielding new insights into malignant-immune microenvironment 

interactions for cancers of genomic instability with implications for personalized therapeutic 

strategies.  

RESULTS 

Patient cohort and multi-region, multi-modal profiling 

We studied tumors from treatment-naive, newly diagnosed HGSOC patients (Tab. S1) consented to 

a biospecimen banking protocol approved by the institutional review board. We collected multi-site 

tissue biopsies (n=160) from pre-treatment patients (n=42) undergoing laparoscopy or primary 

debulking surgeries over a 24-month period. Anatomic site collections included adnexa (ovary and 

fallopian tube), omentum, peritoneum, bowel, ascites and other intraperitoneal sites (Fig. 1A). 

Clinical characteristics of all patients are summarized in Fig. 1B and Tab. S1.  

We profiled patient samples with five different data modalities (Fig. 1A). (1) Fresh tissue samples 

were collected, dissociated, flow-sorted for live CD45+ and CD45- cells to enrich immune cell 

populations, and processed for transcriptomic profiling using 10x 3’ single-cell RNA sequencing 

(scRNA-seq) from multiple sites (n=156) of 41 patients, within a one-day workflow from surgery to 

sequencing library preparation (Methods). This yielded a total of 929,686 quality-filtered single cell 

transcriptomes with an average of ~23k per patient (~6k per site), including data from CD45+ and 

CD45- populations (Tab. S4). (2) Formalin fixed paraffin embedded tissues (FFPE) were employed 

for whole-slide hematoxylin and eosin (H&E) staining. For each specimen with scRNA-seq, 101 site-

matched H&E sections from 35 patients were digitally scanned and annotated for computational 

analysis of lymphocytic infiltration. (3) For each specimen with scRNA-seq, site-matched FFPE 

tissue sections adjacent to the H&E section were stained and imaged by multiplexed 

immunofluorescence (mpIF) for major cell types and immunoregulatory markers (DAPI, panCK + 

CK8/18, CD8, CD68, TOX, PD1, PDL1) on the AkoyaBio Vectra platform (Methods). A total of 

10,663,919 cells from 1,194 quality-filtered fields of view across 90 tissue samples from 35 patients 

were identified for downstream spatial topology analysis. (4) FDA-approved clinical sequencing of 

468 cancer genes (MSK-IMPACT) was obtained on DNA extracted from FFPE tumor and matched 

normal blood specimens to establish mutational status of known high prevalence alterations in 

HGSOC: TP53 (100%), BRCA1 (12%), BRCA2 (2%), CCNE1 high level amplification (12%), MYC 

high level amplification (17%), CDK12 (10%), and RB1 (10%) (Fig. 1B), comprising a representative 

set of the cohort profiled by MSK-IMPACT (Fig. S1). (5) Lastly, where available, snap-frozen tissues 

were processed to obtain matched tumor-normal whole genome sequencing (WGS) on a single 

representative site of the subset of 41 patients with scRNA-seq to derive mutational processes from 
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single nucleotide and structural variant mutational signatures. We assigned established mutational 

signatures by WGS, yielding 13 HRD-Dup, 6 HRD-Del, 10 FBI and 2 TD patients, as well as 5 

additional HRD cases labelled HRD-Other, which we identified based on Myriad HRD testing or the 

presence of inactivating mutations in HR genes detected by MSK-IMPACT (Fig. 1B, Tab. S1, 

Tab. S2, Methods). 

Cellular constituents of the HGSOC tumor microenvironment vary by patient and site 

We first constructed a cell map from the scRNA-seq data, organized into nine broad cellular lineages: 

251,837 epithelial cells, 289,952 lymphoid cells (T cells, B cells, plasma cells, NK cells), 207,288 

myeloid cells (monocytes/macrophages, dendritic cells, mast cells) and 180,609 stromal cells 

(fibroblasts, endothelial cells) (Fig. 2A,B). Non-malignant cells were well separated by cell type in 

UMAP space with cells from different patients intermixed. In contrast, ovarian cancer cells were 

mainly separated by patient, quantified through patient specificity scores with a shared nearest 

neighbor graph (SNN) (Methods). We attributed the high degree of patient specificity of ovarian 

cancer cells (Fig. 2A,C) to tumor cell-specific somatic copy number alterations driving concomitant 

gene dosage effects. Fibroblasts and myeloid cells also exhibited patient specificity, which we 

interpreted as unique tumor-associated responses (Fig. 2C). Notably, patient variation in malignant 

cells was not attributed to previously reported bulk expression signatures 18,19 (Fig. 2D). Cancer cells 

were primarily classified into the proliferative (19.5%) and differentiated (78.8%) subtypes (Fig. 2D), 

depending on whether they were cycling or not. Myeloid cells were most commonly classified into 

the immunoreactive subtype (76.6%). None of the other immune cell types contributed to the 

immunoreactive subtype and were mainly assigned to the proliferative (4%-23.2%) or differentiated 

(62.9%-87.1%) subtypes (Fig. 2D). Endothelial cells were likewise comprised of cells classified as 

proliferative (23.7%) or differentiated (69.8%). However, fibroblasts were the only cell type to show 

enrichment for mesenchymal classification (62.6%). We thus concluded that gene expression 

signatures defining previously reported transcriptional subtypes of HGSOC predominantly reflect cell 

type composition, rather than intrinsic variation in malignant cell phenotypes. 

We next analyzed cell type composition variation with respect to anatomic sites within patients, 

ranging between 322,649 cells derived from adnexal samples to 52,094 from the upper quadrants 

(Fig. 2E). We compared the relative proportions of cell types in the adnexa (i.e. potential primary 

lesions of the fallopian tube and ovary), ascites, and distal sites throughout the peritoneal cavity. 

CD45+ samples ranged from myeloid-rich to lymphoid-rich within and between patients, with adnexal 

samples significantly depleted for T cells (Mann-Whitney U test, BH-corrected, q-value = 0.0195), B 

cells (q-value = 0.0041) and dendritic cells (q-value = 0.0060), while in contrast, ascites samples 

were enriched for T cells (q-value = 0.0195) and dendritic cells (q-value < 0.0001). Notably, T cell 

fractions in distant intraperitoneal sites were consistently higher than in adnexal samples (22 of 32 

patients) (Fig. 2F,G). This was corroborated with site-matched whole-slide H&E analyses, where 
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intratumoral lymphocyte proportions were increased in distant non-adnexal sites compared with 

paired adnexal sites in 17 out of 22 patients (Fig. 2F,H), and enriched for intratumoral CD8+ T cells 

in paired non-adnexal over adnexal samples in 14 out of 21 patients (Fig. 2F,I) from site-matched 

mpIF.   

Phenotypic differentiation of T cells exhibits inter-site heterogeneity  

We next assessed variation of constituent T cell subtypes and functional states at distinct tumor 

sites. We identified 41 distinct T and NK cell clusters, broadly defining CD4+ T cells (clusters 1-14), 

CD8+ T cells (clusters 15-22), γδ T cells (cluster 23), NK cells (clusters 24-33) and cycling cells 

(clusters 34-41) (Fig. 3A-B; Fig. S3A,C). We found a graded enrichment and depletion of specific T 

and NK cell clusters across UMAP space (Fig. 3A, bottom) in adnexal and non-adnexal sites. 

Generalized linear modeling (GLM) revealed pronounced site-specific differences in cluster 

composition, with the biggest differences between adnexal and ascites samples (Fig. 3B, Methods). 

In particular, CD4+ naive/stem-like and central memory T cells (clusters 1-2) were depleted in the 

adnexal samples but were enriched in ascites samples (Fig. S3B, log2 oddsCD4.T.naive.mem|adnexa = -0.49, 

log2 oddsCD4.T.naive.mem|ascites = +0.91). Conversely, dysfunctional CD4+ and CD8+ T cells (clusters 4-6 

and 18-20) were depleted in ascites samples (log2 oddsCD4.T.dys|ascites = -0.62, log2 oddsCD8.T.dys|ascites = 

-0.85) but enriched in adnexal samples. This is consistent with chronic antigen exposure leading to 

dysfunction at higher rates in the adnexa (log2 oddsCD4.T.dys|adnexa = +0.12, log2 oddsCD8.T.dys|adnexa = 

+0.37). Regulatory T cell (8-10) and regulatory NK cell clusters (27-33) were likewise enriched in the 

adnexal samples, suggesting that they may carry out immunomodulatory feedback at these sites 

(Fig. 3B). Notably, when ranked by relative fraction of naive/stem-like and central memory T cells or 

dysfunctional T cells, we observed a high inter- and intra-patient variability in the relative composition 

of the T cell clusters (Fig. 3C, top). Distributions of scaled ranks reflected a marked inter-site 

variation in tumor infiltration (Fig. 3C, box plot panel). Within patients, adnexal samples were 

depleted for naive/stem-like and central memory T cells in 26 out of 32 patients and enriched for 

dysfunctional T cells in 23 out of 32 patients.  

To identify the differentiation trajectories of the cell populations identified by unsupervised clustering, 

we employed  diffusion manifolds to map CD8+ T cell clusters along two principal divergent branches 

representing the terminally differentiated populations, namely dysfunctional T cells and T cells 

expressing interferon-stimulated genes (ISG) (Fig. 3D). Assessment of scaled module scores with 

respect to differentiation pseudotime identified progressive loss of expression of naive T cell markers 

and progressive acquisition of cytotoxic and dysfunctional traits (Fig. 3E). These, in turn, were 

associated with progressive loss of expression of transcription factors associated with naive and 

central memory T cells (TCF1 and LEF1), and gradual acquisition of gene expression related to type 

I IFN (ISG15), cytotoxic function (GZMK), and T cell dysfunction (TOX, CXCL13, and PDCD1) 

(Fig. S3B). Similar to the findings from T cell cluster abundance, expression gradients also differed 
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across sites, with ascites samples exhibiting high naive module scores, contrasted by low 

dysfunctional T cell and JAK-STAT pathway scores (Fig. 3F).   

Macrophages and dendritic cells exhibit site-specific phenotypic enrichment 

We next analyzed the composition and site distribution of the remaining major immune cell types. 

We identified four different dendritic cell (DC) states (Fig. 3G), including DCs of the myeloid lineage 

separated into cDC1, cDC2 and mature conventional dendritic cells (mDC), defined by expression 

of CLEC9A, S100B and BIRC3 respectively (Fig. S3C, Tab. S3), and plasmacytoid DCs (pDC), 

marked by expression of PTGDS. Macrophage clusters were described with respect to their classical 

(M1-type) or alternative (M2-type) polarization. Six different clusters encompassing both classical 

and alternatively-activated macrophages were identified, as well as a cluster of cycling (Cycling.M) 

and a cluster of actively phagocytic macrophages (Clearing.M) (Fig. 3G). The M1-type and M2-type 

clusters were labeled according to the top genes defining the clusters (M1.S100A8, M2.CXCL10, 

M2.SELENOP, M2.MARCO, M2.COL1A1, M2.MMP9) (Fig. S3C, Tab. S3) 20,21. Notably, the 

M2.CXCL10 cluster was characterized by expression of both M1 (e.g. CXCL10) and M2 markers 

(e.g. PDL1, C1QC), highlighting that macrophage polarization represents a dynamic range of 

macrophage states rather than discrete functional phenotypes.  

Both GLM and kernel density estimates highlighted inter-site differences in the relative composition 

of some of the largest myeloid cell clusters (2, 6, 8) (Fig. 3H,I) including DC enrichment in the ascites 

(log2 odds = +0.89), and depletion in the adnexa (Fig. 3J left, Fig. S3D, log2 odds = -0.21). Similarly, 

among macrophages, M1.S100A8 fractions were decreased in adnexa (log2 odds = -0.41) and 

increased in ascites samples (log2 odds = +1.50), while M2.SELENOP fractions demonstrated an 

opposite pattern (Fig. 3J middle and right), depleted in ascites (log2 odds = -1.28) and suggestive of 

a more immunosuppressive TME in the adnexa (log2 odds = +0.50). Altogether, our analyses of the 

T cell and myeloid cell compartments highlight that intra-patient variation in the tumor immune 

composition is common in HGSOC, with adnexal sites exhibiting evidence of reduced immune 

response and enrichment for specific functional immunosuppressive states. 

Mutational processes impact cancer cell intrinsic signaling states and expression of immuno-
modulatory genes  

We next focused on cancer cells to identify distinct cell-intrinsic phenotypic states. After 

normalization and regressing out patient-specific variation, clustering of 251,837 epithelial cells from 

scRNA-seq resulted in 10 clusters with cell-intrinsic differential expression of known marker genes 

(Fig. 4A, Tab. S3). Elevated TNFα, NF-κB and JAK-STAT signaling was observed in Cancer.cell.3 

(including CXCL10 and ISG15), elevated TGFβ signaling in Cancer.cell.4, and hypoxia in 

Cancer.cell.6. We note parenthetically that p53 signaling activity in Ciliated.cell.1 and Ciliated.cell.2 

suggested presence of non-malignant epithelial cells in the tumor microenvironment. Distinct cluster 
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enrichments were identified in association with patients stratified by genomic subtype (Fig. 1B, 
Fig. 4C,D, Fig. S4A): Cancer.cell.3 in HRD-Dup (log2 odds = +1.17), Cancer.cell.2 in HRD-Del (log2 

odds = +0.34), and Cancer.cell.6 in FBI cases (log2 odds = +0.26). Among the three pathways with 

high activity in Cancer.cell.3, JAK-STAT signaling was significantly increased across HRD-Dup 

cases compared to HRD-Del and FBI cases (Fig. 4E, Fig. S4B, P = 0.0034; 0.026). NF-κB and TNFα 

signaling activity was increased in HRD-Dup and HRD-Del patients over FBI patients (P = 0.0073; 

0.017; 0.012; 0.096) while TGFβ signaling was higher in FBI patients (P < 0.0001). In addition, cancer 

cell clusters differed by expression of major histocompatibility complex (MHC)- encoding genes 

(Fig. 4F left, Fig. S4D,E). MHC class I encoding genes (HLA-A, HLA-B, HLA-C and B2M) were 

highly expressed in Cancer.cell.3 (log2 fold changes of 0.77, 0.81, 0.69 and 0.78 respectively). MHC 

class II encoding genes (HLA-DRA and HLA-DRB1) were also increased (log2 fold changes of 0.36, 

0.41). Consistent with higher Cancer.cell.3 distributions in HRD-Dup, we observed upregulation of 

HLA-A, HLA-DRA, HLA-DRB1, and B2M in HRD-Dup relative to FBI tumors (Fig. 4F, right). Whereas 

HLA gene expression suggests that Cancer.cell.3 cluster may be more immunogenic, we also noted 

upregulated expression of CD274 which encodes PDL1 (Fig. 4G, P = 0.0028). Together, these 

findings imply that underlying genomic subtypes are associated with differential cancer cell-intrinsic 

signaling activation, with increased JAK-STAT signaling and upregulation of immune-activating and 

immune-inhibitory targets being more prevalent in HRD-Dup subtype.  

Genomic and microenvironment properties of HRD and FBI tumors identify mechanisms of 
immune recognition and escape 

To evaluate the genomic and TME features conferring increased immunogenicity to HRD tumors, 

we evaluated the presence of novel mutant peptides, or neoantigens, in each genomic subtype. 

Using WGS, we predicted neoantigen burden on the basis of increased binding affinity of mutant 

peptides to patient-specific HLA types when compared to wild-type peptides, resulting in median 7 

neoantigens per tumor sample (range 0 to 36, Fig. 5A). HRD-Dup and HRD-del cases exhibited 

significantly higher neoantigen burden (median 9 and 20.5 per sample, respectively) relative to FBI 

and TD cases (3 and 7 per sample, respectively, P < 0.05) (Fig. 5B), suggesting that inactivation of 

DNA repair triggers the accumulation of neoantigens. We then examined the relationship between 

genomic subtype and functional states of the tumor-infiltrating immune cells. Notably, mutational 

signatures were associated with relative proportions of naive and dysfunctional T cells through kernel 

density estimates in UMAP space (Fig. 5C). Quantitative modeling of T cell cluster compositions 

using GLM revealed FBI tumors were enriched for naive/stem-like and central memory T cell clusters 

(2-3, 15-16; log2 oddsFBI = +0.29) and depleted for dysfunctional T cell clusters (4-6, 18-20; log2 

oddsFBI = -0.42) (Fig. 5D, Fig. S5C). Conversely, HRD and TD tumors were enriched for 

dysfunctional T cells (log2 oddsHRD-Dup = +0.17, log2 oddsHRD-Del = +0.39, log2 oddsTD = +0.15) and 

depleted for naive/stem-like and central memory T cells (log2 oddsHRD-Dup = -0.23, log2 oddsTD = -

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.08.24.454519doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.454519
http://creativecommons.org/licenses/by-nd/4.0/


 

9 

0.23). This was also reflected in the enrichment of module scores across samples in general 

(Fig. 5E, Fig. S5A), and along differentiation trajectories of T-cell phenotypes in particular (Fig. 5F). 

In addition, the ISG-expressing T cell group (defined by high JAK-STAT pathway score) was 

negatively associated with FBI and HRD-Del subtypes, but was positively associated with HRD-Dup 

and TD subtypes (Fig. 5E,F, Fig. S5B). Comparison of JAK-STAT signaling in CD8+ T cells and 

matched cancer cells from the same samples, revealed strong association between T cell-intrinsic 

and cancer-cell intrinsic JAK-STAT signaling across the mutational subtypes (Fig. 5G).  

We next tested if heightened immune signaling in HRD tumors could be attributed to reciprocal 

interactions between cancer cells and the associated immunophenotypes in the TME. We analyzed 

the physical proximity of individual T cell phenotypes to the tumor-stroma boundary using the in situ 

mpIF data obtained from the site-matched tumor samples. Cell density estimates inferred from site-

matched mpIF data as a function of distance to the tumor-stroma boundary revealed that CD8+ T 

cells were enriched within tumor regions of HRD subtypes (Fig. S5D), among which activated 

CD8+PD1+TOX- T cells were especially prevalent (Fig. 5H). Similarly, terminally dysfunctional 

CD8+PD1+TOX+ T cells were also co-localized within the tumor in HRD-Dup and HRD-Del cases, 

and also in the peritumoral stroma of HRD-Del cases, potentially reflecting tumor reactivity. In 

contrast, both CD8+PD1+TOX- and CD8+PD1+TOX+ T cells were less abundant and were evenly 

distributed within the tumor and stromal compartments in the FBI tumors, implying minimal T cell-

antigen interaction in this subtype (Fig. 5H).  

The balance of M1- and M2-type macrophage polarization states was similarly shaped by tumor 

mutational signatures (Fig. 5I, Fig. S5E), with a significant depletion of M2 macrophages in HRD-

Del cases (log2 oddsHRD-Del = -0.27). We observed enrichment of M2.CXCL10 macrophages in the 

HRD-Dup cases (log2 oddsHRD-Dup = +0.33), and depletion in the FBI tumors (log2 oddsFBI = -0.46), 

with FBI tumors also exhibiting decreased percentages of PDL1 (CD274) positive macrophages 

(Fig. 5J). Consistent with CXCL10 being a target of JAK-STAT signaling, macrophages in HRD-Dup 

cases were enriched for JAK-STAT pathway activity, whereas most FBI cases were depleted for 

JAK-STAT activation (Fig. 5J).  

Overall, these findings imply that JAK-STAT pathway activation in all cell subtypes in the HRD-Dup 

tumors may be mediated by a common upstream effector. Given the role of type I IFNs in activation 

of JAK-STAT signaling, we examined type I IFN pathway activation in DCs, which commonly serve 

as a dominant source of type I IFN production. We observed higher levels of IFN regulatory factors 

(IRFs) in DCs from HRD-Dup cases, resulting in upregulation of the overall IFN regulators module 

score (Fig. 5K). There was a strong positive correlation between the IFN regulators module score in 

the DCs and JAK-STAT pathway activation in cancer cells, T cells, and macrophages (Fig. 5L). 

These findings may suggest that increased type I IFN activation in DCs in HRD-Dup tumors may be 

responsible for the upregulated JAK-STAT signaling and phenotypic changes in all major cell types, 
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including HLA upregulation in cancer cells and PDL1 upregulation in macrophages. 

Immunoediting in HR-deficient tumors is mediated by HLA loss of heterozygosity 

We next determined if genomic mechanisms of immune evasion across the mutational signature 

subtypes could explain the variation in immunophenotypes. Genomic loss of HLA presentation 

machinery through somatic alterations is a common mechanism for malignant cells to evade immune 

control by reduction of MHC class I allelic diversity 2. To examine how somatic HLA diversity varies 

as a function of genomic subtype, we identified allele-specific copy number alterations from scRNA-

seq using heterozygous SNPs from matched normal whole genomes (Methods). Aggregating 

counts of heterozygous SNPs across each chromosome arm we inferred loss of heterozygosity 

(LOH) of either allele of chromosome arm 6p, harboring HLA class I and class II genes, at the single 

cell level (Fig. 6A). As expected, LOH of the 6p arm were only detected in cancer cells, indicating 

high specificity of the method (Fig. 6A,B, Fig. S6A). B-allele frequency (BAF) estimates revealed 

marked inter-patient heterogeneity in 6p allelic imbalance (Fig. 6B, Fig. S6B). Clonal LOH of 

chromosome 6p was seen in 4 out of 41 patients (10%), and subclonal 6p LOH was observed in 7 

out of 41 patients (17%, Fig. 6C left). The prevalence of site-specific 6p LOH (Fig. 6C right) was low 

within most patients, with the exception of site-specific losses in 4 out of 41 cases (Fig. 6C right, 
Fig. S6B) indicating potential selection for immune evasive mechanisms determined by local 

microenvironments. We note that clonal LOH of 6p was primarily observed in HRD cases (17%, 4/24 

cases) (Fig. 6C,D). Losses of HLA class I alleles harbored in 6p were validated using clinical panel 

sequencing of the MSK-IMPACT HGSOC cohort (n=1,111 patients). Patients with BRCA1, BRCA2, 

and CDK12 loss of function mutations and CCNE1 amplification were identified as representative 

cases of HRD-Dup, HRD-Del, TD and FBI signature groups, respectively. Overall, we observed HLA 

LOH in 333 out of 1,111 MSK-IMPACT HGSOCs (30%) (Fig. 6D, Fig. S6C). BRCA1-altered HGSOC 

cases showed more frequent HLA LOH than CCNE1-amplified cases (30% vs 22% of altered cases; 

P < 10−13, two-sided !2 test), consistent with the findings identified by scRNA-seq. Validation of 6p 

BAF estimates from scRNA-seq were additionally corroborated by concordant HLA LOH status in 

site-matched MSK-IMPACT tumor samples (Fig. S6D). 

We then analyzed whether 6p LOH impacted tumor cell-intrinsic JAK-STAT pathway activation and 

phenotypic states of tumor-infiltrating T cells. We found that HRD-Dup tumors with 6p LOH frequently 

exhibited concomitant activation of JAK-STAT signaling (Fig. 6E, Fig. S6E). Furthermore, presence 

of dysfunctional CD4+ and CD8+ T cells was increased in tumors with clonal 6p LOH (Fig. 6F), 

consistent with loss of allelic diversity at the chromosome 6p locus resulting from evolutionary 

selective pressure exerted by infiltrating T cells. In contrast, the microenvironment of tumors with 

high prevalence of naive T cells did not impose a strong selective pressure of immune predation, 

evidenced by the retention of both 6p alleles in cancer cells (Fig. 6F). M1 macrophages and DCs 

were similarly more frequently observed in tumors with 6p LOH, though the association was not 
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statistically significant (Fig. S6F). 

Spatial topology and site composition influence malignant cell selection and immune pruning 

The single-cell analyses above point to an interrelationship between the cancer cell-intrinsic immune 

signaling, TME composition, and phenotypes of tumor-infiltrating immune cells that vary as a function 

of the underlying mutational signatures. Accordingly, cell-cell interaction analysis revealed co-

expression of PDL1 (CD274) in cancer cell and myeloid clusters detected by scRNA-seq, and PD1 

(PDCD1) in T and NK cell clusters (Fig. 7A). We noted higher expression of PDL1 in myeloid cell 

clusters and in Cancer.cell.3 cluster in HRD-Dup cases, associated with higher fraction of PD1-

expressing T cells (Fig. 7A). Using mpIF stains from site-matched FFPE sections highlighting the 

principal immune cell subtypes and their phenotypic states, we then investigated whether these 

interrelationships are reflected in the in situ interactions between the individual cell components in 

tumors and stroma. We measured major immune cell subtypes (tumor cells, T cells, macrophages), 

markers of T cell dysfunctional states (PD1, TOX), and PDL1 expression as a functional downstream 

marker of type I and type II IFN signaling (Fig. 7B). 

Nearest-neighbor analysis between cells revealed proximal interaction patterns between CD8+PD1-

TOX-, CD8+PD1+TOX-, CD8+PD1+TOX+ T cells, defined as naive/memory, activated/pre-

dysfunctional and dysfunctional T cells, respectively, and PDL1-expressing cancer cells and 

macrophages (panCK+PDL1+, CD68+PDL1+) within a 30 μm radius (Fig. 7C, Fig. S7A). Spatial 

proximity of antigen-experienced PD1+ T cells to PDL1+ cancer cells was commonly observed in 

HRD-Dup and HRD-Del cases. However, these interactions were rare or absent in FBI tumors. The 

overall spatial organization, median distances between the individual T cell subtypes and the nearest 

panCK+PDL1+ cancer cells varied as a function of the mutational type, with the closest median 

distances observed in the HRD-Dup subtype, particularly in the activated/pre-dysfunctional and 

dysfunctional T cell compartments (Fig. 7D,E). The proximity of pre-dysfunctional and dysfunctional 

T cells to PDL1-expressing cancer cells supports the hypothesis that PDL1 is a functional biomarker 

induced as a negative feedback mechanism in response to activated T cells in HRD tumors. Similar 

interactions were noted between the T cells and CD68+PDL1+ macrophages, which were particularly 

prevalent in the HRD-Del cases, likely due to their overall enrichment for macrophages (Fig. S7B,C, 

Fig. 5H). These spatial associations in HRD subtypes revealed a highly immunoreactive TME, where 

PDL1 induction in cancer cells and macrophages was prevalent within ~50 μm of T cells (Fig. 7E). 

Conversely, spatial correlations between T cells and PDL1+ cancer cells quickly decayed in FBI 

cases, reflecting insufficient T cell activation to mediate the local TME changes. 
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DISCUSSION 

Here, we outline both anatomic site and mutational processes as determinants of within and between 

patient variation of immune cell functional states in HGSOC. Our study reveals for the first time 

distinct immune evasion phenotypes in HR-deficient and HR-proficient HGSOC genomic subtypes. 

The marked degree of intra-patient tumor microenvironment heterogeneity across tumor sites 

highlights that interfaces of cancer cells and their surrounding immune compartment can be site-

specific within patients. Specifically, adnexal sites exhibit the lowest levels of T cell infiltration and a 

marked increase in T cell dysfunction. The biology underlying distinct immunophenotypes in adnexal 

samples is unclear. However, our results may indicate immune privilege of the ovaries and fallopian 

tubes as protective environments against inflammation and immune pruning. Furthermore, we show 

that cancer and immune cell states in the ascites samples are distinct from the rest of the tumors, 

implying that the phenotypes of ascitic sample cells might not reflect intact tumor tissues. We find 

that ascites are enriched for T cells exhibiting predominantly naive-like and central memory 

signatures, while being depleted for activated and dysfunctional T cells. This is supported by prior 

findings22 and is consistent with the requirement for chronic antigen stimulation to elicit differentiation 

of dysfunctional T cells. Similarly, we find that ascitic fluid is uniquely enriched for cDC1 and cDC2 

dendritic cell subsets relative to tumors, consistent with recent findings demonstrating that ascitic 

myeloid cells can be rapidly adapted to serve as antigen-presenting cells in vaccine preparation23.  

Most notably, our study demonstrates that different mutational processes associated with HGSOC 

engender distinct immune evasion mechanisms. FBI tumors exhibit overall low immunogenicity 

associated with low neoantigen burden, reduced expression of HLA genes, and increased TGFβ 

signaling activity, with predominance of naive/stem-like and central memory T cells, likely driven by 

exclusion of T cells from the tumor compartment. In contrast, HRD tumors demonstrate evidence of 

intrinsic immunogenicity, including neoantigen accrual, upregulation of JAK-STAT/type I IFN 

signaling and increased expression of HLA genes, with associated infiltration of tumors with T cells 

exhibiting signatures of dysfunction, likely elicited by chronic interaction with tumor antigens.  

Critically, as FBI tumors have worse prognosis, these tumors represent a high-risk group that are 

immunologically inert and thus should be investigated as a high priority group of patients for 

emerging immuno-stimulatory agents.   

Data from preclinical studies of ovarian cancer suggests that immunogenicity in HRD tumors may 

lead to improved responses to immune checkpoint blockade (ICB) or combinations of ICB with 

chemotherapy and PARP inhibitors 24–27. However, clinical evidence for this is lacking. In our recent 

analysis of ovarian cancer patients treated with ICB, no association between HRD status, tumor 

mutational burden (TMB) and response to immunotherapy was observed 28. Furthermore, two large 

randomized clinical trials evaluating combination of platinum-based chemotherapy with PDL1 

inhibition in the newly-diagnosed ovarian cancer patients failed to identify benefit from the addition 
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of PDL1 inhibitor 29,30, while subset analyses from at least one of the trials showed no evidence of 

improved response in the subset of patients carrying tumors with evidence of BRCA1/2 mutations 

(Lederman et al., IGCS 2020). These findings highlight that data from pre-clinical models may not 

accurately reflect the evolution of human HGSOCs, where despite evidence of apparent 

immunogenicity, HR-deficient tumors potentially develop antagonizing mechanisms of immune 

resistance. Furthermore, our data are consistent with distinct immune escape mechanisms between 

non-HRD and HRD tumors, thus indicating that distinct strategies for immunotherapeutic 

reprogramming may be required for these cancer types. Increased TGFβ signaling observed in FBI 

tumors has been shown to restrict T-cell infiltration and is associated with insensitivity to anti-PDL1 

treatment 31,32. Hence, blocking TGFβ signaling in HGSOC patients of FBI subtype might help to 

overcome the immune exclusion, as has been suggested for TGFβ-high colorectal cancer patients 
33. In HRD tumors, the tumors exhibit inherent immunogenicity, consistent with ongoing immune 

response eliciting co-evolution of cancer cells with their microenvironment, and leading to immune 

evasion through selection of HLA LOH in these cancers. Lastly, a high degree of inter-tumor 

microenvironment heterogeneity in all genetic subtypes highlights that the mechanisms of immune 

resistance might not be universal in a given patient and that evolution of immune response in 

individual tumors may lead to acquisition of additional resistant mechanisms in these tumors, as 

evidenced by heterogeneity in HLA LOH observed across tumors in some patients and intrinsic 

differences in anatomic sites. Notably, tumor heterogeneity defined by radiomic measures has been 

demonstrated to be associated with resistance to immunotherapy in HGSOC 34.  

In addition to well-studied mechanisms of immune evasion, we identified concomitant and potentially 

chronic upregulation of type I IFN signaling in T cells, cancer cells and cancer-associated myeloid 

cells, particularly enriched for tumors of HRD-Dup subtype. Expression of type I IFN signaling target 

genes in such a wide range of cell types implies a potentially common source of type I interferons 

eliciting these signatures in all cell populations. The significance of this finding at present is unknown, 

but possibly related to cancer cell-intrinsic genomic instability eliciting type I IFN production through 

generation of cytosolic DNA or upregulation of noncoding elements 35,36. As chronic type I IFN 

production is associated with upregulation of immune suppressive mechanisms and T cell 

dysfunction, particularly within the context of chronic virus infections and cancers 37,38, we suspect 

that this finding represents yet another mechanism driving the differentiation of dysfunctional T cells 

and immune escape.  

Altogether, our study provides an extensive multi-modal resource mapping the cellular constituents 

of HGSOC tumor microenvironments and linking them to mutational processes and spatial context. 

We suggest these findings represent an opportunity to understand the adaptive immune response 

in other cancers with genomic instability through similar approaches. Whether anatomic site of tumor 

foci or structural variation mutational processes in other cancers are determinants of immune 

response remain open questions. However, the data presented here can be leveraged to 
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contextualize mechanistic insights of immunotherapeutic response across other cancers of genomic 

instability.  

Data availability 

Raw sequencing data and gene expression counts for 10x 3’ scRNA-seq will be available from the 

NCBI GEO database prior to publication. MSK-IMPACT and WGS data will be released on the NCBI 

SRA and on cBioPortal upon publication. H&E and mpIF images will be available from the BioImage 

Archive. 
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METHODS 

Experimental methods 

Sample collection 

All enrolled patients were consented to an institutional biospecimen banking protocol and MSK-

IMPACT 39, and all analyses were performed per a biospecimen research protocol. All protocols were 

approved by the Institutional Review Board (IRB) of Memorial Sloan Kettering Cancer Center. 

Patients were consented following the IRB-approved standard operating procedures for informed 

consent. Written informed consent was obtained from all patients before conducting any study-

related procedures. The study was conducted in accordance with the Declaration of Helsinki and the 

Good Clinical Practice guidelines (GCP). 

We collected fresh tumor tissues from 42 HGSOC patients at the time of upfront diagnostic 

laparoscopic or debulking surgery. Ascites and tumor tissue from multiple metastatic sites, including 

bilateral adnexa, omentum, pelvic peritoneum, bilateral upper quadrants, and bowel were procured 

in a predetermined, systemic fashion (median of 4 primary and metastatic tissues per patient) and 

were placed in cold RPMI for immediate processing. Blood samples were collected pre-surgery for 

the isolation of peripheral blood mononucleated cells (PBMCs) for normal whole genome sequencing 

(WGS). The isolated cells were frozen and stored at -80°C. In addition, tissue was snap frozen for 

bulk DNA extraction and tumor WGS. Tissue was also subjected to formalin fixation and paraffin-

embedding (FFPE) for histologic, immunohistochemical and multiplex immunophenotypic 

characterization.  

Single cell RNA sequencing 

Tissue dissociation 

Tumor tissue was immediately processed for tissue dissociation. Fresh tissue was cut into 1 mm 

pieces and dissociated at 37°C using the Human Tumor Dissociation Kit (Miltenyi Biotec) on a 

gentleMACS Octo Dissociator. After dissociation, single cell suspensions were filtered and washed 

with Ammonium-Chloride-Potassium (ACK) Lysing Buffer. Cells were stained with Trypan Blue and 

cell counts and viability were assessed using the Countess II Automated Cell Counter 

(ThermoFisher) (for detailed protocol see 40). 

Cell sorting 

Freshly dissociated cells were stained with a mixture of GhostRed780 live/dead marker (TonBo 

Biosciences) and Human TruStain FcX™ Fc Receptor Blocking Solution (BioLegend). The stained 

samples were then incubated and stained with Alexa Fluor® 700 anti-human CD45 Antibody 

(BioLegend). Post staining, they were washed and resuspended in RPMI + 2% FCS and submitted 
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for cell sorting. The cells were sorted into CD45 positive and negative fractions by fluorescence 

assisted cell sorting (FACS) on a BD FACSAria™ III flow cytometer (BD Biosciences). Positive and 

negative controls were prepared and used to set up compensations on the flow cytometer. Cells 

were sorted into tubes containing RPMI + 2% FCS for sequencing. 

Library preparation 

Flow sorted tumor cells were stained with Trypan blue and Countess II Automated Cell Counter 

(ThermoFisher) was used to assess both cell number and viability. Following QC, the single cell 

suspension was loaded onto Chromium Chip B (10x Genomics PN 2000060). GEM generation, 

cDNA synthesis, cDNA amplification, and library preparation of 1,400-5,000 cells proceeded using 

the Chromium Single Cell 3’ Reagent Kit v3 (10x Genomics PN 1000075) according to the 

manufacturer’s protocol. cDNA amplification included 12 cycles and 0.4-419 ng of the material was 

used to prepare sequencing libraries with 8-14 cycles of PCR.  

Sequencing 

Equimolar amounts of indexed libraries were pooled and sequenced on a HiSeq 2500 in Rapid Mode 

or NovaSeq 6000 in a 28bp/91bp, 100bp/100bp, or 150bp/150bp paired end run using the HiSeq 

Rapid SBS Kit v2 or NovaSeq 6000 SP/S1/S2/S4 Reagent Kit (100/200/300 cycles) (Illumina). 

Bulk whole genome sequencing (WGS) 

WGS Bulk Tumor 

Frozen banked tissue was cut into sections on charged microscope slides. Following histologic 

review, tumor tissue was microdissected if required to enrich for neoplastic cells 41, and subjected to 

DNA extraction for bulk WGS. Genomic DNA was extracted using the DNeasy Blood & Tissue kits 

(Qiagen) and quantified on the Qubit 3 Fluorometer using Qubit™ 1X dsDNA HS Assay Kit 

(Invitrogen). 

WGS Bulk Normal 

PBMCs were brought up to 15 mL volume in cold PBS and DNA was isolated with the DNeasy Blood 

& Tissue Kit (Qiagen catalog # 69504) according to the manufacturer’s protocol with 1 hour of 

incubation at 55°C for digestion. DNA was eluted in 0.5x Buffer AE. 

Whole Genome Sequencing 

DNA quantity was measured using the Quant-iT PicoGreen dsDNA Assay (ThermoFisher catalog # 

P11496), and DNA quality was assessed by TapeStation D1000 ScreenTape (Agilent catalog # 

5067-5582). After PicoGreen quantification and quality control by Agilent BioAnalyzer, 500ng of 

genomic DNA were sheared using a LE220-plus Focused-ultrasonicator (Covaris catalog # 500569) 

and sequencing libraries were prepared using the KAPA Hyper Prep Kit (Kapa Biosystems KK8504) 

with modifications. Briefly, libraries were subjected to a 0.5x size select using aMPure XP beads 
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(Beckman Coulter catalog # A63882) after post-ligation cleanup. Libraries were not amplified by PCR 

and were pooled equivolume and quantitated based on their initial sequencing performance. 

Samples were run on a NovaSeq 6000 in a 150bp/150bp paired end run, using the NovaSeq 6000 

SBS v1 Kit and an S1, S2, or S4 flow cell (Illumina). 

Preparation, review and scanning of histopathology slides 

Archived formalin-fixed paraffin-embedded (FFPE) tissues were used for histologic review, including 

the assessment of spatial topology and tumor-infiltrating lymphocytes, as well as for 

immunohistochemical characterization and multiplex immunofluorescence analysis for mapping of 

the tumor microenvironment in the Advanced Immunomorphology Platforms Laboratory. Slides were 

originally reviewed by gynecologic pathologists for diagnosis and FIGO (International Federation of 

Gynecology and Obstetrics) stage assignment.  Representative hematoxylin and eosin (H&E)-

stained slides from each site of interest were digitally scanned to produce virtual slides. Two senior 

gynecologic pathologists (R.A.S., L.H.E.) then reviewed these images for the presence and location 

of serous tubal intraepithelial carcinoma (STIC), SET architecture (solid, pseudo-endometrioid and 

transitional cell-like patterns), micropapillary architecture 42, presence of a fimbrial ball, architectural 

patterns of metastatic disease 43, mitotic counts (per 10 high power fields, HPFs) and tumor cell 

content (viable %). Regions with tumor-infiltrating lymphocytes (TILs) were also assessed with a 

quantitative TIL score (low: <42 TILs per 1 HPF in a hotspot; high: 42 or more TILs per 1 HPF in a 

hotspot) 42. Histopathology slides were scanned into whole-slide images using a Leica Aperio AT2 

scanner (Leica Biosystems) at 20x magnification. The most representative tissue block was selected 

for slide scanning. 

Multiplexed immunofluorescence 

Overview 

We carried out multi-parameter quantification of epithelial and immune cell subsets and activation 

markers using the AkoyaBio Vectra Automated Imaging system at the MSKCC Parker Institute for 

Cancer Immunotherapy. We stained whole slides of formalin fixed paraffin embedded (FFPE) tissue 

for markers of ovarian cancer cells (panCK + CK8-CK18) and of specific leukocyte subsets, including 

macrophages (CD68), and cytotoxic T cells (CD8), known immune inhibitory proteins (PD-L1) and 

activation/exhaustion status of CD8 T cells (PD-1, TOX). Fields of view were chosen to include either 

entire tissue with minimal field overlap if the tissue was small, or a distribution of fields with 50% 

stroma/tumor at the edge plus some central areas of tumor dense fields. Marker intensities were 

QC’ed to fall in the range 5-30 a.u., and helped guide spectral unmixing. Lower values may be close 

to background and higher values prompted to check for channel spillage. 
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Tissue staining  

Primary antibody staining conditions were optimized using standard immunohistochemical staining 

on the Leica Bond RX automated research stainer with DAB detection (Leica Bond Polymer Refine 

Detection DS9800). Using 4 µm formalin-fixed, paraffin-embedded tissue sections and serial 

antibody titrations, the optimal antibody concentration was determined followed by transition to a 

seven-color multiplex assay with equivalency. Optimal primary antibody stripping conditions between 

rounds in the seven-color assay were performed following 1 cycle of tyramide deposition followed 

by heat-induced stripping (see below) and subsequent chromogenic development (Leica Bond 

Polymer Regine Detection DS9800) with visual inspection for chromogenic product with a light 

microscope by a senior pathologist (T.J.H.). Multiplex assay antibodies and conditions are described 

in Tab. S5.  

Tissue sections were baked for 3 hours at 62°C in vertical slide orientation with subsequent 

deparaffinization performed on the Leica Bond RX followed by 30 minutes of antigen retrieval with 

Leica Bond ER2 followed by 6 sequential cycles of staining with each round including a 30-minute 

combined block and primary antibody incubation (Akoya antibody diluent/block ARD1001).  

For panCK and CK8-CK18, detection was performed using a secondary horseradish peroxidase 

(HRP)-conjugated polymer (Akoya Opal polymer HRP Ms + Rb ARH1001; 10-minute incubation). 

Detection of all other primary antibodies was performed using a goat anti-mouse Poly HRP 

secondary antibody or goat anti-rabbit Poly HRP secondary antibody (Invitrogen B40961/2; 10-

minute incubation). The HRP-conjugated secondary antibody polymer was detected using 

fluorescent tyramide signal amplification using Opal dyes 520, 540, 570, 620, 650 and 690 (Akoya 

FP1487001KT, FP1494001KT, FP1488001KT, FP1495001KT, FP1496001KT, FP1497001KT).  

The covalent tyramide reaction was followed by heat induced stripping of the primary/secondary 

antibody complex using Perkin Elmer AR9 buffer (AR900250ML) and Leica Bond ER2 (90% ER2 

and 10% AR9) at 100°C for 20 minutes preceding the next cycle (1 cycle of stripping for CD68, PD1, 

PDL1, CD8, panCK/CK8/18 and two cycles for TOX).  After 6 sequential rounds of staining, sections 

were stained with Hoechst (Invitrogen 33342) to visualize nuclei and mounted with ProLong Gold 

antifade reagent mounting medium (Invitrogen P36930). 

Imaging and spectral unmixing  

Seven color multiplex stained slides were imaged using the Vectra Multispectral Imaging System 

version 3 (Perkin Elmer). Scanning was performed at 20x (200x final magnification). Filter cubes 

used for multispectral imaging were DAPI, FITC, Cy3, Texas Red and Cy5. A spectral library 

containing the emitted spectral peaks of the fluorophores in this study was created using the Vectra 

image analysis software (Perkin Elmer). Using multispectral images from single-stained slides for 

each marker, the spectral library was used to separate each multispectral cube into individual 
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components (spectral unmixing) allowing for identification of the seven marker channels of interest 

using Inform 2.4 image analysis software.  

Computational methods 

Single-cell RNA sequencing 

Overview 

The pipeline is built using 10x Genomics Martian language and computational pipeline framework. 

CellRanger software (version 3.1.0) was used to perform read alignment, barcode filtering, and UMI 

quantification using the 10x GRCh38 transcriptome (version 3.0.0) for FASTQ inputs. 

Quality control 

CellRanger filtered matrices are loaded into individual Seurat objects using the Seurat R package 

(version 3.0.1) 44,45. The resulting gene by cell matrix is normalized and scaled for each sample. Cells 

retained for analysis had a minimum of 500 expressed genes and 1,000 UMI counts and less than 

25% mitochondrial gene expression. Cell cycle phase was assigned using the Seurat 

CellCycleScoring function. Scrublet (version 0.2.1) was used to calculate and filter cells with a 

doublet score greater than 0.25. Sample matrices are merged by patient and subsequently 

renormalized and scaled using the default Seurat functions.  

Major cell type identification 

Major cell type assignments were computed on each patient with CellAssign (version 0.99.2) 46 using 

a set of curated marker genes. Marker genes were compiled for nine major cell types related to high-

grade serous ovarian cancer (Tab. S3). These major cell types are defined as T cells, B cells, plasma 

cells, myeloid cells, dendritic cells, mast cells, endothelial cells, fibroblasts and ovarian cancer cells. 

Prior to running CellAssign, cells with zero expression for all marker genes were removed from the 

count matrix. Cell specific size factors are computed using scran (version 3.11). Default CellAssign 

parameters are used with a design matrix of patient batch labels. CellAssign returns a probability 

distribution over the major cell types and individual cells are labeled by the resulting most probable 

cell type. 

Dimensionality reduction 

Principal component analysis (PCA) was performed on the filtered feature by barcode matrix. UMAP 

embeddings including cohort-level and patient-level embeddings of all major cell types are based on 

the first 50 principal components. UMAP embeddings of major cell type supersets (see below) were 

based on the 50 batch-corrected harmony components. Diffusion map embeddings and pseudotime 

estimates were computed using R package destiny (v3.0.1) for the subset of CD8+ T cells (Angerer 

et al. 2015). 
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Batch correction and integration 

Major cell types identified across samples were split into six supersets: (1) T cells; (2) B cells and 

plasma cells; (3) myeloid cells, dendritic cells and mast cells; (4) fibroblasts; (5) endothelial cells; (6) 

ovarian cancer cells. For each superset, R package harmony (version 0.1) was used for batch 

correction to account for patient-specific effects 47. 

Clustering and cell subtype identification 

Graph-based clustering is performed for each superset using the Louvain algorithm implemented in 

Seurat (version 3.0.1) at three different resolutions (0.1, 0.2, 0.3). Differential expression between 

identified clusters was computed using a Wilcoxon rank sum test as implemented in Seurat 

FindMarkers. Final results are filtered on log fold change > 0.25 and Benjamini-Hochberg adjusted 

P-value < 0.05. Clusters were annotated based on marker genes identified in differential gene 

expression analysis.  

Gene signature scores 

Cell state scores were calculated for the exhausted phenotype within the set of T cells using a 

manually curated list of genes as input to the Seurat AddModuleScore method 48. The curated list of 

genes was derived from a review of single-cell analyses of CD8+ T cell states in human cancers 49 

(Tab. S3). 

Patient specificity and TCGA subtyping 

Patient specificity scores were computed with employing a shared nearest neighbour graph. For a 

given cell, patient specificity was defined as the observed fraction of nearest neighbors divided by 

the expected fraction of nearest neighbors in the patient subgraph. Here, the expected fraction of 

neighbors from the same patient was defined as the global fraction of cells for each patient. Scores 

were log2-transformed. Hence, a positive patient specificity score indicates an overrepresentation of 

cells derived from the same patient among its nearest neighbours, a negative score indicates an 

underrepresentation of same-patient cells and a score of 0 would reflect a perfectly mixed 

neighbourhood of patient labels. Consensus TCGA transcriptional subtypes were called using R 

package consensusOV (version 1.8.1) 50. 

Generalized linear models of cluster composition 

To estimate the effect of mutational signatures and tumor site specificity on the composition of cell 

clusters, we considered a generalized linear model (GLM) where we included interactions between 

signature, site and cluster identity for each major cell type defined in the scRNA, H&E and mpIF 

data. The data matrix includes the counts of every cluster c representing a cell type or cell state, 

sampled from site s in a patient with mutational signature subtype m. Using a binomial linear model 

one can analyze counts of repeated observations of cell types or cell states as binary choices, 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.08.24.454519doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.454519
http://creativecommons.org/licenses/by-nd/4.0/


 

28 

where Nc is the count for cluster c in a sample, N is the total number of cells in the sample, and the 

probability to detect the cluster can be described by the logit function, . 

To account for the effect of mutational signature and anatomic tumor site on cluster abundance 

observed in scRNA data, we formulate a GLM of the observed cell counts  for a cluster  described 

by the logit function, which is distributed as 

 

where  is a shared constant baseline per cluster that must be inferred, , ,  are individual 

fixed-effect terms to be inferred,  and  are cluster-signature and cluster-site interaction effects 

to be inferred, ,  and  are elements of the model design matrix , and  represents 

measurement noise. We note that for each cluster  we have multiple measurement replicates of 

across signatures and sites. This formulation is used to fit a GLM of major cell types (Fig. 2), as well 

as to separately fit GLMs of cluster composition of cell states within each major cell type superset 

(cancer cells, Fig. 4; T cells, Figs. 3,5; myeloid cells, Figs. 3,5). 

To model the abundance of major cell types in scRNA data from CD45+ and CD45- samples, the 

GLM includes a covariate for CD45+/- flow sorting with additional fixed-effect sorting coefficients  

and additional cluster-sorting interactions  to be inferred, plus an additional element  in the 

model design matrix (Fig. 2F). Similarly, GLMs for H&E and mpIF data account for differences in cell 

type abundance observed in the tumor and stroma regions, incorporating a covariate for the tumor 

or stroma region counts with additional fixed-effect region coefficients  and additional cluster-

region coefficients  to be inferred, plus an additional element  in the model design matrix 

(Fig. 2F). 

Bulk whole genome sequencing 

Alignment 

Sequencing reads were aligned to the human genome reference GRCh37 (hg19) using the Burrows–

Wheeler Aligner (BWA-MEM) v0.7.17-r1188 (https://sourceforge.net/projects/bio-bwa/). 

SNVs and indels 

Single nucleotide variant (SNV) and indels were called using mutationSeq (version 4.3.8; model 

v4.1.2.npz) available at https://github.com/shahcompbio/mutationseq. We also used Strelka (version 

2.8.2) with default parameter settings to identify somatic SNVs and indels 51. Both SNVs and indels 

were then annotated for variant effects and gene-coding status using SnpEff4 (version 5.0e). We 

identified a set of high confidence SNVs by taking the intersection of the high probability calls 

predicted from mutationSeq (with probability ≥ 0.9) and the somatic SNVs predicted from Strelka. 
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The high confidence set of SNVs were further filtered by removing the positions that fell within either 

of the following regions: (i) the UCSC Genome Browser blacklists (Duke and DAC), and (ii) defined 

in the ’CRG Alignability 36mer track’ with more than two nucleotide mismatches, requiring a 36-

nucleotide fragment to be unique in the genome even after allowing for two differing nucleotides. 

Post processing on this set of high confidence SNVs and somatic indels from Strelka involved 

removing the known variants (both SNVs and indels) that were obtained from the 1000 Genomes 

Project (release 20130502) and dbSNP (version dbsnp 142.human 9606). The set of high confidence 

somatic SNVs and indels passing the above filters were then used in feature computation for 

mutational signature analysis, and high confidence somatic SNVs were also used for neoantigen 

prediction. 

Rearrangements 

Rearrangement breakpoints were predicted using lumpy (version 0.2.12) 52 executed by SpeedSeq 

version 0.1.08 53, and destruct (version 0.4.18) derived from nFuse 54, available at 

https://github.com/amcpherson/destruct. In brief, destruct extracted discordant and non-mapping 

reads from BAM files and realigned the reads using a seed-and-extend strategy. Split alignment 

across a putative breakpoint was attempted for reads that did not fully align to a single locus. 

Discordant alignments were clustered according to the likelihood they were produced from the same 

breakpoint. Multiple mapped reads were assigned to a single mapping location using previously 

described methods 55. Finally, heuristic filters removed predicted breakpoints with poor discordant 

read coverage of sequence flanking predicted breakpoints. 

We applied a stringent 3-step filtering criteria to identify high confidence breakpoint calls for 

downstream analysis, as follows: 

Step 1: Breakpoints that were predicted by both algorithms, lumpy and destruct, were taken. 

Step 2: We removed (i) the breakpoints from the poor mappability regions, (ii) events with break 

distance ≤30 bp, (iii) breakpoints annotated as deletion with breakpoints size <1,000 bp. 

Furthermore, only high confidence breakpoints that had at least five supporting reads in tumor and 

no read support in the matched normal sample were used in the analysis. The breakpoints were 

further filtered by removing the positions in either of the following regions: (i) UCSC Genome Browser 

blacklists (Duke and DAC), and (ii) defined in the ’CRG Alignability 36mer track’ with more than two 

nucleotide mismatches, requiring a 36-nucleotide fragment to be unique in the genome even after 

allowing for two differing nucleotides. 

Step 3: Predictions with small break distance and low number of supporting reads in tumor samples 

were excluded. 
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Myriad HRD test 

We used a commercial assay (Myriad Genetics ‘myChoice CDx’) to test for genome-wide LOH, the 

number of chromosomal breakpoints in large scale state transitions and telomeric allelic imbalance. 

If the resulting HRD score is greater than 42 the sample was deemed HR-deficient. 

Targeted sequencing (MSK-IMPACT) 

Genomic DNA isolated from FFPE tumor tissue and matched normal blood was subjected to 

hybridization capture and sequenced with deep coverage (700x) 56. Variant calling for the MSK-

IMPACT gene panel and copy number analysis was performed using the MSK-IMPACT clinical 

pipeline (https://github.com/mskcc/Innovation-IMPACT-Pipeline). 

Mutational signatures 

We analyzed mutational signatures by integrating point mutations and structural variations detected 

by bulk whole genome sequencing in a unified probabilistic approach called multi-modal correlated 

topic models (MMCTM) 11. MMCTM analysis enables robust determination of mutational signatures, 

their correlation structure and the delineation of sub-groupings on the basis of point mutation 

signatures 57 and structural variations. 

We estimated signature probabilities for bulk WGS samples in the SPECTRUM cohort (n=21) using 

the MMCTM, based on SNV and SV signatures inferred from HGSOC (n=170) and triple-negative 

breast cancer (n=139) bulk whole genomes (total n=309) (Fig. S4A). By clustering the SPECTRUM 

cohort samples together with the 309 HGSOC and TNBC samples using UMAP and HDBSCAN 58, 

we assigned the 21 SPECTRUM samples into one of 9 strata defined solely by SNV and SV 

signature probabilities. These strata include those with samples enriched for: i) BRCA1-associated 

homologous recombination deficient (HRD) point mutation signatures accompanied by tandem 

duplications (HRD-Dup), ii) BRCA2-associated HRD point mutation signatures accompanied by 

interstitial deletions (HRD-Del), iii) CDK12-associated tandem duplications (TD) and iv) foldback-

inversions mediated by the breakage-fusion bridge process (FBI) (Fig. S4A). These strata are 

associated with distinct prognostic profiles under standard of care treatment 12. 

Mutational signatures for cases without bulk WGS data were assigned based on gene-level 

mutations in MSK-IMPACT, based on the presence of BRCA1 (HRD-Dup), BRCA2 (HRD-Del) and 

CDK12 (TD) loss-of-function mutations or homozygous deletions, and CCNE1 amplifications (FBI). 

Additionally, cases with Myriad Genetics ‘myChoice CDx’ data were labelled as HRD-Other based 

on a positive test score. 

Consensus mutational signatures were preferentially derived based on: i) MMCTM signatures 

derived from bulk WGS, ii) gene-level annotations in MSK-IMPACT, and iii) Myriad ‘myChoice CDx’ 
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test results. Mutational signatures for two cases without other informative data (patients 037 and 

112) were resolved based on single-cell whole genome sequencing. 

Neoantigen prediction 

To predict the peptide binding affinity of neoantigens in silico using tumor and matched normal WGS 

samples (n=21), candidate nonsynonymous SNVs were used to generate a list of peptides of amino 

acid length 8, 9, 10 and 11. The binding affinity of each mutant peptide and its corresponding wildtype 

peptide to the patient’s germline HLA alleles were predicted using NetMHCpan v4.1 in pVACtools 
64. Peptides with inferred mutant binding affinities below 1,000 nM are defined as neoantigens. 

HLA loss of heterozygosity 

To detect allele-specific copy number loss of heterozygosity (LOH) of the HLA locus in single cells 

profiled by scRNA-seq, we inferred allele-specific alterations in chromosome arm 6p which harbors 

HLA class I and II genes using schnapps 59. We first called germline heterozygous SNPs in the 

scRNA-seq tumor data using cellSNP 60. As input, we used the set of heterozygous SNPs identified 

in the corresponding normal WGS dataset for each sample. The liftover script provided in cellSNP 

was used to lift over SNP coordinates from the GRCh37 (hg19) to the GRCh38 reference genome. 

Following genotyping, we aggregated SNP counts across all cells and defined the B allele as the 

allele with lowest allele frequency for each SNP. As SNP counts are very sparse in scRNA-seq, we 

then aggregated cell-level counts of the B-allele across chromosome arms in order to compute the 

BAF for each arm in each cell. We then generated a cell by chromosome arm BAF matrix and 

incorporated this into the Seurat gene expression objects. To assign allelic imbalance states 

(balanced, imbalanced, LOH) to chromosome arms in each cell we used the mean BAF of each arm 

per cell as follows: balanced (BAF ≥ 0.35); imbalanced (0.15 ≤ BAF < 0.35); LOH (BAF < 0.15). 

Documentation and code is available at https://shahcompbio.github.io/schnapps/. 

To validate our observations of allele-specific alterations in chromosome arm 6p in relation to the 

HLA locus, we detected gene-level HLA class I LOH from tumor and matched normal MSK-IMPACT 

data using LOHHLA (McGranahan et al., 2017). Tumor samples from 1,111 cases in the MSK-

IMPACT cohort with HGSOC histology were selected, based on a HGSOC or HGSFT OncoTree 

classification 61. This cohort is a superset that includes samples from MSK SPECTRUM patients. 

Patient HLA references were built from tumor and normal MSK-IMPACT reads using Polysolver v4 
62. Tumor purity and ploidy were estimated using FACETS 63 and used for subsequent HLA LOH 

analysis. HLA LOH was called for an allele in the tumor sample using LOHHLA. LOH was observed 

for each HLA gene if the estimated copy number was < 0.2 and the significance of allelic imbalance 

was P < 0.01, which tests for pairwise differences in logR values between the two HLA homologs 

(paired t-test). 
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Digital histopathology 

We built a training dataset of cellular annotations of scanned H&E images. Expert delineation and 

quantification of cell and tissue types present in the H&E slides was carried out on MSK Slide Viewer, 

a computational pathology interface for review and annotation of histopathology images. Nuclear 

segmentation was carried out using StarDist, a method for nuclear detection based on the U-Net 

neural network architecture 65,66. Membrane segmentation was approximated using a cell expansion 

of 3 μm of the nuclear boundary. The training dataset encompasses a set of 61 slides from a 

representative set of patients and sites. To classify regions of tumor, stroma, vasculature and 

necrosis, we trained an ANN-based pixel classifier using QuPath v0.2.3 65, which operates on higher-

order pixel features over multiple channels and scales within the image. In addition, lymphocytes 

and “other” cells were annotated in 19 of these slides by a researcher using MSK Slide Viewer. After 

importing these annotations into QuPath, along with cellular segmentations and feature vectors 

generated from StarDist, we then trained an ANN-based cellular classifier which operates over 

cellular measurements to identify lymphocytes. We then applied these models for inference across 

whole-slide H&E images over the larger cohort, and used these model outputs to compute statistics 

on lymphocytic densities and other spatially-derived measurements. 

Multiplexed immunofluorescence 

We carried out nuclear segmentation based on DAPI intensity using the watershed algorithm in 

QuPath v0.2.3 65, setting a minimum DAPI threshold of 1 a.u. with an expected nucleus area ranging 

between 5 μm2 and 100 μm2. Membrane segmentation was approximated using a cell expansion of 

3 μm of the nuclear boundary. Starting from 1,194 quality-filtered FOVs across 90 tissue samples 

from 35 patients, segmentation yielded a total of 9,257,609 cells. To annotate regions of tumor and 

stroma, we trained a pixel classifier with examples of panCK+ (tumor) and panCK- regions (stroma). 

Following nuclear segmentation, we extracted the pixel intensities per cell for functional markers 

expressed in the cytoplasm (panCK, CD68, CD8, PD1, PDL1) and in the nucleus (TOX) in order to 

define cell types and cell states. All channels were manually thresholded in at least one field of view 

(FOV) per slide, and marker positivity was determined by setting these thresholds on the mean pixel 

intensity. Segmented objects which were double- or triple-positive for multiple cell type markers 

(panCK, CD68, CD8) were counted as separate cells, yielding a total of 10,663,919 single cells. 

Marker assignments were used to define cell states of epithelial cells (panCK+PDL1-, panCK+PDL1+), 

macrophages (CD68+PDL1-, CD68+PDL1+) and CD8+ T cells (CD8+PD1-TOX-, CD8+PD1+TOX-, 

CD8+PD1+TOX+). 

Analysis of spatial topology comprised estimation of spatial densities and inter-cellular nearest-

neighbor distances. Spatial density estimates as a function of distance to the tumor-stroma boundary 

were obtained by aggregating cell counts within 10 μm distance bands from the boundary in each 
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FOV, grouped across FOVs, and normalized by the total number of cells for a given phenotype of 

interest. Error bars were calculated as the standard error of the probability p to observe a given 

phenotype as , where N is the total number of cells in that distance band. Inter-cellular 
distances between nearest neighbors are calculated using the distance matrix rij between cells i and 

j, where the value of the (i, j) element in the matrix is the radial distance from cell i to cell j. Once the 

per-cell nearest neighbors have been computed, the summary statistics over nearest neighbor 

distances per phenotype can be estimated. Proximity counts between phenotypes within a fixed 

radius R can also be determined based on the per-cell nearest neighbors. 
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FIGURES 

Figure 1 Multi-region, multi-modal profiling of malignant cells and the TME. 

Figure 2 The site-specific tumor microenvironment of HGSOC at single-cell resolution. 

Figure 3 Adnexal samples exhibit increased T cell dysfunction and are enriched for 
immunosuppressive macrophages. 

Figure 4 HR deficiency alters the landscape of cancer cell signaling states. 

Figure 5  HR deficiency is associated with increased antigen burden and dysfunctional T cell 
phenotypes. 

Figure 6 HR deficiency is associated with tumor immunogenicity and immune evasion. 

Figure 7 Spatial topology and site composition influences malignant cell selection and immune 
pruning. 

Figure S1  Prevalence of germline and somatic mutations. Related to Fig. 1. 

Figure S2 Quality control of scRNA-seq data and cell type abundance profiled by scRNA-seq, 
H&E and mpIF. Related to Fig. 2. 

Figure S3 Anatomic site specificity and marker gene expression of T, NK and cell myeloid 
phenotypes. Related to Fig. 3. 

Figure S4 Mutational signatures and their impact on cancer cell-intrinsic signaling. Related to Fig. 
4. 

Figure S5 HR deficiency and tumor immunogenicity impact T cell phenotypes. Related to Fig. 5. 

Figure S6 Intratumor heterogeneity of HLA loss of heterozygosity and its impact on immune 
phenotypes. Related to Fig. 6. 

Figure S7 Spatial topology of interactions between T cells and macrophages. Related to Fig. 7. 
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Figure 1. Multi-region, multi-modal profiling of malignant cells and the TME 

A) Schematic of the MSK SPECTRUM specimen collection workflow including surgery, single-cell 

suspensions for scRNA-seq and biobanking of snap-frozen and FFPE samples. B) Cohort overview. 

Top panel: Oncoprint of selected somatic and germline mutations per patient and cohort-wide 

prevalence by MSK-IMPACT. Patient data include mutational signature subtype, patient age, staging 

following FIGO Ovarian Cancer Staging guidelines, and type of surgical procedure. Bottom panel: 

Sample and data inventory indicating number of co-registered multi-site datasets: single-cell RNA 

sequencing, H&E whole-slide images, multiplexed immunofluorescence, whole genome sequencing 

and targeted panel sequencing (MSK-IMPACT). 
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Figure 2. The site-specific tumor microenvironment of HGSOC at single-cell resolution 

A) UMAP of cells profiled by scRNA-seq colored by patient. Cell types as defined by CellAssign 67 

are highlighted with grey outlines. B) Number of cells identified per cell type next to UMAP colored 

by cell type. C) Patient specificity per cell type computed as the number of observed neighboring 

cells coming from the same patient over the number of expected neighboring cells coming from the 

same patient with zero indicating a uniform distribution. D) Upper: UMAP colored by TCGA 

transcriptional subtype. Lower: Fraction of cells assigned to a given TCGA transcriptional subtype 

per cell type. Columns in the heatmap add up to 100%. E) Number of cells profiled per tumor site 

next to UMAP colored by tumor site. F) Site-specific enrichment of cell type composition in scRNA, 

H&E and mpIF data fitted using a generalized linear model (GLM). GLMs for H&E and mpIF data 

are separated by tumor and stroma regions. Color gradient indicates log2 odds ratios (enrichment: 

red, depletion: blue) and sizes indicate the BH-corrected -log10(p value). G) Cell type composition 

based on scRNA for CD45- samples (left) and CD45+ samples (right). Upper panels: Absolute and 

relative cell type numbers. Middle panels: Box plot distributions of sample ranks with respect to tumor 

site. Lower panels: Dot plot of sample ranks grouped by patient. Colored arrows indicate enrichment 

(red) or depletion (blue) of ovarian cancer cells (left) and T cells (right) in non-adnexal over adnexal 

samples. H) Cell type composition based on H&E with lymphocyte ranks in tumor-rich (left) and 

stroma-rich (right) compartments. Panels analogous to Fig. 2G. I) Cell type composition based on 

mpIF with CD8+ T cell ranks in tumor-rich (left) and stroma-rich (right) compartments. Panels 

analogous to Fig. 2G. *P<0.05, **P<0.01. 
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Figure 3. Adnexal samples exhibit increased T cell dysfunction and are enriched for 
immunosuppressive macrophages 

A) Upper: UMAP of T and NK cell clusters profiled by scRNA-seq. Clusters are colored and 

numbered to reference cluster labels in B). Lower: Kernel density estimates in UMAP space for 

adnexal-enriched (red) over non-adnexal enriched (blue) clusters. B) Heatmap of PROGENy 

signaling pathway activity scores (left) and T cell state module scores (middle) across CD4+ T, CD8+ 

T, γδT, NK and Cycling cell clusters. Dot plot panel (right) shows site-specific enrichment of T/NK 

cell clusters using GLM. Color gradient indicates log2 odds ratios (enrichment: red, depletion: blue) 

and sizes indicate the BH-corrected -log10(p value). C) T/NK cell cluster composition based on 

scRNA ranked by fraction of T naive/memory clusters (left) or fraction of T dysfunctional clusters 

(right). Panels analogous to Fig. 2G-I. D) Left: Diffusion maps of the subset of CD8+ T cells profiled 

by scRNA-seq, colored by CD8+ T cell cluster. Right: Relative expression of genes marking CD8+ T 

cell clusters in diffusion space. E) Scaled module scores with respect to pseudotime inferred from 

diffusion components. F) Analogous to E), separated out by tumor site. G) UMAPs of dendritic cells 

and mast cells (left) and macrophages (right) profiled by scRNA-seq, colored and numbered by 

cluster as in H). H) Site-specific enrichment of myeloid cell clusters using GLM, analogous to B). I) 
Differences in kernel density estimates in UMAP space for macrophages in adnexal enriched (red) 

over non-adnexal enriched (blue) samples. J) Myeloid cell cluster composition panels analogous to 

C). Ranked by fraction of dendritic cells (left), M1.S1008 cells (middle) and M2.SELENOP cells 

(right). **P<0.01, ***P<0.001. 
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Figure 4. HR deficiency alters the landscape of cancer cell signaling states 

A) Left: UMAP of epithelial cells colored by cluster. Clusters are numbered to reference cluster labels 

in heatmap. Right: Heatmap of scaled marker gene expression (averaged per cluster), showing 

differentially expressed genes in rows and clusters in columns. Top 2 genes per cluster are 

highlighted. B) Left: Heatmap of average signaling pathway activity scores. Right: UMAP colored by 

signaling pathway activity scores of interest. C) Relative kernel densities showing enrichment (red) 

and depletion (blue) in UMAP space for a given mutational signature. D) Left: Estimated effects of 

mutational signature on cancer cell cluster composition based on GLM. Color gradient indicates log2 

odds ratios (enrichment: red, depletion: blue) and sizes indicate the BH-corrected -log10(p value). 

Right: Epithelial cluster compositions ranked by Cancer.cell.3 fractions. Box plot panels show 

distributions of scaled sample ranks by mutational signature. E) Distributions of signaling pathway 

activity scores with respect to mutational signature. F) Left: Heatmap of average HLA gene 

expression across clusters. Right: Distributions of HLA gene expression with respect to mutational 

signature. G) CD274 (PDL1) gene expression in UMAP space (left) and as box plot distributions 

(right) with respect to cluster and mutational signature respectively. *P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001. Brackets: Wilcoxon pairwise comparisons.  
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Figure 5. HR deficiency is associated with increased antigen burden and dysfunctional T cell 
phenotypes 

A) Neoantigen burden detected by whole genome sequencing. Bar graphs indicate the total count 

per tumor sample of neoepitopes exhibiting mutant binding affinity of <1,000 nM. B) Pairwise 

comparisons of neoantigen burden with respect to HR status and mutational signature. C) 
Differences in kernel density estimates in UMAP space for HRD (red) over HRP (blue) samples. D) 
Estimated effects of mutational signature on T and NK cell cluster composition based on GLM. Color 

gradient indicates log2 odds ratios (enrichment: red, depletion: blue) and sizes indicate the BH-

corrected -log10(p value). E) Distributions of CD8+ T cell state module scores and JAK-STAT 

signaling pathway activity scores with respect to mutational signature. F) Scaled module scores 

within the subset of CD8+ T cells with respect to pseudotime and mutational signature. G) Correlation 

of JAK-STAT signaling scores in CD8+ T cells in CD45+ samples and scores in cancer cells in 

matched CD45- samples. H) Spatial density of CD8+ T cell phenotypes as a function of distance to 

the tumor-stroma interface, grouped by mutational signature (Methods). I) Estimated effects of 

mutational signature on myeloid cell cluster composition using GLM, analogous to D). J) Fraction of 

macrophages expressing CD274 (PDL1) and CXCL10 and JAK-STAT pathway activity with respect 

to mutational signature. K) Left: Fraction of dendritic cells expressing interferon regulating factors. 

Right: Module score of all IFN regulators. L) Correlation of IFN regulators expressed in dendritic cells 

with JAK-STAT signaling scores in cancer cells, T cells and macrophages. *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001. Brackets: Wilcoxon pairwise comparisons. 
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Figure 6. HR deficiency is associated with tumor immunogenicity and immune evasion 

A) Density distribution of 6p BAF per cell in cancer cells compared to non-malignant cells, ranked 

by median 6p BAF per cell type (left panel). Allelic imbalance in 6p BAF across cancer cell clusters 

(right panel). White vertical lines indicate the median 6p BAF. B) UMAP of cancer cells profiled by 

scRNA-seq colored by BAF of chromosome arm 6p. C) Left: Percentage of cancer cells with LOH in 

chromosome 6p per patient. Right: Site- and clone-specific percentage of 6p LOH in cancer cells. 

D) Distributions over percentage of 6p LOH in cancer cells per sample as a function of mutational 

signature subtype. E) Percentage of patients with HLA LOH of any HLA class I gene in the MSK-

IMPACT HGSOC cohort (n=1,111 patients) for BRCA1, BRCA2, CDK12 mutant and CCNE1 

amplified tumors, mapping to HRD-Dup, HRD-Del, TD, and FBI signatures respectively. Error bars 

are 95% binomial confidence intervals F) Normalized density contours of 6p BAF and JAK-STAT 

pathway activity in cancer cells comparing HR status and mutational signature. G) Fraction of naive 

and dysfunctional T cells as a function of clonality of 6p LOH in cancer cells. Percentage allelic loss 

of chromosome 6p arm in cancer cells per site is used to bin samples according to their 6p LOH 

status (heterozygous: % 6p LOH < 20%, clonal LOH: % 6p LOH > 80%). In panels A)-F), only BAF 

estimates from cells with ≥10 reads aligning to chromosome arm 6p are considered, and allelic 

imbalance states are assigned per cell based on the mean 6p BAF per cell as balanced (BAF ≥ 

0.35), imbalanced (0.15 ≤ BAF < 0.35) or LOH (BAF < 0.15) (Methods). *P<0.05. Brackets: Wilcoxon 

pairwise comparisons.  
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Figure 7. Spatial topology and site composition influences malignant cell selection and 
immune pruning 

A) Interaction network diagrams depicting ligand-receptor co-expression across cell types faceted 

by mutational signature. Nodes show mean PD1 (PDCD1) expression in CD4+ T, CD8+ T and NK 

clusters, and mean PDL1 (CD274) expression in cancer cell and myeloid cell clusters in scRNA data, 

depicted by circle size. Arrows join ligand-expressing sender clusters to receptor-expressing receiver 

clusters and are weighted by frequency of co-expression of PD1 and PDL1 in sender and receiver 

clusters. B) Representative mpIF fields of view highlighting common features of the tumor 

microenvironment of mutational signature subtypes. First column: Raw pseudocolor images; second 

column: cellular phenotypes of segmented cells; remaining columns: proximity of pairs of 

phenotypes, highlighting ligand-receptor interactions between PDL1 and PD1 with color-coded 

phenotypes, and edges depicting distances. Only edges joining pairs of cells within 250 μm are 

shown. C) Proximity analysis between CD8+ T cell phenotypes and panCK+PDL1+ cancer cells based 

on mpIF data, ranking samples by the fraction of CD8+PD1-TOX- T cells (left), CD8+PD1+TOX- T cells 

(middle) or CD8+PD1+TOX+ T cells (right) with ≥1 panCK+PDL1+ cell within 30 μm.  Upper panels: 

absolute abundance of CD8+ T cell states; middle panels: fraction of CD8+ T cell phenotypes with ≥1 

panCK+PDL1+ cell within 30 μm; bottom panels: box plot distributions of sample ranks with respect 

to mutational signature. D and E) Nearest-neighbor distance from CD8+ T cell phenotypes to 

panCK+PDL1+ cancer cells aggregated across fields of view, grouped by mutational signature 

subtype. Vertical lines indicate the median nearest-neighbor distance.  
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Figure S1. Prevalence of germline and somatic mutations, related to Fig. 1 

A) Recurrent alterations in oncogenes and tumor-suppressor genes in the MSK SPECTRUM cohort, 

detected by MSK-IMPACT. Bars indicate the percentage of cases harboring different classes of 

genomic alterations. Mutation types are broken down into missense variants, truncating variants 

(nonsense mutations, frameshift indels, splice site variants) and inframe variants. Mutations shown 

are somatic except those highlighted as germline variants. Labels on the top indicate the mutational 

signature subtype, patient age, staging, and type of surgical procedure. Patients were staged 

following FIGO Ovarian Cancer Staging guidelines. Patients in the neoadjuvant setting were given 

a clinical stage based on pre-treatment imaging, and patients that received up-front surgery (staging 

or primary debulking) were given a pathological stage based on the specimens collected. 
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Figure S2. Quality control of scRNA-seq data and cell type abundance profiled by scRNA-
seq, H&E and mpIF, related to Fig. 2 

A) UMAPs of cells profiled by scRNA-seq colored by different QC metrics: log2 transformed number 

of UMIs and genes, fraction of mitochondrial reads, cell cycle phase. B) Distributions of QC metrics 

per cell type. C) Color legend for D)-F). D) Absolute and relative cell type compositions and TCGA 

subtype compositions of CD45- (top) and CD45+ (bottom) sorted samples based on scRNA, 

separated by patient, ranked by fraction of ovarian cancer cells and T cells respectively. E) Absolute 

and relative cell type compositions based on H&E, ranked by lymphocyte fractions for tumor-rich 

(top) and stroma-rich (bottom) compartments. Panels analogous to D). F) Absolute and relative cell 

type compositions based on mpIF, ranked by CD8+ T cell fractions in tumor-rich (top) and stroma-

rich (bottom) compartments. Panels analogous to D). 
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Figure S3. Anatomic site specificity and marker gene expression of T, NK and cell myeloid 
phenotypes, related to Fig. 3 

A) Heatmap of scaled marker gene expression (averaged per cluster) for T and NK cell clusters, 

showing differentially expressed genes in columns and clusters in rows. Genes are grouped by 

cluster. Top 2 genes per cluster are highlighted. B) Site-specific enrichment of coarse-grained T/NK 

cell clusters using GLM. Color gradient indicates log2 odds ratios and sizes indicate the BH-corrected 

-log10(p value). C) Marker gene expression heatmap for myeloid cells (dendritic cells, mast cells and 

macrophage clusters). D) Site-specific enrichment of coarse-grained myeloid cell clusters using GLM 

analogous to B). E) UMAPs of T and NK cells showing scaled expression of marker genes of interest. 

F) UMAPs of macrophage cells showing scaled expression of marker genes of interest. G) Genes 

of interest in subsets of CD8+ T cells along pseudotime axis.  
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Figure S4. Mutational signatures and their impact on cancer cell-intrinsic signaling, related 
to Fig. 4  

A) Heatmap of standardized probabilities for genomic features used to infer mutational signature 

subtypes from whole genome sequencing. Patients (in columns) are grouped by mutational 

signature. Features used for inference (in rows) are grouped into single nucleotide variant (SNV) 

and structural variation (SV) features. SV features include duplications (S-Dup, M-Dup, L-Dup), 

deletions (S-Del, L-Del), unclustered and clustered foldback inversions (FBI/Inv, Clust-FBI), 

clustered rearrangements (Clust-SV) and translocations (Tr). Bar graphs indicate total number of 

SNVs and SVs per tumor sample. B) Single cell distributions of PROGENy pathway activity per 

patient. C) Single cell distributions of PROGENy pathway activity per cluster (top subpanel) and HR 

status (bottom subpanel). D) Single cell distributions of HLA class I and class II gene expression per 

patient. E) Single cell distributions of HLA gene expression per cluster (top subpanel) and HR status 

(bottom subpanel). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Brackets: Wilcoxon pairwise 

comparisons. 
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Figure S5. HR deficiency and tumor immunogenicity impact T cell phenotypes, related to 
Fig. 5 

A) Single cell distributions of T cell module scores per patient. B) Single cell distributions of T cell 

module scores as a function of patient age groups. C) Signature-specific enrichment of coarse-

grained T/NK cell clusters using GLM. Color gradient indicates log2 odds ratios and sizes indicate 

the BH-corrected -log10(p value). D) Spatial density of cancer cells, CD8+ T cells and macrophages 

as a function of distance to the tumor-stroma interface, grouped by mutational signature. Counts 

within 10 μm distance bands are grouped across FOVs from each mutational signature subtype, and 

are normalized by the total number of cells. E) Signature-specific enrichment of coarse-grained 

myeloid cell clusters using GLM analogous to C). *P<0.05. Brackets: Wilcoxon pairwise 

comparisons. 
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Figure S6. Intratumor heterogeneity of HLA loss of heterozygosity and its impact on immune 
phenotypes, related to Fig. 6 

A) Allelic state of chromosome arm 6p. Allelic imbalance states per cell are assigned based on the 

mean 6p BAF per cell as balanced (BAF ≥ 0.35), imbalanced (0.15 ≤ BAF < 0.35) or LOH (BAF < 

0.15) (Methods). B) UMAPs of cancer cells profiled by scRNA-seq from representative patients of 

each mutational subtype, highlighting intratumor heterogeneity in 6p B-allele frequency (BAF). From 

left to right, UMAPs are colored by 6p BAF, tumor site and tumor clone. Clones are defined using 

patient-level Louvain clustering of cancer cells. Density plots show site-specific and clone-specific 

6p BAF distributions. Only sites with ≥10 cancer cells are shown. C) Percentage of patients with LOH 

of HLA class I genes in the MSK-IMPACT HGSOC cohort (n=1,111 patients). D) Validation of median 

6p BAF estimates in cancer cells profiled by scRNA-seq using HLA LOH status in site-matched MSK-

IMPACT samples. 27 out of 41 patients profiled by scRNA-seq have site-matched MSK-IMPACT 

data. E) Normalized density contours of 6p BAF and JAK-STAT pathway activity in cancer cells for 

each patient. F) Fraction of M1 macrophages, M2 macrophages and dendritic cells as a function of 

clonality of 6p LOH in cancer cells. Percentage allelic loss of chromosome 6p arm in cancer cells 

per site is used to bin samples according to their 6p LOH status (heterozygous: % 6p LOH < 20%, 

clonal LOH: % 6p LOH > 80%). In panels D)-F), only BAF estimates from cells with ≥10 reads aligning 

to chromosome arm 6p are considered, and allelic imbalance states are assigned per cell based on 

the mean 6p BAF per cell as balanced (BAF ≥ 0.35), imbalanced (0.15 ≤ BAF < 0.35) or LOH (BAF 

< 0.15) (Methods). 
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Figure S7. Spatial topology of interactions between T cells and macrophages, related to Fig. 7 

A) Proximity analysis between CD8+ T cell phenotypes and CD68+PDL1+ macrophages based on 

mpIF data, ranking samples by the fraction of CD8+PD1-TOX- T cells (left), CD8+PD1+TOX- T cells 

(middle) or fraction of CD8+PD1+TOX+ T cells (right) with ≥1 CD68+PDL1+ cell within 30 μm. Vertically 

aligned subpanels share the same x-axis. Upper panels: Bar graphs show absolute abundance of 

CD8+ T cell states. Middle panels: Bar graphs show the fraction of CD8+ T cell phenotypes with ≥1 

CD68+PDL1+ cell within 30 μm. Bottom panels: Box plot distributions of sample ranks with respect 

to mutational signature. B and C) Nearest-neighbor distance from CD8+ T cell phenotypes to 

CD68+PDL1+ macrophages aggregated across fields of view, grouped by mutational signature 

subtype. Vertical lines indicate the median nearest-neighbor distance.  
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TABLES 

Table S1 Clinical overview of the MSK SPECTRUM patient cohort. Related to Figure 1. 

Table S2 Sample inventory. Metadata associated with scRNA-seq, H&E, mpIF, bulk tumor and 
normal WGS, Myriad HRD tests, and tumor and normal MSK-IMPACT datasets. 
Related to Figure 1. 

Table S3 Cell type and cell subtype markers. Clusters are annotated based on marker genes 
identified in differential gene expression analysis. Related to Figures 2-7. 

Table S4 Mutational signature proportions and mutational subtype assignments from WGS 
datasets for SPECTRUM patients. Related to Figures 1-7. 

Table S5 Antibodies and staining conditions for multiplexed immunofluorescence. Related to 
Figures 2 and 7. 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.08.24.454519doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.454519
http://creativecommons.org/licenses/by-nd/4.0/

