

1 **Single Nucleotide Polymorphisms in the Bovine TLR2 Extracellular Domain Contribute to**
2 **Breed and Species-Specific Innate Immune Functionality**

3
4 Marie-Christine Bartens^{1, 2}, Amanda J. Gibson^{1, 5}, Graham Etherington³, Federica di Palma^{4, 6}, Angela
5 Holder¹, Dirk Werling^{1, *}, Sam Willcocks²

6
7 ¹ Molecular Immunology Group, Department of Pathobiology and Population Science, Royal
8 Veterinary College, UK

9 ² Department of Infection Biology, London School of Hygiene and Tropical Medicine, UK

10 ³ Earlham Institute, UK

11 ⁴ University of East Anglia, Department of Biological Sciences, Norwich, UK

12 ⁵ Institute of Biological and Rural Sciences, Aberystwyth University, UK *present address

13 ⁶ Genome British Columbia, Vancouver, BC, Canada

14
15 * Corresponding author

16
17 **Abstract**

18
19 Recent evidence suggests that several cattle breeds may be more resistant to infection with the
20 zoonotic pathogen *Mycobacterium bovis* than others. Our data presented here suggests that the
21 response to mycobacterial antigens varies in macrophages generated from Brown Swiss (BS) and
22 Holstein Frisian (HF) cattle, two breeds belonging to the *Bos taurus* family. Whole genome
23 sequencing of the Brown Swiss genome identified several potential candidate genes, in particular
24 Toll-like Receptor-2 (TLR2) a pattern recognition receptor (PRR) that has previously been described
25 to be involved in mycobacterial recognition. Further investigation revealed single nucleotide
26 polymorphisms (SNP) in TLR2 that were identified between DNA isolated from cells of BS and HF
27 cows. Interestingly, one specific SNP, H326Q, showed a different genotype frequency in two cattle
28 subspecies, *Bos taurus* and *Bos indicus*. Cloning of the TLR2 gene and subsequent gene-reporter and
29 chemokine assays revealed that this SNP, present in BS and *Bos indicus* breeds, resulted in a
30 significantly higher response to mycobacterial antigens as well as tri-acylated lipopeptide ligands in
31 general. Comparing wild-type and H326Q containing TLR2 responses, wild-type bovine TLR2
32 response showed clear, diminished mycobacterial antigen responses compared to human TLR2,
33 however bovine TLR2 responses containing H326Q were found to be partially recovered compared to
34 human TLR2. The creation of human:bovine TLR2 chimeras increased the response to mycobacterial
35 antigens compared to the full-length bovine TLR2, but significantly reduced the response compared to
36 the full-length human TLR2. Thus, our data, not only present evidence that TLR2 is a major PRR in
37 the mammalian species-specific response to mycobacterial antigens, but furthermore, that there are
38 clear differences between the response seen in different cattle breeds, which may contribute to their
39 enhanced or reduced susceptibility to mycobacterial infection.

40

41

42 **Keywords:**

43 Toll-like Receptor 2 (TLR2), Mycobacteria, Pattern Recognition, Macrophage, Innate Immunity

44 **Introduction**

45

46 Early recognition of pathogens and activation of the innate immune response is critical in determining
47 the outcome of infection. Pathogens are recognized by evolutionary conserved, germline-encoded and
48 cell-surface expressed pattern recognition receptors (PRR)[1]. One of the major groups of PRRs are
49 the toll-like receptors (TLR), ten of which have been discovered common to both bovine and human
50 immune systems [2–5] and are expressed on myeloid antigen presenting cells such as macrophages
51 (MØ). Each of these TLR has evolved to recognise specific pathogen associated molecular patterns
52 (PAMP) – and docking of these ligands to the extracellular domain (ECD) of the TLR triggers an
53 intracellular signalling cascade [6]. This signalling is mediated by the recruitment of adaptor proteins
54 to the intracellular Toll/interleukin-1 receptor homology (TIR) domain of the TLR [7,8]. While the
55 amino acid sequence of the ECD varies considerably between species [9], the TIR domain is highly
56 conserved [7,9].

57

58 Although TLR4, and possibly TLR9 and TLR8 are capable of sensing mycobacteria [10–12],
59 recognition of mycobacterial antigens by TLR2 has been shown to be a key factor in determining
60 disease progression in tuberculosis [12–14] [15]. [14,16]. [17] [18]. TLR2 recognizes a range of
61 mycobacterial cell-wall antigens including the 19-kDa mycobacterial lipoprotein and glycolipids
62 such as lipoarabinomannan (LAM), lipomannan (LM), the 38kDa antigen, LprG lipoprotein and
63 phosphatidylinositol mannoside (PIM) [11,19,20]. Additionally, secreted mycobacterial proteins have
64 been shown to act as TLR2 ligands. For instance, the well-studied virulence factor ESAT-6 has been
65 shown to inhibit NF-κB activation in a TLR2-mediated manner [21]. Similarly, recombinant antigen
66 TB10.4 from *M. bovis*, encoded by a subfamily of ESAT-6 and also present in *M. tuberculosis* and *M.*
67 *bovis* BCG [22], has been shown to induce pro-inflammatory cytokine production via a TLR2
68 mediated NF-κB pathway [23].

69

70 Engagement of TLR2 expressed on MØ by mycobacteria can result in complex outcomes that can
71 either promote or inhibit a protective inflammatory response. For example, TLR2 activation can result
72 in the upregulation of pro-inflammatory cytokines within a variety of immune cells, at the forefront
73 MØ. Upregulated cytokines include IL-1β, TNFα and IL-6; as well as reactive oxygen species (ROS)
74 production through activation of NF-κB and MAPK pathways [24–26]. Furthermore, TLR2 signalling
75 regulates the expression of iNOS, which interacts with NADPH oxidase and ROS to create reactive
76 nitrogen intermediates [27,28] and can induce autophagy [29] - all essential mechanisms in cellular
77 host defence to mycobacterial infection [30,31]. On the other hand, engagement of TLR2 by the
78 secreted mycobacterial antigens, heat-shock protein (hsp) 60 and proline-proline-glutamic acid
79 (PPE)18 initiates an anti-inflammatory response via IL-10 production [32,33]. In addition, ESAT-6
80 has been shown to inhibit IL-12 production upon binding to TLR2 in RAW cells [21]. Further
81 immunomodulatory mechanisms of some mycobacterial species include the inhibition of MHCII
82 receptor expression and therefore presentation of mycobacterial lipoprotein antigens [34,35]. Thus,
83 mycobacteria can utilise TLR2 to manipulate the immune outcome and promote survival
84 [15,36][13,14,19,21,29,36].

85

86 Given the importance of TLR2, it is perhaps not surprising that polymorphisms within the TLR2 gene
87 have been shown to affect the immune response to mycobacterial infection in both humans and cattle
88 [18,29,32,33,37,38], [12,14]. In humans, the R753Q and R677W mutations have been shown to
89 influence susceptibility to tuberculosis in case-control studies [37,39]. Furthermore, the R753Q SNP
90 was also shown by Pattabiraman *et al* [40] to result in impaired NF-κB signalling and decreased

91 cytokine responses to *M. smegmatis* in a murine and Human Embryonic Kidney (HEK) 293 cell
92 assay. Similar as in the human system, several SNPs have also been identified within the bovine
93 TLR2 orthologue. Some of these have been indicated to contribute to disease susceptibility in cases of
94 paratuberculosis [41], clinical mastitis [42,43], and bovine tuberculosis [44,45][46]. SNPs occurring
95 between cattle breeds may reflect natural variation arising from host-pathogen co-evolution in
96 different geographical environments, but may also be influenced by intensive selective breeding that
97 favours meat or milk production [9,47]. Characterisation of SNPs arising in TLR2 among
98 commercially important breeds is therefore a crucial contribution towards understanding immune
99 fitness variation among herds and potentially, disease sensitivity. While some SNPs within the bovine
100 *tlr2* gene have previously been identified, studies of their functional relevance are often lacking. In the
101 present work, we compare the *tlr2* sequences of two breeds of global importance to the farming/dairy
102 industry, Brown Swiss (BS) and Holstein Friesian (HF) and determine the genotypic frequency of a
103 H326Q SNP that occurs in the ligand-binding region of the ECD. We report on the species- and
104 breed- specific phenotypic consequence of this mutation in response to canonical TLR2 ligands and in
105 the context of challenge with *M. tuberculosis* and *M. bovis*. We present evidence that TLR2 is a major
106 PRR in the mammalian species-specific response to mycobacterial antigens, that there are clear
107 differences in species-specific responses that may influence disease susceptibility and host tropism of
108 *Mycobacterium tuberculosis* complex members.

109
110

111 **Methods**

112 **Mycobacterial Strains and Culture**

113 The following strains were used for all assays as indicated: *M. bovis* strain AF2122/97 and *M. bovis*
114 BCG Tokyo; *M. tuberculosis* H37Rv. Strains were cultured in BD Middlebrook 7H9 media (BD
115 Difco™, USA), supplemented with OADC and 0.05 % Tween 80 (Sigma-Aldrich, UK). For *M. bovis*
116 culture only, growth media was additionally supplemented with sodium pyruvate; for *M. tuberculosis*
117 culture only, media was additionally supplemented with glycerol (Sigma-Aldrich, UK).

118

119 **Brown Swiss genome assembly and QC**

120 Four lanes of 10x Genomics data were generated using an Illumina HiSeq. This provided ~1200
121 million reads with a 150bp read length. The data was assembled *de novo* using the 10x Genomics
122 assembly tool Supernova v2.0.1, using the option to output a phased genome, which generates two
123 homologous assemblies where each scaffold in the assembly has one of the paternal or maternal
124 haplotypes [48]. Using one of the haplotypes, we used RepeatMasker, using ‘bovidae’ as the repeat
125 library to soft-mask repeat regions in the assembly [49]. We tested the assembly for completeness
126 using several quality control metrics. First, BUSCO (v5.0.0) was used to identify the number of
127 mammalian single-copy orthologs present in the genome (using the database mammalia_odb10) [50].
128 Using the Kmer Analysis Toolkit, we examined the content and distribution of kmers in the assembly
129 to that of the reads using the tool ‘kat comp’, ignoring the first 16 bases of each R1 read in order to
130 omit 10x barcodes from the analyses. We then visualised the distribution of kmers using the tool ‘kat
131 plot’ [51].

132

133 **Brown Swiss genome annotation and gene expansion**

134 LiftOff tool was used to lift over the *Bos taurus* genome annotation (ARS-UCD1.2.103) to that of the
135 Brown Swiss, noting any genes that were unmapped in Brown Swiss [52]. We then identified genes in
136 the Brown Swiss genome annotation that were present in multiple copies (compared to *Bos taurus*
137 ARS-UCD1.2.103) and downloaded the functional information for these genes using ENSEMBL
138 BioMart database [53]. For genes annotated as being duplicated three or more times and where a gene
139 name or description was missing, we downloaded the coding sequence for that gene and used
140 megablast to search the NCBI nr database and noted the highest scoring hit (with 100% query
141 coverage and an E-value equal to 0), that contained functional information about the gene (i.e.,
142 disregarding hits for clones, BACs, isolates, etc.).

143

144 **Study Population for Candidate Gene TLR2 analysis**

145 Complementary DNA (cDNA) from TLR2 mRNA sequences isolated from PBMCs from six
146 clinically healthy pedigree BS and four HF were investigated for sequence comparison. All cows were
147 female and either housed, under Home Office License PPL7009059. Age and lactation cycle of
148 sampled cows were recorded. After identification and selection of candidate SNP H326Q within the
149 coding sequence (CDS) of TLR2 in the BS samples, further cDNA was generated from nine BS and
150 13 HF PBMC samples from the above-mentioned farms to be assessed for the presence of this SNP.
151 Additionally, 17 Sahiwal and 17 Boran cDNA samples were kindly provided by Drs Thomas Tzelos
152 and Tim Connelley (both The Roslin Institute, University of Edinburgh, UK) for TLR2 SNP analysis.

153

154 **PBMC Isolation and Macrophage Maturation**

155 Blood for peripheral blood mononuclear cells (PBMC) isolation and subsequent macrophage (MØ)
156 generation was collected from clinically healthy pedigree HF and BS cows. All procedures were
157 carried out under the Home Office license (PPL7009059) approved by the RVC’s AWERB
158 Committee. Blood was drawn into sterile glass vacuum bottles containing 10% v/v acid citrate and

159 centrifuged to separate the buffy coat, which was then diluted in phosphate buffered saline (PBS,
160 Thermo Fisher Scientific, UK) with 2% foetal calf serum (FCS, Sigma-Aldrich, UK). Lymphoprep (d
161 = 1.077 g mL⁻¹, StemCell Technologies TM, Canada) was underlaid and PBMC were isolated by
162 density gradient centrifugation. PBMC were washed and red blood cells lysed, resultant cells were
163 cultured in RPMI 1640 with GlutaMAXTM (Gibco, UK), supplemented with FCS (Sigma-Aldrich,
164 UK) and penicillin/streptomycin (Thermo Fisher Scientific, UK) at 37 °C with 5% CO₂. To derive
165 MØ, PBMC were incubated additionally with 10% filtered L929 supernatant. Media was replaced
166 after three days and adherent cells were harvested after 6 days. Matured MØ were phenotypically
167 assessed by flow cytometry using antibodies specific for bovine cell surface expressed markers
168 including CD14, CD16, CD32, CD11b, CD80, CD163 and MHC class II. All antibodies and isotype
169 controls were purchased from Bio-Rad, UK (Table 1). Data were acquired using a FACS Calibur (BD
170 Biosciences, UK) with Cell Quest Pro software (BD Biosciences, UK), counting 10,000 events. Data
171 was exported as FSC files and analysed using FlowJo V10 (FlowJo LLC, USA).

172

173 **RNA extraction and cDNA synthesis**

174 For sequencing and cloning of the *tlr2* gene, total RNA was isolated from bovine PBMC using a
175 RNeasy Mini kit (Qiagen, UK) with on-column gDNA digestion (DNase from Ambion, UK)
176 according to the manufacturer's instructions. Total RNA was reverse transcribed to cDNA using
177 iScript cDNA Synthesis Kit (Bio-Rad, UK) according to the manufacturer's instructions. cDNA
178 samples were checked for concentration and purity via the A260/280 ratio using a Nanodrop ND-
179 1000 Spectrophotometer (Thermo Fisher Scientific, UK). A RT-negative control of each RNA sample
180 was analysed by polymerase chain reaction (PCR) for expression of β-actin to confirm lack of gDNA
181 contamination of RNA.

182

183 **Cloning and sequencing of *tlr2***

184 Full length *tlr2* sequences were amplified using primers designed using Primer-BLAST (NCBI, USA)
185 and Primer3Plus (Table 2) (187) based on bovine genome *Bos_taurus_UMD_3.1.1* (NCBI, USA) as
186 reference. PCR reactions were performed using Easy-A High-Fidelity PCR master mix (Agilent
187 Technologies, UK) on a Mastercycler Pro Thermal Cycler (Eppendorf, UK). Following amplification,
188 the PCR products were purified using the MinElute PCR purification kit (Qiagen, UK) according to
189 the manufacturer's protocol. For TA cloning of full length bovine *tlr2* into the pDrive plasmid
190 (Qiagen, UK) or pGEM-T plasmid (Promega, UK), manufacturer's instructions were followed.
191 Plasmids were transformed into NEB® 10-beta competent *E. coli* (New England Biolabs, UK) and
192 colony PCR performed to verify the presence of the *tlr2* insert. Sequences were validated using
193 Sanger sequencing; DNA sequencing was performed by DNA Sequencing & Services (MRC I PPU,
194 School of Life Sciences, University of Dundee, Scotland, www.dnaseq.co.uk) using the corresponding
195 vector-specific sequencing primers. A minimum of 4 different plasmids derived from unique colonies
196 were sequenced for each animal. Bovine TLR2 contigs were assembled using the bovine TLR2
197 sequence *Bos taurus* Hereford breed NM_174197.2 (NCBI, USA) as a reference. TLR2 nucleotide
198 sequences were translated into corresponding amino acid sequences and aligned in CLC Main
199 Workbench V7.6.4 (CLCbio, Denmark). Detected SNPs were classified according to the dbSNP
200 database (NCBI, USA). Analysis of SNP data was curated and as at present, the NCBI dbSNP
201 database contains only human data, allele changes, CDS position and function of each SNP was
202 manually cross-checked and referenced against Ensemble and the European Variation Archive
203 (EVA).

204

205

206

207 **Expression of TLR2 by HEK 293T (SEAP) cells**

208 The Human Embryonic Kidney (HEK) 293T cell line, stably transfected with the gene encoding NF-
209 κ B inducible secreted embryonic alkaline phosphatase (SEAP), was cultured SEAP media as
210 described recently [54]. Bovine or human TLR2 sequences of interest were cloned into pcDNA3.3
211 TOPO TA mammalian expression vector (Thermo Fisher Scientific, UK), and transfected into SEAP
212 HEK cells using TurboFect transfection reagent (Thermo Fisher Scientific, UK) according to the
213 manufacturer's protocol. After 24 h, cells were counted and re-seeded in triplicates in a 96-well plate
214 to rest for another 24 h before either evaluation of transfection efficiency or stimulation with various
215 agonists. Surface expression of TLR2 was confirmed by flow cytometry using either human anti-
216 bovine CD282 (anti-TLR2) antibody or mouse anti-human CD282 antibody, both conjugated with
217 Alexa Flour 647 (Bio-Rad, USA). HuCAL Fab-dHLX-MH Ab (Bio-Rad, USA) was used as a
218 negative control as recommended by the manufacturer.

219

220 **Stimulation Assays**

221 SEAP HEK cells expressing TLR2 constructs, or PBMC-derived bovine MØ were specifically
222 stimulated using 100 ng mL⁻¹ diacylated FSL-1 (Invivogen, USA); 1 mg mL⁻¹ of Pam₃CSK₄; 19 kDa
223 lipoprotein antigen (represents Rv3763 or Mb3789) (EMC microcollections, Germany), *M. bovis*
224 BCG (MOI of 10) or MTB H37Rv at (MOI of 5). The direct NF- κ B activator phorbol 12-myristate
225 13-acetate (PMA, Sigma-Aldrich, UK) was used at 200 ng mL⁻¹ as a positive control. Sterile culture
226 media and mock transfection with an empty vector plasmid were used as negative controls.
227 Supernatants were harvested for CXCL8 ELISA as described by Cronin *et al.* (185) for bovine MØ,
228 or Quantikine Human CXCL8 ELISA kit (R&D Systems, USA) for human MØ, or colorimetric
229 SEAP assay from HEK cells. SEAP activity as induced by NF- κ B activation was assessed by the
230 addition of pre-warmed Quantiblue reagent (Invivogen, USA) followed by incubation for 24 h at
231 37°C. For both assays, optical density was measured using a SpectraMax M2 spectrometer (Molecular
232 Devices, UK).

233

234

235 **Results**

236 **Brown Swiss genome assembly and QC**

237 We used the 10x Genomics tool Supernova to assemble a haplotype-phased Brown Swiss cow
238 genome. After trimming, the mean read length was 138.5 bases, with a raw read coverage of 59.64.
239 The genome size was calculated to be 2.66Gb (of which 98.08% of the genome was present in
240 scaffolds >10Kb) with a contig N50 of 523Kb and a scaffold N50 of 26Mb (**Supplementary Table**
241 **1**). We used BUSCO to identify reconstructed single copy orthologs. From 9226 BUSCO orthologs
242 95.2% were recovered, 93.1% were single-copy, 2.1% were duplicated, 1.5% were fragmented, and
243 3.3% were missing. We used KAT to examine the distribution of kmers in the assembly to that in the
244 reads (Error! Reference source not found.). The genome shows a normal distribution of kmers found
245 once in the assembly and once in the reads (red distribution). It also shows a number of low frequency
246 kmers (black peak between 0-10) present in the reads, but not in the assembly that most likely
247 represent sequencing errors removed from the assembly. This continues into a shallow distribution of
248 kmers missing from the assembly (black distribution between 10-40), which most likely represents
249 haplotypes found only in the alternate phased assembly.

250

251 **Brown Swiss genome annotation and gene expansion**

252 We noted genes that were missing (**Supplementary Table 2**) and duplicated in the Brown
253 Swiss genome, ordering the duplicated genes in order of the most numerous duplications
254 (**Supplementary Table 2**). We note that all genes annotated as having five or more copies belonged
255 to one of five genes. Three of these genes were repeat/transposon related genes. The remaining two
256 genes were a predicted *Bos indicus* x *Bos taurus* elongation factor 1-alpha 1 pseudogene (6 copies),
257 and the *Bos taurus* T cell receptor gamma cluster 1 (TCRG1) gene (128 copies).

258

259 **Identification of single nucleotide polymorphisms (SNPs) within bovine *tlr2* between cattle
260 breeds**

261 TLR2 is an important PRR involved in the recognition and uptake of MTBC family members.
262 Key SNPs in TLR2 have been identified that affect susceptibility to mycobacterial infection for both
263 humans and cattle [55,56]. The CDS of the bovine *tlr2* gene of six BS and four HF cattle were cloned
264 and compared to the bovine NCBI reference sequence genome (RefSeq) comprised of that of a *Bos*
265 *taurus* Hereford breed bull (NM_174197.2, NCBI, USA, accessed April 2017) in order to identify
266 potential functional SNP sites. A total of 19 SNP variants were detected across the breeds, comprising
267 both synonymous and missense mutations (**Table 3**). Of the eight missense mutations, seven occur in
268 the ECD region of TLR2 and one in the TIR domain. One synonymous SNP at mRNA position 202
269 could not be classified with any available database, was described by Jann et al [47] and is potentially
270 novel. Of all SNPs identified across the breeds, two of the non-synonymous SNPs have been already
271 reported in the literature [44,47,55] and were only observed in the BS animals. One identified SNP
272 variant, rs55617172, leading to an amino acid change of aspartic acid (D) to glutamic acid (E), both
273 negatively charged, at amino acid position 63, has been significantly associated with TB resistance in
274 a TB case-control cattle study [44]. However, SNP rs68343167, was only identified in BS isolates in
275 this study, and results in an amino acid change of the positively charged histidine (H) to the
276 uncharged glutamine (Q) at amino acid position 326 (H326Q). This amino acid position has been
277 suggested to be of relevance for ligand binding and functionality of human TLR2 [47,57], bovine
278 TLR2 and was additionally identified in the Anatolian Black *Bos taurus* breed [55]. In addition,
279 position 326 resides in leucine rich repeat 11 (LRR11) which together with LRR12 are the key
280 domains involved in ligand binding and heterodimerisation of TLR2 with TLR1 and TLR6 [57].

281

282

283
284

285 Genotype frequency analysis of candidate SNP H326Q in selected cattle breeds

286 Having identified multiple SNPs within the coding sequence of *tlr2* gene across breeds, SNP
287 rs68343167 (H326Q) was selected for further investigation using a larger sample size, including
288 cDNA from two additional breeds, Boran and Sahiwal, from the *B. indicus* species. A total of 66
289 cDNA samples (Brown Swiss n=15, HF n=17, Sahiwal n=17, Boran n=17) were assessed for H326Q
290 SNP analysis and frequency analysis (Table 4). The reference codon at the site of interest is encoded
291 by the CAT sequence (TT genotype). Individual animals carrying the SNP had either heterozygote
292 codons (TA genotype), encoded by either CAT or CAA, which is responsible for the H326Q variant;
293 or they were homozygote for the CAA sequence (AA genotype).

294

295 Interestingly, all HF samples tested as part of the present study were homozygous for the *B.*
296 *taurus* Hereford RefSeq (TT genotype). Of the BS samples, six samples were homozygous for the
297 RefSeq sequence, whereas the majority (n=9) were found to be heterozygous (TA genotype),
298 containing both, the RefSeq sequence and the H326Q SNP. Of the *Bos indicus* breeds, the Boran
299 samples revealed two samples homozygous for the RefSeq sequence, eight heterozygous and seven
300 homozygous for the SNP. Thus, the heterozygote genotype was most abundant in the BS and Boran
301 population. All Sahiwal samples (n=17) were homozygous for the SNP variant (AA genotype).

302

303 Alignment of TLR2 transcripts revealed additional SNP sites unique to BS, BS and *B. taurus*
304 as well as *B. indicus*. Of note are positions H326Q as reported here and by others, as well as positions
305 417, 563 and 665; these latter 3 amino acid positions are particularly interesting as like H326Q these
306 SNPs were found to introduce identical residue changes to our full length TLR2 analysis. Further,
307 these SNPs were found to be present in BS cattle investigated (Table 3) but not present for HF cattle
308 suggesting a role for genotype impact as found for H326Q. Position 417 and 665 are noteworthy,
309 belonging to LRR15 and the TIR domain respectively. As LRR15 is close to the LRR regions thought
310 to be involved in dimerization of TLR2 with co-receptors this SNP may play a role in effective PRR
311 dimers forming. As the TIR domain is crucial for receptor dimerization of TLR cytoplasmic domains
312 as well as signal potentiation; SNP H665Q may also modulate functional responses of TLR2.

313

314 On establishing distinct genotypes for the H326Q SNP in a range of cattle species (i.e., HF =
315 TT, BS and Boran = TA and Sahiwal = AA), we assessed in the next step this association with TLR2
316 gene models and global sequence alignments. From the genotype analysis BS and Boran cattle
317 represent an intermediate between the genotype extremes, perhaps representing genomic heritage; for
318 example, Boran cattle are predominantly *B. indicus* with underlying influences of European and
319 African *B. taurus* [58,59]. TLR2 gene models comparing the BS genome to *B. taurus*, *B. indicus* and
320 *B. bubalis* (water buffalo) highlights an alignment of BS with *B. taurus* as TLR2 is derived from a
321 single transcript in both breeds (Supplementary Figure S3). Highlighting the heterozygous genotype
322 of BS cattle, BS resembled *B. taurus* at H326Q within LRR11 of the extracellular domain of TLR2
323 (Supplementary Figure S4) when the CDS of each possible TLR2 transcript was aligned to the three
324 cattle species. Interestingly, additional sites where the BS and *B. taurus* sequences differed from *B.*
325 *indiclus* where I211V, F227L and R337K. Positions 211 and 337 were identified from the initial TLR2
326 sequencing described above.

327

328 **The Brown Swiss H326Q TLR2 polymorphism induces a stronger NF- κ B response after ligand
329 binding compared with Hereford and Holstein Frisian TLR2**

330 Having identified the H326Q candidate SNP and its representation in the present study
331 population of different cattle breeds, specifically in the BS population, the potential impact of this
332 SNP on boTLR2 function in this breed was assessed. We utilised a previously published HEK cell
333 assay to express the different TLR2 constructs in the absence of additional PRR [54]. As well as the
334 BS H326Q TLR2 variant, we included the Hereford reference variant and a L306P SNP variant that
335 has been identified by others [47,55] but not identified in the present study. We were also interested to
336 assess the functionality of TLR2 across species, and therefore included the huTLR2 reference
337 sequence (NCBI RefSeq Accession Number NG_016229.1). Furthermore, novel chimeric TLR2
338 constructs featuring the ECD of huTLR2, with the TIR domain of boTLR2 were created to delineate
339 the contribution of each component to TLR2 functionality.

340

341 To confirm that the different TLR2 constructs were similarly expressed on the cell surface of
342 the SEAP HEK cells, immunostaining was performed using bovine and human TLR2 specific
343 antibodies. The mean fluorescence intensity (MFI) values of the positively stained population were
344 similar for all constructs (**Figure S1**). Stimulation with PMA, a non-specific activator of NF- κ B, was
345 used as a positive control and resulted in consistently high SEAP secretion for all transfectants. SEAP
346 activity in response to ligands was normalised to PMA responses as an internal control.

347

348 The H326Q variant showed significantly higher TLR2-dependent NF- κ B response in
349 comparison to RefSeq Hereford TLR2 ($p < 0.001$ **Figure 2 A and C**). Constructs containing the
350 L306P SNP did not respond significantly differently in comparison to the RefSeq Hereford boTLR2
351 version. The response of SEAP HEK cells transfected with huTLR2 was significantly higher in
352 response to both FSL-1 and Pam₃CSK₄ in comparison to the bovine constructs. Interestingly, the
353 chimeric bov:hu TLR2 receptor showed higher NF- κ B activity than the Hereford boTLR2 HEK cell
354 line, but significantly lower activity than the huTLR2 receptor in response to both FSL-1 and
355 Pam₃CSK₄.

356

357 **NF- κ B activity correlates directly to CXCL8 production of TLR2-HEK cells upon stimulation
358 with lipopeptides**

359 Using cell culture supernatant recovered from the above SEAP assay experiments, CXCL8
360 production in response to FSL-1 and Pam₃CSK₄ stimulation were measured (**Figure 1 B and D**). As
361 previously, there was an increase in CXCL8 production in the H326Q variant in comparison to the
362 bovine RefSeq Hereford TLR2, however this was found only to be statistically significant in response
363 to FSL-1 stimulation ($p < 0.01$). CXCL8 production measured in huTLR2 transfecants was
364 significantly higher than in boTLR2 transfecants in response to both ligands. CXCL8 production by
365 chimeric bo:hu TLR2 HEK cells was significantly higher than any of the boTLR2 variants to FSL-1
366 ($p < 0.05$), but lower than those from huTLR2, reflecting the observations made using the SEAP
367 reporter assay of NF- κ B activity.

368

369 **huTLR2 is significantly more sensitive than boTLR2 variants to stimulation with live *M. bovis*
370 BCG, but not *M. tuberculosis***

371 Having assessed the activity of TLR2 variant HEK cells using TLR2-specific agonists and
372 determining good correlation between SEAP activity and CXCL8 secretion (**Supplementary Figure
373 S3**), we next challenged the TLR2-HEK cells with live mycobacteria and measured the NF κ B
374 activation responses. Interestingly, the response of SEAP HEK cells expressing huTLR2 to challenge
375 with *M. tuberculosis* was markedly lower than when they were challenged with TLR2-specific

376 lipopeptides i.e. Pam₃CSK₄ and FSL-1 in the previous experiment (**Figure 2 and Figure 3**). Only the
377 huTLR2 variant produced a significant NFkB response upon challenge with *M. bovis* BCG compared
378 to mock simulations. NFkB responses for H326Q containing TLR2 were significantly lower than
379 Hereford reference TLR2 and those constructs containing L306P. All boTLR2 variants responded
380 more strongly to *M. tuberculosis* than to *M. bovis* BCG, even though the MOI was lower (MOI of 5)
381 than with the *M. bovis* BCG infection (MOI of 10).

382

383

384

385 **Brown Swiss and Holstein Friesian PBMC-derived macrophages respond significantly
386 differently to TLR2-specific and mycobacterial ligands**

387 Differences in functionality at the whole cell level conferred by boTLR2 breed variants were
388 further assessed using PBMC-derived MØ. Cells were isolated from BS, containing the heterozygote
389 H326Q variant, or HF cattle, which have the TLR2 sequence identical to the RefSeq Hereford breed.
390 Due to restriction with class 3 lab access, we measured initially the CXCL8 response to the TLR2-
391 specific agonist, FSL-1 as well as to BCG. In agreement with TLR2-HEK cell responses (**Figure 2**),
392 MØ generated from BS carrying the H326Q variant showed a significantly higher CXCL8 responses
393 than HF MØ upon FSL-1 stimulation (p<0.05, **Fig 4A**). We further verified a high degree of
394 correlation between the SEAP NF-kB and CXCL8 assays in a control experiment, by collecting data
395 for both from the same stimulated cells and performing regression analysis (Fig S2). Interestingly,
396 unlike the SEAP HEK cell experiments, the PBMC-derived MØ responded similarly to MTB-derived
397 19 kDa lipoprotein and *M. bovis* BCG compared with FSL-1. We also detected a significantly greater
398 response by BS derived MØ to *M. bovis* BCG compared to untreated cells, while the response by HF-
399 derived MØ was not statistically greater than untreated cells.

400

401

402 **Discussion**

403 Several studies have investigated cattle breed resistance to various diseases at the genetic
404 level, leading to the suggestion that the HF breed may have lost immunological fitness, possibly due
405 to extensive breeding for production traits [56,60]. Recently, we have also reported breed-specific
406 differences in response to mycobacterial challenge (60). It is estimated that the cost of bovine
407 tuberculosis to UK taxpayer is in excess of £100 million per year in surveillance testing and
408 compensation, and there is currently no viable vaccine for cattle. Investigation into aspects of host
409 immunity as they relate to different cattle breeds may inform future breeding strategies and minimise
410 the impact of disease and reduce transmission of zoonotic TB to humans. Zoonotic TB is currently
411 estimated to account for ~10% of global TB cases therefore taking a One Health approach to tackle
412 zoonotic TB is paramount in achieving the UN Sustainable Development Goal of ending the TB
413 epidemic [61]. Reducing the burden of *M. bovis* infection in animal reservoirs such as livestock and
414 wildlife underpins the 10 priority areas laid out in the WHO Roadmap for Zoonotic TB [61].

415 Using the power of linked-read sequencing, we have generated the first *de novo* phased
416 assembly of the Brown Swiss cow genome. The genome shows high contiguity and completeness, as
417 shown by the relatively high scaffold N50 and high single-copy ortholog reconstruction. Genome
418 annotation lift over and gene duplication analyses show an increase in gene copy number of T cell
419 receptor gamma cluster 1 (TCRG1) genes, in line with cattle belonging to “high $\gamma\delta$ species” compared
420 to human counterparts [62–64]. It is important to note is that $\gamma\delta$ T cells are not only considered a
421 major group of cells in mucosal immune responses, but also have been shown to be important in early
422 immune responses to mycobacterial infection and bridge the gap between innate and adaptive
423 immunity [65].

424

425 We identified 19 SNPs occurring within the CDS of bovine TLR2 compared to the RefSeq. A
426 H326Q mutation was of particular interest as it resulted in an amino acid change from the positively
427 charged histidine (H) to the uncharged glutamine (Q) at position 326, which is located in the ligand
428 binding region LRR11 of the ECD of the receptor [57]. Using a phylogeny-based approach, this SNP
429 has been previously identified as a mutation under positive selective pressure in cattle and suggested
430 to be of functional relevance [47]. Furthermore, the H326Q variant was found by Bilgen *et al.* [55] in
431 the *Bos taurus* Anatolian Black cattle breed, which is thought to be more resistant to pathogens
432 recognized by TLR2, such as to *M. bovis* and mastitis-causing bacteria. Among the *Bos indicus*
433 breeds, all Sahiwal samples in our study were homozygous for the H326Q SNP and except for two
434 samples, half of the Boran samples were either homozygous or heterozygous for this variant,
435 confirming a strong presence of this SNP in the *Bos indicus* samples tested. This is interesting given
436 that these breeds are known to be less extensively bred for production traits [55] and more resistant to
437 several diseases, including bovine tuberculosis [56] compared with *Bos taurus*. Within the BS breed,
438 more than half were heterozygous for the SNP. For HF samples, the cattle breed under strongest
439 selective pressure for production traits in our study population, all samples were homozygote and
440 identical to the reference Hereford sequence. Since *Bos indicus* cattle are phylogenetically more
441 ancient than *Bos taurus* cattle with respect to their common ancestor *Bos primigenius* [66], our results
442 suggest that BS cattle are immunologically potentially more closely related to ancient cattle breeds
443 such as Boran and Sahiwal than the HF breed.

444

445 To compare the functional relevance of the TLR2 variants present in the HF and BS breeds,
446 the identified sequences were cloned and expressed in HEK cells for *in vitro* phenotypic assessment.
447 Initially, we used the SEAP assay that has been previously reported as a quantitative indicator of NF-
448 κ B activation during TLR stimulation [54,67] and in which the SEAP response was directly correlated
449 to CXCL8 production (22, 61). Upon stimulation with synthetic lipoproteins and BCG, constructs

450 containing the H326Q SNP, showed a significant increase in NF- κ B activity and therefore TLR2
451 signalling strength. As the H326Q SNP was well represented in our *Bos indicus* population and most
452 BS samples were heterozygous for this SNP, it can be hypothesized that this primes for a stronger
453 TLR2-dependent immune response among these cattle.
454

455 For comparison, we included the characterisation of another reported SNP in the ECD domain
456 of boTLR2, the L306P variant [47,57] – although this was not identified in the present study. While
457 this site is reported to be important for determining the size of the ligand-binding groove [57], we did
458 not detect significantly different NF κ B or CXCL8 response to stimulation with TLR2-specific ligands
459 used in this study. A downstream functional outcome of NF κ B activation is the transcription of
460 certain inflammatory cytokines and including CXCL8 [68,69], which is responsible for the
461 recruitment of neutrophils to the site of infection and thus an important regulator of innate immunity.
462 We observed a high degree of correlation between NF κ B activity and CXCL8 production in our
463 assay, confirming the functional relevance of the SNPs between cattle breeds.
464

465 TLR function has been extensively studied, and shown to be species-specific and dependent
466 on the ECD of the receptor [70]. In contrast, there are conflicting reports over the contribution of the
467 TIR domain, which is more highly conserved between species [7,9] [70–72]. We sought to clarify this
468 aspect in the context of TLR2 expressed in isolation and challenged with TLR2-specific ligands. For
469 both FSL-1 and Pam3CSK4, the bovine TIR showed effective, but reduced activity when expressed as
470 a chimera with the huTLR2 ECD compared with the native human ECD-TIR structure. Similarly, the
471 human ECD imparted greater TLR2 activity as a chimera with bovine TIR compared with native
472 bovine ECD-TIR structure. Therefore, we can confirm that both ECD and TIR are independently
473 responsible for differences in TLR2 sensitivity between species when TLR2 is expressed as a
474 homodimer. In our study the human variant of both is more sensitive than the bovine orthologue to
475 TLR2 ligands in the absence of other PRR. This contrasts with findings previously reported where the
476 ECD was responsible for species-specific responses when a co-receptor construct of TLR2-Dectin1
477 was used [73], however these interactions may highlight the importance of co-receptor signal
478 potentiation to increase the repertoire of innate immune responses. Our findings support the work of
479 Faber et al who demonstrated a similar result with human and porcine TLR5 chimeras [71].
480

481 Interestingly, the magnitude of the TLR2-dependent response was reduced when the cells
482 were stimulated with live mycobacteria than with the synthetic ligands, independent of SNPs. There
483 were some statistical differences between SNPs in NF κ B activity, but none of these were significantly
484 different from the mock untreated conditions and so are not likely to be biologically relevant.
485 *Mycobacterium* spp. have been reported to be capable of inhibiting the TLR2-driven response - for
486 example, by the expression of glycolipids such as PDIM in the cell envelope that can obscure TLR2-
487 ligand recognition [74]. Furthermore, some MTB PAMPs may optimally require TLR2
488 heterodimerization or engagement of additional PRRs such as CLRs and DC-SIGN to interact and
489 induce NF κ B [14,75,76]. By contrast, FSL-1 and Pam₃CSK₄ [77] have been shown to activate TLR2
490 as a homodimer [54] or TLR 2/6 heterodimers [78].
491

492 The response of SEAP HEK cells expressing bovine TLR2 was significantly higher when
493 challenged with *M. tuberculosis* than with *M. bovis* BCG. Conversely, cells expressing huTLR2 were
494 significantly more sensitive to *M. bovis* BCG than cells expressing boTLR2. As *M. bovis* BCG is
495 derived from *M. bovis*, this may reflect species-level differences in host-pathogen coevolution that has
496 resulted in humans being generally more resistant to *M. bovis* infection than cattle and *vice-versa*,
497 cattle being more resistant to *M. tuberculosis* [79]. *M. bovis* BCG is the avirulent vaccine strain of *M.*

498 *bovis* that in certain circumstances induces protective immune but does not induce disease suggesting
499 that modulated responses compared to pathogenic mycobacteria could be expected. It is interesting
500 that this effect was observed when TLR2 was expressed in the absence of additional PRR. While
501 heterodimerization between PRR has been shown to broaden the ligand spectrum for TLR2, it is not
502 thought to induce differential downstream signalling pathways [80]. The presence of accessory
503 molecules such as CD14 and CD36 have been described to enhance TLR2 pathogen recognition by
504 concentrating microbial products on the cell surface [81] and potentially this might be required for
505 efficient boTLR2 recognition of *M. bovis* but is dispensable for recognition of *M. tuberculosis*.
506 Further work is required to delineate the response of both species to virulent *M. bovis* in comparison
507 with *M. bovis* BCG.

508

509 Whereas the HEK cell model enabled assessment of TLR2 function in isolation, we further
510 characterised PBMC-derived MØ from either breed to examine a potential role in the context of
511 additional PRR. BS MØ produced significantly higher CXCL8 to the TLR2-specific lipopeptide,
512 FSL-1, than MØ from HF animals. Furthermore, BS macrophages responded significantly better than
513 unstimulated controls in response to *M. bovis* BCG, whereas HF macrophages did not. Taken
514 together, our data are consistent with a positive role for the H326Q TLR2 variant supporting innate
515 immunity at the whole cell level to mycobacterial infection. Another finding was that PBMC-derived
516 MØ responded with greater CXCL8 production than HEK-TLR2 cells. This supports previously
517 published observations that while TLR2 can initiate CXCL8 production, additional pathways can also
518 upregulate the chemokine [11][82]. Therefore, the SNP in TLR2 contributes to, but is not solely
519 responsible for the inflammatory response to mycobacteria. It is likely that additional breed-specific
520 factors, including a possible contribution by adaptive immunity determines the bovine response to
521 tuberculosis at the whole animal level.

522

523 Our findings provide proof of concept however, that meaningful genetic differences exist
524 between cattle breeds that impact immune function, and such work can be expanded to consider
525 additional factors. It is also interesting to speculate which of the identified TLR2 sequences may
526 actually represent the “wild-type” sequence, and whether less responsive cells for HF animals are
527 actually hyporesponsive, due to continues selection for production, whereas the sequence and
528 response seen in BS does represent the “norm”. Resistance to disease is often multifactorial and
529 polygenic and thus identified resistance markers are often unlikely to provide absolute resistance to
530 disease [83]. Of course selection for resistance should not occur at the expense of other control
531 measures such as biosecurity and bTB control in the wildlife reservoir [84]. Immune function and
532 mycobacterial resistance factors associated between cattle breeds (and species) should be considered
533 when implementing vaccine-based or immunomodulation-based control measures to reduce *M. bovis*
534 burden.

535

536 **Acknowledgements**

537 DNA samples from Boran and Sahiwal cattle where kindly provided by Drs Thomas Tzelos and Dr
538 Tim Connelley, Roslin Institute, Edinburgh, UK.

539

540

541

542

543

544

545

546 **Figure Legends**

547

548 **Figure 1: Distribution of kmers**

549 One haplotype of the Brown Swiss genome compared to that of the complete read set (minus 10x
550 barcodes). The red distribution signifies the distribution of read-kmers found only once in the
551 assembly and the black distribution signifies the distribution of read-kmers not found in the assembly
552 (mainly sequencing errors and haplotypes present in the alternate phased assembly).

553

554 **Figure 2: TLR2-Ligand-Dependent NF-κB Activity and CXCL8 Secretion by HEK 293 cells
555 Expressing Bovine and Human TLR2 Sequence Variants**

556 HEK 293 cells, harbouring NF-κB-induced SEAP reporter genes were transfected with either empty
557 pTracer vector (mock); bovine or human TLR2 CDS constructs, or a bovine: human chimera in pDuo-
558 mcs. Cells were stimulated with either FSL-1 at 100 ng/ml (A,C), Pam3CSK4 at 1 mg/ml (B,D) for 24
559 hrs. SEAP activity was measured by quantifying optical density of cell culture supernatant at 635 nm
560 (A,B). OD values were normalised against values for PMA stimulation at 200 ng/ml. Additionally,
561 supernatants were assessed for CXCL8 concentration by ELISA (C,D). Error bars represent standard
562 deviation from the mean of triplicate technical replicates and are representative of three independent
563 repeats. (*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001) and are only shown in relation to
564 bovine TLR2 and additionally between the human and the chimeric bov: hu TLR 2 receptor. All data
565 analysed by two-way ANOVA with multiple comparisons using GraphPad Prism V8 (GraphPad Inc.,
566 USA).

567

568 **Figure 3: *M. bovis* BCG and *M. tuberculosis*-Dependent NF-κB Activity Secretion by HEK 293
569 cells Expressing Bovine and Human TLR2 Sequence Variants**

570 HEK 293 cells, harbouring NF-κB-induced SEAP reporter genes were transfected with either empty
571 pTracer vector (mock); bovine or human TLR2 CDS constructs, or a bovine: human chimera in
572 pDUO-mcs. Cells were stimulated with either live *M. bovis* BCG (MOI of 10) (A) or *M. tuberculosis*
573 H37Rv (MOI of 5) (B) for 24 h. SEAP activity was measured by quantifying optical density of cell
574 culture supernatant at 635 nm. OD values were normalised against values for PMA stimulation at 200
575 ng/ml. Error bars represent standard deviation from the mean of triplicate technical replicates and are
576 representative of three independent repeats. (*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001)
577 and are only shown in relation to bovine TLR2 and additionally between the human and the chimeric
578 bov: hu TLR 2 receptor. All data analysed by two-way ANOVA with multiple comparisons using
579 GraphPad Prism V8 (GraphPad Inc., USA).

580

581 **Figure 4: CXCL8 production by bovine MØ in response to FSL-1 , *M. bovis* BCG or MTB
582 Ligand Stimulation.**

583 Bovine MØ of BS (heterozygous for TLR2 H326Q SNP) and HF MØ (homozygous for the wild-type
584 TLR2 sequence) were stimulated with either FSL-1 at 100 ng/ml (A), 19 kDa lipoprotein antigen
585 (represents Rv3763 or Mb3789) (EMC microcollections, Germany) or infected with *M. bovis* BCG at
586 MOI = 5 (B) for 24 hr. CXCL8 concentration in cell culture supernatant was assessed by ELISA. A
587 total of n=8 animals per breed were stimulated with FSL-1 and n=6 animals per breed were infected
588 with *M. bovis* BCG. Error bars represent standard deviation from the mean. Data was analysed with
589 two-way ANOVA and Tukey's post hoc comparison in GraphPad Prism V8 (GraphPad Inc., USA)
590 (*=p<0.05, ***=p<0.001).

591

592

593 **References**

594

595 1 Akira, S. *et al.* (2006) Pathogen Recognition and Innate Immunity. *Cell* 124, 783–801
596 2 Beutler, B.A. (2008) TLRs and innate immunity. *Blood* 113, 1399–1407
597 3 Werling, D. *et al.* (2006) Expression of TOLL-like receptors (TLR) by bovine antigen-presenting cells—Potential role in pathogen discrimination? *Vet. Immunol. Immunopathol.* 112, 2–11
598
599 4 Fisher, C.A. *et al.* (2011) Evolution of the bovine TLR gene family and member associations with *Mycobacterium avium* subspecies *paratuberculosis* infection. *PLoS One* 6, e27744
600 5 Nie, L. *et al.* (2018) Toll-Like Receptors, Associated Biological Roles, and Signaling Networks in Non-Mammals. *Front. Immunol.* 9, 1523
601 6 Werling, D. and Jungi, T.W. (2003) TOLL-like receptors linking innate and adaptive immune response. *Vet. Immunol. Immunopathol.* 91, 1–12
602 7 Wu, B. *et al.* (2011) Domain combination of the vertebrate-like TLR gene family: implications for their origin and evolution. *J. Genet.* 90, 401–8
603 8 O'Neill, L.A.J. and Bowie, A.G. (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. *Nat. Rev. Immunol.* 7, 353–364
604 9 Werling, D. *et al.* (2009) Variation matters: TLR structure and species-specific pathogen recognition. *Trends Immunol.* 30, 124–130
605 10 Killick, K.E. *et al.* (2013) Receptor-mediated recognition of mycobacterial pathogens. *Cell. Microbiol.* 15, 1484–1495
606 11 Basu, J. *et al.* (2012) Mycobacterial signaling through toll-like receptors. *Front. Cell. Infect. Microbiol.* 2, 145
607 12 Harding, C. V and Boom, W.H. (2010) Regulation of antigen presentation by *Mycobacterium tuberculosis*: a role for Toll-like receptors. *Nat. Rev. Microbiol.* 8, 296–307
608 13 Drage, M.G. *et al.* (2009) TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of *Mycobacterium tuberculosis*. *Cell. Immunol.* 258, 29–37
609 14 Mortaz, E. *et al.* (2015) Interaction of Pattern Recognition Receptors with *Mycobacterium Tuberculosis*. *J. Clin. Immunol.* 35, 1–10
610 15 Stamm, C.E. *et al.* (2015) Sensing of *Mycobacterium tuberculosis* and consequences to both host and bacillus. *Immunol. Rev.* 264, 204–219
611 16 Kawai, T. and Akira, S. (2007) TLR signaling. *Semin. Immunol.* 19, 24–32
612 17 Drennan, M.B. *et al.* (2004) Toll-Like Receptor 2-Deficient Mice Succumb to *Mycobacterium tuberculosis* Infection. *Am. J. Pathol.* 164, 49–57
613 18 Reiling, N. *et al.* (2002) Cutting Edge: Toll-Like Receptor (TLR)2- and TLR4-Mediated Pathogen Recognition in Resistance to Airborne Infection with *Mycobacterium tuberculosis*. *J. Immunol.* 169, 3480–3484
614 19 Kleinnijenhuis, J. *et al.* (2011) Innate Immune Recognition of *Mycobacterium tuberculosis*. *Clin. Dev. Immunol.* 2011, 1–12
615 20 Jo, E.-K. *et al.* (2007) Intracellular signalling cascades regulating innate immune responses to *Mycobacteria*: branching out from Toll-like receptors. *Cell. Microbiol.* 9, 1087–1098
616 21 Pathak, S.K. *et al.* (2007) Direct extracellular interaction between the early secreted antigen ESAT-6 of *Mycobacterium tuberculosis* and TLR2 inhibits TLR signaling in macrophages. *Nat. Immunol.* 8, 610–618
617 22 Skjøt, R.L.V. *et al.* (2002) Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. *Infect. Immun.* 70, 5446–53
618 23 Chatterjee, S. *et al.* (2011) Early Secreted Antigen ESAT-6 of *Mycobacterium tuberculosis* Promotes Protective T Helper 17 Cell Responses in a Toll-Like Receptor-2-dependent Manner. *PLoS Pathog.* 7, e1002378
619 24 Lawrence, T. (2009) The nuclear factor NF- κ B pathway in inflammation. *Cold Spring Harb. Perspect. Biol.* 1, a001651
620 25 Torrado, E. and Cooper, A.M. (2013) Cytokines in the Balance of Protection and Pathology During Mycobacterial Infections. In *Advances in experimental medicine and biology* 783pp.

647 121–140
648 26 Forman, H.J. and Torres, M. (2001) Redox signaling in macrophages. *Mol. Aspects Med.* 22,
649 189–216
650 27 Mishra, B.B. *et al.* (2012) Nitric oxide controls the immunopathology of tuberculosis by
651 inhibiting NLRP3 inflammasome–dependent processing of IL-1 β . *Nat. Immunol.* 14, 52–60
652 28 Zhou, R. *et al.* (2011) A role for mitochondria in NLRP3 inflammasome activation. *Nature*
653 469, 221–225
654 29 Shin, D.-M. *et al.* (2010) Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and
655 a functional vitamin D receptor signalling. *Cell. Microbiol.* 12, 1648–1665
656 30 Gutierrez, M.G. *et al.* (2004) Autophagy Is a Defense Mechanism Inhibiting BCG and
657 Mycobacterium tuberculosis Survival in Infected Macrophages. *Cell* 119, 753–766
658 31 Singh, S.B. *et al.* (2006) Human IRGM Induces Autophagy to Eliminate Intracellular
659 Mycobacteria. *Science* (80-). 313, 1438–1441
660 32 Parveen, N. *et al.* (2013) Endocytosis of *Mycobacterium tuberculosis* Heat Shock Protein 60 Is
661 Required to Induce Interleukin-10 Production in Macrophages. *J. Biol. Chem.* 288, 24956–
662 24971
663 33 Nair, S. *et al.* (2009) The PPE18 of *Mycobacterium tuberculosis* Interacts with TLR2 and
664 Activates IL-10 Induction in Macrophage. *J. Immunol.* 183, 6269–6281
665 34 Gehring, A.J. *et al.* (2003) The Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits
666 gamma interferon-regulated HLA-DR and Fc gamma R1 on human macrophages through
667 Toll-like receptor 2. *Infect. Immun.* 71, 4487–97
668 35 Rocha-Ramírez, L.M. *et al.* (2008) Mycobacterium tuberculosis lipids regulate cytokines,
669 TLR-2/4 and MHC class II expression in human macrophages. *Tuberculosis* 88, 212–220
670 36 Yoshida, A. *et al.* (2009) The role of toll-like receptor 2 in survival strategies of
671 Mycobacterium tuberculosis in macrophage phagosomes. *Anticancer Res.* 29, 907–10
672 37 Ogas, A.C. *et al.* (2004) The Arg753GLn polymorphism of the human toll-like receptor 2 gene
673 in tuberculosis disease. *Eur. Respir. J.* 23, 219–23
674 38 Ponath, V. and Kaina, B. (2017) Death of Monocytes through Oxidative Burst of Macrophages
675 and Neutrophils: Killing in Trans. *PLoS One* 12, e0170347
676 39 Ben-Ali, M. *et al.* (2004) Toll-like receptor 2 Arg677Trp polymorphism is associated with
677 susceptibility to tuberculosis in Tunisian patients. *Clin. Diagn. Lab. Immunol.* 11, 625–6
678 40 Pattabiraman, G. *et al.* (2017) The R753Q polymorphism in Toll-like receptor 2 (TLR2)
679 attenuates innate immune responses to mycobacteria and impairs MyD88 adapter recruitment
680 to TLR2. *J. Biol. Chem.* 292, 10685–10695
681 41 Koets, A. *et al.* (2010) Susceptibility to paratuberculosis infection in cattle is associated with
682 single nucleotide polymorphisms in Toll-like receptor 2 which modulate immune responses
683 against *Mycobacterium avium* subspecies paratuberculosis. *Prev. Vet. Med.* 93, 305–315
684 42 Zhang, L.P. *et al.* (2009) Toll-Like Receptor 2 Gene Polymorphism and its Relationship with
685 SCS in Dairy Cattle. *Anim. Biotechnol.* 20, 87–95
686 43 Opsal, M.A. *et al.* (2008) Association analysis of the constructed linkage maps covering TLR2
687 and TLR4 with clinical mastitis in Norwegian Red cattle. *J. Anim. Breed. Genet.* 125, 110–118
688 44 Bhaladhare, A. *et al.* (2016) Single nucleotide polymorphisms in toll-like receptor genes and
689 case-control association studies with bovine tuberculosis. *Vet. World* 9, 458–464
690 45 Wang, Y. *et al.* (2011) Effects of *Mycobacterium bovis* on monocyte-derived macrophages
691 from bovine tuberculosis infection and healthy cattle. *FEMS Microbiol. Lett.* 321, 30–36
692 46 Alfano, F. *et al.* (2014) Identification of single nucleotide polymorphisms in Toll-like receptor
693 candidate genes associated with tuberculosis infection in water buffalo (*Bubalus bubalis*).
694 *BMC Genet.* 15, 139
695 47 Jann, O.C. *et al.* (2008) Molecular evolution of bovine Toll-like receptor 2 suggests
696 substitutions of functional relevance. *BMC Evol. Biol.* 8, 288
697 48 NI, W. *et al.* (2017) Direct determination of diploid genome sequences. *Genome Res.* 27, 757–
698 767
699 49 Smit, AFA, Hubley, R. RepeatModeler Open-1.0. .
700 50 M, S. *et al.* (2019) BUSCO: Assessing Genome Assembly and Annotation Completeness.
701 *Methods Mol. Biol.* 1962, 227–245

702 51 Mapleson, D. *et al.* (2017) KAT: a K-mer analysis toolkit to quality control NGS datasets and
703 genome assemblies. *Bioinformatics* 33, 574

704 52 A, S. and SL, S. (2020) Liftoff: accurate mapping of gene annotations. *Bioinformatics* 37,
705 1639–1643

706 53 RJ, K. *et al.* (2011) Ensembl BioMarts: a hub for data retrieval across taxonomic space. *Database (Oxford)*. 2011,

707 54 Tombácz, K. *et al.* (2017) Comparison of cellular assays for TLR activation and development
708 of a species-specific reporter cell line for cattle. *Innate Immun.* 23, 329–335

709 55 Bilgen, N. *et al.* (2016) Determination of Genetic Variations of Toll-like Receptor (TLR) 2, 4
710 and 6 with Next Generation Sequencing in Native Cattle Breeds of Anatolia and Holstein
711 Friesian. *doi.org DOI: 10.20944/preprints201609.0080.v1*

712 56 Vordermeier, M. *et al.* (2012) The influence of cattle breed on susceptibility to bovine
713 tuberculosis in Ethiopia. *Comp. Immunol. Microbiol. Infect. Dis.* 35, 227–32

714 57 Jin, M.S. *et al.* (2007) Crystal Structure of the TLR1-TLR2 Heterodimer Induced by Binding
715 of a Tri-Acylated Lipopeptide. *Cell* 130, 1071–1082

716 58 O, H. *et al.* (2000) Geographic distribution and frequency of a taurine Bos taurus and an
717 indicine Bos indicus Y specific allele amongst sub-saharan African cattle breeds. *Mol. Ecol.* 9,
718 387–396

719 59 Research, L./ Zebu cattle of Kenya: Uses, performance, farmer preferences and measures of
720 genetic diversity ILRI INTERNATIONAL.

721 60 Song, Y. *et al.* (2014) Toll-like receptor 6 gene polymorphisms increase the risk of bovine
722 tuberculosis in Chinese Holstein cattle. *Acta Histochem.* 116, 1159–1162

723 61 (2017) WHO | Roadmap for zoonotic tuberculosis. WHO at
724 <https://www.who.int/tb/publications/2017/zoonotic_TB/en/>

725 62 Vaccarelli, G. *et al.* (2008) Genomic organization and recombinational unit duplication-driven
726 evolution of ovine and bovine T cell receptor gamma loci. *BMC Genomics* 2008 9 1, 1–19

727 63 Massari, S. *et al.* (1998) T-cell Receptor TCRG1 and TCRG2 Clusters Map Separately in Two
728 Different Regions of Sheep Chromosome 4. *Chromosom. Res.* 1998 65 6, 419–420

729 64 AN, R. *et al.* (2005) Gammadelta T cell function varies with the expressed WC1 coreceptor. *J.
730 Immunol.* 174, 3386–3393

731 65 MD, W. *et al.* (2002) Responses of bovine WC1(+) gammadelta T cells to protein and
732 nonprotein antigens of *Mycobacterium bovis*. *Infect. Immun.* 70, 6114–6120

733 66 Felius, M. *et al.* (2014) On the History of Cattle Genetic Resources. *Diversity* 6, 705–750

734 67 Burger-Kentischer, A. *et al.* (2010) A new cell-based innate immune receptor assay for the
735 examination of receptor activity, ligand specificity, signalling pathways and the detection of
736 pyrogens. *J. Immunol. Methods* 358, 93–103

737 68 Kunsch, C. and Rosen, C.A. (1993) NF-kappa B subunit-specific regulation of the interleukin-
738 8 promoter. *Mol. Cell. Biol.* 13, 6137–46

739 69 Mukaida, N. *et al.* (1994) Molecular mechanism of interleukin-8 gene expression. *J. Leukoc.
740 Biol.* 56, 554–8

741 70 Willcocks, S. *et al.* (2013) Species-specific PAMP recognition by TLR2 and evidence for
742 species-restricted interaction with Dectin-1. *J. Leukoc. Biol.* 94, 449–458

743 71 Faber, E. *et al.* (2018) Functional expression of TLR5 of different vertebrate species and
744 diversification in intestinal pathogen recognition OPEN. 8, 11287

745 72 Tahoun, A. *et al.* (2017) Host species adaptation of TLR5 signalling and flagellin recognition.
746 *Sci. Rep.* 7, 17677

747 73 Willcocks, S. *et al.* (2013) Species-specific PAMP recognition by TLR2 and evidence for
748 species-restricted interaction with Dectin-1. *J. Leukoc. Biol.* 94, 449–458

749 74 Blanc, L. *et al.* (2017) *Mycobacterium tuberculosis* inhibits human innate immune responses
750 via the production of TLR2 antagonist glycolipids. *Proc. Natl. Acad. Sci. U. S. A.* 114, 11205–
751 11210

752 75 Pahari, S. *et al.* (2017) Bolstering Immunity through Pattern Recognition Receptors: A Unique
753 Approach to Control Tuberculosis. *Front. Immunol.* 8, 906

754 76 Willcocks, S. *et al.* (2006) Identification and gene expression of the bovine C-type lectin
755 Dectin-1. *Vet. Immunol. Immunopathol.* 113, 234–242

756

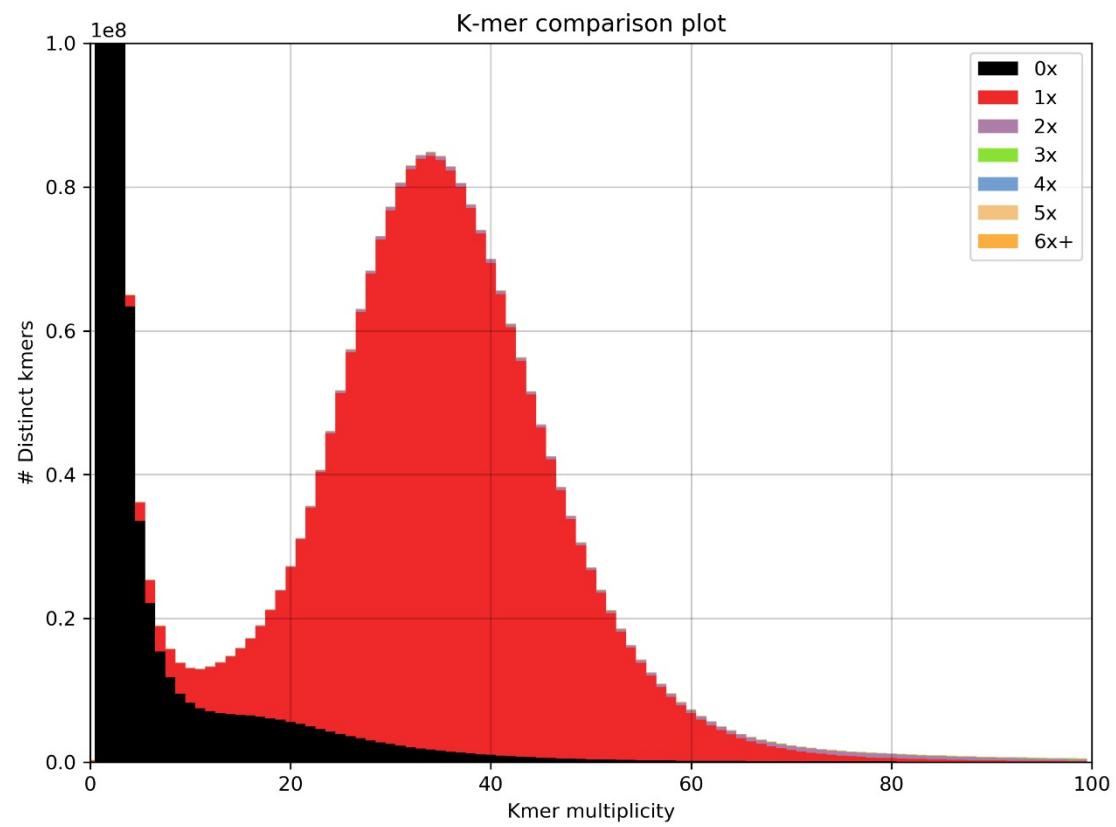
757 77 Jiménez-Dalmaroni, M.J. *et al.* (2015) Soluble human TLR2 ectodomain binds diacylglycerol
758 from microbial lipopeptides and glycolipids. *Innate Immun.* 21, 175–193
759 78 Takeuchi, O. *et al.* (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. *Int.*
760 *Immunol.* 13, 933–940
761 79 Villarreal-Ramos, B. *et al.* (2018) Experimental infection of cattle with Mycobacterium
762 tuberculosis isolates shows the attenuation of the human tubercle bacillus for cattle OPEN. 8,
763 894
764 80 Farhat, K. *et al.* (2008) Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand
765 spectrum but does not lead to differential signaling. *J. Leukoc. Biol.* 83, 692–701
766 81 Oliveira-Nascimento, L. *et al.* (2012) The Role of TLR2 in Infection and Immunity. *Front.*
767 *Immunol.* 3, 79
768 82 Karimi, K. *et al.* (2006) Toll-like receptor-4 mediates cigarette smoke-induced cytokine
769 production by human macrophages. *Respir. Res.* 7, 66
770 83 Morris, C.A. (2007) A review of genetic resistance to disease in Bos taurus cattle. *Vet. J.* 174,
771 481–491
772 84 Godfray, C. (2018) *A strategy for achieving Bovine Tuberculosis Free Status for England: 2018*
773 *review,*
774
775
776
777

Table 1 Antibodies used in this study

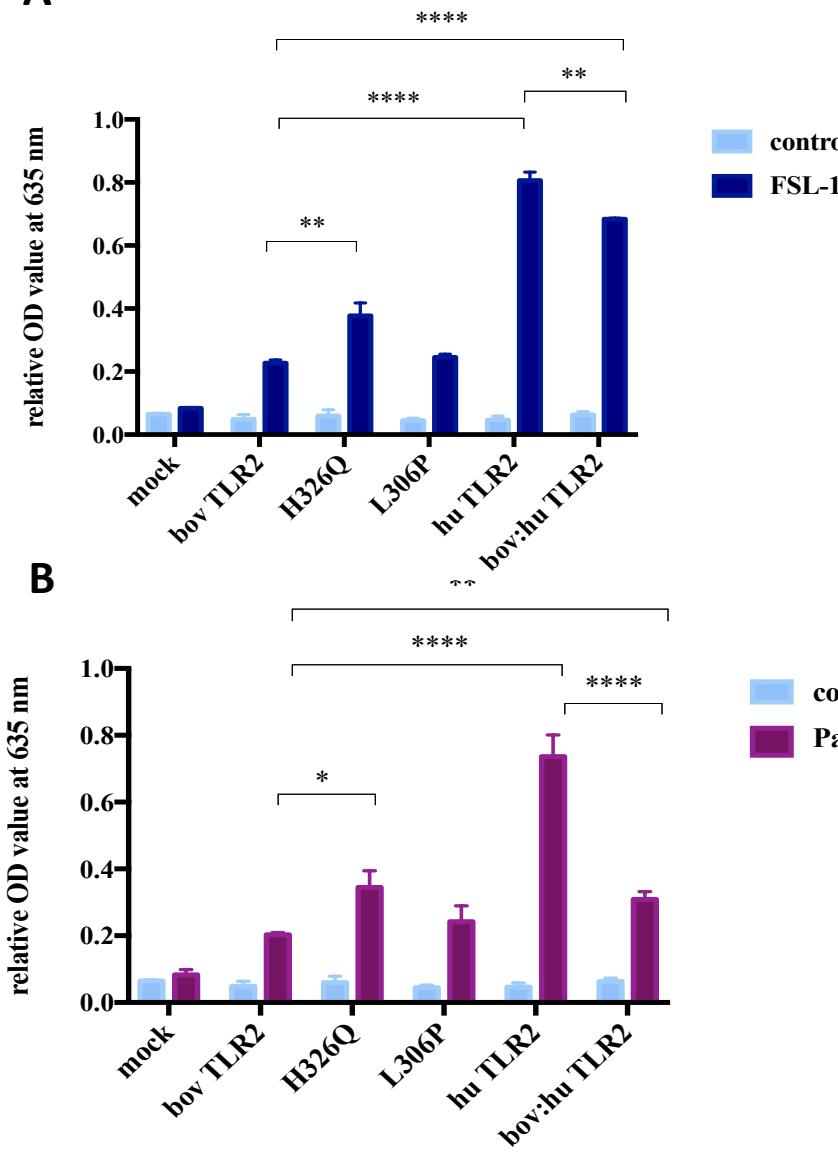
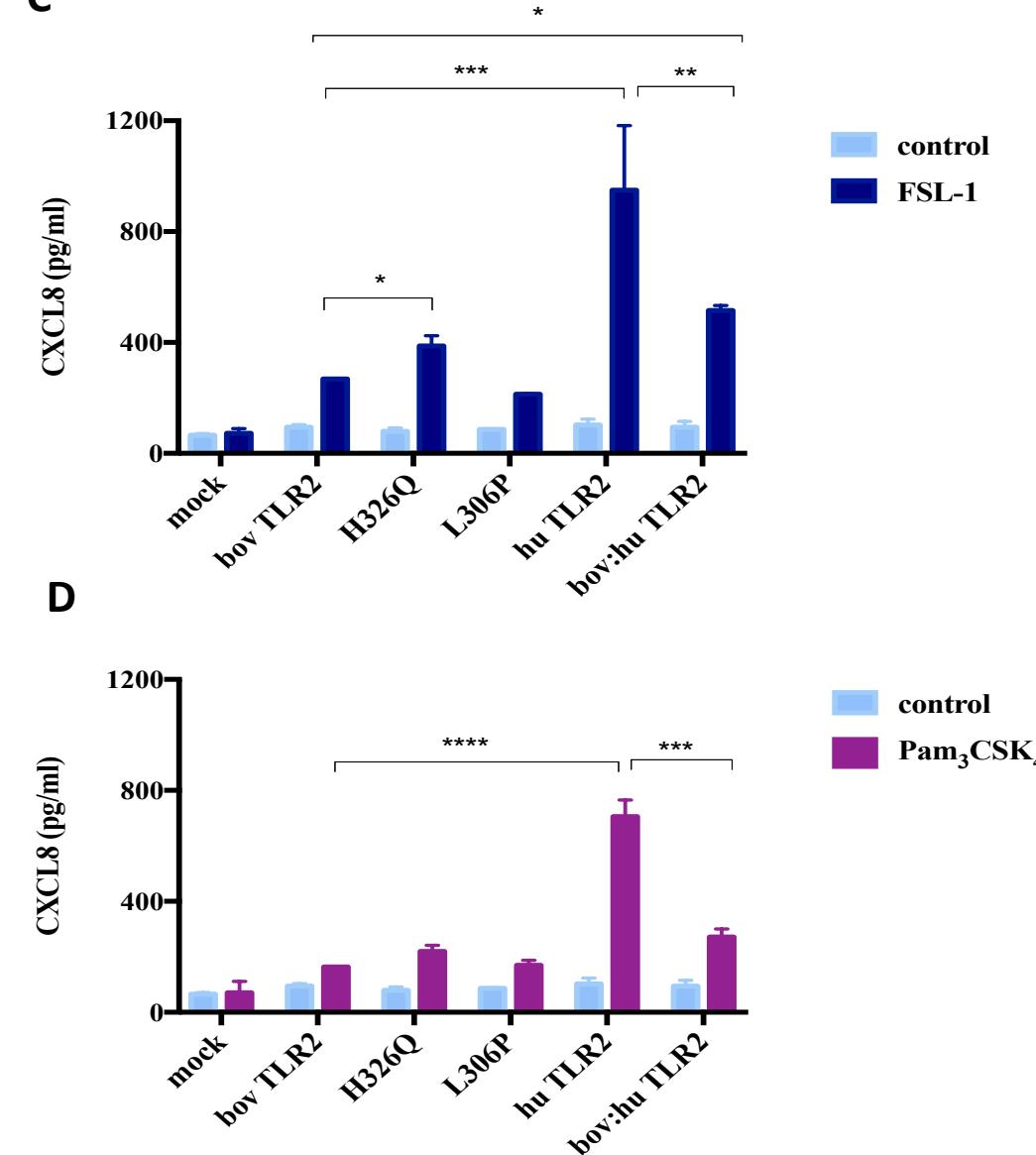
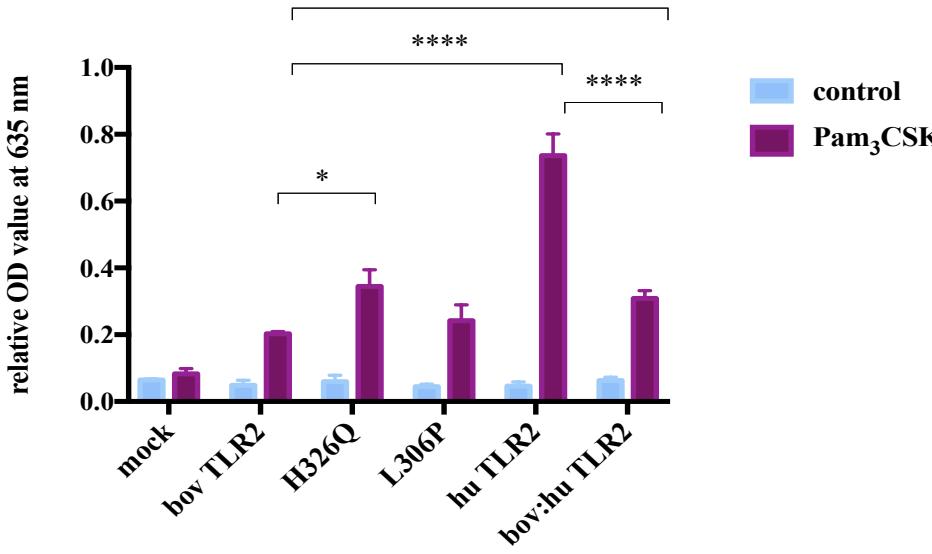
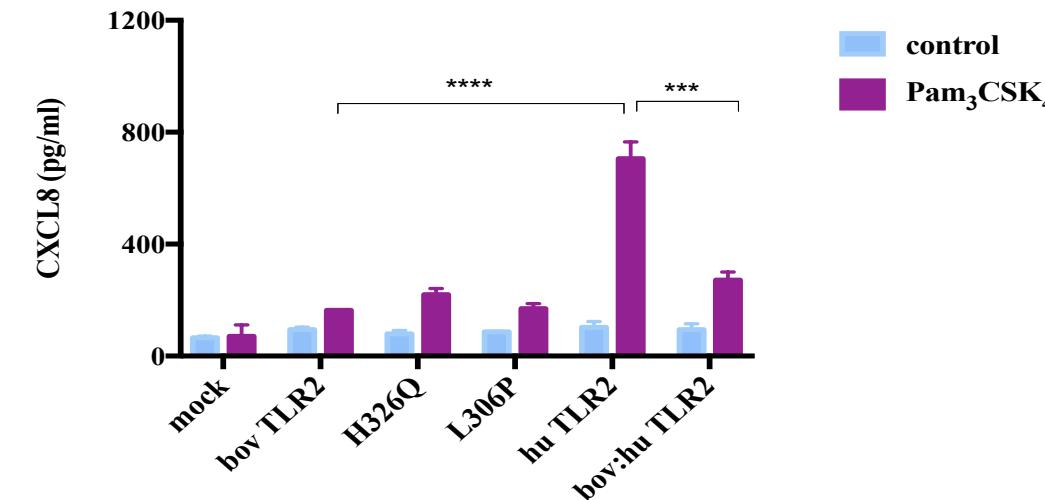
Antibody	Clone	Label	Dilution
Mouse IgG1 negative control	-	FITC	1:20
Mouse IgG1 negative control	-	RPE	1:20
Mouse IgG2a negative control	-	FITC	1:20
Mouse IgG2b negative control	-	RPE	1:20
Mouse IgG2a anti Human CD 14	TÜK4	RPE	-
Mouse IgG2a anti Human CD 16	KD1	FITC	-
Mouse IgG2b anti Bovine CD 11b	CC126	FITC	-
Mouse IgG1 anti Bovine CD 32	CCG36	RPE	-
Mouse IgG1 anti Bovine CD 80	IL-A159	FITC	-
Mouse IgG1 anti Human CD 163	EDHu-1	RPE	-
Mouse IgG1 anti Bovine MHC II: DR	CC108	RPE	1:25
Human IgG anti Bovine CD282		AF647	
Mouse IgG anti human CD282		AF647	
HuCAL Fab-dHLX-MH		AF647	

Table 2 Primer names for PCR reactions

Primer name	Sequence	GC (%)	Tm (°C)
bovine TLR2 cds forward	CACCATGCCCGGTGCTTGTGGACA	60	67.9
bovine TLR2 cds reverse	CGAAGGGTCCTAGGACCTATTGCAGCTCTC	54.8	70.8
bovine TLR2 int forward	CAGTGCTAAAATCTGCAGATA	40.9	56.5
bovine TLR2 int reverse	GTACTCATTCACTGATGGATGC	43.5	58.9


All primers were designed using Primer-BLAST (NCBI) and Primer3Plus
(<http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi>)

dbSNP ID	Chromosome Position	mRNA Position	CDS Position	Amino Acid Position	Codon Change	Residue Change	Function of SNP	Brown Swiss						Holstein Fresian			
								BS1	BS2	BS3	BS4	BS5	BS6	HF1	HF2	HF3	HF4
nd	nd	202	6	2	CCA->CCG	-	Synonymous	x	x	x	x	x	x	x	x	x	x
rs68268249	3953001	382	186	62	AAT->AAC	-	Synonymous		x	x	x	x	x	x			
rs55617172	3952998	385	189	63	GAT->GAG	D(Asp) -> E(Glu)	Missense	x	x	x	x	x	x	x	x	x	x
rs68268250	3952985	398	202	68	GGC->AGC	G(Gly) -> S(Ser)	Missense		x	x	x	x	x	x			
rs43706433	3952556	827	631	211	ATT->GTT	I(Ile) -> V(Val)	Missense	x	x	x	x	x	x	x	x	x	x
rs68268253	3970326	1141	945	315	CGG->CGT	-	Synonymous		x	x	x	x	x	x			
rs68343167	3952209	1174	978	326	CAT->CAA	H(His) -> Q(Gln)	Missense		x	x	x	x	x	x			
rs68343168	3952177	1206	1010	337	AGA->AAA	R(Arg) -> K(Lys)	Missense		x	x	x	x	x	x			
rs68268256	3951937	1446	1250	417	AAC->AGC	N(Asn) -> S(Ser)	Missense		x	x	x	x	x				
rs68268257	3951879	1504	1308	436	GGA->GGC	-	Synonymous		x	x	x	x	x				
rs68268260	3951499	1884	1688	563	CGC->CAC	R(Arg) -> H(His)	Missense		x	x	x	x	x	x			
rs440938496	3951477	1906	1708	570	GTG->GTT	-	Synonymous		x	x	x	x	x	x			x
rs68268261	3951408	1975	1779	593	GCA->GCC	-	Synonymous		x	x	x	x	x	x			
rs467790258	3951405	1978	1782	594	GCG->GCA	-	Synonymous		x	x	x	x	x	x			
rs68268263	3951192	2191	1995	665	CAC->CAG	H(His) -> Q(Gln)	Missense		x	x	x	x	x	x			
rs68343171	3951162	2221	2025	675	CAT->CAC	-	Synonymous		x	x	x	x	x	x			
rs68268264	3951132	2251	2055	685	ATT->ATC	-	Synonymous		x	x	x	x	x	x			
rs68268266	3950973	2410	2214	738	GAG->GAA	-	Synonymous		x	x	x	x	x	x			
rs68268267	3950892	2491	2295	765	CCC->CCT	-	Synonymous		x	x	x	x	x	x			





Table 3: Identified SNP variants within the coding sequence of bovine *tlr2* in HF and BS breeds animals. The coding sequence for TLR2 in BS (n=6) and HF (n=4) animals were identified by Sanger sequencing and contigs matched against reference sequence NM_174197.2 (*Bos taurus* Hereford breed). SNP variants were classified as either synonymous or non-synonymous mutations, with the corresponding amino acid changes displayed. The SNP detected at mRNA position 202 was not found in the NCBI dbSNP database. Presence of allele change within individual animals is depicted as 'x'. Amino Acid position highlighted depicts positions noted from TLR2 CDS transcript alignments detailed in Supplementary Figure S4. Yellow = unique to BS, Green = unique to BS and *B. taurus*, Blue = unique to *B. indicus* and Magenta = variable across all species.

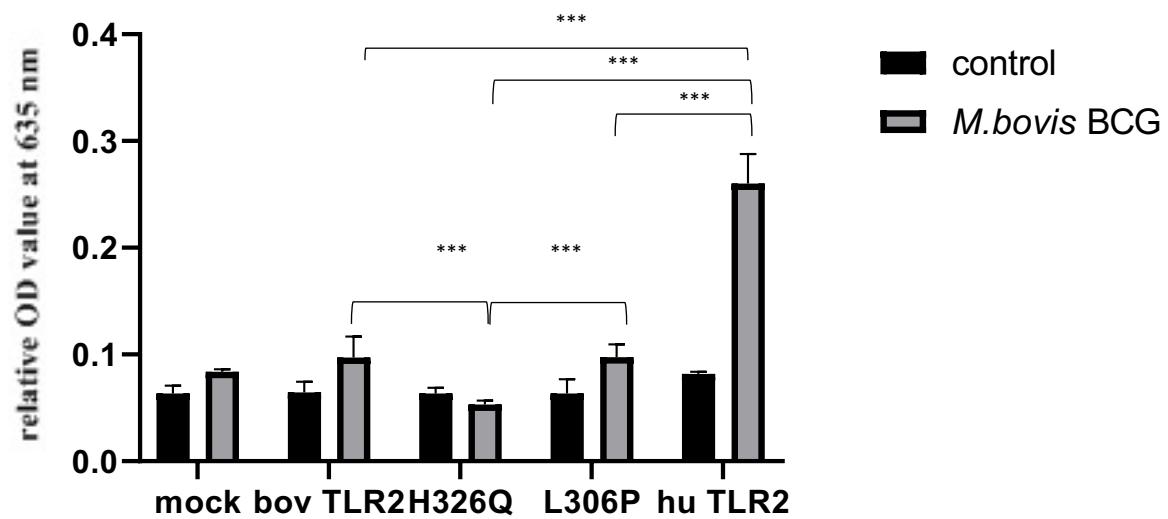
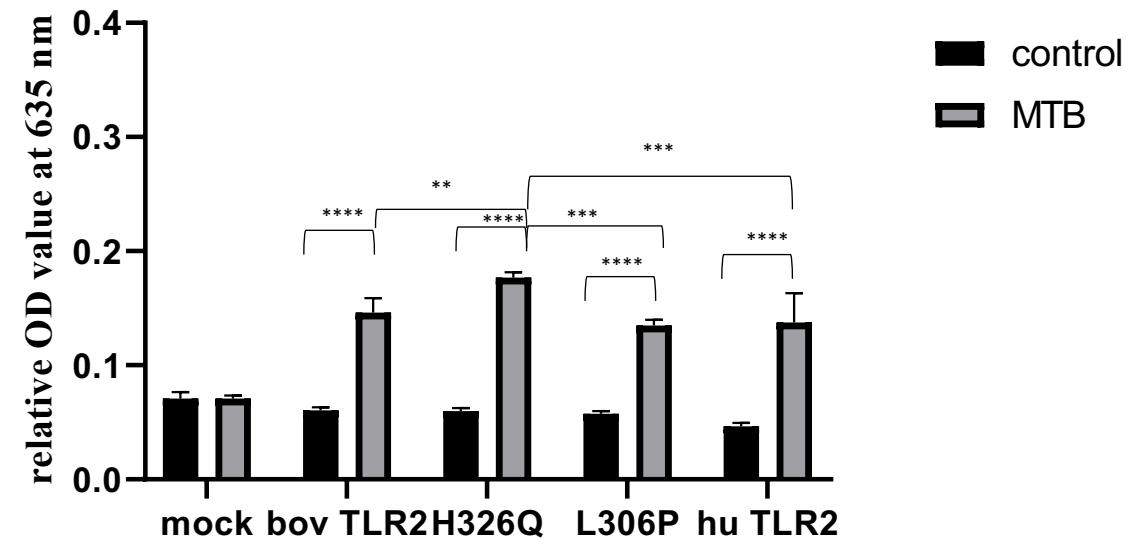


Cattle subspecies	Cattle breed	Sample size and (genotype frequency)			Total sample size (n)
		TT	TA	AA	
<i>Bos taurus</i>	Holstein Friesian	17 (1.0)	0	0	17
	Brown Swiss	6 (0.4)	9 (0.6)	0	15
<i>Bos indicus</i>	Boran	2 (0.12)	8 (0.47)	7 (0.41)	17
	Sahiwal	0	0	17 (1.0)	17
Total		25 (0.38)	17 (0.26)	24 (0.36)	66

Table 4: Genotype frequency of *Bos taurus* and *Bos indicus* cattle breeds for TLR2 selected candidate SNP rs68343167 (H326Q). A total of 66 cattle from *Bos taurus* and *Bos indicus* breeds (BS n=15, HF n=17, Sahiwal n=17, Boran n=17) were examined for their genotype frequencies with respect to SNP rs68343167 (H326Q). Genotype 'TT' codes for the homozygous 'wildtype' bovine TLR2 reference sequence NM_ 174197.2. Genotype 'TA' were heterozygous individuals and genotype 'AA' were homozygous for the H326Q SNP variant.

Figure 1

A**C****B****D****Figure 2**

A**B****Figure 3**

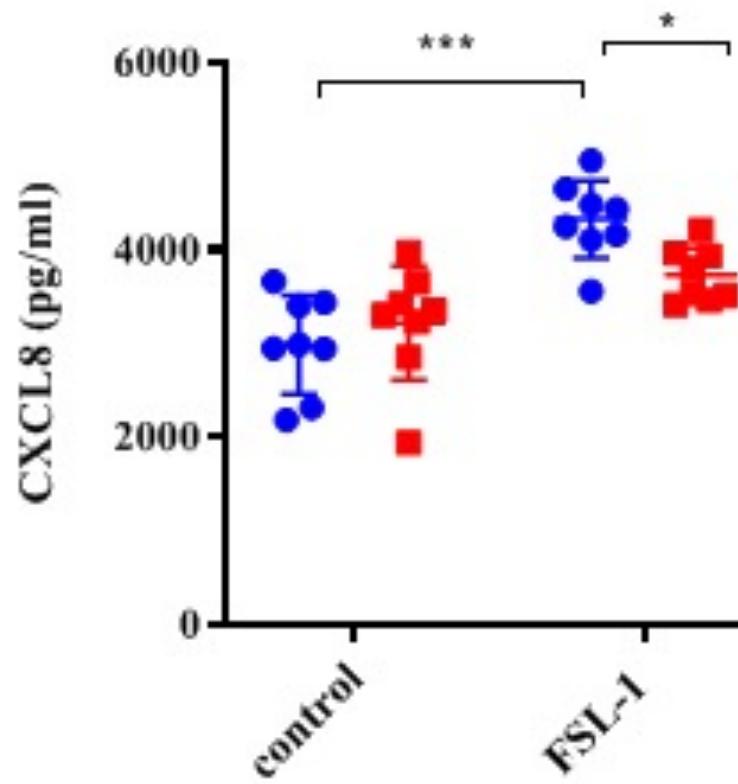
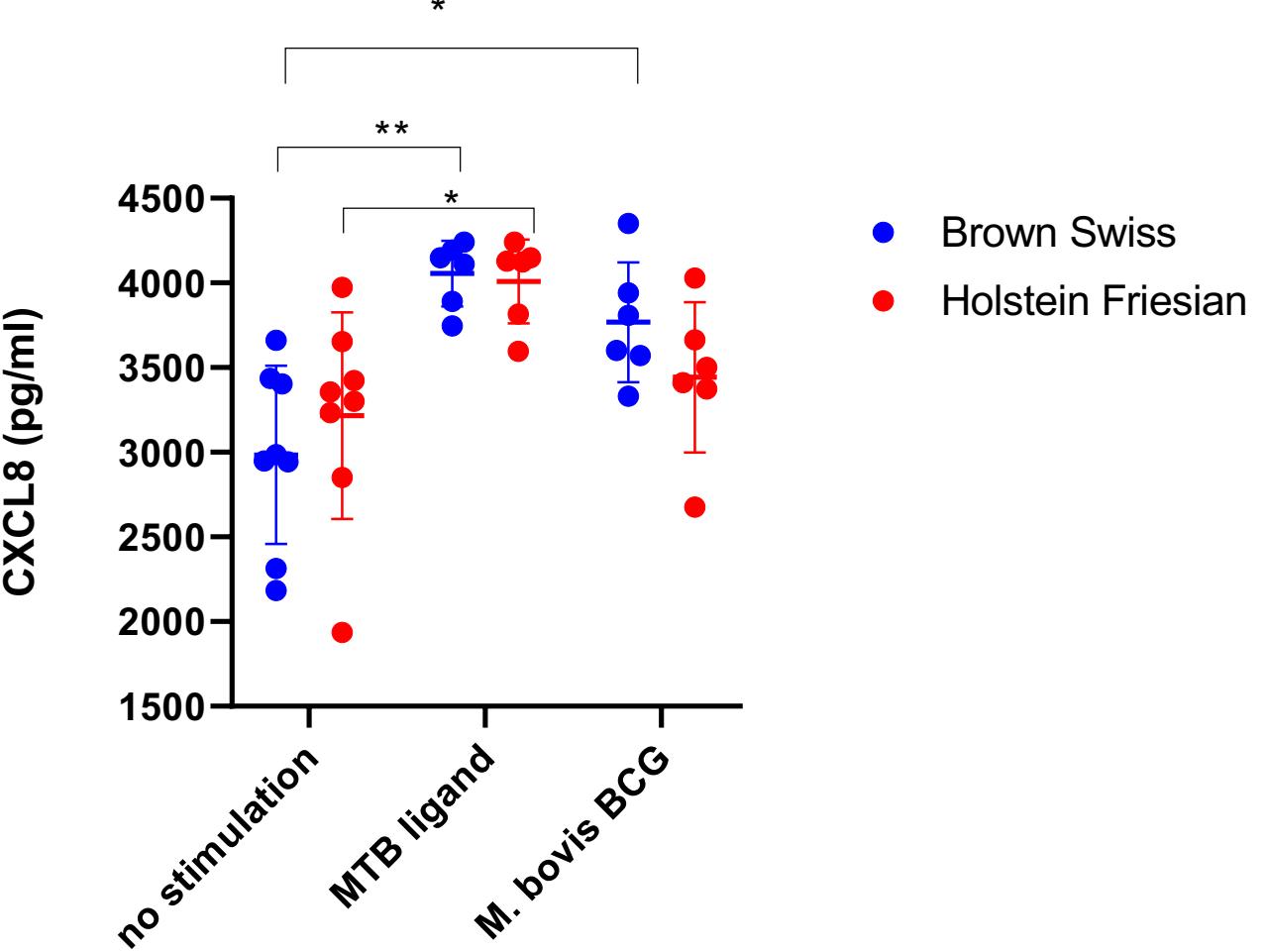


A**B**

Figure 4