

1 **Multi-organ analysis of low-level somatic mosaicism reveals stage- and**
2 **tissue-specific mutational features in human development**

3 Hyeonju Son^{1,†}, Ja Hye Kim^{2,†}, Il Bin Kim^{2,3}, Myeong-Heui Kim^{2,4}, Nam Suk Sim^{2,5}, Dong-
4 Seok Kim⁶, Junehawk Lee⁷, Jeong Ho Lee^{2,4,*}, and Sangwoo Kim^{1,*}

5

6 ¹Department of Biomedical Systems Informatics, Graduate School of Medical Science, Brain
7 Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.

8 ²Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science
9 and Technology (KAIST), Daejeon, Republic of Korea.

10 ³Department of Psychiatry, Hanyang University Guri Hospital, Guri, Republic of Korea

11 ⁴SoVarGen Inc., Daejeon, Republic of Korea

12 ⁵Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul,
13 Republic of Korea.

14 ⁶Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of
15 Korea.

16 ⁷Center for Supercomputing Applications, National Institute of Supercomputing and
17 Networking, Korea Institute of Science and Technology Information, Daejeon, Republic of
18 Korea

19

20 [†] These authors are contributed equally to work.

21 * Correspondence should be addressed to:

22 E-mail: jhlee4246@kaist.ac.kr and swkim@yuhs.ac

23 Most somatic mutations arising during normal development present as low-level in single or
24 multiple tissues depending on the developmental stage and affected organs¹⁻⁴. However, it
25 remains unclear how the human developmental stages or mutation-carrying organs affect
26 somatic mutations' features. Here, we performed a systemic and comprehensive analysis of
27 low-level somatic mutations using deep whole-exome sequencing (WES; average read depth:
28 ~500×) of 498 multiple organ tissues with matched controls from 190 individuals. We found
29 that early-stage mutations shared between multiple organs are lower in number but showed
30 higher allele frequencies than late-stage mutations [0.54 vs. 5.83 variants per individual: 6.17%
31 vs. 1.5% variant allele frequency (VAF)] along with less nonsynonymous mutations and
32 lower functional impacts. Additionally, early- and late-stage mutations had unique mutational
33 signatures distinct from tumor-originate mutations. Compared with early-stage mutations
34 presenting a clock-like signature across all studied organs or tissues, late-stage mutations
35 show organ, tissue, and cell-type specificity in mutation count, VAFs, and mutational
36 signatures. In particular, analysis of brain somatic mutations shows bimodal occurrence and
37 temporal-lobe-specific mutational signatures. These findings provide new insight into the
38 features of somatic mosaicism dependent on developmental stages and brain regions.

39

40 Somatic mutations persistently occur in normal cells during the entire human lifetime¹.
41 Although unaccompanied with unregulated proliferation, as seen in cancer, these somatic
42 mutations often present a degree of clonality depending on time and origin. For example,
43 variants in the early stages of development tend to affect multiple organs of different germ
44 layers and show high variant allele frequencies (VAFs), whereas those in later stages localize
45 with low VAFs^{5,6}. Somatic variants that occur after birth are theoretically transient and

46 restricted in a cellular level; however, mutations in stem or progenitor cells⁷ or variants that
47 confer clonal expansion⁸ are persistent and accumulate during a lifetime and manifest a
48 sufficient level of VAFs detectable in bulk-genome sequencing of tissues. Specifically, these
49 tissue-level somatic mutations are crucial for the pathogenicity of non-cancerous or benign
50 diseases, and the magnitude of aberrations is associated with their allele frequencies^{9,10}. For
51 example, mTOR-pathway-activating somatic mutations cause two types of intractable
52 epilepsy (hemimegalencephaly and focal cortical dysplasia) depending on the time of
53 mutation occurrence and VAFs (10–30% of VAFs in hemimegalencephaly, and 1–10% of
54 VAFs in focal cortical dysplasia)¹¹⁻¹³. Despite advances in the genetic identification of
55 specific diseases, it still remains unclear how low-level but clone-forming somatic
56 mosaicism are generally characterized by the time and locations of their occurrence.

57 To address the questions, we performed a comprehensive analysis of low-level
58 somatic mutations found in data from deep whole-exome sequencing (WES) of 498 tissues
59 from 190 individuals (average read depth: ~500×) (**Fig. 1a**). The cohort consisted of multiple
60 organs, including brain ($n=301$), blood ($n=100$), liver ($n=60$), heart ($n=13$), and other
61 peripheral tissues ($n=24$). The 190 individuals included patients with ‘non-tumor’
62 neurological disorders ($n=133$), brain tumors (glioblastoma and ganglioglioma, $n=19$), and
63 non-diseased controls ($n=38$) (**Supplementary Table 1**). This cohort enabled multi-
64 dimensional analysis and specifically a direct comparison with cancer mutations identified
65 from a same analysis procedure.

66 Regarding somatic mutations, we defined and used three different categories in the
67 analysis: early-stage, late-stage, and tumor mutations (**Fig. 1b**). Early-stage mutations were
68 defined as mutations occurring during early embryonic development prior to gastrulation and

69 shared in multiple-organs, whereas late-stage mutations included late embryonic (post-
70 gastrulation) and post-natal somatic mutations restricted in a single organ. Based on the
71 definition, somatic mutation calling was conducted using an ensemble of robust variant
72 callers: Mutect2¹⁴, RePlow¹⁵, and NeuSomatic¹⁶ for 1,034 possible combinations of sample
73 pairs. After strict filtration (**Fig. 1a**) and tests for organ specificity, we detected 103 early- and
74 997 late-stage mutations, as well as 583 tumor mutations. To validate the calls, 114 randomly
75 selected single nucleotide variants (SNVs; ~10% of non-tumor mutations) were sequenced by
76 targeted amplicon sequencing (TASeq) to ultra-high depth (average: 507,856×) and Sanger
77 sequencing. Our call set achieved high precision in both the early-stage (89.47%, 17/19) and
78 late-stage and tumor mutations (90.24%, 74/82) (**Fig. 1c and Supplementary Table 2**). High
79 concordance in VAFs across tissues (Pearson's correlation $r=0.84$; $P=1.00\times10^{-42}$) and
80 between WES and TASeq data ($r=0.61$; $P=1.17\times10^{-48}$) confirmed the confidence of the calls
81 (**Fig. 1d**).

82 Additionally, we compared the quantitative traits of the mutations in terms of the
83 number and allele frequency at different stages. On average, there were 0.54 early- and 5.83
84 late-stage somatic mutations per individual (**Fig. 2a**). These numbers are roughly comparable
85 to those of previous studies, which reported 0.53 shared and 3.15 non-shared somatic
86 mutations in the brain (numbers were normalized to genomic size of 50 Mbp from whole-
87 genome sequencing)^{17,18}. It is possible that a slight increase in the number of late-stage (non-
88 shared) might be due to the inclusion of blood samples, which are known to harbor ~3-fold
89 more mutations than other peripheral tissues⁶. Apparently, the numbers of mutations in
90 normal tissues were substantially lower than those of tumors (30.00 per individual). The
91 overall numbers of the late-stage and tumor mutations positively correlated with age

92 (Pearson's r : late-stage, 0.44; and tumor, 0.4) (**Fig. 2b**). Conversely, we found no correlation
93 between early-stage mutations and age, confirming that these mutations are well confined to
94 the designated period. Regarding indels, 0.047 and 0.68 somatic indels were found in the
95 early- and late-stage per individual, respectively (**Fig. 2a**). The proportion of indels in the
96 early-stage (~8.7%) was slightly lower than that in the late-stage (~11.7%) and tumors
97 (~10.7%). Because indels are more likely to be functionally damaging¹⁹, these results might
98 represent lower tolerance to damaging mutations in the early developmental phase. On the
99 other hand, VAFs of the mutations were higher in the early-stage ($6.17 \pm 3.32\%$) relative to
100 the late-stage ($1.50 \pm 3.29\%$), which is consistent with the general expectation that somatic
101 mutations that arise earlier present higher VAFs (**Fig. 2c**). VAFs of early-stage somatic
102 mutations have been measured in several studies with different criteria for inclusion and
103 presented a diverse range (0.3–55%)^{6,18,20}. Because none of the studies directly observed
104 multi-organ-shared mutations using matched tissue sets from the same individuals, our
105 analysis provides a more realistic distribution of VAFs for mutations occurring before
106 gastrulation. Notably, VAFs of somatic indels in the early-stage were lower than those of
107 somatic SNVs (indels vs. SNVs: 4.00% vs. 6.40%) but higher in the late-stage and tumors
108 (2.75% vs. 1.34% in the late-stage; and 18.47% vs. 14.78% in tumors). The lower VAFs of
109 indels, which represents lower cellular proportion and later occurrence, might be also
110 associated with lower tolerance to damaging mutations in the early-developmental phase.

111 We then conducted mutation-profile analysis to investigate the underlying mutagenic
112 processes (**Fig. 3a–d**). *De novo* signature extraction of the 1,494 somatic SNVs (94 early-
113 stage, 880 late-stage, and 520 tumor SNVs) identified three novel signatures (**Fig. 3a**):
114 signatures A, B1, and B2, all of which exhibited C>T as the major base substitution while

115 showing additional T>C enrichment in signature A. Despite the overall similarity in
116 mutational spectrum, especially between B1 and B2 (cosine similarity: 0.95), the clear
117 distinction shown in the relative contribution to the sample groups confirmed the uniqueness
118 of the signatures (*i.e.*, signatures A, B1, and B2 dominantly contributed to the early-, late-
119 stage, and tumor SNVs, respectively) (**Fig. 3b**). This also implies that somatic mutations
120 from different stages have distinguishing contexts. Mapping of the three signatures to
121 COSMIC Mutational Signatures (v3.1; June 2020)²¹ identified clock-like SNV (SBS1, SBS5,
122 and SBS40), and indel signatures (ID1, ID2, ID5, and ID8) as major components (**Fig. 3c**).
123 We noted that the relative contribution of the two well-known age-related signatures (SBS1
124 and SBS5) was altered from early- to late-stage SNVs (SBS1: 19% to 29%; and SBS5: 78%
125 to 49%). The increased relative portion of SBS1 in late-stage somatic mutations appears to
126 represent active proliferation and clonal expansion during late-embryonic and post-natal or
127 aging periods^{22,23}. Although the etiologies associated with most indel signatures remain
128 unknown, the higher contributions of ID1 and ID2 in early-stage SNVs and ID5 and ID8 in
129 late-stage SNVs were consistent with a previous finding²⁴.

130 Further assessment revealed differences between the early- and late-stage mutations
131 in functional aspects. We found that early-stage mutations showed a lower ratio of non-
132 synonymous to synonymous substitutions (dN/dS) (0.79) than did late-stage mutations (0.94),
133 tumor mutations (0.94), and common germ-line coding variants (0.90; gnomAD Exome) (**Fig.**
134 **3d**), indicating a stronger negative selection²⁵. Additionally, early-stage mutations were less
135 frequently (2.1%) located in trinucleotides with atypical mutability^{26,27} than were late-stage
136 mutations (8.0%), tumor mutations (8.2%), and common germ-line coding variants (9.9%)
137 (**Fig. 3e**). Sites with atypical mutability are more highly mutated in cancer than is expected to

138 occur randomly, indicating their functional significance and driverness in cancer^{27,28}.
139 Furthermore, genes that harbor early-stage mutations were lower in the probability of loss-of-
140 function (LoF) intolerance (pLI score)²⁹ (**Fig. 3f**), indicating that early-stage mutations are
141 more enriched in LoF-tolerant genes. These results collectively implied the strong selective
142 pressure in the early embryonic stage^{30,31} that affects overall mutation characteristics that are
143 less damaging possibly through the rejection of functionally-deleterious mutations.

144 We then investigated the characteristics of late-stage mutations, with a particular focus on
145 diversity among organs and cell types. The numbers of mutations varied substantially by
146 organ, with a smaller number in the brain (0.77 per individual) and higher number in the
147 blood (9.24 per individual) relative to other peripheral organs (average: 1.13 per individual)
148 (**Fig. 4a**). However, the average number of VAFs was inversely proportional, with the highest
149 number in the brain (7.32%) and the lowest in the blood (0.50%) (**Fig. 4b**). Because VAFs
150 generally decrease by the time of occurrence, we speculated that clonal somatic mutations in
151 the brain occur relatively earlier but less frequently than those in the blood and other organs.
152 The number of late-stage somatic mutations and the age of individuals showed a significant
153 positive correlation ($r=0.5$; $p=1.48\times10^{-6}$) in only the blood (**Fig. 4c**), which has been well-
154 documented by post-natal clonal hematopoiesis^{32,33}. Moreover, unsupervised hierarchical
155 clustering of the three signatures (A, B1, and B2) of the late-stage mutations identified that
156 those of the brain primarily comprise signatures A (early-stage) and B2 (tumor), whereas
157 blood mutations are closer to signature B1 (late-stage) and B2 (tumor) (**Fig. 4d**). These
158 results suggest that late-stage somatic mutations in the brain present a bimodal-like
159 occurrence during the embryonic period shortly after gastrulation and the post-natal period
160 accompanied by a tumor-originating mutational signature.

161 We then investigated the bimodal-like characteristics of the late-stage somatic mutations in
162 the brain. First, we assessed the cell-type specificity of the somatic mutations in the brain by
163 selecting two brain samples, which included one (NLE-P-0150) containing an early-stage
164 mutation (5.47% VAFs) and the other (NLE-P-0225) five late-stage mutations (average: 8.00%
165 VAF) (**Fig. 4e**), each of which was sorted by fluorescence-activated nuclei sorting (FANS) to
166 isolate three different cell types: neuronal (NeuN⁺), oligogenic (Olig2⁺), and others (negative).
167 TASEq of the separated cell populations revealed that both early- and late-stage mutations are
168 present in multiple cell lineages, but a large asymmetry of mutation frequencies among cell-
169 types exists in the late-stage mutations (**Fig. 4e**). These findings imply that the late-stage
170 mutations in the brain occur later than the embryonic phase but relatively earlier during
171 development in order to affect multiple lineages. We then subdivided the late-stage brain
172 mutations into temporal and non-temporal areas and analyzed area-specific mutation
173 signatures (**Fig. 4f**). As previously reported, contributions to both areas were mainly from
174 signatures A and B2; however, the degree of contribution of signature B2 was higher in the
175 temporal lobe (70.3%) than non-temporal tissue (25.7%), revealing that the characteristics of
176 somatic mutations in the temporal lobe are closer to those of tumor mutations. We speculated
177 that the tumor-like mutational signatures in the temporal lobe might originate from
178 neurogenesis activity (e.g., dentate gyrus) that confers clonal proliferation, as reported
179 previously³⁴. Furthermore, the strand specificity of the late-stage mutations in blood and
180 tumor mutations showed enrichment of T>C mutations on transcribed strands (**Fig. 4g**).
181 Because transcription coupled repair occurs more frequently with higher transcription levels
182 and this bias is increased in actively replicating templates^{35,36}, we again confirmed that clonal
183 expansion-derived somatic mutations were included in the blood, similar to those in tumors³⁷.

184 In summary, based on a large scale of deep whole exome sequencing data using a total of
185 498 matched sample pairs from multiple organs in 190 individuals, we provided a more
186 detailed picture of low-level but clone-forming somatic mutations, the counts, and
187 characteristics of which are distinguished by time and space. We found that early-stage
188 mutations, which arise prior to gastrulation and are shared in multiple organs, are lower in
189 number and have lower functional impact than late-stage mutations restricted within a single
190 organ. Moreover, we showed that late-stage mutations are associated with human mutational
191 processes in the late-embryonic and post-natal developmental stages but that vary by organ,
192 tissue, and cell lineages. In particular, late-stage mutations in the brain showed a bimodal-like
193 occurrence over developmental stages and asymmetry of mutational features across brain-cell
194 types and regions. Regarding the asymmetry of somatic mutations, asymmetric cell divisions
195 resulting from early cellular bottlenecks of stochastic clonal selection contributed to an
196 uneven variant fraction according to developmental timing^{6,38}. These findings suggest that the
197 VAFs of clone-forming somatic mutations reflect not only the timing of the mutation but also
198 the cell fitness and cell-type specificity for given somatic mutations. Overall, the well-defined
199 characteristics of each mutation group and target tissue according to their developmental
200 period can confer an accurate representation of currently-observable somatic mutations and a
201 better understanding of how they were generated.

202

203

204 **Methods**

205 **Patient samples**

206 The acquired freshly frozen brain and peripheral samples of 24 autism spectrum disorder
207 (ASD) and five non-ASD cases from the National Institute of Child Health & Human
208 Development (Bethesda, MD, USA) included various brain regions, such as the frontal,
209 temporal, occipital, and cerebellar areas. Paired samples with other organs were derived from
210 13 ASD cases and five non-ASD case, and brain samples were obtained from 11 ASD cases.
211 The Stanley Medical Research Institute (Rockville, MD, USA) supplied genomic DNA of
212 brain tissue and other matched organs for 25 non-schizophrenia and 26 schizophrenia cases.
213 Additionally, the Stanley Medical Research Institute provided genomic DNA for brain and
214 matched liver tissues from patients with major depressive disorders. Fresh frozen brain
215 samples of Alzheimer's disease (AD) were provided from the Netherlands Brain Bank
216 (project number Lee-835) for 96 brain and matched blood samples for AD and non-demented
217 control cases, and 15 samples of AD and non-demented control cases were obtained from the
218 Human Brain and Spinal Fluid Resource Center (West Los Angeles Healthcare Center, Los
219 Angeles, CA, USA), which is sponsored by NINDS/NIMH (Bethesda, MD, USA), the
220 National Multiple Sclerosis Society (Raleigh, NC, USA), and the US Department of Veterans
221 Affairs (Bethesda, MD, USA). Fresh frozen samples of lumbosacral lipoma were supplied
222 from the Severance Children's Hospital of Yonsei University College of Medicine (Seoul,
223 Republic of Korea). Bone tissues of non-syndromic craniosynostosis patients were provided
224 from the Severance Hospital of Yonsei University College of Medicine. Subjects with
225 refractory epilepsy, including focal cortical dysplasia and non-lesional epilepsy, and who had

226 undergone epilepsy surgery were enrolled through the Severance Children's Hospital of
227 Yonsei University College of Medicine. Subjects with glioblastoma and ganglioglioma were
228 enrolled from the Severance Hospital of Yonsei University College of Medicine and satisfied
229 diagnostic criteria according to the 2016 World Health Organization Classification of Tumors
230 of the Central Nervous System³⁹. We were provided freshly-frozen samples of resected brain
231 lesions.

232

233 **Deep WES**

234 Genomic DNA was extracted with either the QIAamp mini DNA kit (Qiagen, Hilden,
235 Germany) from freshly frozen brain tissues or the Wizard genomic DNA purification kit
236 (Promega, Madison, WI, USA) from blood according to manufacturer instructions. Each
237 sample was prepared according to Agilent library preparation protocols (Human All Exon 50
238 Mb kit; Agilent Technologies, Santa Clara, CA, USA). Libraries were subjected to paired-end
239 sequencing on an Illumina Hiseq 2000 and 2500 instrument (Illumina, San Diego, CA, USA)
240 according to the manufacturer's instructions) with confidence-mapping quality (mapping
241 quality score ≥ 20 ; base quality score ≥ 20).

242

243 **Data processing and systematic variant calling**

244 We checked the quality of the raw sequencing reads using FastQC⁴⁰ (v.0.11.7) software. The
245 FASTQ-formatted sequencing reads of each sample that passed the quality check were
246 aligned to the human reference genome (build 38; NCBI, Bethesda, MD, USA) using the
247 BWA-MEM⁴¹ algorithm and converted into a BAM file. The initial BAM file was updated
248 with read groups, and duplicate information was excluded as it progressed through the steps

249 using Picard⁴² and GATK⁴³. Additionally, we performed local realignment and base-quality
250 recalibration with GATK tools for each exome. BAM files that successfully underwent all of
251 these steps were then used to measure contamination between samples, with the probability
252 of swapping assessed using NGSCheckMate⁴⁴ software and cross-contamination tested using
253 GATK tools. Vecuum⁴⁵ software was used to check for vector contamination during library
254 construction, and Depth of Coverage (GATK) was used to measure sequencing depths. All
255 processes not described in detail were performed based on the GATK best-practice pipeline.

256

257 Two or more tissue samples from each individual were paired using all-pairs testing.
258 We performed the somatic mutation-detection pipeline (paired mode) with sample pairs as
259 inputs using a three somatic variant caller; Mutect2¹⁴ somatic variant-calling pipeline,
260 excluding the panel of normal creation (SNVs and Indels), RePlow¹⁵ (SNVs), and
261 NeuSomatic¹⁶ with the control of the false detection rate control performed by Varlociraptor⁴⁶
262 (Indels).

263

264 All mutations meeting the following conditions were removed from the initial
265 mutation-detection results in the VCF format: oxoG-induced errors according to the method
266 described by Costello et al.⁴⁷, common single-nucleotide polymorphisms by NCBI dbSNP⁴⁸
267 (build 153), segmental duplication and simple repeat regions according to the UCSC
268 database⁴⁹, a mappability score >0.8 by Umap⁵⁰, and presence of an off-target region⁵¹ whole
269 genome without exome and the untranslated region.

270

271 **Decisions regarding early and late mutations**

272 After the removal of artefacts, somatic mutations with "PASS" results for both Mutect2 and
273 other caller filters (RePlow/NeuSomatic) were classified as late-stage mutations. If the source
274 of the sample was related to a brain tumor, it was separately regarded as a tumor mutation.

275

276 Early-stage mutations were initially categorized as such if the filter result of Mutect2
277 was "normal artifact" or RePlow (for only SNVs) was "normalFilter," respectively.
278 Additionally, these were assigned this category if they were called in Mutect2 only but not in
279 RePlow. After confirming amino acid changes and genomic location, to confirm that the same
280 mutation was detected from each individual, the validity of the mutation was statistically
281 verified using the one-sample proportion test. The VAFs of each mutation were used as a
282 criterion to determine whether the ratio of the 'ref' and 'alt' alleles of the other mutations
283 satisfied the null hypothesis. Common mutations in different samples from each individual
284 were tested, and mutations satisfying the criteria were classified as early-stage mutations.

285

286 **Validation sequencing of candidate mutations using deep-targeted amplicon sequencing
287 or Sanger sequencing**

288 We then performed validation sequencing by randomly selecting mutations from each group.
289 For validation, we used deep-targeted amplicon sequencing or Sanger sequencing of PCR-
290 amplified DNA. Primers for PCR amplification were designed using Primer3 software
291 (<http://bioinfo.ut.ee/primer3-0.4.0/>)⁵². Target regions were amplified by PCR using specific
292 primer sets and high-fidelity PrimeSTAR GXL DNA polymerase (Takara, Shiga, Japan).

293 Sanger sequencing was performed using BigDye Terminator reactions and loaded onto a
294 3730xl DNA analyzer (Applied Biosystems, San Francisco, CA, USA).

295

296 **Bioinformatics analysis**

297 All somatic mutations excluded false positives by validation sequencing were annotated
298 using VEP⁵³ (v.99.0) with “-everything -plugin ExACpLI” options. The results were
299 evaluated using an in-house script to analyze the descriptive statistics of the properties of the
300 basic mutations, effect of each gene, and possible correlations with patient demographics (age,
301 disease, etc.). Non-negative matrix factorization-based novel signature extraction (200
302 iterations) and transcriptional strand-bias analysis were performed using the
303 MutationalPatterns program⁵⁴. The signature and 96-types variant contexts were fitted to
304 clockwise Pan-Cancer Analysis of Whole Genomes (PCAWG) single-base substitution and
305 small insertions and deletions signatures by deconstructSigs⁵⁵, Mutalisk⁵⁶ (date of use: March
306 2020), and YAPSA⁵⁷. Mutability was calculated using NCBI MutaGene^{26,27} (v.0.9.1.0)
307 distributed as a Python package. The maximum-likelihood dN/dS method was applied by
308 dNdScv (Wellcome Sanger Institute, Cambridge, UK)²⁵.

309

310 **Nuclei extraction and FANS**

311 Frozen brain samples were minced using pre-chilled razor blades and one or two drops of
312 lysis buffer [0.2% Triton X-100, 1× protease inhibitor, and 1 mM DTT in 2% bovine serum
313 albumin (BSA) in phosphate-buffered saline]. Lysis buffer (1 mL) was added to the
314 homogenate and mixed by pipetting, after which the lysate was fixed in 1%
315 paraformaldehyde at room temperature for 10 min, and the fixed lysate was quenched with

316 0.125 M glycine at room temperature for 5 min. The homogenate was then washed with
317 suspension buffer (1 mM EDTA and 2% BSA) and filtered with 40- μ M cell strainer. The
318 sample was then incubated with anti-NeuN (mature neuronal marker; 1:1000) and anti-Olig2
319 (oligodendrocyte lineage marker; 1:500) overnight at 4°C, followed by washing with
320 suspension buffer and staining with the secondary antibody for 1 h at 4°C. After washing with
321 suspension buffer, nuclei were passed through a 40- μ M cell strainer and stained with 1 μ g
322 4',6-diamidino-2-phenylindole. Nuclei used to isolate each cell type were analyzed and sorted
323 using a MoFlo Astrios EQ cell sorter (Beckman Coulter, Brea, CA, USA). Nuclei pellets
324 were centrifuged for 10 min at 1500g and processed immediately for gDNA extraction using
325 a QIAamp DNA micro kit (Qiagen) according to manufacturer instructions.

326

327

328 **Acknowledgements**

329 This research was supported by the National Research Foundation of Korea (NRF) grant
330 funded by the Korea government (MSIT) (No. 2019R1A2C2008050 to S. K.), the Suh
331 Kyungbae Foundation (to J.H.L.), and a National Research Foundation of Korea (NRF) grant
332 funded by the Korean Ministry of Science and Information and Communication Technology
333 (ICT) (No. 2019R1A3B2066619 to J.H.L)

334

335 We thank the Netherlands Brain Bank (Lee-835) for Alzheimer and unaffected control cases.,
336 the National Institute of Child Health & Human Development for providing Autism and
337 unaffected control cases, the Stanley Medical Research Institute for the brain and peripheral
338 DNA provided of schizophrenia, major depressive disorders, and unaffected control cases,
339 Seoul National University Hospital, Seoul National University College of Medicine for
340 providing lumbosacral lipoma and non-syndromic craniosynostosis, and Severance Hospital,
341 Yonsei University College of Medicine for providing samples of brain tumor and epilepsy,
342 which were supplied to J.H.L.

343

344 **Author contributions**

345 S.K. and J.H.L designed and initiate the study. H.S. and J.H.K conducted main analysis. H.S.
346 devised analysis pipeline and performed bioinformatics analysis. J.H.K. worked on sample
347 organization, validation sequencing, and FANS. I.B.K, M-H.K., and N.S.S. prepped human
348 tissue samples and performed whole-exome sequencing. D-S.K. performed the epilepsy
349 surgeries, collected patient samples, and managed patient information. J.L. worked on
350 analysis of sequencing data. H.S., J.H.K., J.H.L., and S.K. worked on data interpretation, and
351 wrote the manuscript with input from coauthors. J.H.L and S.K. led the project.

352

353 **Competing interests**

354 J.H.L. is co-founder and CTO of SoVarGen Inc., which seeks to develop new diagnostics and

355 therapeutics for brain disorders. The other authors declare no competing interests.

356

357

358

359 **References**

360 1 Frank, S. A. Evolution in health and medicine Sackler colloquium: Somatic
361 evolutionary genomics: mutations during development cause highly variable genetic
362 mosaicism with risk of cancer and neurodegeneration. *Proceedings of the National
363 Academy of Sciences of the United States of America* **107 Suppl 1**, 1725-1730,
364 doi:10.1073/pnas.0909343106 (2010).

365 2 Freed, D., Stevens, E. L. & Pevsner, J. Somatic mosaicism in the human genome.
366 *Genes (Basel)* **5**, 1064-1094, doi:10.3390/genes5041064 (2014).

367 3 Gajecka, M. Unrevealed mosaicism in the next-generation sequencing era. *Mol Genet
368 Genomics* **291**, 513-530, doi:10.1007/s00438-015-1130-7 (2016).

369 4 Dou, Y., Gold, H. D., Luquette, L. J. & Park, P. J. Detecting Somatic Mutations in
370 Normal Cells. *Trends in genetics : TIG* **34**, 545-557, doi:10.1016/j.tig.2018.04.003
371 (2018).

372 5 Behjati, S. *et al.* Genome sequencing of normal cells reveals developmental lineages
373 and mutational processes. *Nature* **513**, 422-425, doi:10.1038/nature13448 (2014).

374 6 Ju, Y. S. *et al.* Somatic mutations reveal asymmetric cellular dynamics in the early
375 human embryo. *Nature* **543**, 714-718, doi:10.1038/nature21703 (2017).

376 7 Blokzijl, F. *et al.* Tissue-specific mutation accumulation in human adult stem cells
377 during life. *Nature* **538**, 260-264, doi:10.1038/nature19768 (2016).

378 8 Kakiuchi, N. & Ogawa, S. Clonal expansion in non-cancer tissues. *Nature Reviews
379 Cancer* **21**, 239-256, doi:10.1038/s41568-021-00335-3 (2021).

380 9 D'Gama, A. M. & Walsh, C. A. Somatic mosaicism and neurodevelopmental disease.
381 *Nat Neurosci* **21**, 1504-1514, doi:10.1038/s41593-018-0257-3 (2018).

382 10 Mustjoki, S. & Young, N. S. Somatic Mutations in “Benign” Disease. *New England*
383 *Journal of Medicine* **384**, 2039-2052, doi:10.1056/NEJMra2101920 (2021).

384 11 Sim, N. S. *et al.* Precise detection of low-level somatic mutation in resected epilepsy
385 brain tissue. *Acta Neuropathol* **138**, 901-912, doi:10.1007/s00401-019-02052-6
386 (2019).

387 12 Baldassari, S. *et al.* Dissecting the genetic basis of focal cortical dysplasia: a large
388 cohort study. *Acta Neuropathol* **138**, 885-900, doi:10.1007/s00401-019-02061-5
389 (2019).

390 13 D'Gama, A. M. *et al.* Somatic Mutations Activating the mTOR Pathway in Dorsal
391 Telencephalic Progenitors Cause a Continuum of Cortical Dysplasias. *Cell Rep* **21**,
392 3754-3766, doi:10.1016/j.celrep.2017.11.106 (2017).

393 14 Benjamin, D. *et al.* Calling Somatic SNVs and Indels with Mutect2. *bioRxiv*, 861054,
394 doi:10.1101/861054 (2019).

395 15 Kim, J. *et al.* The use of technical replication for detection of low-level somatic
396 mutations in next-generation sequencing. *Nature communications* **10**, 1047,
397 doi:10.1038/s41467-019-09026-y (2019).

398 16 Sahraeian, S. M. E. *et al.* Deep convolutional neural networks for accurate somatic
399 mutation detection. *Nature communications* **10**, 1041, doi:10.1038/s41467-019-
400 09027-x (2019).

401 17 Rodin, R. E. *et al.* The landscape of somatic mutation in cerebral cortex of autistic
402 and neurotypical individuals revealed by ultra-deep whole-genome sequencing. *Nat*
403 *Neurosci* **24**, 176-185, doi:10.1038/s41593-020-00765-6 (2021).

404 18 Breuss, M. W. *et al.* Somatic mosaicism in the mature brain reveals clonal cellular
405 distributions during cortical development. *bioRxiv*, 2020.2008.2010.244814,

406 doi:10.1101/2020.08.10.244814 (2020).

407 19 Mullaney, J. M., Mills, R. E., Pittard, W. S. & Devine, S. E. Small insertions and
408 deletions (INDELs) in human genomes. *Human Molecular Genetics* **19**, R131-R136,
409 doi:10.1093/hmg/ddq400 (2010).

410 20 Bae, T. *et al.* Different mutational rates and mechanisms in human cells at
411 pregastrulation and neurogenesis. *Science (New York, N.Y.)* **359**, 550-555,
412 doi:10.1126/science.aan8690 (2018).

413 21 Alexandrov, L. B. *et al.* The repertoire of mutational signatures in human cancer.
414 *Nature* **578**, 94-101, doi:10.1038/s41586-020-1943-3 (2020).

415 22 Alexandrov, L. B. *et al.* Clock-like mutational processes in human somatic cells. *Nat
416 Genet* **47**, 1402-1407, doi:10.1038/ng.3441 (2015).

417 23 Lee, J. H. *et al.* Human glioblastoma arises from subventricular zone cells with low-
418 level driver mutations. *Nature* **560**, 243-247, doi:10.1038/s41586-018-0389-3 (2018).

419 24 Park, S. *et al.* Clonal dynamics in early human embryogenesis inferred from somatic
420 mutation. *bioRxiv*, 2020.2011.2023.395244, doi:10.1101/2020.11.23.395244 (2020).

421 25 Martincorena, I. *et al.* Universal Patterns of Selection in Cancer and Somatic Tissues.
422 *Cell* **171**, 1029-1041.e1021, doi:10.1016/j.cell.2017.09.042 (2017).

423 26 Goncearenco, A. *et al.* Exploring background mutational processes to decipher cancer
424 genetic heterogeneity. *Nucleic acids research* **45**, W514-w522,
425 doi:10.1093/nar/gkx367 (2017).

426 27 Brown, A. L., Li, M., Goncearenco, A. & Panchenko, A. R. Finding driver mutations
427 in cancer: Elucidating the role of background mutational processes. *PLoS Comput
428 Biol* **15**, e1006981, doi:10.1371/journal.pcbi.1006981 (2019).

429 28 Dietlein, F. *et al.* Identification of cancer driver genes based on nucleotide context.

430 *Nature Genetics* **52**, 208-218, doi:10.1038/s41588-019-0572-y (2020).

431 29 Lek, M. *et al.* Analysis of protein-coding genetic variation in 60,706 humans. *Nature*
432 **536**, 285-291, doi:10.1038/nature19057 (2016).

433 30 Khokhlova, E. V., Fesenko, Z. S., Sopova, J. V. & Leonova, E. I. Features of DNA
434 Repair in the Early Stages of Mammalian Embryonic Development. *Genes (Basel)* **11**,
435 doi:10.3390/genes11101138 (2020).

436 31 Kermi, C., Aze, A. & Maiorano, D. Preserving Genome Integrity During the Early
437 Embryonic DNA Replication Cycles. *Genes (Basel)* **10**, doi:10.3390/genes10050398
438 (2019).

439 32 de Haan, G. & Lazare, S. S. Aging of hematopoietic stem cells. *Blood* **131**, 479-487,
440 doi:10.1182/blood-2017-06-746412 (2018).

441 33 Natarajan, P., Jaiswal, S. & Kathiresan, S. Clonal Hematopoiesis: Somatic Mutations
442 in Blood Cells and Atherosclerosis. *Circ Genom Precis Med* **11**, e001926,
443 doi:10.1161/circgen.118.001926 (2018).

444 34 Lodato, M. A. *et al.* Aging and neurodegeneration are associated with increased
445 mutations in single human neurons. *Science (New York, N.Y.)* **359**, 555-559,
446 doi:10.1126/science.aoa4426 (2018).

447 35 Haradhvala, N. J. *et al.* Mutational Strand Asymmetries in Cancer Genomes Reveal
448 Mechanisms of DNA Damage and Repair. *Cell* **164**, 538-549,
449 doi:10.1016/j.cell.2015.12.050 (2016).

450 36 Brachman, E. E. & Kmiec, E. B. DNA replication and transcription direct a DNA
451 strand bias in the process of targeted gene repair in mammalian cells. *J Cell Sci* **117**,
452 3867-3874, doi:10.1242/jcs.01250 (2004).

453 37 Osorio, F. G. *et al.* Somatic Mutations Reveal Lineage Relationships and Age-Related

454 454 Mutagenesis in Human Hematopoiesis. *Cell Reports* **25**, 2308-2316.e2304,
455 doi:<https://doi.org/10.1016/j.celrep.2018.11.014> (2018).

456 456 38 Bizzotto, S. *et al.* Landmarks of human embryonic development inscribed in somatic
457 mutations. *Science (New York, N.Y.)* **371**, 1249-1253, doi:10.1126/science.abe1544
458 (2021).

459 459 39 Louis, D. N. *et al.* The 2016 World Health Organization Classification of Tumors of
460 the Central Nervous System: a summary. *Acta Neuropathol* **131**, 803-820,
461 doi:10.1007/s00401-016-1545-1 (2016).

462 462 40 Andrews, S. *FastQC: a quality control tool for high throughput sequence data.*,
463 <<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>> (2010).

464 464 41 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
465 transform. *Bioinformatics (Oxford, England)* **25**, 1754-1760,
466 doi:10.1093/bioinformatics/btp324 (2009).

467 467 42 *Picard: A set of command line tools (in Java) for manipulating high-throughput*
468 *sequencing (HTS) data and formats such as SAM/BAM/CRAM and VCF*,
469 <<http://broadinstitute.github.io/picard/>> (2020).

470 470 43 Van der Auwera, G. A. *et al.* From FastQ data to high confidence variant calls: the
471 Genome Analysis Toolkit best practices pipeline. *Current protocols in bioinformatics*
472 **43**, 11.10.11-33, doi:10.1002/0471250953.bi1110s43 (2013).

473 473 44 Lee, S. *et al.* NGSCheckMate: software for validating sample identity in next-
474 generation sequencing studies within and across data types. *Nucleic acids research* **45**,
475 e103, doi:10.1093/nar/gkx193 (2017).

476 476 45 Kim, J. *et al.* Vecuum: identification and filtration of false somatic variants caused by
477 recombinant vector contamination. *Bioinformatics (Oxford, England)* **32**, 3072-3080,

478 46 doi:10.1093/bioinformatics/btw383 (2016).

479 46 Köster, J., Dijkstra, L. J., Marschall, T. & Schönhuth, A. Varlociraptor: enhancing
480 sensitivity and controlling false discovery rate in somatic indel discovery. *Genome
481 biology* **21**, 98, doi:10.1186/s13059-020-01993-6 (2020).

482 47 Costello, M. *et al.* Discovery and characterization of artifactual mutations in deep
483 coverage targeted capture sequencing data due to oxidative DNA damage during
484 sample preparation. *Nucleic acids research* **41**, e67-e67, doi:10.1093/nar/gks1443
485 (2013).

486 48 Sayers, E. W. *et al.* Database resources of the National Center for Biotechnology
487 Information. *Nucleic acids research* **47**, D23-D28, doi:10.1093/nar/gky1069 (2018).

488 49 Kent, W. J. *et al.* The human genome browser at UCSC. *Genome Res* **12**, 996-1006,
489 doi:10.1101/gr.229102 (2002).

490 50 Karimzadeh, M., Ernst, C., Kundaje, A. & Hoffman, M. M. Umap and Bismap:
491 quantifying genome and methylome mappability. *Nucleic acids research* **46**, e120-
492 e120, doi:10.1093/nar/gky677 (2018).

493 51 Karolchik, D. *et al.* The UCSC Table Browser data retrieval tool. *Nucleic acids
494 research* **32**, D493-496, doi:10.1093/nar/gkh103 (2004).

495 52 Untergasser, A. *et al.* Primer3Plus, an enhanced web interface to Primer3. *Nucleic
496 acids research* **35**, W71-74, doi:10.1093/nar/gkm306 (2007).

497 53 McLaren, W. *et al.* The Ensembl Variant Effect Predictor. *Genome biology* **17**, 122,
498 doi:10.1186/s13059-016-0974-4 (2016).

499 54 Blokzijl, F., Janssen, R., van Boxtel, R. & Cuppen, E. MutationalPatterns:
500 comprehensive genome-wide analysis of mutational processes. *Genome Medicine* **10**,
501 33, doi:10.1186/s13073-018-0539-0 (2018).

502 55 Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C.
503 DeconstructSigs: delineating mutational processes in single tumors distinguishes
504 DNA repair deficiencies and patterns of carcinoma evolution. *Genome biology* **17**, 31,
505 doi:10.1186/s13059-016-0893-4 (2016).

506 56 Lee, J. *et al.* Mutalisk: a web-based somatic MUTation AnaLyIS toolKit for genomic,
507 transcriptional and epigenomic signatures. *Nucleic acids research* **46**, W102-W108,
508 doi:10.1093/nar/gky406 (2018).

509 57 Hübschmann, D. *et al.* Analysis of mutational signatures with yet another package for
510 signature analysis. *Genes Chromosomes Cancer*, doi:10.1002/gcc.22918 (2020).

511

512

513 **Figure legends**

514 **Figure 1.** Detection of early- and late-stage somatic variants in brain and matched peripheral
515 tissues. **a**, A schematic flow showing the bioinformatics pipelines of 301 brain tissues and
516 197 peripheral tissues from 190 individuals. To find somatic variants, Mutect2 and
517 RePlow/NeuSomatic were used for reciprocal mutation calling by all-pairs testing, followed
518 by post-call filtering. **b, c**, Early-stage, late-stage, and tumor mutations were classified with a
519 highly accurate precision rate (89.47%, early-stage; and 90.24% in late-stage and tumor
520 mutations). **d**, Correlation of VAFs from two matched tissues and WES and TASEq data.
521 VAFs were highly concordant between paired tissues ($r = 0.84$; $P < 0.0001$) and WES and
522 TASEq data ($r = 0.61$; $P < 0.0001$).

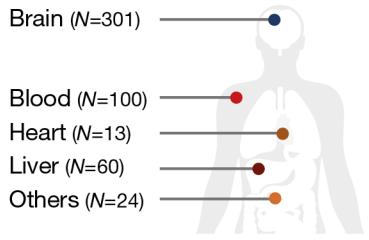
523

524 **Figure 2.** Basic descriptive statistics of somatic mutations. **a**, Number of somatic mutations
525 per individual in early-stage, late-stage, and tumor mutation groups. **b**, Age correlation with
526 somatic mutation counts in the groups. **c**, Average VAFs between the three mutation groups.

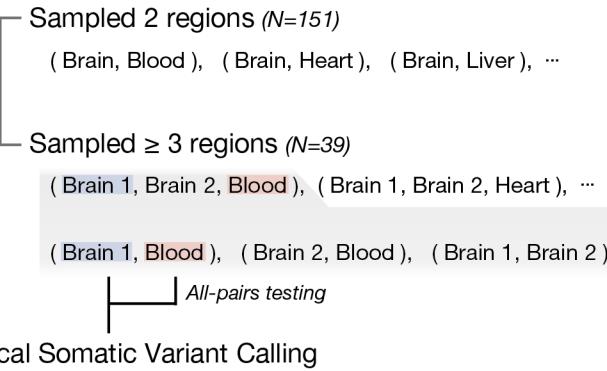
527

528 **Figure 3.** Mutational profile and functional analysis. **a**, *De novo* extraction of somatic
529 mutations by non-negative matrix factorization. **b**, Each group was classified according to
530 signature (A, B1, and B2). **c**, Relative contribution of the common clock-like signatures
531 (SBS1, SBS5, and SBS40 for single-base substitutions and ID1, ID2, ID5, and ID8 for indels)
532 from PCAWG signatures. **d**, The dN/dS score ratios, **e**, proportion of trinucleotides with
533 atypical mutability, and **f**, pLI score for gnomAD Exome and each group.

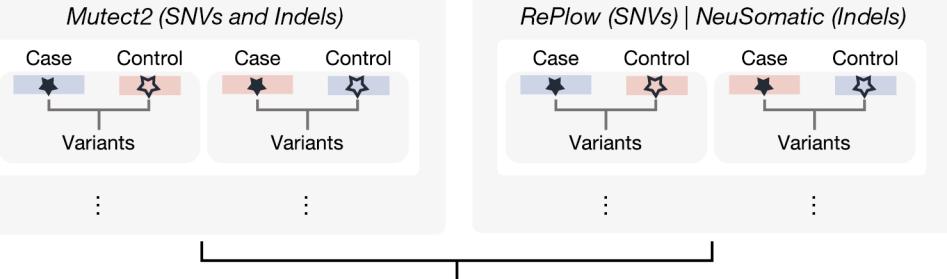
534

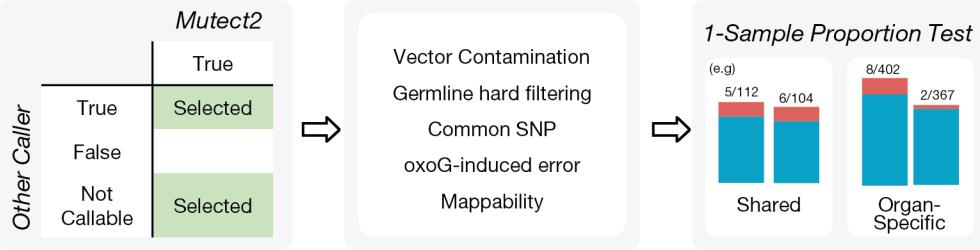
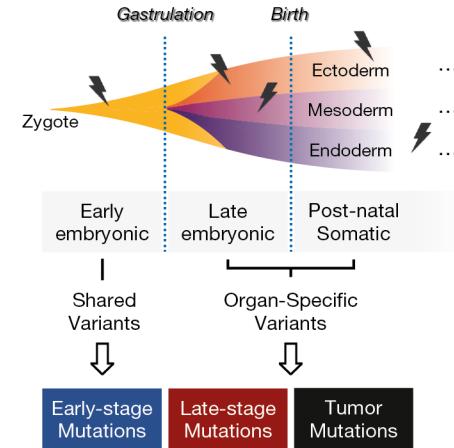

535 **Figure 4.** Analysis of late-stage mutations by mutation source for the organs (brain, blood,
536 and other organs). **a, b**, Number of mutations per individual and VAF distribution. **c**, Age

537 correlation with mutation counts. **d**, Unsupervised hierarchical clustering of late-stage
538 mutations. Late brain somatic mutations were fit to signatures A and B2, whereas those in the
539 blood were clustered to signatures B1 and B2. **e**, The VAFs of three different cell types
540 [neuronal (NeuN+), oligogenic (Olig2+), and others (negative)] for early-stage and late-stage
541 mutations in the brain. **f**, Signature distribution of late brain somatic variants divided among
542 temporal and non-temporal areas or according to brain-disease status. **g**, Mutational-strand
543 asymmetry. Late-onset blood and tumor mutations are noted as having strand-bias as T>C.

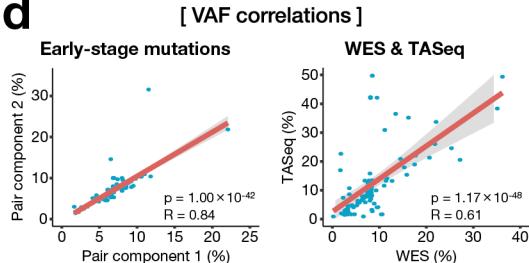

a

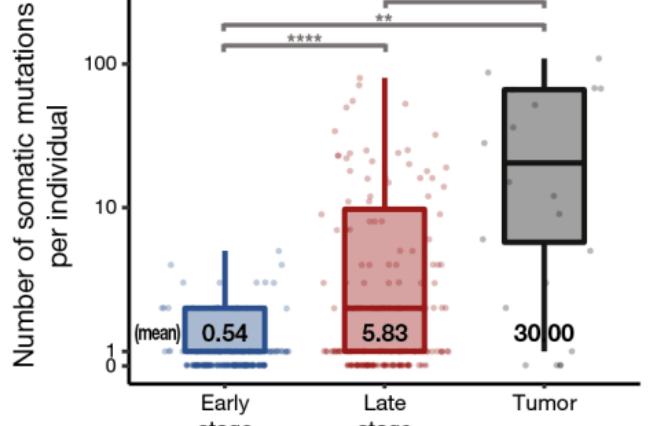
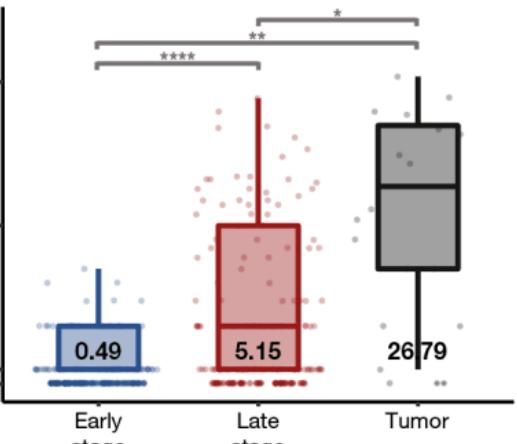
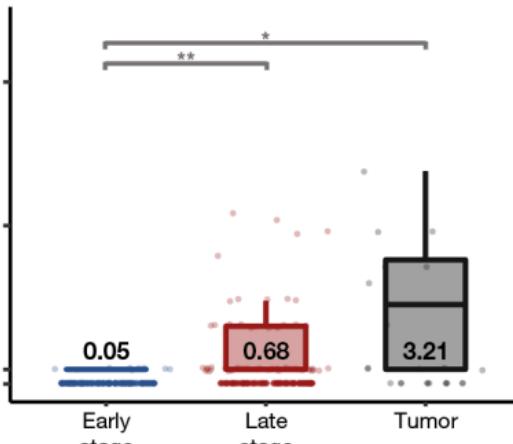
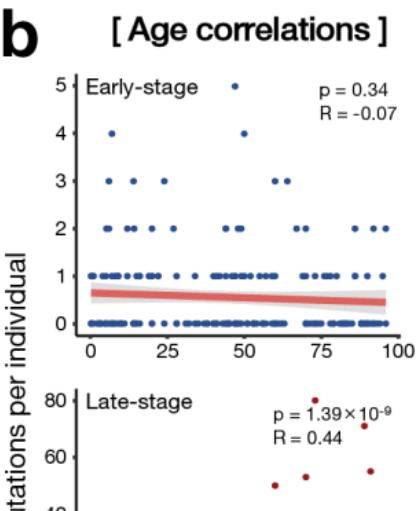
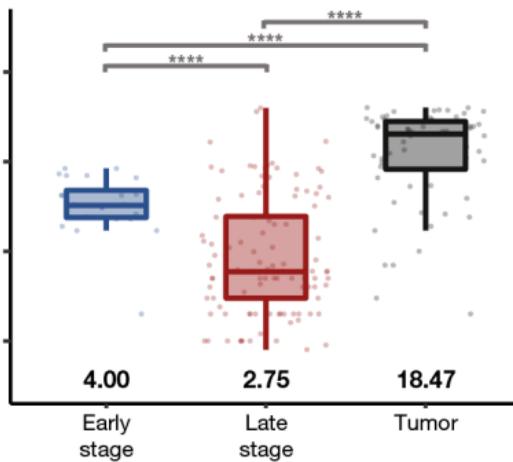
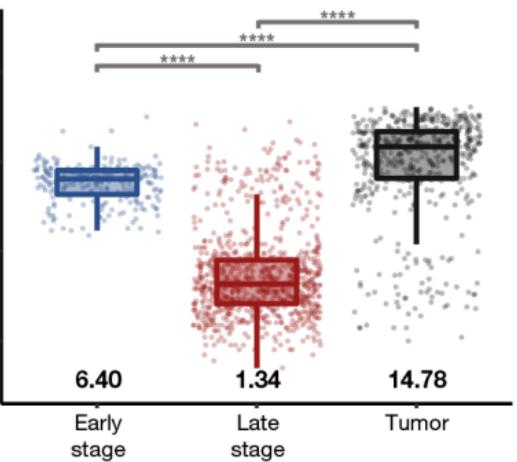
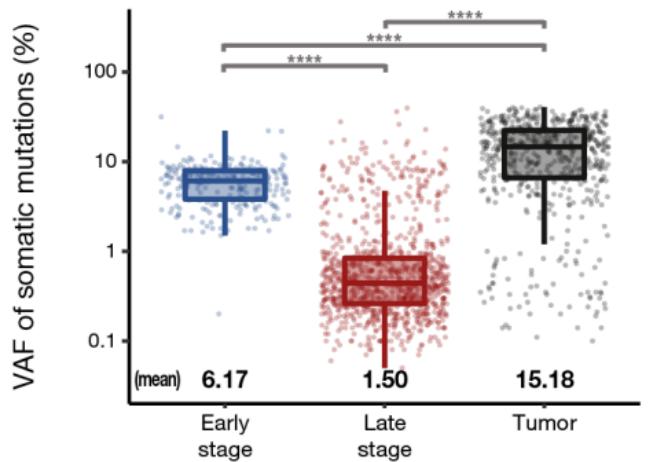
190 Individuals

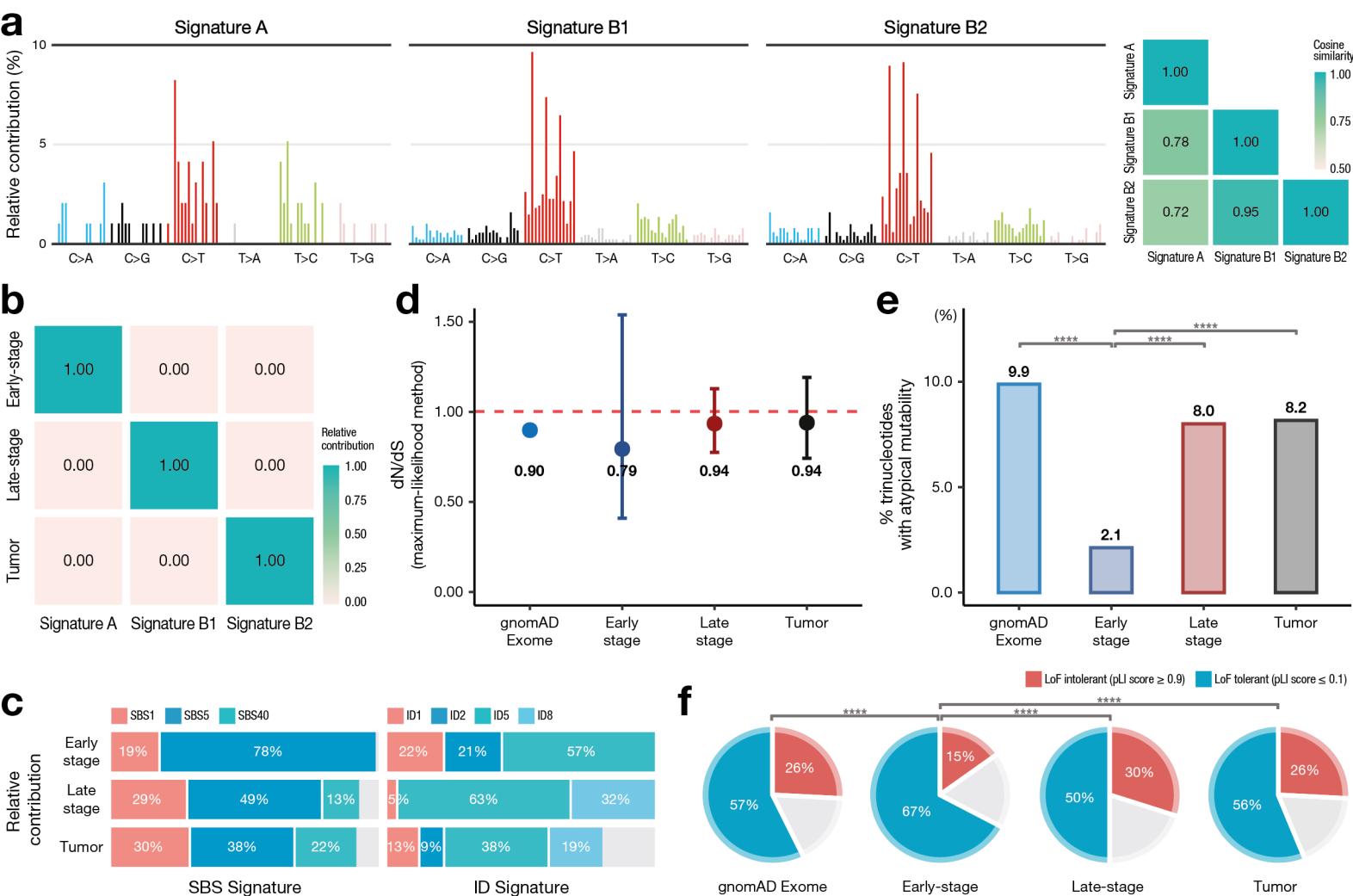

(133 Patients with Neurological disorder / 19 Patients with brain tumor / 38 Non-diseased control individuals)

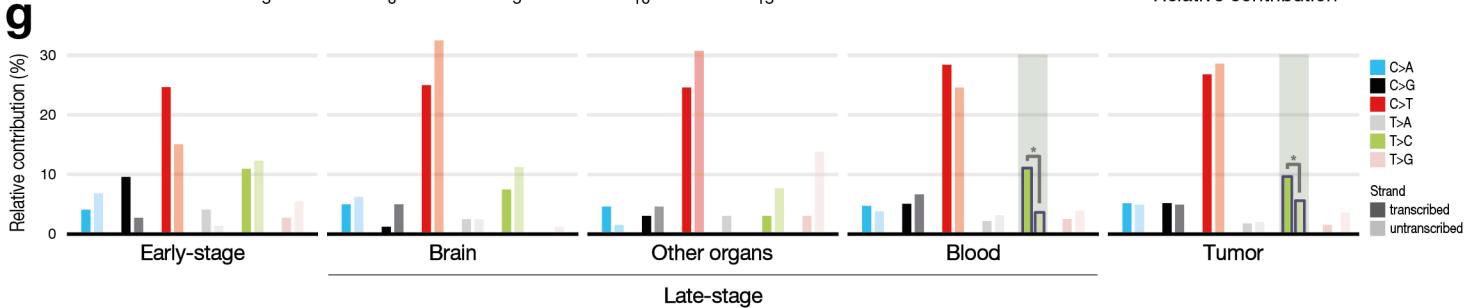
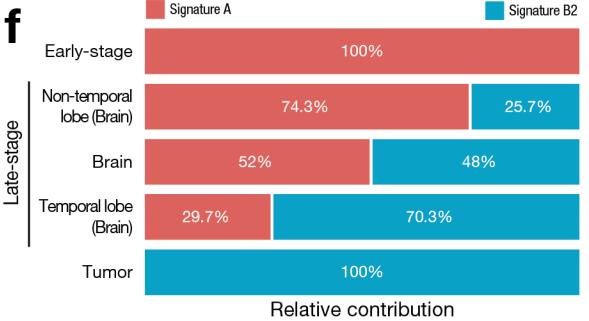
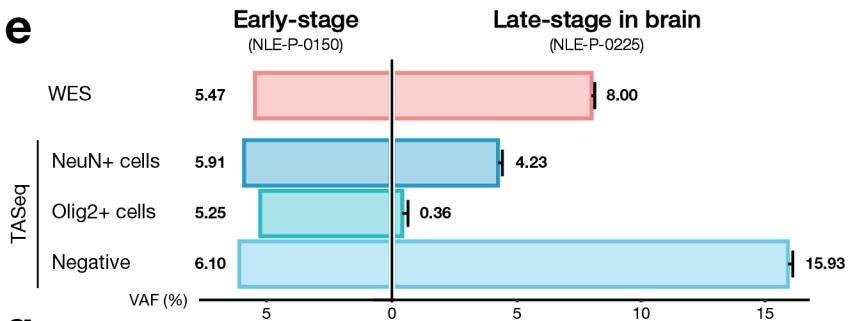
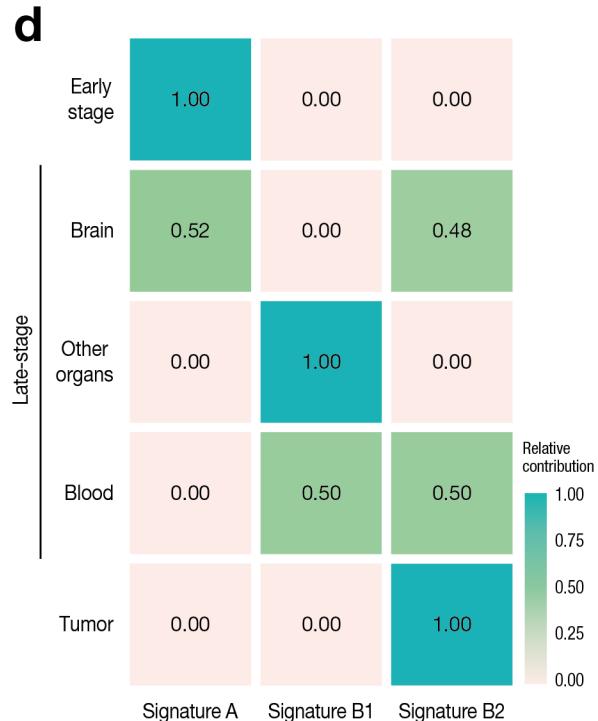
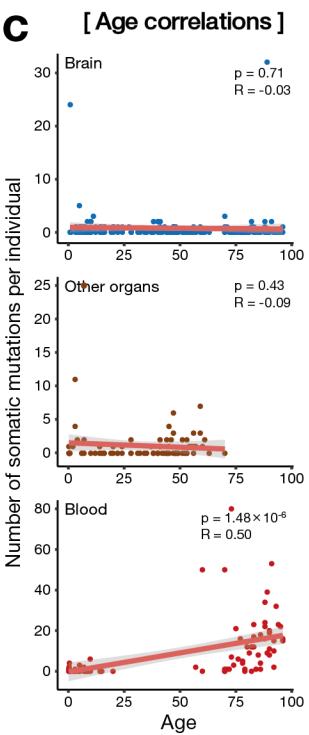
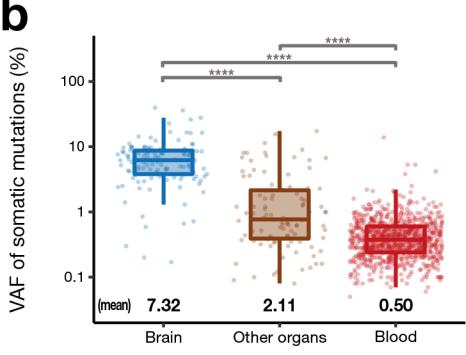
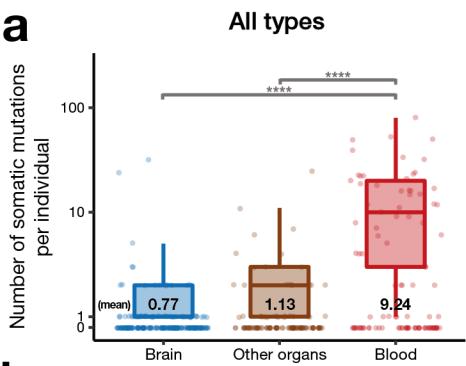


498 Deep whole-exome sequencing

Reciprocal Somatic Variant Calling










Systematic Variant Filtering and Variant Type Discrimination


b**c**








[TASEq Validation]

Early-stage mutations		Late-stage mutations				
		Tumor mutations				
	TASEq		TASEq			
	TRUE	FALSE	TRUE	FALSE		
WES	PASS	17	2	PASS	74	8
	FAIL	1	8	FAIL	0	4
	Precision		Precision			
	89.47% (17/19)		90.24% (74/82)			

d

a**SNVs****Indels****b****C**

