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Abstract

The reproducibility of embryonic development is a remarkable feat of biological organization, but
the underlying mechanisms are poorly understood. Clearly, gene regulatory networks are central
to the orderly progression of development, but noisy molecular and cellular processes should
reduce reproducibility. Here, we identify ergodicity, a type of dynamical stability, as underlying the
reproducibility of development. In ergodic systems, a single timepoint measurement equals a time
average. Focusing on the zebrafish tailbud, we define gene expression and cell motion states
using a parallel statistical analyses of single cell RNA sequencing data and in vivo timelapse cell
tracking data and a change point detection algorithm. Strikingly, the cell motion state transitions
in each embryo exhibit the same patterns for both a single timepoint and a 2-3 hour time average.
Both the cell motion and gene expression cell states exhibit balanced influx and outflux rates
reflecting a spatiotemporal stability. Stated simply, these data indicate the pattern of changes in
the tailbud doesn’t change. This ergodic pattern of cell state transitions may represent an

emergent meta-state that links gene networks to the reproducible progression of embryogenesis.
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Introduction

Aristotle first noted the astonishing reproducibility of embryogenesis in “Historia Animalium,”
where he observed, “Generation from the egg occurs in an identical manner in all birds”. At the
cellular level, development entails a reproducible series of cell state transitions representing
changes in gene expression state, physical state and cell fate. These processes can be noisy, for
example, cell migration can be either ordered or disordered, and such disorder is part of normal
orderly development . We now appreciate that gene networks control cell state transitions, but
these networks are comprised of stochastic molecular processes . How biological order emerges
from stochastic molecular events was the subject of Erwin Schrodinger’s “What is Life? ”. Despite
the remarkable progress in the field of developmental biology in recent decades, there is still a
gap in our understanding of the organizing processes that lie between genes and the reproducible

dynamics of developing embryos.

One framework for analyzing the reproducibility of embryonic development is that of ergodicity.
An ergodic system is one in which the average behavior of all objects at a single timepoint equals
the average behavior of a random sample of objects over a longer time interval. For example,
measurement of all gas molecules within a chamber at a single time point yields the same result
as the average of a random sample of gas molecules over the entire experimental time interval.
The ergodic hypothesis lacked a mathematical foundation until the development of the ergodic
theorem in 1932 . In the field of ergodic theory, the single timepoint average is typically referred
to as the “phase average”. Ergodicity is a mathematical ideal and real systems are not truly
ergodic. Embryonic development is by definition not ergodic since the embryo changes as it
develops, but it is possible for ergodicity to exist over a short period of time. Ergodicity is implicitly
assumed in many biological experiments, yet it is rarely demonstrated. For example, ergodicity

of gene expression levels in clonal cell populations is only observed when accounting for cell age.
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Here, we address the mechanism of the reproducibility of embryonic development by performing
an analysis of ergodicity of the pattern of cell state transitions in the zebrafish tailbud. The
vertebrate tailbud is a dynamic structure that supports body elongation (Fig. 1a, left panel) . Cells
in the tailbud undergo multiple transitions in gene expression and migratory behavior during their
differentiation. The dorsal-medial tailbud (DM) contains a pool of sox2/brachyury expressing
neuromesodermal progenitors (NMPs) that contribute to both the spinal cord (Fig. 1A, yellow) and
the presomitic mesoderm (PSM) . In the zebrafish, cells in the DM migrate towards the posterior
in a processive orderly fashion (Fig. 1A, cyan). At the tip of the tailbud, mesodermally fated cells
downregulate sox2, upregulate mesodermal genes such as tbx716, and undergo EMT to migrate
ventrally into the progenitor zone (PZ)(Fig. 1A, magenta). Cell movements in the PZ are more
disorderly than the DM. Ultimately cells leave the PZ, reduce their cell motion and assimilate into
the left and right PSM (Fig. 1A, green) . Cells in the PSM downregulate tbx716 and turn on tbx6.
Cell velocity in the anterior PSM declines further as the tissue solidifies . The transition from
orderly to disorderly motion from the DM to PZ is necessary for proper body elongation .
Excessively disordered motion in the DM (obtained by inhibition of BMP or FGF signaling) impairs
the flow of cells through the tailbud leading to a short body axis. Excessively ordered motion in
the PZ (induced by moderate Wnt inhibition) produces prolonged anisotropic fluxes, unequal
allotment of cells to the left or right PSM, and a bent body axis. Thus, understanding robustness
and reproducibility of vertebrate body elongation requires understanding the nature of these

tailbud cell state transitions.

In this study of ergodicity and the reproducibility of development, we first objectively define the
trajectory of cell states in the zebrafish tailbud during body elongation. We define gene expression
state using single cell RNA sequencing (scRNAseq) and a change point detection algorithm. We
validate this method by comparing wild type and embryos with reduced Wnt, Fgf and Bmp

signaling, and verify quantitative differences in cell states by multicolor fluorescent in situ
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hybridization. Next, we identify cell motion states by analyzing cell tracking data using the same
statistical analysis as used for scRNAseq. We then perform an analysis of ergodicity of the pattern
of cell motion states as these datasets allow direct comparison of a single timepoint with a time
average. We find that the ergodicity is achieved via a balanced flux between cell motion states in
each embryo. Since it is not possible to directly track gene expression states over time in
scRNAseq data, we estimate the flux between the gene expression states from RNA velocity and
confirmed balanced flux in wild-type embryos. These consistently balanced fluxes for both cell
motion and gene expression states suggest that the ergodicity is an emergent order which can

explain the reproducibility and robustness of embryonic development.

Results

Gene expression states

We performed scRNAseq on dissected tails from 10-12 somite stage zebrafish embryos (Fig. 1A).
We used wild-type embryos and embryos subject to treatments known to alter tailbud cell
migration, specifically inhibition of FGF, BMP, or Wnt signaling . For each treatment, we prepared
four biological replicates each consisting of 10 to 12 tailbuds and resulting in 30,000-35,000 single
cell profiles. In a UMAP dimension reduction plot of wild type, the neuronal and paraxial
mesoderm form one large cluster with more differentiated cells at each end and common
progenitors (cyan) in the middle (Fig. 1B, arrow, and Fig. S1). Wild-type and experimental
samples consist of the same cell transcription profiles (Fig. 1D). This result is consistent with
previous scRNAseq analysis of zebrafish embryos indicating that perturbation of cell signaling

does not create novel cell transcription profiles .

To enable direct quantitative comparisons between experimental conditions, we pooled the data
from all wild-type and experimental replicates and created one unified pseudotime to define a

single standard for classifying cells. Specifically, the cells in the main cluster were aligned along
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a neuronal-mesodermal axis from sox3 expressing neuronal cells to mespaa expressing anterior
PSM cells (Fig. 1B, arrow) . This approach avoids the requirement to define the NMP population
a priori. Instead, NMPs will be located in the middle of the pseudotime sequence and
differentiation will proceed towards both ends, i.e. neuronal to the left and mesodermal to the right
(Fig. 1C). Marker genes for neuronal and mesodermal development map with respect to

pseudotime in the correct developmental sequence indicating that the procedure was successful.

To objectively define gene expression states, we extracted the wild-type data, and then utilized a
change point detection algorithm to divide pseudotime into a series of distinct states . The change
point algorithm identified five transition points (Fig. S2). These transition points (vertical lines in
Fig. 1C) divide the pseudotime sequence into six states that generally agree with those predicted
previously from marker gene expression . These transition points were mapped to the full
pseudotime sequence, and we calculated the relative abundance of each state in wild type, Wnt

inhibited embryos, Fgf inhibited embryos and Bmp inhibited embryos (Fig. 1D).

To determine whether this analysis of sScRNAseq data accurately quantifies changes in cell state,
we mapped the transcriptional states back onto the embryo and measured their abundance using
simultaneous multicolor fluorescent in situ hybridization for marker genes for the first five states
(Fig. 2A). Sox2 single positive cells localize in the neural tube (state 1). Sox2 and brachyury
positive NMPs (state 2) occupy the DM. Nascent mesodermal progenitors (state 3) expressing
brachyury and tbx16 are located immediately ventral to the DM in the medial PZ. Mesodermal
progenitors in the PZ (state 4) are tbx16 single positive cells located in the ventral and lateral

tailbud. The PSM (state 5) is anterior to the transition from tbx16 to tbx6 expression.

To validate the scRNAseq analysis, we chose to test the predictions of changes in the abundance
of neuronal and PZ states. First, the scRNAseq predicts that Wnt inhibited embryos would have
more neuronal cells (Fig. 1E). This is consistent with reports that elimination of Wnt signaling

leads NMPs to exclusively adopt a neuronal fate . In our milder perturbation of Wnt signaling, 1/3
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of embryos have an abnormal cap of neuronal tissue covering the embryos’ posterior, confirming

the scRNAseq results (Fig. S3).

A second prediction of the scRNAseq analysis is that the PZ is smaller in BMP and Wnt inhibited
embryos but not in embryos subject to FGF inhibition. To test this prediction, we performed
fluorescent in situ hybridization for a PZ marker, tbx16, and a PSM marker, tbx6 (Fig 2B). In wild-
type, BMP and FGF inhibited embryos, the tbx76 and tbx6 signal was measured along the
anterior-posterior axis of the embryo for both the left and right sides (Fig. 2C). The PZ/PSM
transition was set to the value derived from the scRNAseq analysis (20% of the maximum value
of tbx6) and then the PZ length was normalized to the total tailbud length. Consistent with the
scRNAseq analysis, BMP but not FGF inhibited embryos exhibited a decrease in PZ length (Fig.
2D). Due to the bent body axis exhibited by the majority of Wnt inhibited embryos, the area of the
PZ and PSM were quantified. As predicted, Wnt inhibited embryos have a smaller PZ (Fig. 2E).
Thus, this approach to analyzing scRNAseq data accurately identifies cell states that can be

quantitatively mapped back onto the embryo.

Cell motion states

We hypothesized that the same computational techniques used to classify gene expression states
could be applied to cell motion data to objectively define the cell motion states (Fig. 3A). For this
purpose, we used tracking data from confocal timelapse imaging of cells in the DM through PSM
collected over 1-3 hours in wild-type embryos and embryos subject to signaling perturbations . As
with the gene expression analysis, the cell motion statistics for each cell track were used to order
the tracks in pseudotime, and the state transitions were defined using the change point detection
algorithm. The cell states were color coded and spatially mapped back onto the embryo using the
original cell track position. Initially, we chose not to use cell position as a pseudotime input both
to facilitate pooling of data from multiple embryos together and to make the analysis analogous

to that of the scRNAseq data which had all spatial information removed by cell dissociation. This
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procedure is successful solely using the statistics for cell velocity, average neighborhood cell
speed within 20 micron radius of each cell, acceleration, and displacement over 6 and 15 minutes
(Fig. 3B). The change point detection algorithm classifies the cells into four cell motion states (Fig.
S4). These states are roughly segregated in space and their sequence matches the known
developmental trajectory. Thus, cell migration states can be considered analogous to gene

expression states.

An ergodic pattern of cell motion states

The cell tracking data includes cell position, and we postulated that utilizing this information would
improve the cell state segmentation. We therefore created a cell state map for each embryo using
cell position and cell track displacement as inputs for pseudotime assembly (Fig. 3C, 3D and S5).
These pseudotime sequences were then segmented based on the aforementioned cell motion
statistics. This approach cleanly segmented the embryo into four cell states. As each embryo
contains tens of thousands of data points, we plotted only a sample of the data from either a single
time point, i.e. a phase average (Fig. 3C), or an identically sized selection randomly chosen from
all time points, i.e. a time average (Fig. 3D). The distribution of states is extremely similar in both
plots which is indicative of an ergodic system. The stability of the cell state pattern is evident in a
movie generated using the average of each timepoint of our longest wild-type dataset (Movie S1).
To obtain further evidence of ergodicity, we measured the cell abundance in each state over time
as well as the influx and outflux from these states. The expectation is that the size of these
domains would remain constant, and the fluxes would balance. We focused on the two states in
the middle of the sequence, the PZ and posterior PSM, since we have both their complete influx
and outflux data. Interestingly, the abundance and dynamics of these states can vary substantially

from embryo to embryo and treatment to treatment, but the fluxes are balanced in each embryo
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(Fig. 3E and F). The balanced fluxes would help maintain the ergodic pattern of cell state

transitions.

Given the stability of the migration state transitions, we wondered whether the transitions between
gene expression states were also ergodic. Since RNA sequencing is an endpoint assay that does
not readily lend itself to the calculation of time averages, we utilized RNA velocity, which considers
the relative amount of intron and exon RNA for each gene, to estimate the flux between states .
As expected, the overall RNA velocity is directed down the path of mesoderm differentiation (Fig.
4A and S6). Flux was calculated as the proportion of cells that transitioned to a different state
(Fig. 4B and S7). For wild-type, the influx generally matches the outflux suggesting that the size
of these domains is stable and that the patterns of cell state transitions may be ergodic. However
unlike in the cell motion states, the balance between influx and outflux can be altered by

perturbation of cell signaling.

A batch of sibling embryos at roughly, but not exactly the same stage in development, produce
very reproducible patterns of gene expression (Fig. 4C). In the tailbud, the consistency of this
pattern is remarkable given the dynamics of cell motion that are driving elongation of the body
axis. However, if the pattern of state transitions in cell motion is ergodic, it is not surprising that

the gene expression patterns are also likely ergodic.

Discussion

The ergodic pattern of cell state transitions may represent an emergent level of biological order
that mediates gene network actuation of the stereotypical progression of embryogenesis. Our
parallel analysis of gene expression and cell migration states using dimensional reduction and a
change point detection algorithm demonstrates that these cell state transitions can be objectively

defined and mapped back onto the embryo. While any time series dataset is well suited for an
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analysis of ergodicity, starting with cell state identification enables detection of ergodicity in

complex datasets and reveals higher order ergodic patterns.

Ergodicity normally refers to a single stable state in which a dynamical system resides for a given
amount of time . The length of time that a system remains in this state is referred to as the sojourn
time. In this study, ergodicity refers to a pattern of successive cell states that remains stable over
a period of 2-3 hours. Thus counterintuitively, this ergodicity does not mean that the tailbud
doesn’t change, but that the pattern of changes doesn’t change. The ergodic pattern of cell state

transitions could be thought of as a “meta-state”.

This biological ergodicity is a dynamic order that arises from the genome and the biochemical and
physical interactions among cells in space and time. This ergodicity is dependent upon the length
of the time interval being studied. If one were to combine data from a gastrula with data from an
embryo during body elongation, then there would likely be no ergodicity. Thus, there is a sojourn
time for a given pattern of cell state transitions that will scale with the developmental process
under study. A given ergodic pattern may exhibit a sojourn time of hours in the case of the
zebrafish tailbud or years in the case of adult homeostatic tissues. During development, the
embryo may transition from one ergodic pattern to another as it develops until it reaches the

relatively long sojourn time of homeostatic tissues in the mature organism.

An innovation of this study is the finding that cell position and cell motion statistics are sufficient
to identify cell states via dimensional reduction and subsequent segmentation into cell states
using the change point detection algorithm. These dimension reduction techniques, developed to
analyze scRNAseq data, can be applied to other complex datasets along with the change point
detection algorithm to identify underlying patterns. The methodology presented here provides a
way to assay the validity of the assumption of ergodicity, to identify experimental conditions in
which ergodicity is lost, and to measure the time intervals over which ergodicity is maintained in

complex datasets. For example, homeostasis should be congruent with ergodicity, and a

10
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breakdown of homeostasis due to mutation, aging or disease could be quantified via an analysis

of ergodicity.

C. elegans embryos are famous for their invariant cell lineages in that one embryo develops in
exactly the same manner as any other C. elegans embryo . Vertebrate embryos do not display
these invariant cell lineages, but fate mapping demonstrates that subpopulations of cells
reproducibly give rise to specific tissues in every embryo of a given species . Thus, while C.
elegans development is precisely reproducible down to the cellular level, vertebrate embryonic
development is reproducible down to the level of ensembles of cells. The question is how is this
reproducibility achieved in vertebrate embryos? Some of the reproducibility of development is due
to gene networks that specify and maintain quasi-stable states through which cells transit during
development. For example, neuromesodermal progenitors transition to mesodermal progenitors,
then to presomitic mesoderm and then to somites. It follows that in vertebrate embryos, these
gene regulatory networks operate at the level of ensembles of cells as reflected in the concepts
of developmental regulation and community effect. This study finds that the pattern of these
transitory cell states is ergodic and therefore dynamically stable over time. The fact that the
pattern of cell state transitions doesn’t change indicates that the rates of change are stable. The
absolute cell state influxes and outfluxes vary significantly between embryos but are balanced in
each embryo. Thus, ergodicity exists at a higher level, the derivative, and may represent an
emergent systems-level order linking gene regulatory networks with the general reproducibility of

embryonic development.
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Materials and Methods

Data and code availability

The scRNAseq data has been archived at NCBI GEO (accession no: GSE173894).

Zebrafish methods

Tupfel-longfin zebrafish were raised according to standard protocols approved by the
Institutional Animal Care and Use Committee. Experiments were performed before sex
determination in zebrafish. FGF, BMP, and Wnt signaling perturbations were performed using
protocols previously developed to modulate cell migration. Specifically, starting at the 6-somite
stage embryos were incubated in 50 mM of SU5402 or 40 mM of DMH1 for two hours to inhibit

FGF or BMP signaling, respectively. Wnt signaling was inhibited by injecting notum-1 mRNA at
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a concentration of 150 ng/mL into embryos at the single cell stage and then incubating them
until the 10-somite stage. This treatment yields a phenotypic spectrum, and embryos with

nascent body elongation defects were chosen for further experiments.

Tailbud Dissections and scRNA sequencing

Embryos were incubated until the 10-12 somite stage and then dissected in ice cold Hank’s
Balanced Salt Solution. The tail was collected by cutting immediately posterior to the last formed
somite. Groups of tails consisting of ten tails for wild-type, FGF, or BMP inhibition or twelve tails
for Wnt inhibition were pooled together. Cells were dissociated by incubation in 20 U/mL papain
solution (Worthing Biochemical) for 15 minutes at 29 °C with gentle agitation. Halfway through
the incubation the solution was triturated ten times with a P200 pipette. Cells were spun down at
300g for five minutes and then resuspended in 40 mL of cold HBSS. Cell concentration and
viability were checked with a hemocytometer and the volume of the solution was adjusted if

required.

Construction of 10X Genomic Single Cell 3° RNA-Seq libraries (Version 3) and sequencing with

an lllumina HiSeq4000.

GEM Generation and Barcoding. Single cell suspension in RT Master Mix was loaded on the

Single Cell A Chip and partition with a pool of about 750,000 barcoded gel beads to form nanoliter-
scale Gel Beads-In-Emulsions (GEMs). Each gel bead has primers containing (i) an lllumina R1
sequence (read 1 sequencing primer), (i) a 16 nt 10x Barcode, (iii) a 10 nt Unique Molecular
Identifier (UMI), and (iv) a poly-dT primer sequence. Upon dissolution of the Gel Beads in a GEM,
the primers are released and mixed with cell lysate and Master Mix. Incubation of the GEMs then

produces barcoded, full-length cDNA from poly-adenylated mRNA.

Post GEM-RT Cleanup, cDNA Amplification and library construction. Silane magnetic beads were

used to remove leftover biochemical reagents and primers from the post GEM reaction mixture.

13
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Full-length, barcoded cDNA was then amplified by PCR to generate sufficient mass for library
construction. Enzymatic fragmentation and size selection were used to optimize the cDNA
amplicon size prior to library construction. R1 (read 1 primer sequence) were added to the
molecules during GEM incubation. P5, P7, a sample index, and R2 (read 2 primer sequence)
were added during library construction via End Repair, A-tailing, Adaptor Ligation, and PCR. The

final libraries contain the P5 and P7 primers used in lllumina bridge amplification.

Sequencing libraries. The Single Cell 3’ Protocol produces lllumina-ready sequencing libraries. A

Single Cell 3’ Library comprises standard lllumina paired-end constructs which begin and end
with P5 and P7. The Single Cell 3° 16 bp 10x Barcode and 10 bp UMI are encoded in Read 1,
while Read 2 is used to sequence the cDNA fragment. Sequencing a Single Cell 3’ Library
produces a standard lllumina BCL data output folder. The BCL data includes the paired-end Read
1 (containing the 16 bp 10x Barcode and 10 bp UMI) and Read 2 and the sample index in the i7

index read.

Preprocessing of scRNA sequencing data

We aligned the scRNA-seq data to Grcz11 and demultiplexed using Cell Ranger (10X
Genomics). After the generation of expression matrices for each sample, we utilized Seurat v3
for preprocessing and clustering of scRNA-seq data. First, we excluded cells with an ectopic
number of genes or exceeding a specified percentage of mitochondrial genes (Table S1) based
on visual inspection for the distribution of these statistics. After the filtering genes, we conducted

integration following Seurat's SCTransform integration.

We applied principal components analysis and embedded the 30-dimensional PCA coordinates
into 2 dimensional UAMP. We clustered cells by Seurat function “FindClusters” with a resolution

parameter of 0.5.

Pseudotime estimation of scRNA-seq
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To recover cell state dynamics encoded in the gene expression data, we ordered a subset of
scRNA-seq cells which belong to the axis from ADM to PSM so that its ordering recapitulates the
developmental trajectory during body elongation. In particular, we embedded the z-scores of 30
dimensional PCA coordinates of cells belonging to specified clusters (Sox3+, Sox2+, DM, PZ,
pPSM and aPSM) into one dimensional UMAP coordinates. Here, we expected that the most
variable axis within gene expression space during this process would be the developmental
trajectory. For UMAP embedding, we used the “umap-learn” package in Python and set

“n_neighbors” as 400 and “min_dist” as 0.1.
Segmentation of scRNA-seq pseudotime

We segmented the pseudotime trajectory of scRNA-seq into several segments within which each
cell ¢ has similar z-scores of 30-dimentional PCA coordinate x. in order to dissect the dynamics
along the progression of cell state transitions during zebrafish body elongation. We utilized a
Bayesian algorithm of change detection to find break points of segments b, (k = 1, ..., K) which

minimize the total error from the mean of profile of the segment Yy E, where Ey = ¥cec, Vo , Ve =
|1x. — ,uk||2,,uk = ﬁzceck x., Cp={clby_1 <7.<b}and 7. is the discretized rank of the

estimated pseudo time. We discretized the pseudotime rank into 30 bins for computational
efficiency. We determined K as 5 scRNA-seq data using the elbow method which chose a

saturation point along the group variation curve as function of the number of clusters.
Flux analysis based on RNA velocity

We recovered cell state dynamics behind scRNA-seq data using scVelo which estimates the
velocity of RNA for each single cell Using a computed velocity v of cell ¢ with its single cell
transcriptome x., we calculated the predicted transcriptome after a micro duration & as x, = x, +
év.. We set & so that 3% of transcriptome x. changed during 6. We conducted PCA analysis on

a concatenated expression matrix of current and &-elapsed transcriptome and used the 10-
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dimensional PCA coordinates of cell ¢ at current and 6-elapsed time points, which we denoted as
z.and z, We estimated the segment b~ ., which cell ¢ after § is belonging to as the current

segment b_- of the cell ¢ whose PCA coordinates z,- are the nearest to the predicted o-
elapsed PCA coordinates z. . We quantified the transition F; "% from segment k to segment k*

as the count of cells whose current and &-elapsed segments are k and k” respectively. The
normalization is done for the total number of cells within the segment. We also defined the influx

rate and outflux rate of segment k as the normalized summation of transition from any segments

FRNA FRN{-\

7

to k and from k to any segments and defined them as ;" =3, - ~mkand OFM =3, - 5
k k

respectively, where NF¥4 is number of cells in segment k.

Estimation and segmentation of cell movement pseudotime

We recovered the pseudo dynamics of the cell movement properties by pseudotime estimation
followed by variance minimization segmentation. For pseudotime estimation without positional
information, we pooled together the embryos and calculated 1-dimentional UMAP embeddings of
each cell from the z-scores of its speed, acceleration, magnitude of neighborhood velocity, and

displacement distance for 6 minutes and 15 minutes. The magnitude of neighbor velocity is

defined as ||ZC€N(C) v. || where N(c) = {c | ||pc —-p, || < 20pm} where p; and v, are position

and velocity of cell c and ||.|| is the Euclidean norm. For the pseudotime estimation with positional
information each embryo was processed separately. We embedded the z-scores of 3D spatial
position and 3D displacement during 15 minutes into one dimensional order using UMAP. For
UMAP embedding, we used the “umap-learn” package in Python and set “n_neighbors” as 100
and “min_dist” as 0.1. We segmented both types of cell movement pseudotimes using the same
methodology for the segmentation of scRNA-seq pseudotime, except that the properties x. for
minimizing within-group variation are the z-scores of the speed, acceleration, magnitude of

neighborhood velocity, and displacement distance for 6 minutes and 15 minutes. We specified
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the number of change points K as 3 using the elbow method which chose a saturation point of

along the group variation curve as function of the number of clusters.
Flux analysis between cell movement segments

We quantified the flux between segments in cell movement data utilizing cell tracking information.
We counted the cells which stay at segment k at a time point t and transit to segment k~ at the
subsequent time point t + 1. In the same way as the previous section, we defined influx rate and

outflux rate of segment k as the normalized summation of transition from any segments to k and

mov mov
,

that from k to any segments and defined them as I[¥' =3, ;‘]’r‘n/of and 0" =3, It\]’;’;v
tk tk

respectively, where N{}'is the number of cells in segment k at time ¢.

Multicolor fluorescent in situ hybridization

Probes for sox2, brachyury, tbx16, and tbx6 were purchased from Molecular Instruments. The
hairpins and colors are listed in the table below. Staining of 10-12 somite embryos was performed
using their recommended protocol with a few modifications. Specifically, batches of 15 embryos
were stained simultaneously. The tbx6 probe was diluted 1:10 to avoid excessive bleed through
into the sox2 channel. DAPI was added to the amplification mixture. After staining embryos were

taken through a series of 25%/50%/75% glycerol in PBS. The posterior half of the embryo was

isolated and mounted dorsal side up in 75% glycerol. Embryos were imaged with a Zeiss LSM
880 Airyscan Confocal using a 20x objective.

Gene Hairpin Dye

Sox2 B1 Alexa Fluor 546

Tbx16 B2 Alexa Fluor 647

Brachyury B3 Alexa Fluor 488

Tbx6 B4 Alexa Fluor 594

17
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Preprocessing of the microscopy images was done using Imaged. The sox2 and tbx6 channels
were subtracted from each other to eliminate bleed through. Images were rotated to a consistent
orientation and a max intensity projection was created. Adaxial cells were identified in the DAPI
channel and manually removed from the image. The midline separating the embryo into left and
right halves was identified manually. Subsequent quantification was performed in Matlab. The
image was smoothed with a Gaussian filter, and the region of interest was thresholded using
Otsu’s algorithm on both the tbx76 and tbx6 channels. For wildtype, BMP, and FGF inhibited
embryos, average fluorescent intensity was measured along the x axis of the image and
normalized to the maximum value. This was done separately for the left and right sides of the
embryo. The PZ/PSM boundary was taken to be the first point with a value greater than 20% of
the maximum tbx6 value. The anterior end of the PSM was defined as the last point greater than
85% of the maximum tbx6 value. The scaled PZ length was the PZ length divided by the distance

from the end of the tail to the anterior boundary of the PSM.

Wnt inhibited embryos had some modifications to the quantification. In bent embryos, the
boundary separating the left and right halves was taken to be a line through the midpoint of the
tailbud brachyury signal to the notochord and then following the notochord towards the head. For
wild-type and Wnt inhibited embryos the outer perimeter of the embryo was traced manually. The
curve was smoothed with a Savitzky-Golay filter and defined as the embryo’s axis. Pixels in the
ROI were mapped to their closest points on the perimeter using the distance2curve function from
John D’Errico. The mean intensity along the axis was calculated using a sliding window. The
same thresholds were used for the PZ and PSM as described previously. The boundaries for
these regions were taken to be a perpendicular dropped from the axis at the cutoff point. The

scaled PZ area was the PZ area divided by the area of the PZ plus PSM.

Statistics were calculated using Mann-Whitney’s U.

18
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2 Fig. 1. Gene expression cell states in the zebrafish tailbud. (A) Schematic of the experimental
3 approach. Tailbuds were dissected and pooled, scRNAseq profiles were generated, and a one-
4  dimensional pseudotime was created and segmented into gene expression cell states. (B) UMAP
5  projection of scRNAseq data colored by cell type. Arrow marks the path of pseudotime in C. (C)
6  Expression of selected markers over pseudotime. Vertical lines are transition points between cell
7 states as defined by a Bayesian algorithm that minimizes within state statistical error. Note that
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12 state in each replicate of each experimental condition. See also Figs. S1, S2 and Table S1.
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Fig. 3. The pattern of cell motion states is ergodic. (A) Conceptual approach to identifying
cell motion states. Tailbuds are imaged in 4D and cells are tracked, position is removed from cell
tracks and data from multiple embryos are pooled, cell motion statistics used to construct and
segment pseudotime, and cell states mapped back onto the embryo using the original cell
position. (B, C and D) Cell motion state patterns of four wild-type embryos generated using three
variations of this method. Each plot is a dorsal view with anterior orientated to the left. Each point
is one cell, colored by migration state. (B) Plot of the segmentation of four embryos using a set of
five cell motion parameters and data pooled from all embryos. (C and D) Cell state patterns
generated individually for each embryo using cell position and cell track displacement for
pseudotime estimation. For plotting, 1000 cells were chosen at random from each embryo from
either the first timepoint (C) or from all timepoints (D). Note the similar patterns for each embryo,
i.e. the vertically aligned cell state plots in C and D. (E and F) The PZ (E) and posterior PSM (F)
cell counts over time and plots of cell influx vs outflux for each state. See also Fig. S4 and S5 and
Movie S1.
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Fig. 4. Flux analysis of gene expression cell states is consistent with ergodicity. (A) RNA
velocity UMAP plot of tailbud gene expression states. (B) Influx vs outflux plots estimated by RNA
velocity. Note that the influx and outflux are balanced in wild-type embryos, but cell signaling
perturbation can alter this balance. (C) In situ hybridization for tbx76 among sibling embryos
illustrates the reproducibility of embryonic development. See also Fig. S6 and S7.
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Figure S1. Gene expression states from scRNAseq. Related to Figure 1. (A) UMAP
projection of cell clusters defined by Louvain clustering using Seurat. Clusters were manually
annotated using marker genes. (B) UMAP projection of selected marker genes used to identify
cell types.
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Figure S2. Segmentation of gene expression pseudotime. Related to Figure 1. An elbow plot
used to select the number of transition points in the scRNAseq pseudotime. Circle marks the
chosen number of transitions.
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Wildtype Wnt Inhibited
17/17 embryos 6/16 embryos

brachyury tbx16 tbx6

1

2 Figure S3. Wnt inhibited embryos have excessive neural tissue. Related to Figure 2. Five-
3 micron thick projections through the ventral tailbud of a multicolor fluorescent in situ hybridization.
4  Arrow points to inappropriately located sox2 single positive neural tissue. Scale bar= 50 microns
5
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Figure S4. Cell motion pseudotime segmentation. Related to Figure 3. (A) An elbow plot
used to select the number of transition points in the cell motion pseudotime. Circle marks the
chosen number of transitions. (B) Cell motion statistics used to segment the embryos in Fig 3B
plotted over pseudotime. Neighbor speed represents the average cell speed withing a 20 um
radius of each cell. Displacement statistics were analyzed over two time intervals. Vertical lines
mark transition points. The segment colors along the pseudotime axis correspond to the cell
motion state colors in Fig. 2 and S5.
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Figure S5. The pattern of cell migration states remains ergodic in embryos subject to
signaling perturbations. Related to Figure 3. Data from embryos subject to signaling
perturbations, processed and plotted identically to the wildtype embryos in Fig 3C. (A) The phase
average plots for four embryos with reduced Bmp signaling. (B) Time average plots for the same
four embryos with reduced Bmp signaling. (C) The phase average plots for three embryos with
reduced FGF signaling. (D) Time average plots for the same three embryos with reduced FGF
signaling. (E) The phase average plots for four embryos with reduced Wnt signaling. (F) Time
average plots for the same four embryos with reduced Wnt signaling.
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Figure S6. RNA velocity plots of all scRNAseq replicates. Related to Figure 4. Plots for all
replicates were used to calculate cell state flux in Fig 4B.
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Figure S7. Cell flux through tailbud cell states derived from RNA velocity. Related to
Figure 4. Influx is greater than outflux for the anterior PSM and neuronal states. However, this
may be an artifact of the absence of further differentiated tissues in the dataset.
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1

2 Movie S1. Ergodic pattern of cell state transitions. Related to Figure 3. A timelapse was
3 generated using the phase average for each timepoint in the longest wild-type dataset. The
4  states were segmented using position and displacement.

5
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1
Samples Max gene number | Minimum gene number Max mitochondrial
percentage

WT1 2800 1200 5
WT2 2000 800 5
WT3 2500 800 5
WT4 2500 800 5
BMP1 2000 000 -
BMP2 3000 1000 -
BMP3 2000 000 .
BMP4 21000 000 -
FGF1 2000 800 10
FGF2 2500 800 7
FGF3 3000 800 7
FGF4 21000 500 -
WNT1 2500 500 3
WNT2 2500 500 3
WNT3 3000 500 3
WNT4 3750 500 3

2  TableS1. Filtering criterions for the cells of scRNA-seq in each sample. Related to Figure
3 1.
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