

1 **Spatial, temporal and molecular dynamics of swine influenza virus-specific**
2 **CD8 tissue resident memory T cells.**

3

4 **One sentence summary**

5 Influenza NP-specific porcine tissue resident memory CD8 T cells persist in the lung with
6 major changes in gene expression.

7

8 Veronica Martini^{1,4#}, Matthew Edmans¹, Simon Gubbins¹, Siddharth Jayaraman², Basu
9 Paudyal¹, Sophie Morgan¹, Adam McNee¹, Théo Morin³, Pramila Rijal⁴, Wilhelm Gerner¹,
10 Andrew K. Sewell³, Ryo Inoue⁵, Mick Bailey⁶, Timothy Connelley², Bryan Charleston¹, Alain
11 Townsend⁴, Peter Beverley⁷, Elma Tchilian¹

12

13 ¹The Pirbright Institute, Pirbright, UK

14 ²The Roslin Institute, Edinburgh, UK

15 ³Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK

16 ⁴Weatherall Institute of Molecular Medicine, University of Oxford, Oxford

17 ⁵Laboratory of Animal Science, Setsunan University, Osaka, Japan

18 ⁶Bristol Veterinary School, University of Bristol, Langford, UK

19 ⁷National Heart and Lung Institute, St Mary's Campus, Imperial College, London, UK

20

21 Corresponding authors: Veronica Martini (veronica.martini@pirbright.ac.uk) and Elma
22 Tchilian (elma.tchilian@pirbright.ac.uk)

23

24 **Abstract**

25 We defined naïve, central memory, effector memory and terminally differentiated porcine
26 CD8 T cells and analyzed their phenotype in lymphoid and respiratory tissues after influenza
27 infection or immunization using peptide-MHC tetramers of three influenza nucleoprotein (NP)
28 epitopes. The hierarchy of response to the three epitopes changes during the response in
29 different tissues. Most NP-specific CD8 T cells in broncho-alveolar lavage (BAL) and lung
30 are tissue resident memory cells (TRM), that express CD69 and have an effector memory or
31 terminally differentiated phenotype. NP-specific cells isolated from BAL express genes
32 characteristic of TRM, but gene expression differs at 7, 21 and 63 days post infection. The
33 frequency of NP-specific cells declines over 63 days in all tissues but is best maintained in
34 BAL. The pig is a powerful model for understanding how best to induce and harness local
35 immunity to respiratory viruses.

36

37

38 **Introduction**

39 Immunity to influenza A viruses (IAV) has been intensively studied over many years
40 and the role of neutralizing antibody in protection against homologous virus is well
41 established (reviewed (1)). Moreover experimental studies in mice and humans have also
42 revealed the importance of pre-existing cellular immunity in heterosubtypic protection
43 (reviewed (2)). The development of live attenuated influenza virus vaccines administered by
44 nasal spray, now commercially available for humans and pigs, attests to the realisation that
45 many lymphocytes reside in non-lymphoid tissues and that local immune responses are
46 important in protective immunity (3, 4).

47 Intravenous infusion of anti-lymphocyte antibodies prior to isolation of lymphocytes
48 from tissues has led to the definition of populations of lymphocytes that are considered to be
49 tissue resident because they are not stained by the infused antibody. The majority of these
50 cells have an activated or memory phenotype, indicating that they have most likely
51 encountered antigen and they are therefore termed tissue resident memory cells (TRM) (5-
52 10). In mice TRM have been shown to exceed the number of T cells in the lymphoid system
53 and to play important roles in maintaining local immune memory (11). TRM are the
54 predominant population in the adult human lung and antigen-specific cells were found at
55 stable frequencies years after pathogen encounter, indicating their key role in respiratory
56 infections (12). Mouse and human TRM express CD69 and more variably CD103, both
57 essential for tissue retention (6, 13-16).

58 Porcine physiology closely resembles that of humans, pigs have a similar distribution
59 of sialic acid in their respiratory tract and are infected with similar influenza viruses, making
60 them a powerful natural host, large animal model to study immunity to influenza (17-19).
61 Furthermore, they are an animal reservoir that poses a zoonotic threat to humans and
62 influenza viruses are also a cause of significant economic losses to farmers (20). We have
63 demonstrated the similarity of porcine and human antibody responses to influenza viruses,
64 emphasized the importance of respiratory tract local immune responses in protective
65 immunity and indicated that there are high frequencies of influenza-specific T cells in

66 broncho-alveolar lavage (BAL), lung tissue and tracheo-bronchial lymph nodes (TBLN) (21-
67 24). However, the lack of monoclonal antibodies (mAbs) to porcine CD69 and CD103 has
68 made studies of porcine TRM challenging although we have previously identified porcine
69 TRM, following infusion of anti-CD3 antibody (23, 25). Nevertheless, their phenotype and
70 function during influenza infection remain poorly defined and there have been few *ex vivo*
71 studies of antigen-specific T cells. In addition, while the phenotype of porcine helper T cells
72 has been thoroughly analyzed (26-29), CD8 T cells are less well characterized and CCR7,
73 essential for migration to lymphoid organs and CD45RA, a known differentiation marker,
74 both widely used in human immunology, have never been studied in combination to define
75 subsets of porcine T cells.

76 Here we examined influenza virus-specific CD8 TRM throughout the respiratory tract
77 but focussed on CD8 TRM in BAL as this population of airway cells is relatively accessible in
78 many species including humans, contains almost exclusively TRM apart from alveolar
79 macrophages and does not require extraction procedures that might alter the cellular
80 composition and phenotype. Here, for the first time we showed that CD45RA and CCR7
81 together identify porcine CD8 T cell subsets similar to those in humans and we described the
82 expression of CD69 in CD8 T cells in several tissues, using a newly generated antibody (30).
83 We examined antigen-specific CD8 TRM in the context of influenza infection and
84 immunization in inbred Babraham pigs (31), using peptide-SLA tetramers carrying a
85 previously identified (32) and two novel influenza nucleoprotein (NP) epitopes. This enabled
86 us to define the phenotype of influenza-specific CD8 T cells, analyze their distribution in
87 different tissues, define their transcriptional profile at different times after infection and model
88 the dynamics of the response.

89 **Results**

90

91 **Subsets of porcine T cells and identification of CD8 TRM**

92 Antibodies to CD45 isoforms and CCR7, which distinguish T cell subsets in several
93 species, were used for initial characterization of CD8 T cells from different tissues of
94 Babraham pigs. BAL, which contains ~80% macrophages as in other species, is of particular
95 interest as it contains airway T cells that are at the frontline of protection against respiratory
96 pathogens (33). Among the lymphocytes in BAL ~20% were CD4 T cells, ~20% CD8 and a
97 slightly higher proportion $\gamma\delta$ T cells (22).

98 Because porcine T helper cells express CD8 α when activated (28, 34), we used an
99 antibody to CD8 β combined with CD45RA and CCR7 antibodies to identify and characterize
100 CD8 T cells. Four populations were apparent (**Fig. 1A**) in blood, spleen and TBLN, which
101 appear to correspond to those defined in humans as naïve (CD45RA $^+$ CCR7 $^+$), central
102 memory (TCM) (CD45RA $^-$ CCR7 $^+$), effector memory (TEM) (CD45RA $^-$ CCR7 $^-$) and terminally
103 differentiated effector cells (TDE) (CD45RA $^+$ CCR7 $^-$) (35). The mucosal tissues (lung and
104 BAL) contained higher proportions of cells with TEM and TDE phenotypes. To confirm this
105 differentiation scheme for CD8 T cells, we examined expression of CD27, a marker of less
106 differentiated cells and perforin, expressed by effector CD8 T cells. These experiments
107 indicated that the proposed naïve and TCM cells in all tissues expressed CD27 but little or
108 no perforin, while TEM and TDE cells were heterogeneous, expressing one or the other
109 marker or neither, as in humans (**Supplementary Fig. 1**) (35-37). These data support the
110 identification of naïve and TCM cells and indicate that TEM and TDE are more differentiated
111 cells with effector function. This phenotypic differentiation was further confirmed by
112 examining cytokine production of naïve, TCM, TEM and TDE CD8 T cells sorted from
113 peripheral blood mononuclear cells (PBMC) following polyclonal stimulation with
114 PMA/ionomycin. A high proportion of TEM produced IFN γ and TNF while lower proportions
115 of TDE and TCM and few naïve cells did so (**Fig. 1B, C, D**). Naïve and TCM cells secreted

116 mainly TNF (4.4% and 8.7% respectively) while many TEM were double producers
117 (IFN γ ⁺TNF⁺ 18.9%). TDE produced predominantly IFN γ (8%) with a smaller proportion
118 secreting both IFN γ and TNF (4.9%).

119 We have previously shown that BAL and a large proportion of lung T cells are not
120 stained by intravenous anti-CD3 antibody (23, 25), indicating that these populations are
121 TRM. It is striking that BAL T cells are almost exclusively highly differentiated. Staining with
122 CD69, a marker of activation and tissue residency (38, 39) showed that, as in humans,
123 CD69 was absent or minimally expressed on blood CD8 T cells, while the highest
124 expression was found on TCM and TEM in TBLN and on T cells in BAL. CD8 TDE in the
125 lungs expressed lower levels of CD69 (**Fig. 1E**).

126 These data demonstrated that in pigs, CD69 expression is tissue dependent on
127 activated/memory CD8 T cells. BAL CD8 T cells are predominantly TEM phenotype with
128 high expression of CD69 and lack of staining by intravenous CD3 antibody, indicating that
129 they are TRM. TEM are heterogenous in expression of CD27 and perforin and produce high
130 levels of cytokines on stimulation.

131

132 **Kinetics and phenotype of influenza-specific CD8 T cells**

133 Having established the phenotype of CD8 T cells from unimmunized pigs, we wished
134 to define the temporal dynamics of the immune response to IAV. Inbred Babraham pigs were
135 infected with H1N1pdm09 in four experiments. One pig was culled on days 1-7, 9 and 11
136 post infection (DPI) in two experiments, three more at 6, 7, 13, 14, 20 and 21 DPI and a
137 further four at 21, 42 and 63 DPI in additional experiments (22) (**Fig. 2A**). We determined the
138 proportions of influenza NP-specific CD8 T cells binding to tetramers carrying the DFE
139 epitope and tetramers of the newly identified AAV and VAY epitopes (**Supplementary Fig.**
140 **2**) in various tissues over time and modelled it, starting at 6 DPI when a cellular response is
141 first detectable (22). The results and curves fitted to the data are shown in **Fig. 2B** and
142 indicated that the peak proportion of CD8⁺ T cells specific for each tetramer and the timing of

143 the peak differed amongst tissues and between tetramers. The highest response for all
144 tetramers, expressed as a percentage or absolute count, was found in the BAL, followed by
145 lung and local lymph nodes, (**Fig. 2B** and **Supplementary Fig. 3**). Interestingly, the
146 modelled response in PBMC peaked earlier (16.8 DPI for AAV, 3.4 DPI for DFE and 9.1 DPI
147 for VAY) compared to BAL, lung or nasal turbinates (NT) (28.0 DPI, 11.2 DPI and 11.1 DPI
148 respectively in BAL) (**Table 1**), in accordance with the idea that cells generated in lymph
149 nodes traffic to local tissues via the blood. AAV responses peaked 3 to 17 days later than
150 the peak of DFE or VAY responses in different tissues, while DFE and VAY shared similar
151 kinetics in most tissues except PBMC, where DFE peaked earlier (**Table 1** and **Fig. 2B**). The
152 magnitude of AAV responses was greater than those to VAY and DFE in all tissues, while
153 DFE was higher than VAY in all tissues except for TBLN (**Table 1** and **Fig. 2B**). At the later
154 time points of 21, 42 and 63 DPI we also examined tracheal CD8 T cells and here too the
155 AAV response was higher than that to DFE and VAY at 42 DPI ($p=0.03$), with DFE being
156 significantly higher than VAY ($p=0.03$). AAV remained significantly higher than VAY at 63
157 DPI ($p=0.03$) (**Supplementary Fig. 4A and B**).

158 We next modelled changes in the proportions of the different tetramer⁺ cells in each
159 tissue. BAL, lung and spleen showed similar changes in proportions of the different tetramer⁺
160 populations. Initially AAV was lower than VAY and DFE in all tissues but by 30 DPI AAV was
161 dominant (60%), while in most tissues DFE and VAY declined (~20%) (**Fig. 3A**). However, in
162 NT the frequency of cells specific for DFE remained constant (25%), while that for VAY
163 decreased and that for AAV increased. In PBMC the proportions changed only gradually
164 (**Fig. 3A**), though the small number of PBMC data points indicate that this observation
165 should be interpreted with caution.

166 Influenza specific T cells in the nasal mucosa of mice have been shown to be longer
167 lived and decline less rapidly than those present in the harsh environment of the lung (40).
168 Using a mathematical model, we investigated the decline of tetramer⁺ T cells in all tissues
169 after the peak response (**Fig. 3B**). The decay in the proportion of cells specific for AAV was

170 slower than that for cells specific for either DFE or VAY in all tissues. Furthermore, the
171 proportion of cells specific for AAV decayed most slowly in BAL.

172 Collectively, our results shows that the frequency of different tetramer⁺ T cells varies
173 between tissues, with the highest frequency in BAL. AAV tetramer⁺ cells are dominant at
174 later time points. In general, responses in PBMC peaked earlier compared to local tissues
175 but waned more rapidly and did not reflect events in mucosal tissues. We did not observe a
176 more rapid decay in lung and BAL compared to NT, as previously reported in mice (40).

177

178 **BAL T cells maintain a stable phenotype but transcription alters over time.**

179 We next analyzed the phenotype of the NP-specific T cells present locally (in BAL
180 and TBLN) and systemically (PBMC) (Fig. 4A). The majority of tetramer⁺ cells were TCM or
181 TEM throughout the time course in all tissues analyzed. There was a slow but steady
182 increase in the proportion of TCM with time in PBMC, reflecting the phenotype found most
183 abundantly in TBLN (Fig. 4B). On average, more than 80% of influenza-specific T cells in
184 local lymph nodes were TCM, while only a small proportion (8%) were TEM (Fig. 4A and B).
185 In contrast, in BAL the majority of cells are TEM (78.5%), with only a small number of TCM
186 (20.3% at 21 DPI) (Fig. 4A and B). Changes in TDE and naïve cells are not shown as the
187 numbers of these cells were too small for reliable analysis.

188 We used RNA sequencing (RNA-seq) to compare the transcriptome of CD8 T cells
189 specific for the previously defined DFE NP epitope (32). DFE⁺ T cells were isolated from
190 BAL by cell sorting at different time points (7, 21 and 63 DPI) (Fig. 5A). Differential gene
191 expression analysis was applied to compare these three groups. 4,666 genes were
192 expressed at significantly different levels (p_{adj} value ≤ 0.05 and $|\log_2 \text{fold change}| > 1$) at 7
193 DPI versus (vs) 21 DPI while 1,198 were differentially expressed in 7 DPI vs 63 DPI and only
194 560 in 21 DPI vs 63 DPI (Fig. 5B). At 7 DPI several upregulated genes were involved in cell
195 growth, movement (*lgbp2*) and proliferation (*Ctla4*, *Kif11*, *Kif18a*, *Shmt1*) while at 21 DPI
196 genes linked with T cell activation (*Tagap*, *IL2ra*, *Csf2*, *Dgkg*) and adhesion (*L1cam*, *Cass4*)
197 were highly expressed (Fig. 5C). Interestingly, comparison of 7 DPI and 63 DPI revealed

198 differential expression of genes involved in metabolism (*Jazf1*, *Atp8b4*, *Igf2bp3*),
199 transcription factors (*Ltaf*), T cell development and proliferation (*Ccnd3*, *Shcbp1*).
200 Upregulated pathways at 21 DPI, compared to 7 DPI, were linked to the control of Th1/Th2
201 differentiation, cytokine secretion, antigen processing and presentation (**Fig. 5D, Table S1**).
202 The TGF β signalling pathway, known to be involved in mucosal residency, was also
203 upregulated at 21 DPI.

204 We next examined the presence of key gene expression features of TRM, previously
205 identified in the human lung (12, 41, 42) (**Supplementary Fig. 5**). BAL cells from 63 DPI
206 upregulated a gene related to integrins (*Itga1*), the TRM transcription regulator gene *Znf683*
207 and downregulated genes involved in migration (*Sell*, *S1pr1*) as in humans. In addition, at
208 the earlier timepoint of 7 DPI DFE $^+$ T cells expressed more cytotoxicity related genes
209 (*GzmA*, *GzmH*, *Prf1* and *Ccl5*) while starting from 21 DPI genes involved in cytokine
210 signalling and secretion were upregulated (*Ifng*, *Tnf*, *Il13*, *Tgfb1* and *Tnfsf13b*)
211 (**Supplementary Fig. 5**). Interestingly, *CD69* expression changed with time with its peak at
212 21 DPI, as did *CD103* gene expression (*Itgae*) with a peak at 7 DPI.

213 Despite the similar phenotype, these data suggests that gene expression in CD8 T
214 cells at the site of infection changes over time, with genes involved in proliferation and
215 migration upregulated at 7 DPI while cytokine related pathways are upregulated at 21 DPI.

216

217 **BAL tetramer * cells are a stable highly differentiated population**

218 RNA-seq analysis revealed changes in *CD69* gene expression with time, we
219 therefore studied *CD69* protein expression and modelled these changes in BAL, TBLN and
220 PBMC (**Fig. 6A**). *CD69* expression decayed only slightly with time in BAL for all tetramers
221 and also for AAV and VAY labelled T cells in TBLN, while it decayed in TBLN DFE $^+$ T cells at
222 a higher rate (0.022/day for DFE, 0.003/day VAY and 0.001/day AAV) (**Table 2 and Fig.**
223 **6A**). As reported above, PBMC expressed minimal *CD69*.

224 Pathway analyses revealed upregulation of Th1/Th2 differentiation related genes in
225 BAL T cells at 21 DPI compared to 7 DPI. We validated these findings by analyzing and

226 modelling the expression of the transcription factor T-bet, involved in Th1 differentiation and
227 homing to inflammatory sites, and Eomesodermin (Eomes), involved in induction of memory
228 and effector T-cell differentiation (43) (**Fig. 6B**). Eomes was poorly expressed in BAL, only
229 detectable at early time points and decayed rapidly in all tetramer⁺ cells (0.33/day decay
230 rate) (**Table 2**). The highest expression of this transcription factor was found in AAV⁺ T cells
231 in TBLN (mean of 20.6%) followed by VAY and DFE while similar expression was present in
232 PBMC for all tetramers, with no decay (**Fig. 6B** and **Table 2**). In contrast, T-bet expression
233 differed greatly among tissues and tetramers. T-bet was highly expressed in TBLN and
234 PBMC, where it decayed more slowly than in TBLN for all tetramers. In TBLN, T-bet
235 decreased more gradually in AAV than DFE or VAY responding T cells (**Fig. 6 B** and **Table**
236 **2**). There was low expression of T-bet at early times in BAL, which declined rapidly and was
237 undetectable at later time points in all tetramers (**Table 2**).

238 These data suggested that BAL TRM may have already switched off Eomes and T-
239 bet protein expression and are no longer undergoing active Th1/Th2 differentiation. We
240 therefore analysed Ki67 expression as a proxy for cell proliferation which is normally linked
241 to differentiation. Whereas high frequencies of Ki67⁺ tetramer binding cells were found in
242 PBMC and TBLN at early time points, only 14% of BAL cells were Ki67⁺ at 6 DPI and Ki67
243 expression was barely detectable at 63 DPI (1.8%) (**Fig 6 C**).

244 The RNA-seq data indicates changes in expression of many genes related to
245 cytokine production over time. Lymphocytes isolated from PBMC, TBLN and BAL were
246 therefore stimulated with H1N1pdm09 and the production of IFN γ , TNF and IL-2 by tetramer
247 binding cells was assayed by intracellular cytokine staining. We compared the responses of
248 the dominant responding AAV population with DFE cells which decline more rapidly. Despite
249 high expression of T-bet, PBMC tetramer⁺ cells produced a limited amount of IFN γ (5.9% in
250 DFE⁺, 4.3% AAV⁺ at 7 DPI) which was almost undetectable after 21 DPI (**Fig. 7A and B**).
251 Similar kinetics were found in TBLN, with IFN γ and IFN γ /TNF co-producing cells being the
252 most abundant. The highest responses were in BAL, with consistent production of cytokines

253 (predominately IFN γ and TNF) even at 63 DPI. No significant difference was observed
254 between DFE $^+$ and AAV $^+$ populations, but there was a trend toward a higher proportion of
255 triple producers (IFN γ $^+$ TNF $^+$ IL-2 $^+$) at later time points in AAV $^+$ cells compared to DFE $^+$ (**Fig. 7**
256 **B**).

257 In conclusion, despite differences in transcription of CD69 and T cell differentiation
258 genes, we did not find corresponding differences in the protein level expression of CD69, T-
259 bet and Eomes in BAL, while TBLN and PBMC expressed T-bet and Ki67 at early time
260 points and EOMES up to 63 DPI. *Ex vivo* stimulation with H1N1pdm09 resulted in IFN γ and
261 TNF cytokine secretion at 7 DPI, while upregulation of related genes was highest at 21 DPI.
262 These data suggest that BAL TRM are a stable largely non-dividing population able to
263 produce abundant cytokines for at least 63 DPI.

264

265 **Aerosol immunization generates a powerful CD8 response with a similar phenotype to**
266 **influenza infection.**

267 To investigate whether immunization elicits similar responses to natural infection we
268 administered S-FLU, a single cycle influenza vaccine, by aerosol to Babraham pigs and
269 boosted them 3 weeks later. In a first experiment three pigs were culled 3 weeks post boost
270 (WPB) while in a second, S-FLU immunized pigs (n=6) were challenged with H1N1pdm09
271 and culled four days later (**Fig. 8A**). Control pigs were left untreated in the first or were
272 challenged without prior immunization in the second experiment. Anti-porcine CD3 mAb was
273 administered intravenously (i.v.) 10 minutes prior to sacrifice to distinguish between tissue
274 resident (CD3 i.v. $^-$) and circulating T cells (CD3 i.v. $^+$) (**Fig. 8A and Supplementary Fig. 6**).
275 We enumerated S-FLU specific cells using the DFE tetramer, as this epitope is conserved in
276 the vaccine and challenge viruses. In BAL, 22.6% of CD8 T cells were DFE $^+$ at 3 WPB but
277 only 5% 4 days post challenge (DPC) (**Fig. 8 B**). Conversely, there were higher numbers of
278 TBLN and PBMC DFE $^+$ cells 4 DPC compared to 3 WPB (0.8% vs 0.3% in TBLN and 0.2%
279 vs 0.1% in PBMC) (**Fig. 8 B**). As we have shown before, BAL and TBLN cells were

280 completely inaccessible to blood (CD3 i.v.) while most spleen cells were labelled with the
281 infused antibody (**Supplementary Fig. 6**), confirming that BAL cells are truly tissue resident
282 and that lymph node cells are also outside the blood stream (23, 25).

283 We then used CD45RA and CCR7 to study differences in phenotype. Three weeks
284 after S-FLU immunization, BAL cells were almost exclusively TEM as after natural infection
285 and this did not change after challenge (**Fig. 8C**). Following challenge however, there was a
286 rapid increase in the proportion of TCM in TBLN and PBMC (from 33% at 3 WPB to 77% at
287 4 DPC in TBLN and 0% to 46% in PBMC).

288 In the earlier H1N1pdm09 infection experiment, few BAL CD8 were proliferating. We
289 therefore examined whether DFE⁺ T cells expressed Ki67 early after immunization and
290 challenge with live virus. Ki67 was absent at 3 WPB in all tissues, and only marginally
291 expressed at 4 DPC in BAL (2.7%). In contrast 42.2% of DFE⁺ TBLN cells and 45.4% of
292 DFE⁺ PBMC expressed Ki67 after challenge (**Fig. 8D and E**). As during influenza infection,
293 in S-FLU immunized pigs DFE⁺ BAL cells lacked T-bet and EOMES while these transcription
294 factors were expressed in TBLN. T-bet expression reached 30.6% 4 DPC (from 1% at 3
295 WPB) while EOMES was only slightly upregulated (4.7% at 3 WPB and 7.9% at 4 DPC).
296 Tetramer⁺ T cells in PBMC expressed T-bet at 3 WPB (23.5%) and it increased after
297 challenge (55.9%) with no changes in EOMES expression (6.2% 3 WPB and 6.7% 4 DPC)
298 (**Fig. 8D**).

299 Taken together these results suggest that S-FLU immunization by aerosol elicited a
300 stronger T cell response in BAL compared to influenza infection but the responding T cells
301 had a similar differentiated, non-proliferating phenotype. Perhaps surprisingly the proportion
302 of DFE tetramer⁺ cells in BAL decreased four days after challenge with infectious virus.

303

304 **Discussion**

305 In this study we have described in detail for the first time porcine influenza-specific
306 CD8 T cells in lymphoid and non-lymphoid tissues and shown that antibodies to CD45RA
307 and CCR7 identify four subsets: naïve, TCM, TEM and TDE. The identity of these subsets
308 was substantiated by additional staining for CD27 and perforin, and by assessing their ability
309 to secrete effector cytokines. We have also shown that while all four CD8 T cell subsets are
310 well represented in PBMC, spleen and TBLN, the subsets show a very different distribution
311 in lung tissue and BAL. In lung tissue the majority of CD8 cells are TDE and TEM as has
312 been previously reported in humans (41), while in BAL TEMs prevail (~80%). We have
313 already shown that the majority of TBLN, BAL and, to a lesser extent, lung T cells are
314 inaccessible to intravenous anti-CD3 antibody, it was therefore of interest to examine the
315 expression of CD69, designated as a marker of activation and tissue residence, on these
316 cells. As in other species, we found that CD69 is minimally expressed on blood T cells
317 although upregulated if PBMC are activated with a mitogen (data not shown), but in all the
318 other tissues examined, some cells express this antigen. In BAL, CD69 is expressed on a
319 high proportion of CD8 T cells, but lower levels of CD69⁺ cells are found in the lung. In TBLN
320 all the CD8 subsets show clear CD69⁻ and CD69⁺ populations and in the spleen we could
321 also detect CD69⁺ cells, perhaps reflecting that a proportion of cells in these organs may
322 have been recently activated. In summary, a high proportion of NP specific T cells in TBLN
323 expresses CD69 from 6 days after influenza challenge until 63 DPI (**Fig. 6A**).

324 Due to the identification of two new CD8 epitopes in influenza NP, we were able to
325 compare changes in the distribution, phenotype and gene expression of different antigen
326 specific cells during influenza infection (32). We tracked CD8 T cells responding to three NP
327 epitopes in blood and tissues from 6 to 63 days post infection. Intriguingly, the modelled
328 kinetics of the responses to the three epitopes are very different, with DFE tetramer numbers
329 showing a very early peak in PBMC and spleen but peaking in all other tissues at similar
330 times to VAY. The response to the third epitope AAV appears later, but by 20-30 DPI it is
331 dominant in all tissues and persists for longer than the response to the other two epitopes.

332 Others have reported marked differences in the hierarchy of the responses to
333 immunodominant epitopes of influenza in mice (44, 45). Pizzolla and colleagues have shown
334 that T cells specific for immunodominant epitopes in NP, PA and PB proteins of influenza in
335 the nasal mucosa shared a similar hierarchy with systemic responses while in the lung all
336 immunodominant epitopes were equally represented (40). In our model, despite an initial
337 peak of DFE tetramer stained T cells, at the memory stage, the AAV epitope dominates in all
338 tissues, with no marked difference between the organs. Furthermore, the response of
339 tetramer positive cells does not decline more rapidly in the lung or BAL than blood or spleen,
340 although in mice both of these have been postulated to be hostile environments inducing
341 transcriptional and epigenetic changes that promote apoptosis (46). Further studies are
342 required to understand why AAV responses are immunodominant compared to DFE and
343 VAY. Immunodominance may be linked to peptide-MHC affinity and it has also been
344 reported that early IFN γ production can provide an advantage to a given antigen specific
345 population (47, 48). However, we did not observe significant differences in cytokine
346 production of AAV $^+$ and DFE $^+$ CD8 T cells (**Fig. 7**).

347 Mechanisms by which TRM populations persist have been investigated by several
348 authors in mice with sometimes contradictory results, so that it remains unclear whether
349 some or all respiratory tract TRM populations are maintained by recruitment of circulating
350 cells. While some experiments suggest that antigen encounter in the lung environment is
351 important for TRM establishment and maintenance (40, 46, 49, 50), it has been reported that
352 lung TRM may develop independently of pulmonary antigen encounter under specific
353 inflammatory conditions (51). Other results indicate that TEM but not TCM can be recruited
354 to the lungs and since relative numbers of TEM in the circulation decrease with time after
355 antigen exposure while TCM increase, as observed in PBMC (**Fig. 4B**) this may explain why
356 recruitment of TRM declines with time (51). These data are in accord with parabiosis
357 experiments in mice since if the parabiosis is carried out early after immunization, (activated)
358 antigen-specific cells from the immunized animal enter the lungs of the parabiotic partner but
359 not if the parabiosis is performed later (50).

360 Our data indicates that following influenza infections an airway population of TRM,
361 recoverable by BAL, is established with a peak at 20-30 DPI of predominantly AAV-specific
362 cells. We hypothesize that the late dominance of AAV may be because cells with this
363 specificity continue to divide for longer than those specific for DFE or VAY, with continuing
364 generation of cells with a TEM phenotype that can enter the lungs. Early on, BAL TRM cells
365 express genes characteristic of T cell activation and 5-22% express Ki67, though Ki67
366 expression is much more prominent in tetramer binding cells in TBLN and PBMC,
367 suggesting that the bulk of the BAL population arises by cell division prior to entry into the
368 airways. BAL Ki67 expression declines over time and, since the tetramer binding population
369 also declines, cell division clearly does not maintain the population. This finding is in line with
370 recent studies on SARS-CoV-2 infection, revealing that despite a high number of lung-
371 resident T cells, these lacked Ki67 expression in humans (52). Interestingly, expression of
372 the transcription factors T-bet and Eomes shares similar kinetics. In mice, T-box transcription
373 factor downregulation and the consequent expression of CD103 on CD8 T cells are essential
374 for TRM formation (53). Although the lack of phenotypic changes over time may suggest that
375 airway TRM are a stable effector population, this is not the case since there are major
376 change in gene expression, with genes involved in cytokine production, Th1/Th2
377 differentiation and the TGF β pathway highly upregulated at 21 compared to 7 DPI and
378 expression declining at 63 DPI. TGF β plays a critical role in tissue retention and
379 differentiation into TRM (54-56) suggesting that tetramer binding cells at 21 DPI already
380 present TRM features. In addition, we identified different sets of genes characteristic of TRM
381 in humans, which are also upregulated at each of these time points. Others have reported
382 marked differences in gene expression between CD8 T cells specific for different epitopes
383 (57), which should be investigated in the future to understand the prevalence of AAV $^+$ CD8 T
384 cells.

385 These data provide a detailed analysis of the phenotype and gene expression of
386 influenza-specific CD8 $^+$ TRM after influenza infection, but they have not established the

387 protective efficacy of these cells in the pig model. The data imply but do not prove, that the
388 cells are generated in TBLN and migrate via the blood to mucosal sites in the respiratory
389 tract, where we observed a delayed peak response. TRM and circulating memory cells in all
390 sites decline over time, the parallel decline of Ki67 staining suggests that they are not
391 replenished by cell division. Our study was limited to CD8 T cells but future work will need to
392 establish if other memory populations (CD4 and B cells) decline with similar kinetics. Neither
393 have we established, as have others in the mouse, whether TRM in mucosal sites contribute
394 to the recirculating pool of memory cells (10). However the extremely high frequency of
395 antigen-specific T cells in BAL and lower frequency in PBMC three weeks after S-FLU
396 immunization, indicate that this contribution may be relatively modest. As aerosol
397 immunization with S-FLU does not induce neutralizing antibodies, it will also be of great
398 interest to determine the persistence of BAL TRM and their role in reducing lung pathology
399 after homologous and heterologous challenge (23, 25, 58).

400 In summary, we have defined the spatial and temporal dynamics and hierarchy of
401 NP-specific responses in a natural host for influenza infection. These data suggest that an
402 airway population of CD8 TRM is established by clonal expansion in draining TBLN and
403 migration to the lungs. Importantly there is no evidence that respiratory tract CD8 TRM
404 decline more rapidly than antigen specific CD8 T cells in other sites. Despite exhibiting a
405 stable phenotype over time, BAL TRM undergo major changes in gene expression. The
406 similarities in phenotype and transcriptional profile of porcine and human TRM highlight the
407 value of this large animal model for understanding the importance of specificity of response
408 in establishing protection to respiratory infections and the development of next generation
409 vaccines.

410

411

412 **Materials and Methods**

413

414 **Animals and influenza challenge experiment**

415 Animal experiments were conducted according to the UK Government Animal (Scientific
416 Procedures) Act 1986 at the University of Bristol, the Pirbright Institute (TPI) and the Animal
417 and Plant Health Agency (APHA) under project license P47CE0FF2, with approval from
418 ethics committees at each institute. All institutions conform to the ARRIVE guidelines. All
419 pigs were screened prior to experiments for the presence of anti influenza antibody by HAI.

420 Three influenza challenge experiments were performed at the University of Bristol
421 (T1, T2 and T3), as previously reported (22) while a longer time course study (T4) took place
422 at APHA (**Fig. 2 A**). For T1, T2 and T3 thirty-eight Babraham inbred pigs (9.3 weeks old on
423 average) were experimentally infected intranasally, using a mucosal atomisation device
424 (MAD) (MAD300, Wolfe-Tory Medical), with 1×10^7 PFU of MDCK grown H1N1
425 A/swine/England/1353/2009 (H1N1pdm09), 2ml per nostril. In T1 and T2 one infected pig
426 was culled each day on days 1 to 7, 9, 11 and 13 post challenge while two control uninfected
427 pigs were sampled prior to infection and two more at day 8. During T3 three challenged
428 animals were culled at days 6, 7, 13, 14, 20 and 21 post infection. Six control uninfected
429 animals were included in T3: three culled at day -1 and the other three on the day of
430 challenge. During T4 twelve pigs (10.2 weeks old on average) were challenged as described
431 above and four pigs were culled at each of day 21, 42 and 63 post infection.

432 A first immunization experiment was performed at TPI where three Babraham pigs of
433 5.5 weeks of age were sedated and immunized with H7N1 S-FLU [eGFP/N1(PR8)]
434 H7t(Netherlands/219/2003) (2.4×10^8 50% tissue culture infective dose (TCID50))
435 administered by aerosol using a SOLO vibrating mesh nebuliser (Aerogen Ltd.) as previously
436 described (23). A group of two control pigs was left untreated. Vaccinated pigs were boosted
437 after 3 weeks as described above and culled 3 weeks post boost (WPB). Ten minutes prior
438 to sacrifice animals were infused intravenously (i.v.) with anti-CD3 monoclonal antibody
439 (mAb) (clone PPT3), produced in house, at a concentration of 1mg/kg to label circulating T

440 cells. A second immunization experiment took place at APHA. Six Babraham pigs received
441 H1N1 S-FLU [eGFP*/N1(A/Eng/195/2009)] H1(A/Eng/195/2009) (7.3×10^7 TCID50) by
442 aerosol twice, three weeks apart, as described before (23). Five unimmunized pigs were
443 used as control. At 3WPB, all animals were challenged intranasally with 2.8×10^6 PFU of
444 H1N1pdm09 delivered by MAD and culled four days later. Half of the pigs in each group
445 received anti-CD3 mAb i.v. 10 minutes prior to culling.

446

447 **Tissue sampling and processing**

448 Peripheral blood mononuclear cells (PBMC), tracheo-bronchial lymph nodes (TBLN), lung,
449 broncho-alveolar lavage (BAL) and spleen were processed as previously described (25, 58).
450 In addition, nasal turbinate (NT) and trachea were isolated in studies T3 and T4 as described
451 before (23, 59). Cells were cryopreserved in 10% DMSO (Thermo Fischer) in fetal bovine
452 serum (FBS).

453

454 **IFN γ ELISpot assay and identification of influenza nucleoprotein epitopes**

455 Cryopreserved lymphocytes were stimulated using H1N1pdm09 (MOI=1), medium
456 and H1N1pdm09 nucleoprotein derived peptides (GL Biochem Ltd.) and frequencies of IFN γ
457 spot forming cells were determined as described before (58). To identify CD8 T cell epitopes
458 in H1N1pdm09 nucleoprotein pools of ten 18 amino acid (aa) peptides overlapping by 12 aa,
459 were used for initial ELISpot screening. Individual peptides from responding pool were then
460 used to identify the highest responding peptides within each pool. Minimal epitopes were
461 then defined using a second screen with 9 aa peptides derived from the 18 aa peptides
462 giving the highest responses (**Supplementary Fig. 2**). Pool 3 and 4 consistently showed the
463 highest responses across tissues and therefore were broken down to identify minimal
464 epitopes of 9 aa length: NP₁₈₁₋₁₈₉ AAVKGVGTI (AAV) and NP₂₁₇₋₂₂₅ VAYERMCFNI (VAY), which were
465 confirmed to be CD8 epitopes (data not shown) and loaded into porcine SLA-2 molecules to
466 generate tetramers.

467

468 **Flow cytometric analysis and cell sorting**

469 Cryopreserved single cell suspensions from PBMC, TBLN, lung, BAL, NT and trachea were
470 thawed and rested for 2 hours in RPMI supplemented with Glutamax, 1% Penicillin-
471 Streptomycin, 5% HEPES and 10% FBS (all from Thermo Fisher) at room temperature
472 before staining. Two million cells per well were stained in 96 well plates with each NP
473 tetramer (AAV, DFE (NP₂₉₀₋₂₉₈ DFEREGYSL) and VAY) separately (as previously described (23,
474 32)). Following tetramer staining, fluorochrome-conjugated antibodies (see **Table S2** for all
475 antibodies used) were added in staining buffer (PBS+0.1% FBS), for 15 mins at 4°C and
476 then washed twice with PBS before fixation with 4% paraformaldehyde solution in PBS
477 (Santa Cruz Biotechnology). Intracellular staining for the detection of Eomesodermin, T-bet
478 and Ki67 was performed using True-Nuclear™ Transcription Factor Buffer Set (BioLegend),
479 according to the manufacturer instructions. Perforin and cytokine staining was achieved
480 using Fixation/Permeabilization Solution Kit (BD Biosciences). Gating strategies for the
481 different panels and control used are illustrated in **Supplementary Fig. 7A and B**. Naïve
482 samples were also stained and % of tetramer⁺CD8 T cells reported in **Table S3**. Stained
483 cells were analyzed using a BD LSRII.

484 To analyze the time course of activation of different CD8 subpopulations,
485 cryopreserved PBMC from naïve animals were first stained for CD8 β , CD45RA and CCR7
486 expression and sorted into 4 subpopulations (CD45RA⁺CCR7⁺, CD45RA⁺CCR7⁻, CD45RA⁻
487 CCR7⁺, CD45RA⁻CCR7⁻) using a BD FACSAria cell sorter. Cells were then centrifuged at
488 1000 x g for 5 minutes and re-suspended in cell culture medium (RPMI, 10% FBS, HEPES,
489 Sodium pyruvate, Glutamax and Penicillin/Streptomycin) overnight at 37°C. On the following
490 day, cells were stimulated using PMA Ionomycin (BioLegend) for 2, 4 and 6 hours and
491 cytokines detected by intracellular cytokine staining (see **Table S2** for antibodies list) using
492 Fixation/Permeabilization Solution Kit (BD Biosciences), unstimulated cells were used as a
493 control.

494 Cells isolated from BAL, TBLN and PBMC were stimulated with H1N1pdm09
495 (MOI=1) overnight and cytokine production quantified by intracellular cytokine staining as
496 previously described (22). Media only controls for each sample were used as baseline and
497 subtracted from the results.

498 For preparation of RNA, BAL cells isolated from 7, 21 and 63 DPI samples (n=3)
499 were depleted of alveolar macrophages using a MACS cell separation LS column (Miltenyi
500 Biotec) after staining for CD14 and CD172a (see **Table S2**). Lymphocytes were then stained
501 for DFE tetramer, CD8 and live/dead marker using a BD FACSaria (BD Bioscience).

502 Data were analyzed using FlowJo software v10.7 (Tree Star).

503

504 **RNA-seq.**

505 BAL DFE⁺ T cells were sorted (average of 4480 cells/sample) in PBS, samples were then
506 centrifuged at 3000g for 5 minutes. RNA was extracted using PicoPure RNA Isolation Kit
507 (Thermo Fisher) according to the manufacturer instructions followed by DNase treatment
508 (TURBO DNA-freeTM Kit, Thermo Fisher). Isolated RNA was used as input for SMARTer
509 Stranded Total RNA-Seq Kit v3 - Pico Input Mammalian (Takara Bio) and PCR amplification
510 performed. cDNA was pooled and sequenced on NovaSeq using an S1 100 PE flow cell.
511 Raw fastq files were used for an initial quality control using FastQC
512 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). Next, CogentAP (Cogent NGS
513 Analysis Pipeline v1.0, Takara Bio) was used to trim and add the sample barcodes to the
514 fastq header for each sample. The reads were then trimmed of Illumina and library prep
515 adapters using cutadapt (60), and subsequently aligned to *Sus scrofa* Sscrofa11.1
516 assembly (GCA_000003025.6) using STAR (61) with default parameters. UMI-tools was
517 used to discard duplicated reads (62) and featureCounts extracted the number of reads
518 aligned to each gene feature (63). Differential gene expression (DGE) analysis was carried
519 out using TCC-GUI, which iterates DESeq2 for data normalisation, using the featureCounts
520 output for pairwise comparisons (64, 65). Pathway analysis was performed using Webgestalt
521 online tool (66), selecting GSEA as comparison method and sscrofa as reference genome.

522 KEGG pathway database was used as reference and ensemble ID were uploaded together
523 with ranked score (-log₁₀(p value)*log₂(fold change difference)) based on the results of DGE
524 comparison. Other settings include: minimum number of IDs in the category (5), maximum
525 number of IDs in the category (2000), significance level (FDR < 0.05) and number of
526 permutation (1000).

527

528 **Statistical analysis**

529 To compare the changes over time in the proportion of CD8⁺ T cells specific for each
530 tetramer in a tissue, the following curve was fitted to the data, namely,

531
$$y(t) = y_0 + (y_{\max} - y_0) \left(\frac{t}{t_{\max}} \right)^6 \exp \left(-\frac{6(t-t_{\max})}{t_{\max}} \right),$$

532 where y is the proportion at t days post infection, y₀ is the baseline proportion, y_{max} is the
533 peak proportion and t_{max} is the time of peak proportion. Estimated parameters for each
534 tetramer and tissue are listed in **Table 1**. This curve was chosen as it gives an appropriate
535 shape for the data without including a large number of parameters.

536 Similarly, changes over time in the proportion of tetramer-specific T cells expressing different
537 cell surface markers in each tissue were compared by fitting exponential curves to the data,

538
$$y(t) = y_0 \exp(-dt),$$

539 where y is the proportion at t days post infection, y₀ is the initial proportion and d is the
540 decay rate (/day). Each marker was analyzed independently.

541 In both analysis, variation in parameters (i.e. y₀, y_{max} and t_{max} or y₀ and d) amongst
542 tissues and tetramers was assessed by fitting different models to the data by nonlinear least
543 squares and comparing the residual deviance for the models using F-tests (67). These
544 analysis were implemented in Matlab (version R2020b; The Mathworks, Inc.).

545 Because data on CD8⁺ T cells in the trachea were only available for a reduced number of
546 time points, the proportion of cells specific for each tetramer in this tissue were compared at

547 each time point using a Kruskal-Wallis test followed by pairwise Wilcoxon rank-sum tests.

548 This analysis was implemented in R (version 4.0.5) (68).

549 To assess changes over time in the relative proportion of CD8⁺ T cells specific for

550 each tetramer, the following model was used:

$$y_{DFE}(t) = K_1^{(DFE)} + \frac{K_2^{(DFE)} - K_1^{(DFE)}}{1 + \exp(-b_{DFE}(t - d_{DFE}))},$$

551 $y_{VAY}(t) = 1 - y_{DFE}(t) - y_{AAV}(t),$

$$y_{AAV}(t) = K_1^{(AAV)} + \frac{K_2^{(AAV)} - K_1^{(AAV)}}{1 + \exp(-b_{AAV}(t - d_{AAV}))},$$

552 where $y(t)$ is the proportion specific for the tetramer t days post infection, K_1 and K_2 are the
553 minimum and maximum frequencies, b the rate of change in frequency and d is the time of
554 the maximum rate of change. This formulation ensures the total proportion of cells is 100%.

555 Variation in parameters (i.e. K_1 , K_2 , b and d) amongst tissues was assessed by fitting
556 different models to the data by nonlinear least squares and comparing the residual deviance
557 for the models using F-tests (Ross 1990) (**Table S4**). This analysis was implemented in
558 Matlab (version R2020b; The Mathworks, Inc.). Only samples for which the frequency of all
559 three tetramers was available were included in this analysis.

560 Trends in the phenotype of tetramer specific CD8⁺ T cells in each tissue were
561 assessed using linear models. Each model included the proportion of cells in the population
562 (CD45RA⁺ and CCR7⁺) specific for a tetramer as the response variable and tissue,
563 tetramer and days post infection as explanatory variables, together with two- and three-way
564 interactions between the explanatory variables. Model simplification proceeded by stepwise
565 deletion of non-significant ($P > 0.05$) terms (as judged by F-tests). This analysis was
566 implemented in R (version 4.0.5) (R Core Team 2021).

567 Frequencies of cytokine secreting cells in DFE⁺ and AAV⁺ cells over time were compared
568 using two-way ANOVA in GraphPad Prism version 9.1.0.

569

570 **Supplementary Materials:**

571 **Supplementary Figures**

572 **Supplementary Figure 1. Expression of perforin and CD27 in CD8 T cell subset**

573 **Supplementary Figure 2. Identification of NP epitopes AAV and VAY**

574 **Supplementary Figure 3. Number of tetramer⁺ T cells in tissues**

575 **Supplementary Figure 4. Distribution of tetramer⁺ cells in the trachea**

576 **Supplementary Figure 5. Gene expression of tissue resident memory T cells features.**

577 **Supplementary Figure 6. CD3 infusion for the identification of tissue resident memory**

578 **T cells.**

579 **Supplementary Figure 7. Gating strategy and controls.**

580

581 **Supplementary Tables**

582 **Table S1.** Relevant significant (FDR<0.05) KEGG pathways upregulated in 21DPI vs 7DPI

583 comparison.

584 **Table S2.** List of antibodies used.

585

586 **References**

- 587
- 588 1. F. Krammer, The human antibody response to influenza A virus infection and vaccination.
Nat Rev Immunol **19**, 383-397 (2019).
- 589 2. P. G. Thomas, R. Keating, D. J. Hulse-Post, P. C. Doherty, Cell-mediated protection in
590 influenza infection. *Emerg Infect Dis* **12**, 48-54 (2006).
- 591 3. S. A. Harper, K. Fukuda, N. J. Cox, C. B. Bridges, P. Advisory Committee on Immunization,
592 Using live, attenuated influenza vaccine for prevention and control of influenza:
593 supplemental recommendations of the Advisory Committee on Immunization Practices
594 (ACIP). *MMWR Recomm Rep* **52**, 1-8 (2003).
- 595 4. M. Genzow, C. Goodell, T. J. Kaiser, W. Johnson, M. Eichmeyer, Live attenuated influenza
596 virus vaccine reduces virus shedding of newborn piglets in the presence of maternal
597 antibody. *Influenza Other Respir Viruses* **12**, 353-359 (2018).
- 598 5. T. Sathaliyawala *et al.*, Distribution and compartmentalization of human circulating and
599 tissue-resident memory T cell subsets. *Immunity* **38**, 187-197 (2013).
- 600 6. J. R. Teijaro *et al.*, Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal
601 protection to respiratory virus infection. *J Immunol* **187**, 5510-5514 (2011).
- 602 7. T. Gebhardt *et al.*, Memory T cells in nonlymphoid tissue that provide enhanced local
603 immunity during infection with herpes simplex virus. *Nat Immunol* **10**, 524-530 (2009).
- 604 8. L. M. Wakim, A. Woodward-Davis, M. J. Bevan, Memory T cells persisting within the brain
605 after local infection show functional adaptations to their tissue of residence. *Proc Natl Acad
606 Sci U S A* **107**, 17872-17879 (2010).
- 607 9. D. Masopust *et al.*, Dynamic T cell migration program provides resident memory within
608 intestinal epithelium. *J Exp Med* **207**, 553-564 (2010).
- 609 10. R. Fonseca *et al.*, Developmental plasticity allows outside-in immune responses by resident
610 memory T cells. *Nat Immunol* **21**, 412-421 (2020).
- 611 11. E. M. Steinert *et al.*, Quantifying Memory CD8 T Cells Reveals Regionalization of
612 Immunosurveillance. *Cell* **161**, 737-749 (2015).
- 613 12. B. V. Kumar *et al.*, Human Tissue-Resident Memory T Cells Are Defined by Core
614 Transcriptional and Functional Signatures in Lymphoid and Mucosal Sites. *Cell Rep* **20**, 2921-
615 2934 (2017).
- 616 13. D. Masopust, V. Vezys, E. J. Wherry, D. L. Barber, R. Ahmed, Cutting edge: gut
617 microenvironment promotes differentiation of a unique memory CD8 T cell population. *J
618 Immunol* **176**, 2079-2083 (2006).
- 619 14. J. M. Schenkel, K. A. Fraser, V. Vezys, D. Masopust, Sensing and alarm function of resident
620 memory CD8(+) T cells. *Nat Immunol* **14**, 509-513 (2013).
- 621 15. J. J. Thome *et al.*, Spatial map of human T cell compartmentalization and maintenance over
622 decades of life. *Cell* **159**, 814-828 (2014).
- 623 16. D. L. Turner *et al.*, Lung niches for the generation and maintenance of tissue-resident
624 memory T cells. *Mucosal Immunol* **7**, 501-510 (2014).
- 625 17. R. Trebbien, L. E. Larsen, B. M. Viuff, Distribution of sialic acid receptors and influenza A virus
626 of avian and swine origin in experimentally infected pigs. *Virol J* **8**, 434 (2011).
- 627 18. D. S. Rajao, A. L. Vincent, Swine as a model for influenza A virus infection and immunity. *ILAR
628 J* **56**, 44-52 (2015).
- 629 19. E. P. Judge *et al.*, Anatomy and bronchoscopy of the porcine lung. A model for translational
630 respiratory medicine. *Am J Respir Cell Mol Biol* **51**, 334-343 (2014).
- 631 20. D. Henritzi *et al.*, Surveillance of European Domestic Pig Populations Identifies an Emerging
632 Reservoir of Potentially Zoonotic Swine Influenza A Viruses. *Cell Host Microbe* **28**, 614-627
633 e616 (2020).
- 634 21. A. McNee *et al.*, Establishment of a Pig Influenza Challenge Model for Evaluation of
635 Monoclonal Antibody Delivery Platforms. *J Immunol*, (2020).

- 637 22. M. Edmans *et al.*, Magnitude and Kinetics of T Cell and Antibody Responses During
638 H1N1pdm09 Infection in Inbred Babraham Pigs and Outbred Pigs. *Front Immunol* **11**, 604913
639 (2020).
- 640 23. V. Martini *et al.*, Simultaneous Aerosol and Intramuscular Immunization with Influenza
641 Vaccine Induces Powerful Protective Local T Cell and Systemic Antibody Immune Responses
642 in Pigs. *J Immunol* **206**, 652-663 (2021).
- 643 24. B. Holzer *et al.*, Protective porcine influenza virus-specific monoclonal antibodies recognize
644 similar haemagglutinin epitopes as humans. *PLoS Pathog* **17**, e1009330 (2021).
- 645 25. B. Holzer *et al.*, Comparison of Heterosubtypic Protection in Ferrets and Pigs Induced by a
646 Single-Cycle Influenza Vaccine. *J Immunol* **200**, 4068-4077 (2018).
- 647 26. S. Moreno *et al.*, Analysis of chemokine receptor CCR7 expression on porcine blood T
648 lymphocytes using a CCL19-Fc fusion protein. *Dev Comp Immunol* **39**, 207-213 (2013).
- 649 27. S. C. Talker *et al.*, Phenotypic maturation of porcine NK- and T-cell subsets. *Dev Comp
650 Immunol* **40**, 51-68 (2013).
- 651 28. K. Reutner *et al.*, CD27 expression discriminates porcine T helper cells with functionally
652 distinct properties. *Vet Res* **44**, 18 (2013).
- 653 29. G. Franzoni *et al.*, Assessment of the phenotype and functionality of porcine CD8 T cell
654 responses following vaccination with live attenuated classical swine fever virus (CSFV) and
655 virulent CSFV challenge. *Clin Vaccine Immunol* **20**, 1604-1616 (2013).
- 656 30. Y. Hayashi, M. Okutani, S. Ogawa, T. Tsukahara, R. Inoue, Generation of anti-porcine CD69
657 monoclonal antibodies and their usefulness to evaluate early activation of cellular immunity
658 by flow cytometric analysis. *Anim Sci J* **89**, 825-832 (2018).
- 659 31. J. C. Schwartz *et al.*, The major histocompatibility complex homozygous inbred Babraham pig
660 as a resource for veterinary and translational medicine. *HLA*, (2018).
- 661 32. K. Tungatt *et al.*, Induction of influenza-specific local CD8 T-cells in the respiratory tract after
662 aerosol delivery of vaccine antigen or virus in the Babraham inbred pig. *PLoS Pathog* **14**,
663 e1007017 (2018).
- 664 33. D. Masopust, A. G. Soerens, Tissue-Resident T Cells and Other Resident Leukocytes. *Annu
665 Rev Immunol* **37**, 521-546 (2019).
- 666 34. A. Saalmuller, T. Werner, V. Fachinger, T-helper cells from naive to committed. *Vet Immunol
667 Immunopathol* **87**, 137-145 (2002).
- 668 35. P. Romero *et al.*, Four functionally distinct populations of human effector-memory CD8+ T
669 lymphocytes. *J Immunol* **178**, 4112-4119 (2007).
- 670 36. S. Vigano *et al.*, CD160-associated CD8 T-cell functional impairment is independent of PD-1
671 expression. *PLoS Pathog* **10**, e1004380 (2014).
- 672 37. N. Rufer *et al.*, Ex vivo characterization of human CD8+ T subsets with distinct replicative
673 history and partial effector functions. *Blood* **102**, 1779-1787 (2003).
- 674 38. D. L. Farber, N. A. Yudanin, N. P. Restifo, Human memory T cells: generation,
675 compartmentalization and homeostasis. *Nat Rev Immunol* **14**, 24-35 (2014).
- 676 39. D. Masopust, J. M. Schenkel, The integration of T cell migration, differentiation and function.
677 *Nat Rev Immunol* **13**, 309-320 (2013).
- 678 40. A. Pizzolla *et al.*, Resident memory CD8(+) T cells in the upper respiratory tract prevent
679 pulmonary influenza virus infection. *Sci Immunol* **2**, eaam6970 (2017).
- 680 41. M. E. Snyder *et al.*, Generation and persistence of human tissue-resident memory T cells in
681 lung transplantation. *Sci Immunol* **4**, (2019).
- 682 42. N. Schoettler, C. L. Hrusch, K. M. Blaine, A. I. Sperling, C. Ober, Transcriptional programming
683 and T cell receptor repertoires distinguish human lung and lymph node memory T cells.
684 *Commun Biol* **2**, 411 (2019).
- 685 43. A. Banerjee *et al.*, Cutting edge: The transcription factor eomesodermin enables CD8+ T cells
686 to compete for the memory cell niche. *J Immunol* **185**, 4988-4992 (2010).

- 687 44. J. A. Wiley, R. J. Hogan, D. L. Woodland, A. G. Harmsen, Antigen-specific CD8(+) T cells persist
688 in the upper respiratory tract following influenza virus infection. *J Immunol* **167**, 3293-3299
689 (2001).
- 690 45. G. T. Belz, W. Xie, J. D. Altman, P. C. Doherty, A previously unrecognized H-2D(b)-restricted
691 peptide prominent in the primary influenza A virus-specific CD8(+) T-cell response is much
692 less apparent following secondary challenge. *J Virol* **74**, 3486-3493 (2000).
- 693 46. S. L. Hayward *et al.*, Environmental cues regulate epigenetic reprogramming of airway-
694 resident memory CD8(+) T cells. *Nat Immunol* **21**, 309-320 (2020).
- 695 47. M. R. Jenkins, R. Webby, P. C. Doherty, S. J. Turner, Addition of a prominent epitope affects
696 influenza A virus-specific CD8+ T cell immunodominance hierarchies when antigen is limiting.
697 *J Immunol* **177**, 2917-2925 (2006).
- 698 48. F. Liu, J. L. Whitton, M. K. Slifka, The rapidity with which virus-specific CD8+ T cells initiate
699 IFN-gamma synthesis increases markedly over the course of infection and correlates with
700 immunodominance. *J Immunol* **173**, 456-462 (2004).
- 701 49. S. R. McMaster *et al.*, Pulmonary antigen encounter regulates the establishment of tissue-
702 resident CD8 memory T cells in the lung airways and parenchyma. *Mucosal Immunol* **11**,
703 1071-1078 (2018).
- 704 50. S. Takamura *et al.*, Specific niches for lung-resident memory CD8+ T cells at the site of tissue
705 regeneration enable CD69-independent maintenance. *J Exp Med* **213**, 3057-3073 (2016).
- 706 51. B. Slutter *et al.*, Dynamics of influenza-induced lung-resident memory T cells underlie waning
707 heterosubtypic immunity. *Sci Immunol* **2**, eaag2031 (2017).
- 708 52. P. A. Szabo *et al.*, Longitudinal profiling of respiratory and systemic immune responses
709 reveals myeloid cell-driven lung inflammation in severe COVID-19. *Immunity* **54**, 797-814
710 e796 (2021).
- 711 53. L. K. Mackay *et al.*, T-box Transcription Factors Combine with the Cytokines TGF-beta and IL-
712 15 to Control Tissue-Resident Memory T Cell Fate. *Immunity* **43**, 1101-1111 (2015).
- 713 54. N. Zhang, M. J. Bevan, Transforming growth factor-beta signaling controls the formation and
714 maintenance of gut-resident memory T cells by regulating migration and retention.
715 *Immunity* **39**, 687-696 (2013).
- 716 55. J. Mohammed *et al.*, Stromal cells control the epithelial residence of DCs and memory T cells
717 by regulated activation of TGF-beta. *Nat Immunol* **17**, 414-421 (2016).
- 718 56. C. Ma, N. Zhang, Transforming growth factor-beta signaling is constantly shaping memory T-
719 cell population. *Proc Natl Acad Sci U S A* **112**, 11013-11017 (2015).
- 720 57. A. Yoshizawa *et al.*, TCR-pMHC encounter differentially regulates transcriptomes of tissue-
721 resident CD8 T cells. *Eur J Immunol* **48**, 128-150 (2018).
- 722 58. S. B. Morgan *et al.*, Aerosol Delivery of a Candidate Universal Influenza Vaccine Reduces Viral
723 Load in Pigs Challenged with Pandemic H1N1 Virus. *J Immunol* **196**, 5014-5023 (2016).
- 724 59. V. Martini *et al.*, Distribution of Droplets and Immune Responses After Aerosol and Intra-
725 Nasal Delivery of Influenza Virus to the Respiratory Tract of Pigs. *Front Immunol* **11**, 594470
726 (2020).
- 727 60. M. Martin, Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads.
728 *EMBnet* **17**, (2011).
- 729 61. A. Dobin *et al.*, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21 (2013).
- 730 62. T. Smith, A. Heger, I. Sudbery, UMI-tools: modeling sequencing errors in Unique Molecular
731 Identifiers to improve quantification accuracy. *Genome Res* **27**, 491-499 (2017).
- 732 63. Y. Liao, G. K. Smyth, W. Shi, featureCounts: an efficient general purpose program for
733 assigning sequence reads to genomic features. *Bioinformatics* **30**, 923-930 (2014).
- 734 64. W. Su, J. Sun, K. Shimizu, K. Kadota, TCC-GUI: a Shiny-based application for differential
735 expression analysis of RNA-Seq count data. *BMC Res Notes* **12**, 133 (2019).
- 736 65. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for
737 RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).

- 738 66. Y. Liao, J. Wang, E. J. Jaehnig, Z. Shi, B. Zhang, WebGestalt 2019: gene set analysis toolkit
739 with revamped UIs and APIs. *Nucleic Acids Res* **47**, W199-W205 (2019).
- 740 67. G. J. S. Ross, *Nonlinear estimation*. (Springer-Verlag, New York, 1990), pp. viii, 189 p.
- 741 68. R. C. Team, R: A Language and Environment for Statistical Computing. (2020).
- 742
- 743

744 **Acknowledgments:** We are grateful to all animal staff at the University of Bristol, the
745 Pirbright Institute and APHA. We thank Emily Porter and the Mucosal Immunology group at
746 TPI for their help in tissue collection and processing. We acknowledge the Bioimaging group
747 at TPI for their support with cell sorting and Edinburgh Genomics for their help with RNA
748 sequencing.

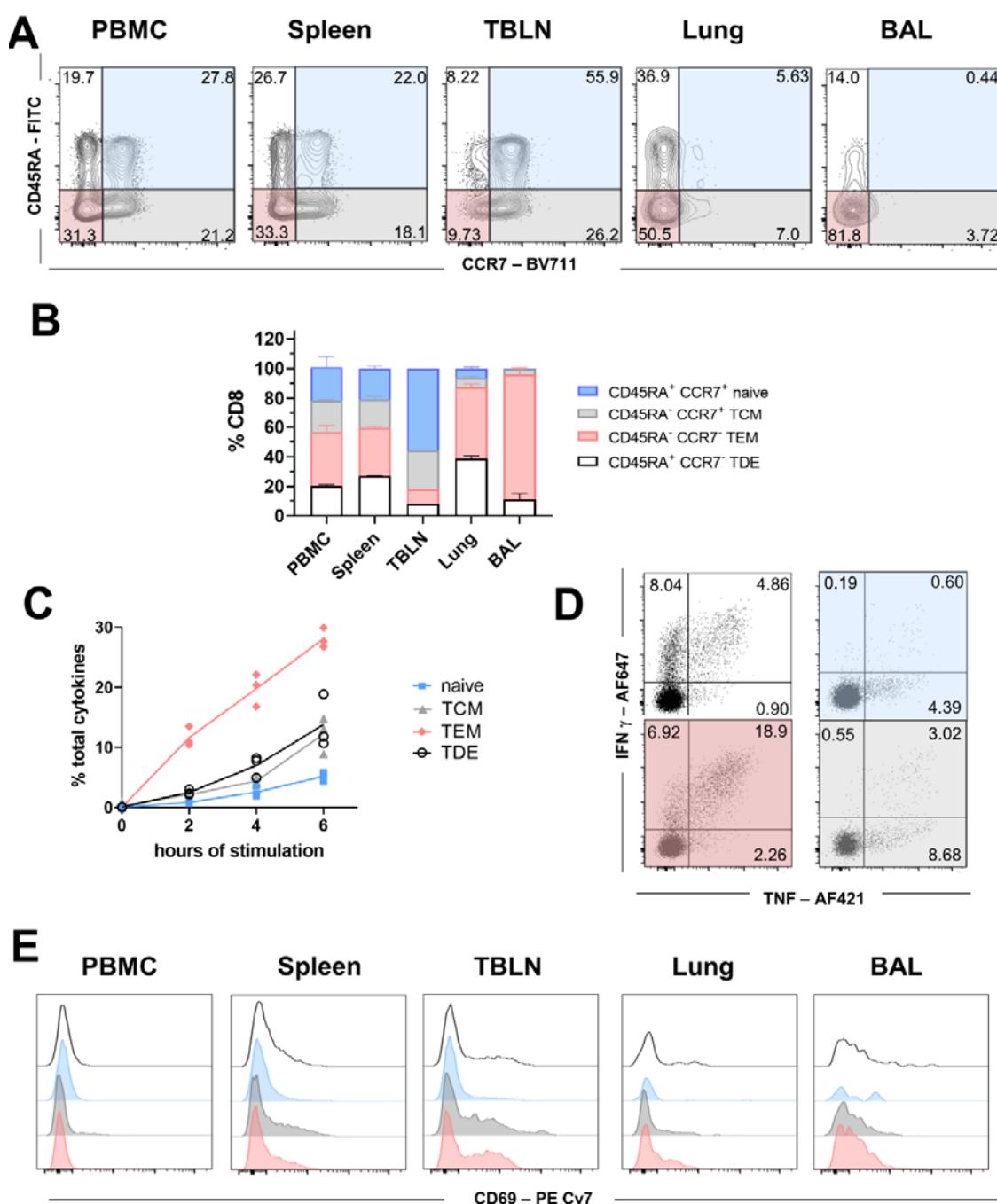
749

750 **Funding:** This work was supported by the UKRI Biotechnology and Biological Sciences
751 Research Council (BBSRC) sLoLa BB/L001330/1, BBS/E/I/0000703, BBS/E/I/00007037 and
752 BBS/E/I/00007039. AT and PR are funded by the Chinese Academy of Medical Sciences
753 Innovation Fund for Medical Sciences, China Grant 2018-I2M-2-002, the Townsend-Jeantet
754 Prize Charitable Trust (charity 1011770), and Medical Research Council Grant
755 MR/P021336/1. AKS is a Wellcome Investigator (220295/Z/20/Z)

756

757 **Author contributions:**

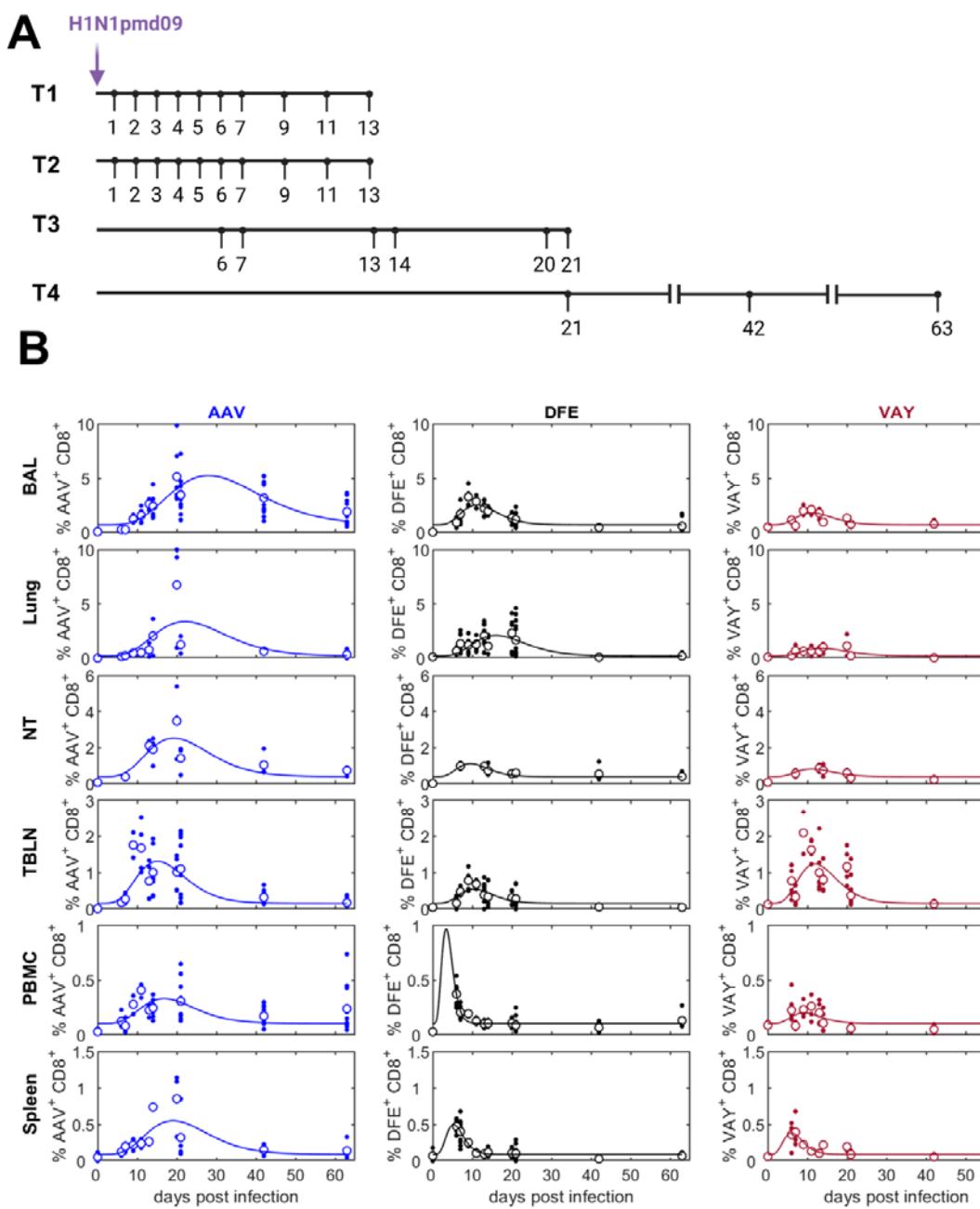
758 Conceptualization: ET, VM, AT, PB
759 Methodology: VM, ME, SG, SJ, BP, AM, SM, TM, PR, RI, AKS
760 Investigation: VM, ET, SG, SJ, TC
761 Visualization: VM, SG
762 Funding acquisition: ET, BC, AT
763 Supervision: ET, AT, PB
764 Writing – original draft: VM, ET, PB
765 Writing – review & editing: VM, ET, PB, ME, RI, TC, AKS, BC


766

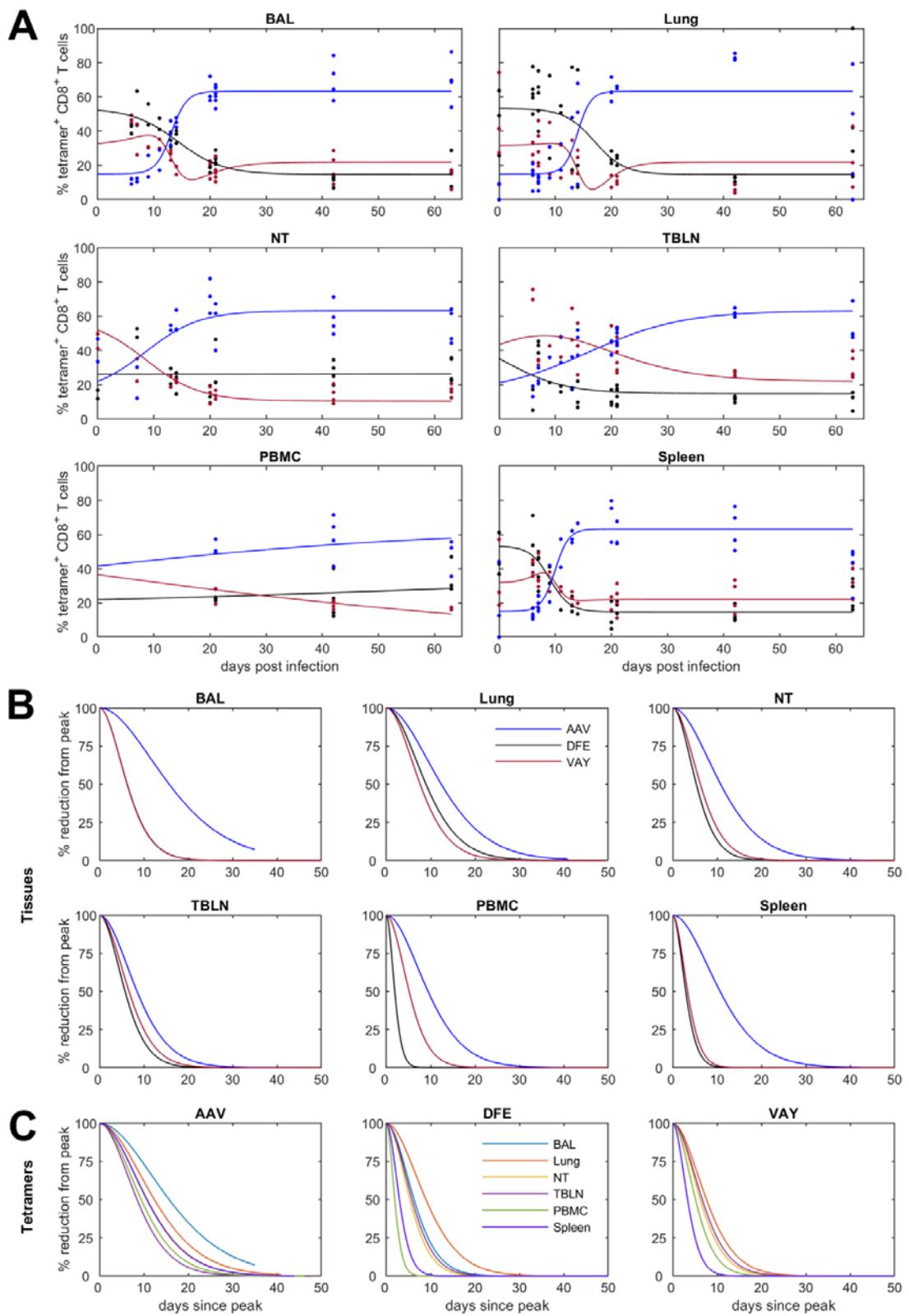
767 **Competing interests:** A.T. is named on a patent regarding the use of S-FLU vaccine. The
768 other authors have no financial conflicts of interest.

769

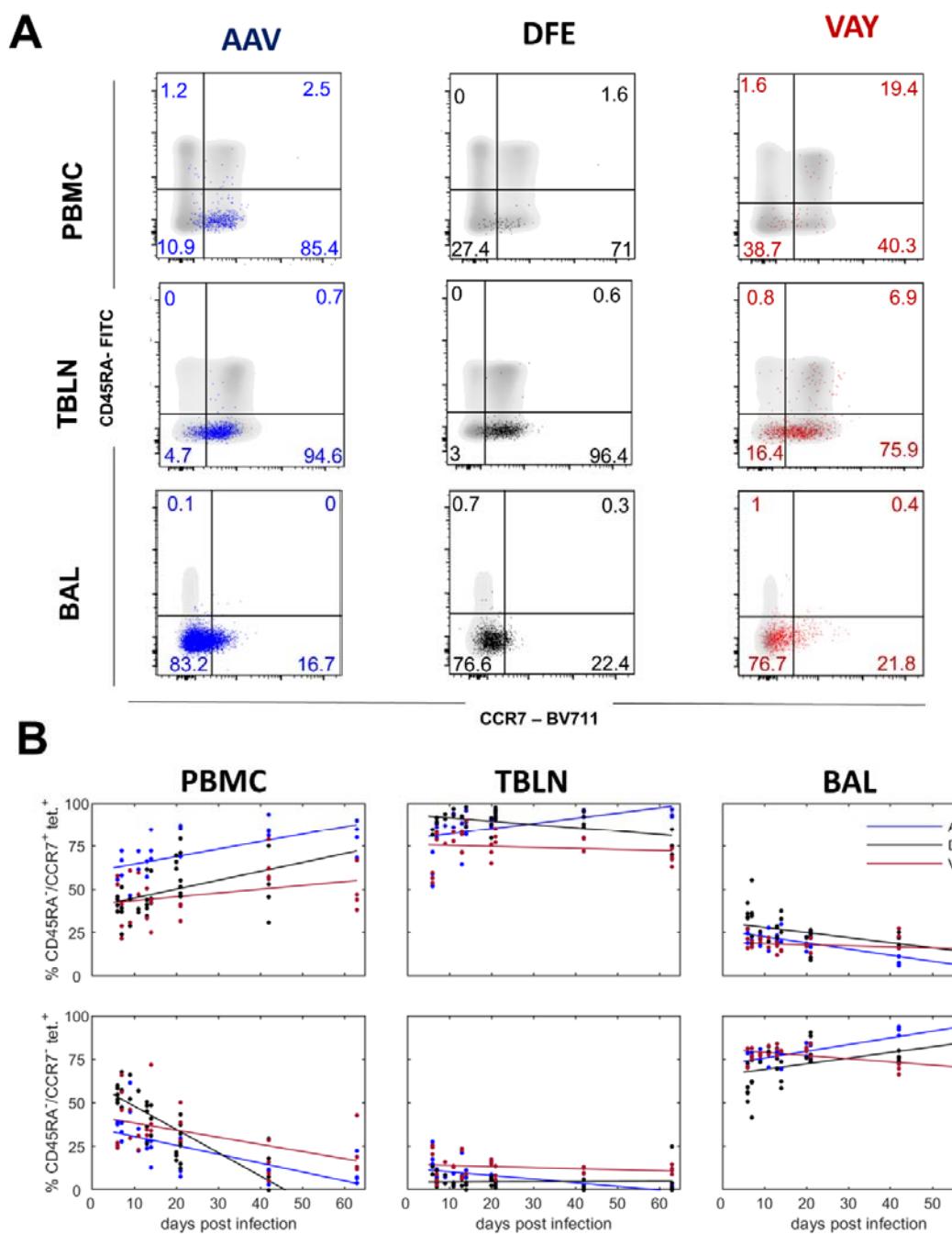
770 **Data and material availability:** RNA-seq data will be available on GEO website after
771 manuscript submission.


772 **Figures**

773
774 **Figure 1. Phenotype of porcine CD8 T cells in tissues and cytokine secretion after**
775 **stimulation. (A)** Expression of CD45RA and CCR7 by CD8 T cells isolated from the
776 indicated tissues of naïve Babraham pigs. Quadrants show the proportion of each
777 population. **(B)** Mean frequency (\pm SD) of TDE (CD45RA $^+$, CCR7 $^-$), naïve (CD45RA $^+$,
778 CCR7 $^+$), TEM (CD45RA $^-$, CCR7 $^+$) and TCM (CD45RA $^-$, CCR7 $^-$) in CD8 T cells from 3

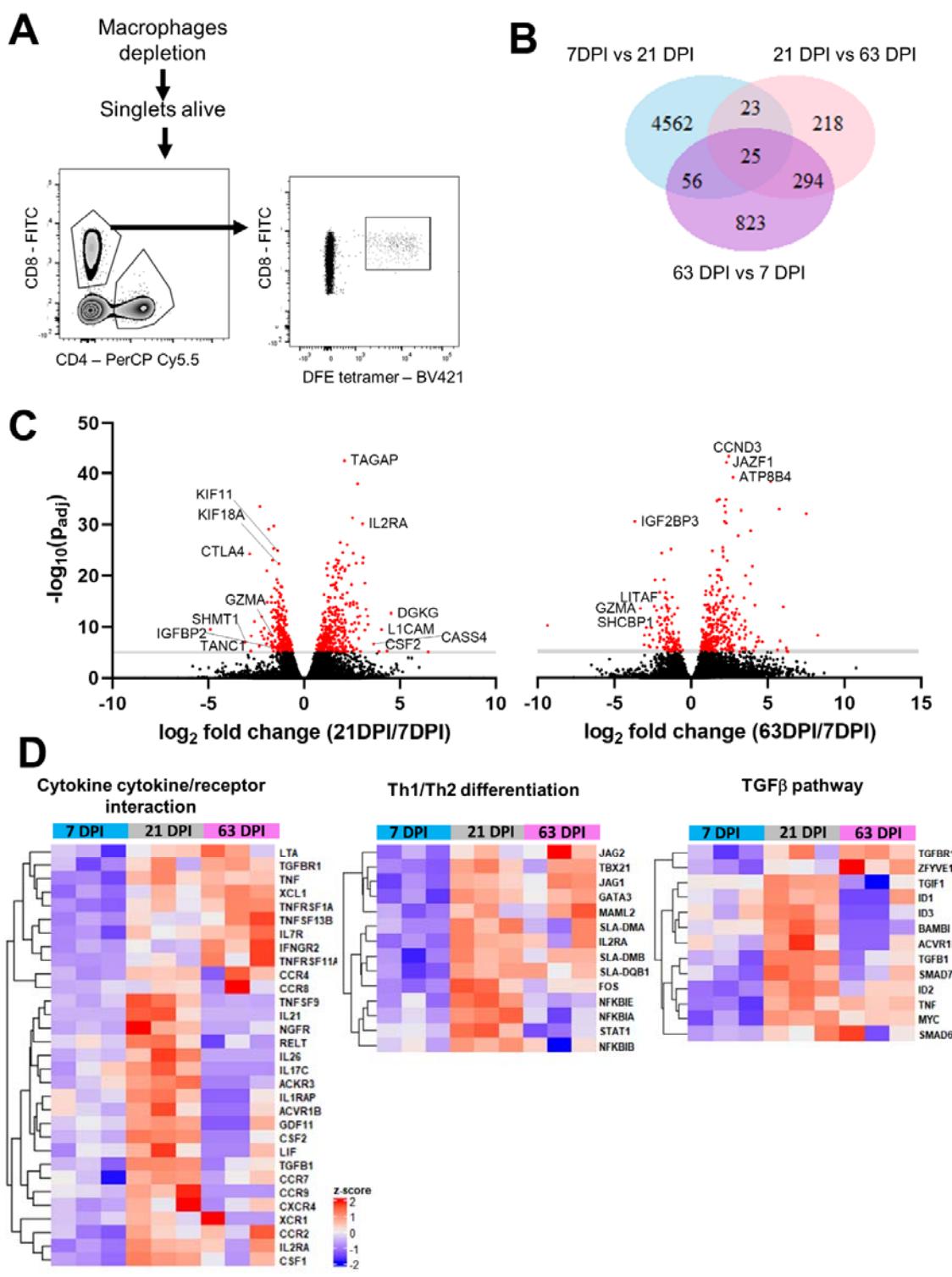

779 animals. **(C)** CD8+ T cells from PBMC were sorted according to their expression of CD45RA
780 and CCR7. The sorted cells were stimulated with PMA and Ionomycin for 0, 2, 4 and 6 hours
781 and TNF and IFNg secretion measured by intracellular cytokine staining. Each symbol
782 represent one animal, this experiment was repeat twice. **(D)** Representative FACS plot
783 showing the secretion of IFNg and TNF after 6 hours stimulation in TDE (white panel), naïve
784 (blue panel), TCM (grey panel) and TEM (red). Mean proportion of IFNg single (top left),
785 double producer (top right) and single TNF⁺ (bottom right) T cells are reported. **(E)** CD69
786 expression in terminally differentiated effector (TDE, white), naïve (blue), central memory
787 (TCM, grey) and effector memory (TEM, red) in CD8 T cells in the tissues analyzed.

788


797 at each time point and the small filled circles are the observed % for individual pigs at each
798 time point.

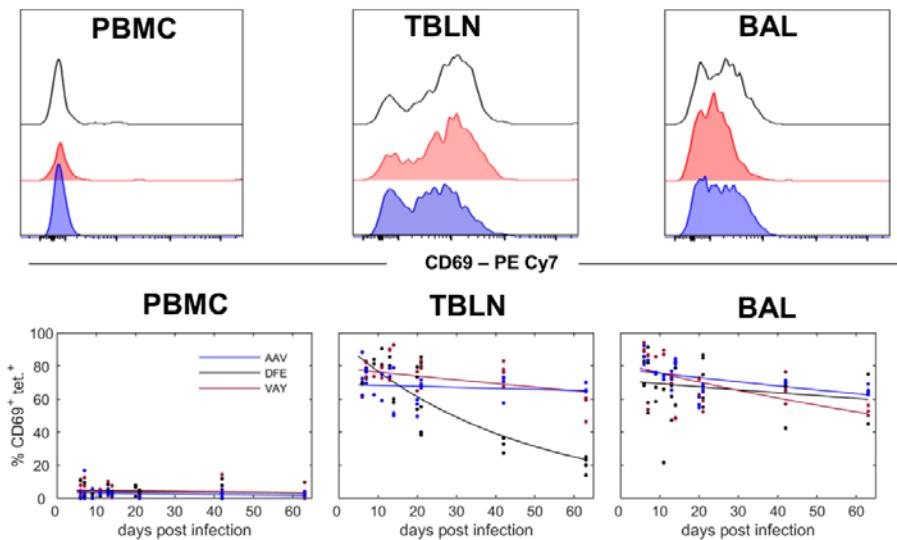
799

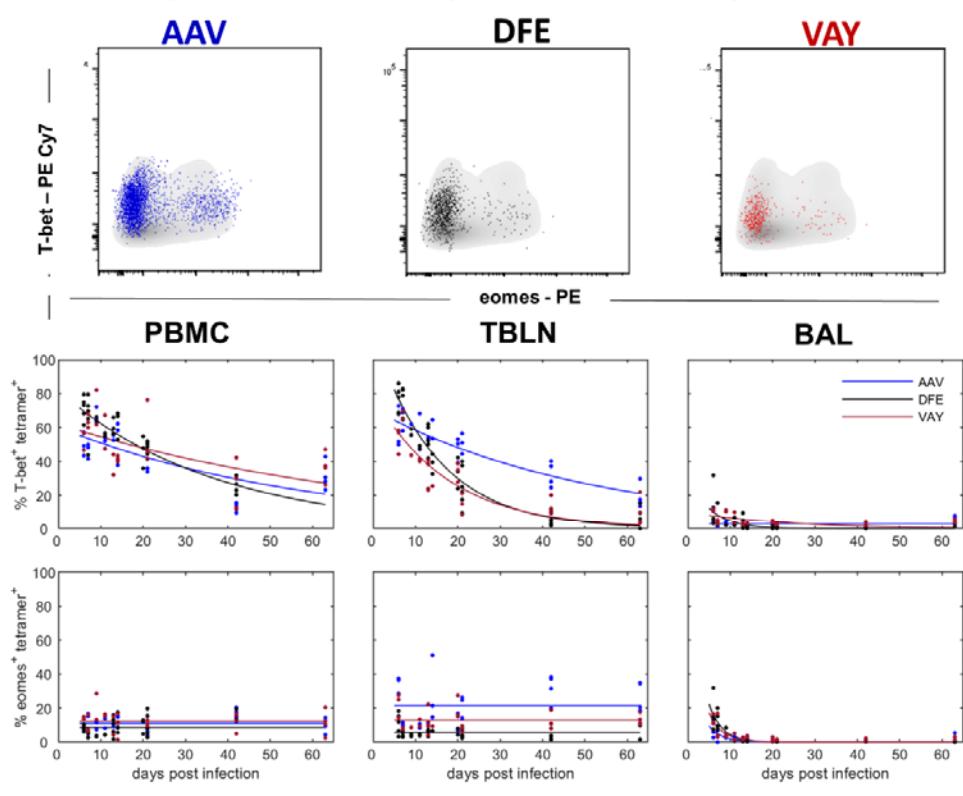
801 **Figure 3. Changes in the proportion of tetramer⁺ CD8 T-cells in different tissues and**
802 **estimated decay (% reduction from peak) over time (A)** Relative proportion (%) of CD8⁺
803 T cells specific for each tetramer (AAV – blue; DFE - black; VAY - red) in the indicated
804 tissues. In each plot the solid line is the fitted curve describing the dynamics and the points
805 are the observed proportions for individual pigs at each time point. **(B)** Decay from the peak
806 of response within the indicated tissue. **(C)** Decay of tetramer⁺ CD8 T-cells in different
807 tissues (as indicated). Note: DFE and VAY have the same dynamics in BAL, VAY has the
808 same dynamics in NT and PBMC and AAV has the same dynamics in NT and spleen so
809 these decay curves overlap.


810

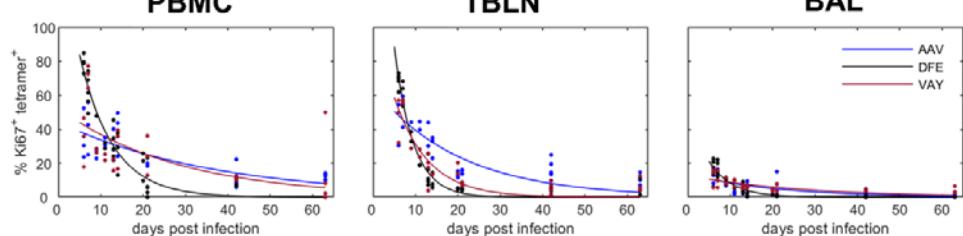
812 **Figure 4. Phenotype of influenza-specific CD8 T cells in tissues over time (A)**

813 Expression of CD45RA and CCR7 by AAV (left, blue), DFE (centre, black) and VAY (right, red) tetramer⁺ (coloured dots) and total CD8 T cells (in grey) isolated at 21 DPI from PBMC
 814 (top), TBLN (middle) BAL (bottom), representative plots for one individual. **(B)** Proportion
 815 (%) of CD8⁺ T cells staining with AAV (blue), DFE (black) and VAY (red) tetramer in different
 816 tissues. T cell populations are TEM (CD45RA⁻/CCR7⁺; top row) and TCM (CD45RA⁺/CCR7⁻;
 817

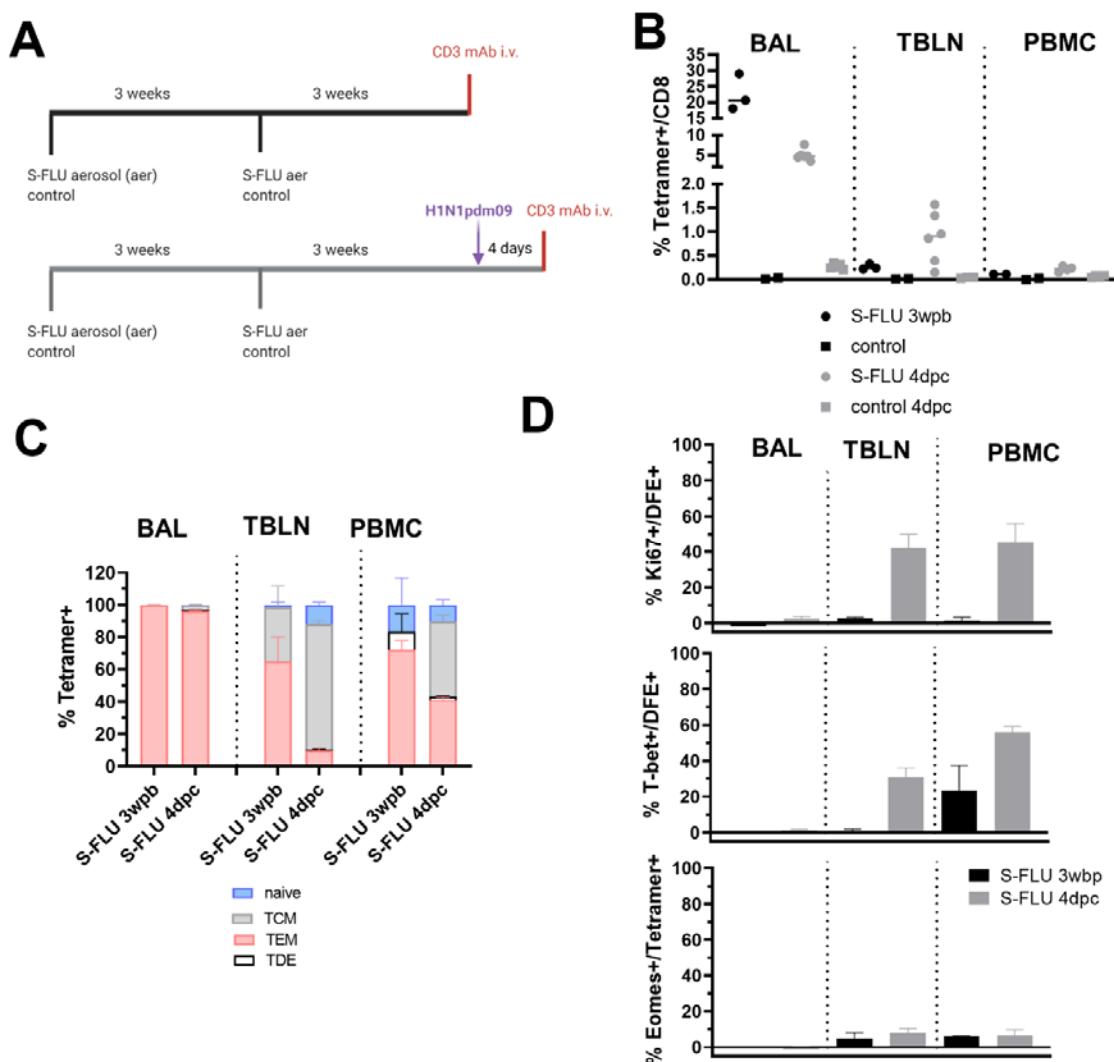

818 bottom row) in PBMC (left), TBLN (center) and BAL (right). In each plot the solid line is the
819 fitted trend and the points are the observed proportions for individual pigs at each time point.
820


822 **Figure 5. Transcriptional profile of DFE-specific T cells in BAL at 7, 21 and 63 DPI. (A)**
823 Sorting strategy for the isolation of DFE⁺ T cells for RNA-seq. **(B)** Venn diagram shows the
824 number of significant differentially expressed genes (p_{adj} value < 0.05, and $|\log_2 \text{fold change}| >$

825 1) between 7DPI versus (vs) 21 DPI, 21DPI vs 63DPI and 63DPI vs 7DPI samples. **(C)**
826 Volcano plot showing upregulated genes in 21DPI vs 7DPI and 63DPI vs 21DPI comparison.
827 **(D)** Heatmap of selected genes from KEGG Pathway analysis related to cytokine production,
828 T cell differentiation and TGF β pathway (enrichment score of 0.76, 0.88 and 0.83
829 respectively)
830


A

B


C

832 **Figure 6. Activation state and transcription factors expression in tetramer⁺ CD8 T cells**

833 **(A)** Top: Histograms show the expression of CD69 by DFE (black), VAY (red) and AAV
834 (blue) tetramer⁺ T cells in PBMC (left), TBLN (centre) and BAL (left) at 21 DPI. Bottom:
835 Frequencies of tetramer⁺ cells expressing CD69 in PBMC, TBLN and BAL. **(B)** Top:
836 Expression of T-Bet and Eomes by AAV (left, blue), DFE (centre, black) and VAY (right, red)
837 tetramer⁺ (coloured dots) and total CD8 T cells (in grey) isolated at 21 DPI from TBLN,
838 representative plots for one individual. Bottom: Frequencies of tetramer⁺ cells expressing T-
839 bet and Eomes in PBMC, TBLN and BAL. **(C)** Proportion of AAV, DFE and VAY tetramer⁺
840 expressing Ki67 in PBMC, TBLN and BAL. In each plot the solid line is the fitted curve
841 describing the dynamics and the points are the observed proportions for individual pigs at
842 each time point

843

844

845 **Figure 7. Cytokine secretion after *ex vivo* virus stimulation of AAV and DFE tetramer⁺**
 846 **cells (A)** Lymphocytes isolated at different time points from blood, TBLN and BAL were
 847 stimulated with H1N1pdm09 MOI=1. Following 18 hours of stimulation, cells were labelled
 848 using tetramers and cytokines quantified using intracellular cytokine staining. Representative
 849 plots of AAV⁺ (on left) and DFE⁺ (right) T cells secreting IFNg, TNF and IL-2 cytokines, from
 850 lymphocytes isolated 14 DPI. **(B)** Mean frequency (\pm SEM) of tetramer⁺ cells secreting IFNg,
 851 TNF and IL-2 from PBMC (top panels), TBLN (in the middle) and BAL (bottom). The right Y
 852 axes shows the mean frequency of AAV⁺ (in blue, left panels) and DFE⁺ (in black, right
 853 panels) within CD8 T cells. Data shown are mean of 3 / 4 individuals per timepoint. Two-way

854 ANOVA was used for comparison of each cytokine population between DFE⁺ and AAV⁺
855 cells.
856

857 **Tables**

858 **Table 1.** Estimated parameters describing the changes over time in the proportion of CD8⁺ T
859 cells specific for each tetramer in different tissues.

parameter	tissue*	Tetramer		
		AAV	DFE	VAY
peak proportion (%)	BAL	5.23	2.52	1.80
	Lung	3.37	2.10	0.90
	NT	2.53	1.12	0.83
	TBLN	1.31	0.55	1.23
	PBMC	0.33	0.97	0.20
	Spleen	0.55	0.50	0.38
time of peak proportion (days post infection)	BAL	28.0	11.2	11.1
	Lung	22.1	15.9	13.6
	NT	19.3	9.5	11.1
	TBLN	15.1	10.3	11.9
	PBMC	16.8	3.4	9.1
	Spleen	19.1	5.3	6.0
baseline proportion (%)†	BAL	0.71		
	Lung	0.22		
	NT	0.41		
	TBLN	0.16		
	PBMC	0.10		
	Spleen	0.09		

860 * BAL - broncho-alveolar lavage; NT - nasal turbinate; TBLN - tracheo-bronchial lymph node

861 † baseline proportion is the same for each of the tetramers

863 **Table 2.** Estimated decay rates (d ; /day) in the proportion of tetramer specific T cells
864 expressing different markers across tissues.

marker	tissue*	Tetramer		
		AAV	DFE	VAY
Ki67	PBMC	0.027	0.128	0.036
	TBLN	0.049	0.226	0.127
	BAL	0.050	0.186	0.038
T-bet	PBMC	0.017	0.027	0.013
	TBLN	0.019	0.067	0.057
	BAL	0	0.196	0.044
EOMEST†	PBMC		0	
	TBLN		0	
	BAL		0.33	
CD69	PBMC	0.012	0.006	0.006
	TBLN	0.001	0.022	0.003
	BAL	0.004	0.003	0.007

* BAL - broncho-alveolar lavage; TBLN - tracheo-bronchial lymph node

† decay rate is the same for each of the tetramers