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 2 

Abstract 1 

The reproducibility of embryonic development is a remarkable feat of biological organization, but 2 

the underlying mechanisms are poorly understood. Clearly, gene regulatory networks are central 3 

to the orderly progression of development, but noisy molecular and cellular processes should 4 

reduce reproducibility. Here, we identify ergodicity, a type of dynamical stability, as underlying the 5 

reproducibility of development. In ergodic systems, a single timepoint measurement equals a time 6 

average. Focusing on the zebrafish tailbud, we define gene expression and cell motion states 7 

using a parallel statistical analyses of single cell RNA sequencing data and in vivo timelapse cell 8 

tracking data and a change point detection algorithm. Strikingly, the cell motion state transitions 9 

in each embryo exhibit the same patterns for both a single timepoint and a 2-3 hour time average. 10 

Both the cell motion and gene expression cell states exhibit balanced influx and outflux rates 11 

reflecting a spatiotemporal stability. Stated simply, these data indicate the pattern of changes in 12 

the tailbud doesn’t change. This ergodic pattern of cell state transitions may represent an 13 

emergent meta-state that links gene networks to the reproducible progression of embryogenesis. 14 

  15 
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Introduction 1 

Aristotle first noted the astonishing reproducibility of embryogenesis in “Historia Animalium,” 2 

where he observed, “Generation from the egg occurs in an identical manner in all birds”. At the 3 

cellular level, development entails a reproducible series of cell state transitions representing 4 

changes in gene expression state, physical state and cell fate. These processes can be noisy, for 5 

example, cell migration can be either ordered or disordered, and such disorder is part of normal 6 

orderly development . We now appreciate that gene networks control cell state transitions, but 7 

these networks are comprised of stochastic molecular processes . How biological order emerges 8 

from stochastic molecular events was the subject of Erwin Schrödinger’s “What is Life? ”. Despite 9 

the remarkable progress in the field of developmental biology in recent decades, there is still a 10 

gap in our understanding of the organizing processes that lie between genes and the reproducible 11 

dynamics of developing embryos. 12 

One framework for analyzing the reproducibility of embryonic development is that of ergodicity. 13 

An ergodic system is one in which the average behavior of all objects at a single timepoint equals 14 

the average behavior of a random sample of objects over a longer time interval. For example, 15 

measurement of all gas molecules within a chamber at a single time point yields the same result 16 

as the average of a random sample of gas molecules over the entire experimental time interval. 17 

The ergodic hypothesis lacked a mathematical foundation until the development of the ergodic 18 

theorem in 1932 . In the field of ergodic theory, the single timepoint average is typically referred 19 

to as the “phase average”. Ergodicity is a mathematical ideal and real systems are not truly 20 

ergodic. Embryonic development is by definition not ergodic since the embryo changes as it 21 

develops, but it is possible for ergodicity to exist over a short period of time. Ergodicity is implicitly 22 

assumed in many biological experiments, yet it is rarely demonstrated.  For example, ergodicity 23 

of gene expression levels in clonal cell populations is only observed when accounting for cell age. 24 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2021. ; https://doi.org/10.1101/2021.08.23.457360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.23.457360
http://creativecommons.org/licenses/by/4.0/


 4 

Here, we address the mechanism of the reproducibility of embryonic development by performing 1 

an analysis of ergodicity of the pattern of cell state transitions in the zebrafish tailbud. The 2 

vertebrate tailbud is a dynamic structure that supports body elongation (Fig. 1a, left panel) . Cells 3 

in the tailbud undergo multiple transitions in gene expression and migratory behavior during their 4 

differentiation. The dorsal-medial tailbud (DM) contains a pool of sox2/brachyury expressing 5 

neuromesodermal progenitors (NMPs) that contribute to both the spinal cord (Fig. 1A, yellow) and 6 

the presomitic mesoderm (PSM) . In the zebrafish, cells in the DM migrate towards the posterior 7 

in a processive orderly fashion (Fig. 1A, cyan). At the tip of the tailbud, mesodermally fated cells 8 

downregulate sox2, upregulate mesodermal genes such as tbx16, and undergo EMT to migrate 9 

ventrally into the progenitor zone (PZ)(Fig. 1A, magenta). Cell movements in the PZ are more 10 

disorderly than the DM. Ultimately cells leave the PZ, reduce their cell motion and assimilate into 11 

the left and right PSM (Fig. 1A, green) . Cells in the PSM downregulate tbx16 and turn on tbx6. 12 

Cell velocity in the anterior PSM declines further as the tissue solidifies . The transition from 13 

orderly to disorderly motion from the DM to PZ is necessary for proper body elongation . 14 

Excessively disordered motion in the DM (obtained by inhibition of BMP or FGF signaling) impairs 15 

the flow of cells through the tailbud leading to a short body axis. Excessively ordered motion in 16 

the PZ (induced by moderate Wnt inhibition) produces prolonged anisotropic fluxes, unequal 17 

allotment of cells to the left or right PSM, and a bent body axis. Thus, understanding robustness 18 

and reproducibility of vertebrate body elongation requires understanding the nature of these 19 

tailbud cell state transitions. 20 

In this study of ergodicity and the reproducibility of development, we first objectively define the 21 

trajectory of cell states in the zebrafish tailbud during body elongation.  We define gene expression 22 

state using single cell RNA sequencing (scRNAseq) and a change point detection algorithm.  We 23 

validate this method by comparing wild type and embryos with reduced Wnt, Fgf and Bmp 24 

signaling, and verify quantitative differences in cell states by multicolor fluorescent in situ 25 
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hybridization. Next, we identify cell motion states by analyzing cell tracking data using the same 1 

statistical analysis as used for scRNAseq. We then perform an analysis of ergodicity of the pattern 2 

of cell motion states as these datasets allow direct comparison of a single timepoint with a time 3 

average. We find that the ergodicity is achieved via a balanced flux between cell motion states in 4 

each embryo. Since it is not possible to directly track gene expression states over time in 5 

scRNAseq data, we estimate the flux between the gene expression states from RNA velocity  and 6 

confirmed balanced flux in wild-type embryos. These consistently balanced fluxes for both cell 7 

motion and gene expression states suggest that the ergodicity is an emergent order which can 8 

explain the reproducibility and robustness of embryonic development. 9 

Results 10 

Gene expression states 11 

We performed scRNAseq on dissected tails from 10-12 somite stage zebrafish embryos (Fig. 1A). 12 

We used wild-type embryos and embryos subject to treatments known to alter tailbud cell 13 

migration, specifically inhibition of FGF, BMP, or Wnt signaling . For each treatment, we prepared 14 

four biological replicates each consisting of 10 to 12 tailbuds and resulting in 30,000-35,000 single 15 

cell profiles. In a UMAP dimension reduction plot of wild type, the neuronal and paraxial 16 

mesoderm form one large cluster with more differentiated cells at each end and common 17 

progenitors (cyan) in the middle (Fig. 1B, arrow, and Fig. S1). Wild-type and experimental 18 

samples consist of the same cell transcription profiles (Fig. 1D). This result is consistent with 19 

previous scRNAseq analysis of zebrafish embryos indicating that perturbation of cell signaling 20 

does not create novel cell transcription profiles . 21 

To enable direct quantitative comparisons between experimental conditions, we pooled the data 22 

from all wild-type and experimental replicates and created one unified pseudotime to define a 23 

single standard for classifying cells. Specifically, the cells in the main cluster were aligned along 24 
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a neuronal-mesodermal axis from sox3 expressing neuronal cells to mespaa expressing anterior 1 

PSM cells (Fig. 1B, arrow) . This approach avoids the requirement to define the NMP population 2 

a priori. Instead, NMPs will be located in the middle of the pseudotime sequence and 3 

differentiation will proceed towards both ends, i.e. neuronal to the left and mesodermal to the right 4 

(Fig. 1C). Marker genes for neuronal and mesodermal development map with respect to 5 

pseudotime in the correct developmental sequence indicating that the procedure was successful.  6 

To objectively define gene expression states, we extracted the wild-type data, and then utilized a 7 

change point detection algorithm to divide pseudotime into a series of distinct states . The change 8 

point algorithm identified five transition points (Fig. S2). These transition points (vertical lines in 9 

Fig. 1C) divide the pseudotime sequence into six states that generally agree with those predicted 10 

previously from marker gene expression . These transition points were mapped to the full 11 

pseudotime sequence, and we calculated the relative abundance of each state in wild type, Wnt 12 

inhibited embryos, Fgf inhibited embryos and Bmp inhibited embryos (Fig. 1D).  13 

To determine whether this analysis of scRNAseq data accurately quantifies changes in cell state, 14 

we mapped the transcriptional states back onto the embryo and measured their abundance using 15 

simultaneous multicolor fluorescent in situ hybridization for marker genes for the first five states 16 

(Fig. 2A). Sox2 single positive cells localize in the neural tube (state 1). Sox2 and brachyury 17 

positive NMPs (state 2) occupy the DM. Nascent mesodermal progenitors (state 3) expressing 18 

brachyury and tbx16 are located immediately ventral to the DM in the medial PZ. Mesodermal 19 

progenitors in the PZ (state 4) are tbx16 single positive cells located in the ventral and lateral 20 

tailbud. The PSM (state 5) is anterior to the transition from tbx16 to tbx6 expression.   21 

To validate the scRNAseq analysis, we chose to test the predictions of changes in the abundance 22 

of neuronal and PZ states. First, the scRNAseq predicts that Wnt inhibited embryos would have 23 

more neuronal cells (Fig. 1E). This is consistent with reports that elimination of Wnt signaling 24 

leads NMPs to exclusively adopt a neuronal fate . In our milder perturbation of Wnt signaling, 1/3 25 
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 7 

of embryos have an abnormal cap of neuronal tissue covering the embryos’ posterior, confirming 1 

the scRNAseq results (Fig. S3). 2 

A second prediction of the scRNAseq analysis is that the PZ is smaller in BMP and Wnt inhibited 3 

embryos but not in embryos subject to FGF inhibition. To test this prediction, we performed 4 

fluorescent in situ hybridization for a PZ marker, tbx16, and a PSM marker, tbx6 (Fig 2B). In wild-5 

type, BMP and FGF inhibited embryos, the tbx16 and tbx6 signal was measured along the 6 

anterior-posterior axis of the embryo for both the left and right sides (Fig. 2C). The PZ/PSM 7 

transition was set to the value derived from the scRNAseq analysis (20% of the maximum value 8 

of tbx6) and then the PZ length was normalized to the total tailbud length. Consistent with the 9 

scRNAseq analysis, BMP but not FGF inhibited embryos exhibited a decrease in PZ length (Fig. 10 

2D). Due to the bent body axis exhibited by the majority of Wnt inhibited embryos, the area of the 11 

PZ and PSM were quantified. As predicted, Wnt inhibited embryos have a smaller PZ (Fig. 2E). 12 

Thus, this approach to analyzing scRNAseq data accurately identifies cell states that can be 13 

quantitatively mapped back onto the embryo. 14 

Cell motion states 15 

We hypothesized that the same computational techniques used to classify gene expression states 16 

could be applied to cell motion data to objectively define the cell motion states (Fig. 3A). For this 17 

purpose, we used tracking data from confocal timelapse imaging of cells in the DM through PSM 18 

collected over 1-3 hours in wild-type embryos and embryos subject to signaling perturbations . As 19 

with the gene expression analysis, the cell motion statistics for each cell track were used to order 20 

the tracks in pseudotime, and the state transitions were defined using the change point detection 21 

algorithm. The cell states were color coded and spatially mapped back onto the embryo using the 22 

original cell track position. Initially, we chose not to use cell position as a pseudotime input both 23 

to facilitate pooling of data from multiple embryos together and to make the analysis analogous 24 

to that of the scRNAseq data which had all spatial information removed by cell dissociation. This 25 
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 8 

procedure is successful solely using the statistics for cell velocity, average neighborhood cell 1 

speed within 20 micron radius of each cell, acceleration, and displacement over 6 and 15 minutes 2 

(Fig. 3B). The change point detection algorithm classifies the cells into four cell motion states (Fig. 3 

S4). These states are roughly segregated in space and their sequence matches the known 4 

developmental trajectory. Thus, cell migration states can be considered analogous to gene 5 

expression states. 6 

An ergodic pattern of cell motion states 7 

The cell tracking data includes cell position, and we postulated that utilizing this information would 8 

improve the cell state segmentation. We therefore created a cell state map for each embryo using 9 

cell position and cell track displacement as inputs for pseudotime assembly (Fig. 3C, 3D and S5). 10 

These pseudotime sequences were then segmented based on the aforementioned cell motion 11 

statistics. This approach cleanly segmented the embryo into four cell states. As each embryo 12 

contains tens of thousands of data points, we plotted only a sample of the data from either a single 13 

time point, i.e. a phase average (Fig. 3C), or an identically sized selection randomly chosen from 14 

all time points, i.e. a time average (Fig. 3D). The distribution of states is extremely similar in both 15 

plots which is indicative of an ergodic system. The stability of the cell state pattern is evident in a 16 

movie generated using the average of each timepoint of our longest wild-type dataset (Movie S1). 17 

To obtain further evidence of ergodicity, we measured the cell abundance in each state over time 18 

as well as the influx and outflux from these states. The expectation is that the size of these 19 

domains would remain constant, and the fluxes would balance. We focused on the two states in 20 

the middle of the sequence, the PZ and posterior PSM, since we have both their complete influx 21 

and outflux data. Interestingly, the abundance and dynamics of these states can vary substantially 22 

from embryo to embryo and treatment to treatment, but the fluxes are balanced in each embryo 23 
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 9 

(Fig. 3E and F).  The balanced fluxes would help maintain the ergodic pattern of cell state 1 

transitions. 2 

Given the stability of the migration state transitions, we wondered whether the transitions between 3 

gene expression states were also ergodic. Since RNA sequencing is an endpoint assay that does 4 

not readily lend itself to the calculation of time averages, we utilized RNA velocity, which considers 5 

the relative amount of intron and exon RNA for each gene, to estimate the flux between states . 6 

As expected, the overall RNA velocity is directed down the path of mesoderm differentiation (Fig. 7 

4A and S6). Flux was calculated as the proportion of cells that transitioned to a different state 8 

(Fig. 4B and S7). For wild-type, the influx generally matches the outflux suggesting that the size 9 

of these domains is stable and that the patterns of cell state transitions may be ergodic. However 10 

unlike in the cell motion states, the balance between influx and outflux can be altered by 11 

perturbation of cell signaling.  12 

A batch of sibling embryos at roughly, but not exactly the same stage in development, produce 13 

very reproducible patterns of gene expression (Fig. 4C). In the tailbud, the consistency of this 14 

pattern is remarkable given the dynamics of cell motion that are driving elongation of the body 15 

axis. However, if the pattern of state transitions in cell motion is ergodic, it is not surprising that 16 

the gene expression patterns are also likely ergodic. 17 

Discussion 18 

The ergodic pattern of cell state transitions may represent an emergent level of biological order 19 

that mediates gene network actuation of the stereotypical progression of embryogenesis. Our 20 

parallel analysis of gene expression and cell migration states using dimensional reduction and a 21 

change point detection algorithm demonstrates that these cell state transitions can be objectively 22 

defined and mapped back onto the embryo. While any time series dataset is well suited for an 23 
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 10 

analysis of ergodicity, starting with cell state identification enables detection of ergodicity in 1 

complex datasets and reveals higher order ergodic patterns.  2 

Ergodicity normally refers to a single stable state in which a dynamical system resides for a given 3 

amount of time . The length of time that a system remains in this state is referred to as the sojourn 4 

time. In this study, ergodicity refers to a pattern of successive cell states that remains stable over 5 

a period of 2-3 hours.  Thus counterintuitively, this ergodicity does not mean that the tailbud 6 

doesn’t change, but that the pattern of changes doesn’t change. The ergodic pattern of cell state 7 

transitions could be thought of as a “meta-state”. 8 

This biological ergodicity is a dynamic order that arises from the genome and the biochemical and 9 

physical interactions among cells in space and time. This ergodicity is dependent upon the length 10 

of the time interval being studied. If one were to combine data from a gastrula with data from an 11 

embryo during body elongation, then there would likely be no ergodicity. Thus, there is a sojourn 12 

time for a given pattern of cell state transitions that will scale with the developmental process 13 

under study. A given ergodic pattern may exhibit a sojourn time of hours in the case of the 14 

zebrafish tailbud or years in the case of adult homeostatic tissues. During development, the 15 

embryo may transition from one ergodic pattern to another as it develops until it reaches the 16 

relatively long sojourn time of homeostatic tissues in the mature organism.   17 

An innovation of this study is the finding that cell position and cell motion statistics are sufficient 18 

to identify cell states via dimensional reduction and subsequent segmentation into cell states 19 

using the change point detection algorithm. These dimension reduction techniques, developed to 20 

analyze scRNAseq data, can be applied to other complex datasets along with the change point 21 

detection algorithm to identify underlying patterns. The methodology presented here provides a 22 

way to assay the validity of the assumption of ergodicity, to identify experimental conditions in 23 

which ergodicity is lost, and to measure the time intervals over which ergodicity is maintained in 24 

complex datasets. For example, homeostasis should be congruent with ergodicity, and a 25 
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breakdown of homeostasis due to mutation, aging or disease could be quantified via an analysis 1 

of ergodicity.  2 

C. elegans embryos are famous for their invariant cell lineages in that one embryo develops in 3 

exactly the same manner as any other C. elegans embryo . Vertebrate embryos do not display 4 

these invariant cell lineages, but fate mapping demonstrates that subpopulations of cells 5 

reproducibly give rise to specific tissues in every embryo of a given species . Thus, while C. 6 

elegans development is precisely reproducible down to the cellular level, vertebrate embryonic 7 

development is reproducible down to the level of ensembles of cells. The question is how is this 8 

reproducibility achieved in vertebrate embryos? Some of the reproducibility of development is due 9 

to gene networks that specify and maintain quasi-stable states through which cells transit during 10 

development. For example, neuromesodermal progenitors transition to mesodermal progenitors, 11 

then to presomitic mesoderm and then to somites. It follows that in vertebrate embryos, these 12 

gene regulatory networks operate at the level of ensembles of cells as reflected in the concepts 13 

of developmental regulation and community effect. This study finds that the pattern of these 14 

transitory cell states is ergodic and therefore dynamically stable over time. The fact that the 15 

pattern of cell state transitions doesn’t change indicates that the rates of change are stable. The 16 

absolute cell state influxes and outfluxes vary significantly between embryos but are balanced in 17 

each embryo. Thus, ergodicity exists at a higher level, the derivative, and may represent an 18 

emergent systems-level order linking gene regulatory networks with the general reproducibility of 19 

embryonic development.  20 

 21 
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Materials and Methods 13 

Data and code availability 14 

The scRNAseq data has been archived at NCBI GEO (accession no: GSE173894). 15 

Zebrafish methods 16 

Tüpfel-longfin zebrafish were raised according to standard protocols approved by the 17 

Institutional Animal Care and Use Committee. Experiments were performed before sex 18 

determination in zebrafish. FGF, BMP, and Wnt signaling perturbations were performed using 19 

protocols previously developed to modulate cell migration. Specifically, starting at the 6-somite 20 

stage embryos were incubated in 50 mM of SU5402 or 40 mM of DMH1 for two hours to inhibit 21 

FGF or BMP signaling, respectively. Wnt signaling was inhibited by injecting notum-1 mRNA at 22 
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a concentration of 150 ng/mL into embryos at the single cell stage and then incubating them 1 

until the 10-somite stage. This treatment yields a phenotypic spectrum, and embryos with 2 

nascent body elongation defects were chosen for further experiments. 3 

Tailbud Dissections and scRNA sequencing 4 

Embryos were incubated until the 10-12 somite stage and then dissected in ice cold Hank’s 5 

Balanced Salt Solution. The tail was collected by cutting immediately posterior to the last formed 6 

somite. Groups of tails consisting of ten tails for wild-type, FGF, or BMP inhibition or twelve tails 7 

for Wnt inhibition were pooled together. Cells were dissociated by incubation in 20 U/mL papain 8 

solution (Worthing Biochemical) for 15 minutes at 29 °C with gentle agitation. Halfway through 9 

the incubation the solution was triturated ten times with a P200 pipette. Cells were spun down at 10 

300g for five minutes and then resuspended in 40 mL of cold HBSS. Cell concentration and 11 

viability were checked with a hemocytometer and the volume of the solution was adjusted if 12 

required.  13 

Construction of 10X Genomic Single Cell 3’ RNA-Seq libraries (Version 3) and sequencing with 14 

an Illumina HiSeq4000.   15 

GEM Generation and Barcoding. Single cell suspension in RT Master Mix was loaded on the 16 

Single Cell A Chip and partition with a pool of about 750,000 barcoded gel beads to form nanoliter-17 

scale Gel Beads-In-Emulsions (GEMs). Each gel bead has primers containing (i) an Illumina R1 18 

sequence (read 1 sequencing primer), (ii) a 16 nt 10x Barcode, (iii) a 10 nt Unique Molecular 19 

Identifier (UMI), and (iv) a poly-dT primer sequence. Upon dissolution of the Gel Beads in a GEM, 20 

the primers are released and mixed with cell lysate and Master Mix. Incubation of the GEMs then 21 

produces barcoded, full-length cDNA from poly-adenylated mRNA.  22 

Post GEM-RT Cleanup, cDNA Amplification and library construction. Silane magnetic beads were 23 

used to remove leftover biochemical reagents and primers from the post GEM reaction mixture. 24 
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 14 

Full-length, barcoded cDNA was then amplified by PCR to generate sufficient mass for library 1 

construction. Enzymatic fragmentation and size selection were used to optimize the cDNA 2 

amplicon size prior to library construction. R1 (read 1 primer sequence) were added to the 3 

molecules during GEM incubation. P5, P7, a sample index, and R2 (read 2 primer sequence) 4 

were added during library construction via End Repair, A-tailing, Adaptor Ligation, and PCR. The 5 

final libraries contain the P5 and P7 primers used in Illumina bridge amplification.  6 

Sequencing libraries. The Single Cell 3’ Protocol produces Illumina-ready sequencing libraries. A 7 

Single Cell 3’ Library comprises standard Illumina paired-end constructs which begin and end 8 

with P5 and P7. The Single Cell 3’ 16 bp 10x Barcode and 10 bp UMI are encoded in Read 1, 9 

while Read 2 is used to sequence the cDNA fragment. Sequencing a Single Cell 3’ Library 10 

produces a standard Illumina BCL data output folder. The BCL data includes the paired-end Read 11 

1 (containing the 16 bp 10x Barcode and 10 bp UMI) and Read 2 and the sample index in the i7 12 

index read.  13 

Preprocessing of scRNA sequencing data 14 

We aligned the scRNA-seq data to Grcz11 and demultiplexed using Cell Ranger (10X 15 

Genomics). After the generation of expression matrices for each sample, we utilized Seurat v3 16 

for preprocessing and clustering of scRNA-seq data. First, we excluded cells with an ectopic 17 

number of genes or exceeding a specified percentage of mitochondrial genes (Table S1) based 18 

on visual inspection for the distribution of these statistics. After the filtering genes, we conducted 19 

integration following Seurat's SCTransform integration.  20 

We applied principal components analysis and embedded the 30-dimensional PCA coordinates 21 

into 2 dimensional UAMP. We clustered cells by Seurat function “FindClusters” with a resolution 22 

parameter of 0.5. 23 

Pseudotime estimation of scRNA-seq 24 
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To recover cell state dynamics encoded in the gene expression data, we ordered a subset of 1 

scRNA-seq cells which belong to the axis from ADM to PSM so that its ordering recapitulates the 2 

developmental trajectory during body elongation. In particular, we embedded the z-scores of 30 3 

dimensional PCA coordinates of cells belonging to specified clusters (Sox3+, Sox2+, DM, PZ, 4 

pPSM and aPSM) into one dimensional UMAP coordinates. Here, we expected that the most 5 

variable axis within gene expression space during this process would be the developmental 6 

trajectory. For UMAP embedding, we used the “umap-learn” package in Python and set 7 

“n_neighbors” as 400 and “min_dist” as 0.1. 8 

Segmentation of scRNA-seq pseudotime 9 

We segmented the pseudotime trajectory of scRNA-seq into several segments within which each 10 

cell c has similar z-scores of 30-dimentional PCA coordinate 𝑥! in order to dissect the dynamics 11 

along the progression of cell state transitions during zebrafish body elongation. We utilized a 12 

Bayesian algorithm of change detection to find break points of segments 𝑏"(𝑘 = 1,… , 𝐾) which 13 

minimize the total error from the mean of profile of the segment ∑ 𝐸""  where 𝐸" = ∑ 𝑉! 	!∈$! , 𝑉! =14 

/|𝑥! − 𝜇"|/
%, 𝜇" =

&
|$!|

∑ 𝑥!!∈$! ,			𝐶" = {𝑐|𝑏"(& < 𝜏! < 𝑏"} and 𝜏!  is the discretized rank of the 15 

estimated pseudo time. We discretized the pseudotime rank into 30 bins for computational 16 

efficiency. We determined K as 5 scRNA-seq data using the elbow method which chose a 17 

saturation point along the group variation curve as function of the number of clusters. 18 

Flux analysis based on RNA velocity 19 

We recovered cell state dynamics behind scRNA-seq data using scVelo which estimates the 20 

velocity of RNA for each single cell Using a computed velocity vc of cell c with its single cell 21 

transcriptome xc, we calculated the predicted transcriptome after a micro duration 𝛿 as 𝑥!′ = 𝑥! +22 

𝛿𝑣!. We set δ so that 3% of transcriptome xc changed during δ. We conducted PCA analysis on 23 

a concatenated expression matrix of current and δ-elapsed transcriptome and used the 10-24 
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dimensional PCA coordinates of cell c at current and δ-elapsed time points, which we denoted as 1 

𝑧! 	and 𝑧!′  We estimated the segment 𝑏′!  which cell c after 𝛿  is belonging to as the current 2 

segment 𝑏!′  of the cell 𝑐′  whose PCA coordinates 𝑧!′   are the nearest to the predicted δ-3 

elapsed PCA coordinates	𝑧!′. We quantified the transition 𝐹","′
RNA  from segment k to segment 𝑘′ 4 

as the count of cells whose current and δ-elapsed segments are k and 𝑘′ respectively. The 5 

normalization is done for the total number of cells within the segment.  We also defined the influx 6 

rate and outflux rate of segment k as the normalized summation of transition from any segments 7 

to k and from k to any segments and defined them as 𝐼"RNA = ∑
*
!′,!
RNA

+!
RNA"′ and 𝑂"RNA = ∑

*
!,!′
RNA

+!
RNA"′  8 

respectively, where 𝑁",+- is number of cells in segment 𝑘. 9 

Estimation and segmentation of cell movement pseudotime  10 

We recovered the pseudo dynamics of the cell movement properties by pseudotime estimation 11 

followed by variance minimization segmentation. For pseudotime estimation without positional 12 

information, we pooled together the embryos and calculated 1-dimentional UMAP embeddings of 13 

each cell from the z-scores of its speed, acceleration, magnitude of neighborhood velocity, and 14 

displacement distance for 6 minutes and 15 minutes. The magnitude of neighbor velocity is 15 

defined as A/∑ 𝑣! 	!∈+(!) /A  where 𝑁(𝑐) = B𝑐′/ 	 A/𝑝! − 𝑝!′/A < 20µ𝑚} where pc and vc are position 16 

and velocity of cell c and ||.|| is the Euclidean norm. For the pseudotime estimation with positional 17 

information each embryo was processed separately. We embedded the z-scores of 3D spatial 18 

position and 3D displacement during 15 minutes into one dimensional order using UMAP. For 19 

UMAP embedding, we used the “umap-learn” package in Python and set “n_neighbors” as 100 20 

and “min_dist” as 0.1. We segmented both types of cell movement pseudotimes using the same 21 

methodology for the segmentation of scRNA-seq pseudotime, except that the properties 𝑥! 	for 22 

minimizing within-group variation are the z-scores of the speed, acceleration, magnitude of 23 

neighborhood velocity, and displacement distance for 6 minutes and 15 minutes. We specified 24 
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the number of change points 𝐾 as 3 using the elbow method which chose a saturation point of 1 

along the group variation curve as function of the number of clusters.  2 

Flux analysis between cell movement segments  3 

We quantified the flux between segments in cell movement data utilizing cell tracking information. 4 

We counted the cells which stay at segment k at a time point t and transit to segment 𝑘′ at the 5 

subsequent time point t + 1.  In the same way as the previous section, we defined influx rate and 6 

outflux rate of segment k as the normalized summation of transition from any segments to k and 7 

that from k to any segments and defined them as 𝐼0,"mov = ∑
*
#,!′,!
mov

+#,!
mov"′ and 𝑂0,"mov = ∑

*
#,!,!′
mov

+#,!
mov"′  8 

respectively, where 𝑁0,"movis the number of cells in segment 𝑘 at time 𝑡. 9 

Multicolor fluorescent in situ hybridization 10 

Probes for sox2, brachyury, tbx16, and tbx6 were purchased from Molecular Instruments. The 11 

hairpins and colors are listed in the table below. Staining of 10-12 somite embryos was performed 12 

using their recommended protocol with a few modifications. Specifically, batches of 15 embryos 13 

were stained simultaneously. The tbx6 probe was diluted 1:10 to avoid excessive bleed through 14 

into the sox2 channel. DAPI was added to the amplification mixture. After staining embryos were 15 

taken through a series of 25%/50%/75% glycerol in PBS. The posterior half of the embryo was 16 

isolated and mounted dorsal side up in 75% glycerol. Embryos were imaged with a Zeiss LSM 17 

880 Airyscan Confocal using a 20x objective.   18 

Gene Hairpin Dye 

Sox2 B1 Alexa Fluor 546 

Tbx16 B2 Alexa Fluor 647 

Brachyury B3 Alexa Fluor 488 

Tbx6 B4 Alexa Fluor 594 
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Preprocessing of the microscopy images was done using ImageJ. The sox2 and tbx6 channels 1 

were subtracted from each other to eliminate bleed through. Images were rotated to a consistent 2 

orientation and a max intensity projection was created. Adaxial cells were identified in the DAPI 3 

channel and manually removed from the image. The midline separating the embryo into left and 4 

right halves was identified manually. Subsequent quantification was performed in Matlab. The 5 

image was smoothed with a Gaussian filter, and the region of interest was thresholded using 6 

Otsu’s algorithm on both the tbx16 and tbx6 channels.  For wildtype, BMP, and FGF inhibited 7 

embryos, average fluorescent intensity was measured along the x axis of the image and 8 

normalized to the maximum value. This was done separately for the left and right sides of the 9 

embryo. The PZ/PSM boundary was taken to be the first point with a value greater than 20% of 10 

the maximum tbx6 value. The anterior end of the PSM was defined as the last point greater than 11 

85% of the maximum tbx6 value. The scaled PZ length was the PZ length divided by the distance 12 

from the end of the tail to the anterior boundary of the PSM.  13 

Wnt inhibited embryos had some modifications to the quantification. In bent embryos, the 14 

boundary separating the left and right halves was taken to be a line through the midpoint of the 15 

tailbud brachyury signal to the notochord and then following the notochord towards the head. For 16 

wild-type and Wnt inhibited embryos the outer perimeter of the embryo was traced manually. The 17 

curve was smoothed with a Savitzky-Golay filter and defined as the embryo’s axis. Pixels in the 18 

ROI were mapped to their closest points on the perimeter using the distance2curve function from 19 

John D’Errico. The mean intensity along the axis was calculated using a sliding window. The 20 

same thresholds were used for the PZ and PSM as described previously. The boundaries for 21 

these regions were taken to be a perpendicular dropped from the axis at the cutoff point. The 22 

scaled PZ area was the PZ area divided by the area of the PZ plus PSM. 23 

Statistics were calculated using Mann-Whitney’s U.   24 

 25 
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 1 

Fig. 1. Gene expression cell states in the zebrafish tailbud. (A) Schematic of the experimental 2 
approach. Tailbuds were dissected and pooled, scRNAseq profiles were generated, and a one-3 
dimensional pseudotime was created and segmented into gene expression cell states. (B) UMAP 4 
projection of scRNAseq data colored by cell type. Arrow marks the path of pseudotime in C. (C) 5 
Expression of selected markers over pseudotime. Vertical lines are transition points between cell 6 
states as defined by a Bayesian algorithm that minimizes within state statistical error. Note that 7 
the segment colors along the pseudotime axis correspond to the colors along the developmental 8 
trajectory (arrow) in B but with the Progenitor Zone and PSM being further subdivided into two 9 
similarly colored segments in C. (D) UMAP projection of scRNAseq data colored by experimental 10 
treatment. (E) Quantification of the differences in the proportion of cells that are in a given cell 11 
state in each replicate of each experimental condition.  See also Figs. S1, S2 and Table S1. 12 
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Fig. 2. scRNAseq gene 1 
expression states map to 2 
the tailbud. (A) (i) A 3 
schematic showing the 4 
developmental trajectory of 5 
the paraxial mesoderm in 6 
the tailbud. All panels show 7 
the expression of sox2 8 
(yellow), brachyury (cyan), 9 
tbx16 (magenta), and tbx6 10 
(green). (ii) Fluorescent in 11 
situ hybridization maps the 12 
transcriptional states 13 
(numbered) defined by 14 
scRNAseq onto the tailbud. 15 
In the dorsal view, the 16 
orange lines mark locations 17 
of the midsagittal (short 18 
line) and parasagittal (long 19 
line) slices. (B) Expression 20 
of tbx16 (magenta) and 21 
tbx6 (green). Vertical lines 22 
mark the transition from PZ 23 
to PSM and PSM to anterior 24 
PSM. Scale bar is 50 25 
microns. (C) Plot of signal 26 
intensity in a representative 27 
wild-type embryo along the 28 
anterior-posterior axis. 29 
Vertical bars are cutoffs for 30 
the PZ and PSM of 20% 31 
and 85% of maximum tbx6 32 
expression, respectively. 33 
(D) PZ length normalized to 34 
total length of PZ and PSM 35 
in wild-type, BMP and FGF 36 
inhibited embryos. (E) PZ 37 
area normalized to total 38 
area in wild-type and Wnt 39 
inhibited embryos. *** is 40 
p<.001. See also Fig. S3.  41 
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 1 

Fig. 3. The pattern of cell motion states is ergodic. (A)  Conceptual approach to identifying 2 
cell motion states. Tailbuds are imaged in 4D and cells are tracked, position is removed from cell 3 
tracks and data from multiple embryos are pooled, cell motion statistics used to construct and 4 
segment pseudotime, and cell states mapped back onto the embryo using the original cell 5 
position. (B, C and D) Cell motion state patterns of four wild-type embryos generated using three 6 
variations of this method. Each plot is a dorsal view with anterior orientated to the left. Each point 7 
is one cell, colored by migration state. (B) Plot of the segmentation of four embryos using a set of 8 
five cell motion parameters and data pooled from all embryos. (C and D) Cell state patterns 9 
generated individually for each embryo using cell position and cell track displacement for 10 
pseudotime estimation. For plotting, 1000 cells were chosen at random from each embryo from 11 
either the first timepoint (C) or from all timepoints (D).  Note the similar patterns for each embryo, 12 
i.e. the vertically aligned cell state plots in C and D. (E and F) The PZ (E) and posterior PSM (F) 13 
cell counts over time and plots of cell influx vs outflux for each state. See also Fig. S4 and S5 and 14 
Movie S1. 15 
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 1 

 2 

Fig. 4. Flux analysis of gene expression cell states is consistent with ergodicity. (A) RNA 3 
velocity UMAP plot of tailbud gene expression states. (B) Influx vs outflux plots estimated by RNA 4 
velocity.  Note that the influx and outflux are balanced in wild-type embryos, but cell signaling 5 
perturbation can alter this balance. (C) In situ hybridization for tbx16 among sibling embryos 6 
illustrates the reproducibility of embryonic development. See also Fig. S6 and S7. 7 

 8 
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 1 

Figure S1. Gene expression states from scRNAseq. Related to Figure 1. (A)  UMAP 2 
projection of cell clusters defined by Louvain clustering using Seurat. Clusters were manually 3 
annotated using marker genes. (B) UMAP projection of selected marker genes used to identify 4 
cell types.  5 

 6 
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 1 

Figure S2. Segmentation of gene expression pseudotime. Related to Figure 1. An elbow plot 2 
used to select the number of transition points in the scRNAseq pseudotime. Circle marks the 3 
chosen number of transitions. 4 

  5 
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 1 

Figure S3. Wnt inhibited embryos have excessive neural tissue. Related to Figure 2. Five-2 
micron thick projections through the ventral tailbud of a multicolor fluorescent in situ hybridization. 3 
Arrow points to inappropriately located sox2 single positive neural tissue. Scale bar= 50 microns 4 
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   1 

Figure S4. Cell motion pseudotime segmentation. Related to Figure 3. (A)  An elbow plot 2 
used to select the number of transition points in the cell motion pseudotime. Circle marks the 3 
chosen number of transitions. (B) Cell motion statistics used to segment the embryos in Fig 3B 4 
plotted over pseudotime. Neighbor speed represents the average cell speed withing a 20 µm 5 
radius of each cell. Displacement statistics were analyzed over two time intervals. Vertical lines 6 
mark transition points.  The segment colors along the pseudotime axis correspond to the cell 7 
motion state colors in Fig. 2 and S5.   8 
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Figure S5. The pattern of cell migration states remains ergodic in embryos subject to 2 
signaling perturbations. Related to Figure 3. Data from embryos subject to signaling 3 
perturbations, processed and plotted identically to the wildtype embryos in Fig 3C. (A) The phase 4 
average plots for four embryos with reduced Bmp signaling.  (B) Time average plots for the same 5 
four embryos with reduced Bmp signaling.  (C) The phase average plots for three embryos with 6 
reduced FGF signaling.  (D) Time average plots for the same three embryos with reduced FGF 7 
signaling.  (E) The phase average plots for four embryos with reduced Wnt signaling.  (F) Time 8 
average plots for the same four embryos with reduced Wnt signaling.   9 
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Figure S6. RNA velocity plots of all scRNAseq replicates. Related to Figure 4. Plots for all 2 
replicates were used to calculate cell state flux in Fig 4B. 3 
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Figure S7. Cell flux through tailbud cell states derived from RNA velocity. Related to 2 
Figure 4.  Influx is greater than outflux for the anterior PSM and neuronal states. However, this 3 
may be an artifact of the absence of further differentiated tissues in the dataset. 4 
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Movie S1. Ergodic pattern of cell state transitions. Related to Figure 3. A timelapse was 2 
generated using the phase average for each timepoint in the longest wild-type dataset.  The 3 
states were segmented using position and displacement.   4 
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Samples Max gene number Minimum gene number 
Max mitochondrial 
percentage 

WT1 2800 1200 5 

WT2 2000 800 5 

WT3 2500 800 5 

WT4 2500 800 5 

BMP1 4000 1000 7 

BMP2 3000 1000 7 

BMP3 4000 1000 7 

BMP4 4000 1000 7 

FGF1 2000 800 10 

FGF2 2500 800 7 

FGF3 3000 800 7 

FGF4 4000 1500 7 

WNT1 2500 500 3 

WNT2 2500 500 3 

WNT3 3000 500 3 

WNT4 3750 500 3 

TableS1. Filtering criterions for the cells of scRNA-seq in each sample. Related to Figure 2 
1. 3 
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