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Abstract

Proteins ensure their biological functions by interacting with each other. Hence, characterising
protein interactions is fundamental for our understanding of the cellular machinery, and for improving
medicine and bioengineering. Over the past years, a large body of experimental data has been
accumulated on who interacts with whom and in what manner. However, these data are highly
heterogeneous and sometimes contradictory, noisy, and biased. Ab initio methods provide a means
to a "blind” protein-protein interaction network reconstruction. Here, we report on a molecular cross-
docking-based approach for the identification of protein partners. We applied it to a few hundred of
proteins, and we systematically investigated the influence of several key ingredients, such as the size
and quality of the interfaces and the scoring function. We achieved some significant improvement
compared to previous works, and a very high discriminative power on some specific functional classes.
In addition, we assessed the ability of the approach to account for protein surface multiple usages,
and we compared it with a sequence-based deep learning method. This work may contribute to
guiding the exploitation of the large amounts of protein structural models now available toward the
discovery of unexpected partners and their complex structure characterisation.
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INTRODUCTION

The vast majority of biological processes are ensured and regulated by protein interactions. Hence,
the question of who interacts with whom in the cell and in what manner is of paramount importance
for our understanding of living organisms, drug development and protein design. While proteins con-
stantly encounter each other in the densely packed cellular environment, they are able to selectively
recognise some partners and associate with them to perform specific biological functions. Discrim-
inating between functional and non-functional protein interactions is a very challenging problem.
Many factors may reshape protein-protein interaction networks, such as point mutations, alternative
splicing events and post-translational modifications [I], 2, B, 4, [5]. Conformational rearrangements
occurring upon binding, and the prevalence of intrinsically disordered regions in interfaces further
increase the complexity of the problem [0, [7, 8, @]. Ideally, one would like to fully account for this
highly variable setting in an accurate and computationally tractable way.

In the past years, a lot of effort has been dedicated to describe the way in which proteins interact
and, in particular, to characterise their interfaces. Depending on the type and function of the
interaction, these may be evolutionary conserved, display peculiar physico-chemical properties or
adopt an archetypal geometry [10} 1], 12} 13, 14, [15) 16] 17, 18] 19, 20]. For example, DNA-binding
sites are systematically enriched in positively charged residues [I0] and antigens are recognized by
highly protruding loops [12]. Such properties can be efficiently exploited toward an accurate detection
of protein interfaces [10] [IT, 21, 22, 23], 24], 25, 26, 27, 12]. However, the large scale assessment of
predicted interfaces is problematic as our knowledge of protein surface usage by multiple partners is
still very limited [23].

A related problem is the prediction of the 3D arrangement formed between two or more protein
partners. This implies generating a set of candidate complex conformations and correctly ranking
them to select those resembling the native structure. Properties reflecting the strength of the asso-
ciation include shape complementarity, electrostatics, desolvation and conformational entropy [2§].
Experimental data and evolutionary information (conservation or coevolution signals) may help to
improve the selection of candidate conformations |29, 30, 31]. To address this problem, molecular
docking algorithms have been developed and improved over the past twenty years, stimulated by
the CAPRI competition [32] 33, 34, [35] 36]. Nevertheless, a number of challenges remain, including
the modelling of large conformational rearrangements associated to the binding [37, 32, [38]. More-
over, homology-based modelling often leads to better results than free docking when high-quality
experimental data is available.

The development of ultra-fast docking engines exploiting the fast Fourier transform [39] [40] [41],
deep learning [I1] and/or coarse-grained protein models [42] has made large-scale docking compu-
tational experiments feasible. Moreover, the availability of 3D structural models from AlphaFold
for entire proteomes [43] has dramatically expanded the applicability of docking algorithms. This
favourable context renders protein-protein interaction network reconstruction accessible at a very
large scale by ab initio approaches that avoid biases coming from experimental conditions and allow
for a blind search for partners that may lead to the discovery of new interactions.

In a large-scale docking experiment, hundreds or thousands of proteins are either docked to
each other (complete cross-docking, CC-D) or to some arbitrarily chosen proteins. The generated
data can be straightforwardly exploited to predict protein interfaces [44, 23, [45 46, 47]. Indeed,
randomly chosen proteins tend to dock to localised preferred regions at protein surfaces [48]. In
this respect, the information gathered in the docking experiment can complement sequence- and
structure-based signals detected within monomeric protein surfaces [23]. Beyond interface and 3D
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structure prediction, very few studies have addressed the question of partner identification. The latter
has traditionally been regarded as beyond the scope of docking approaches. However, an early low-
resolution docking experiment highlighted notable differences between interacting and non-interacting
proteins [49], and we and others [50, 61} 52, 53] have shown that it is possible to discriminate cognate
partners from non-interactors through large-scale CC-D experiments. An important finding of these
studies, already stated in an earlier experiment involving 12 proteins [54], is that relying on the
energy function of the docking algorithm is not sufficient to reach high accuracy. This holds true for
shape complementarity-based energy functions [50], and also for those based on a physical account
of interacting forces [53, 54]. Nevertheless, combining the docking energy with a score reflecting
how well the docked interfaces match experimentally known interfaces allows reaching a very high
discriminative power [53]. Moreover, the knowledge of the global social behaviour of a protein can
help to single out its cognate partner [50, 53]. That is, by accounting for the fact that two proteins
are more or less sociable, we can lower down or lift up their interaction strength, and this procedure
tends to unveil the true interacting partners [50]. This notion of sociability also proved useful to
reveal evolutionary constraints exerted on proteins coming from the same functional class, toward
avoiding non-functional interactions [50].

In principle, the estimation of systemic properties such as residue binding propensity and protein
sociability shall be more accurate as more proteins are considered in the experiment. But the problem
of discriminating them will also become harder. When dealing with several hundreds of proteins,
the correct identification of the cognate partners requires an incredible accuracy as they represent
only a small fraction of the possible solutions. For instance, a set of 200 proteins for which 100
binary interaction pairs are known will lead to the evaluation of 40 000 possible pairs, and for each
pair several hundreds of thousands candidate conformations (at least) will have to be generated and
ranked.

Here, we present a general approach for the identification of protein partners and their discrimi-
nation from non-interactors based on molecular docking. Like our previous efforts [50 53, 4], this
work aims at handling large ensembles of proteins with very different functional activities and cellular
localisations. Although these classes of proteins appear to have different behaviours, we approach
the problem of partner identification from a global perspective. We report on the analysis of data
generated by CC-D simulations of hundreds of proteins. We combine together physics-based energy,
interface matching and protein sociability, three ingredients we previously showed to be relevant to
partner identification and discrimination. We move forward by investigating what other types of
information may be needed to improve the discrimination. To this end, we systematically explore
the space of parameters contributing to partner identification. These include the scoring function(s)
used to evaluate the docking conformations, the strategy used to predict interacting patches and the
size of the docked interfaces. We show that our approach, CCD2PI (for "CC-D to Partner Identifica-
tion”), reaches a significantly higher discriminative power compared to a previous study addressing
the same problem [53]. We demonstrate that this result holds true overall and also for individual
protein functional classes. Our results emphasise the importance of the docking-inferred residue
binding propensities to drive interface prediction, and the positive contribution of a statistical pair
potential to filter docking conformations. We define a set of default parameter values, with minimal
variations between the different classes, for practical application to any set of proteins. Importantly,
we place ourselves in a context where we do not know the experimental interfaces and use predic-
tions instead. To evaluate CCD2PI predictions, we consider structurally characterised interactions
coming from the Protein Data Bank (PDB) [55] as our gold standard. They are defined based on
docking benchmark annotations [56] or on homology transfer [23]. We show that the protein inter-
action strengths computed by CCD2PI are in good agreement with available structural data. We
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discuss the implications of these strengths for protein functions. This work paves the way to the au-
tomated ab initio reconstruction of protein-protein interaction networks with structural information
at the residue resolution. Since, the reconstruction is based on docking calculations, it not biased by
specific targets nor by the limitations of experimental techniques.

RESULTS
Computational framework
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Figure 1: Principle of the method. We start from an all-to-all docking experiment (top left
panel). Each protein is docked to all proteins in the set. By convention, in each docking calculation,
we define a receptor and a ligand. The red patches on the protein surfaces correspond to predicted
interfaces. For a given protein pair P; P,, we generate a pool of conformations associated with energies
(top middle panel). Here, both the predicted interfaces and the docked interfaces are highlighted by
patches, in red and purple respectively. One can readily see whether they overlap or not. The extent
of this overlap (Fraction of Interface Residue) is multiplied by the docking energy to evaluate each
docking conformation (bottom left panel). Optionally, we also consider a statistical pair potential in
the formula. The best score is computed over all docking conformations and assigned to the protein
pair. By doing the same operation for all pairs we compute a matrix of interaction indices (bottom
right panel, the darker the higher). If the receptor and the ligand play equivalent roles in the docking
calculations, then the matrix will be symmetrical. Otherwise, two different docking calculations are
performed for each protein pair PP, and the matrix will be asymmetrical, as shown here. These
indices are then normalised to account for proteins’ global social behaviour, hopefully allowing for
singling out the cognate partners (top right panel). In the example here, the cognate pairs are ordered
on the diagonal.

Interaction Index (ll)
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The workflow of CCD2PI is depicted in Figure [l We exploit data generated by CC-D exper-
iments performed on hundreds of proteins. In the present work, the CC-D was performed using
the rigid-body docking tool MAXDo [54]. The proteins are represented by a coarse-grained model
and the interactions between pseudo-atoms are evaluated using Lennard-Jones and Coulombic terms
[42]. For each protein pair, MAXDo generated several hundreds of thousands of candidate complex
conformations (Fig. , top left panel). Each one of these conformations is evaluated by computing
the product between the overlap between the docked interface (DI) and some reference interface (RI),
a docking energy (either from MAXDo or another one, see Materials and Methods), and a statistical
pair potential [57] (optional). The rationale is that a valid conformation should both be energetically
favorable and represents a 3D arrangement compatible with the expected location of the interacting
surfaces. The DIs are detected based on interatomic distances using our efficient algorithm INT-
Builder [58]. The Rls are predicted using sequence- and structure-based properties of single proteins
[12], as well as a systemic property, namely residue binding propensities inferred from the CC-D [23]
(see Materials and Methods).

Hence, given two proteins P; and P,, we estimate the interaction index of P; with respect to P
as

IIPLPQ = min(F[RPhPQ X Ep17p2[xppp1,p2]), (1)

where FIRp, p, (Fraction of Interface Residues) is the fraction of the DIs composed of residues
belonging to the (predicted) Rls for the two proteins, Ep, p, is the docking energy (negative value)
and PPp, p, is a pair potential score which may or may not be included in the formula. The latter
evaluates the likelihood of the observed residue-residue interactions and might bring complementary
information with respect to the docking energy. We use CIPS [57], a high-throughput software
designed to swiftly reduce the search space of possible native conformations with a high precision.
The minimum is computed over the whole set or a pre-filtered subset of docking conformations (see
Materials and Methods). One should note that in the general case, I1p, p, and I1p, p, come from two
different docking runs and are not necessarily equal. This is because the receptor and ligand surfaces
are not explored in an equivalent manner by the docking algorithm (see Materials and Methods).

The computed interaction indices (Fig. , matrix at the bottom right) are then normalised
to account for the protein global social behaviour. Formally, the I1 values are weighted using the
sociability index (S-index) [50], defined as

1
Spi = ﬁ Z [IP1‘7P]' +[[Pj7Pi7 (2)
’ ‘PjE'P

where P is the ensemble of proteins, including P;. The normalised interaction index NII between
P; and P, is computed as a symmetrised ratio of interaction indices (see Materials and Methods).
Finally, the NII values are scaled between 0 and 1 and N1Ip, p, = 1 when P, is the protein predicted
as interacting the most strongly with P; (Fig. |1} matrix on the top right).

CCD2PI accurately singles out cognate partners within specific functional
classes
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Figure 2: Predictive performance on the PPDBv2. (a) AUC values computed for the whole dataset
and for the different functional classes. For each protein, we consider one ”true” cognate partner, defined
from the PPDBv2 annotations. The results obtained with CCD2PI are indicated by the blue curve. For
comparison, we also show the results reported in [53] in purple. The areas in grey tones give the discrimi-
native power reached when exploiting the knowledge of the experimental interfaces, using either our default
parameters (in light gray) or parameters optimized for such interfaces (in dark grey, see also Materials and
Methods). The number of proteins in each subset is indicated in parenthesis. (b) Probability of retrieving
at least one experimentally known partner in the top 20% of CCD2PI predictions, for each subset. The
partners are defined based on the PPDBv2 annotations (in blue) or are inferred from complex PDB struc-
tures involving homologs of the proteins from the PPDBv2, at the 90% (in dark red) or 70% (in orange)
sequence identity level (see Materials and Methods). The bars in grey tones give the probability expected
at random. (c) NII matrices computed by CCD2PI. The proteins are ordered on the x-axis such that the
receptors (e.g. antibodies) appear first, and then the ligands (e.g. antigens). They are ordered on the y-axis
such that the cognate pairs annotated in PPDBv2 are located on the diagonal. The orange tones highlight
the experimentally known interacting pairs (annotated in the PPDBv2 and transferred by homology). AA:
antibody-antigen, ABA: bound antibody-antigen. EI: enzyme-inhibitor. ER: enzyme with regulatory or
accessory chain. ES: enzyme-substrate. OG: other-with-G-proteins. OR: other-with-receptor. OX: others.
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We assessed the discriminative power of CCD2PI on a set of 168 proteins forming 84 experimentally
determined binary complexes (Protein-Protein Docking Benchmark v2, PPDBv2, see Methods). Here,
we place ourselves in a context where we seek to identify one “true” partner, annotated in the
PPDBv2, for each protein from the benchmark. Over all possible 28 224 interacting pairs, the
cognate partners were singled out with an Area Under the Curve (AUC) of 0.67 (Fig. [2h). In the
matrix of predicted NII values (Fig. ), one can appreciate the relatively small number of pairs
displaying high interaction strengths compared to the enormous number of potential pairs. In this
respect, the contribution of the normalisation stands out as instrumental (Fig. Sla-b, compare the
number of dark spots between the IT and NII matrices).

We further assessed the ability of CCD2PI to identify the PPDBv2 cognate partners among pro-
teins coming from the same functional class (Fig. , blue curve). The partnerships between bound
antibodies and their antigens (ABA), between enzymes and their inhibitors, substrates, or regulatory
chains (EI, ES, ER) and between the other proteins and their receptors (OR) are particularly well
detected (AUC>0.75). By contrast, the subset regrouping everything that could not be classified
elsewhere (others, OX) is the most difficult to deal with. This subset likely contains proteins in-
volved in signalling pathways and establishing transient interactions through modified sites, such
as phosphorylated sites. As a consequence, correctly predicting their interfaces may be particularly
challenging. Conformational changes occurring upon binding seem to play a role as the antibody-
antigen cognate pairs are better detected when the antibodies are bound (Fig. , compare AA and
ABA).

The AUC values achieved by CCD2PI are systematically and significantly better than those
computed with our previous pipeline (Fig. , compare the blue and purple curves), or similar
in the case of the other-with-G-protein class (OG). Replacing the predicted Rls by the interfaces
extracted from the PDB complex structures, which can be seen as perfect predictions, leads to
increased AUC values for almost all classes (Fig. , areas in grey tones, and Fig. Slc-d). This
suggests that proteins competing for the same region at the protein surface do not target exactly the
same set of residues. Knowing exactly which residues are involved in an interaction greatly helps in
the identification of the partner. Of course, this perfect knowledge is generally inaccessible in a fully
predictive context. In fact, the predicted interfaces might give a more realistic view on protein surface
usage since they tend to better match interacting regions [23], defined from several experimental
structures and representing the interface variability induced by molecular flexibility and multi-partner
binding. Noticeably, the advantage of experimental over predicted Rls reduces or even cancels out
for the small subsets (<15 proteins, ER, ES and OR). This suggests that approximations in the
definition of the interfaces do not influence partner identification when few proteins are considered.

The interaction strengths predicted by CCD2PI reveal the multiplicity
of protein interactions

To estimate the agreement between the interaction strengths predicted by CCD2PI and experimental
data, we extended the set of "true” partners by homology transfer. Specifically, we looked in the PDB
for 3D structures of complexes involving homologs of the proteins from PPDBv2 (see Materials and
Methods). We considered that a structurally characterized interaction found for P| and P;, homologs
of P, and P, respectively, was a strong indicator of the possibility for P; and P; to interact with each
other. Nevertheless, we should stress that homology transfer does not guarantee that the interaction
between P, and P, is functional in the cell. We identified 585 interacting pairs from homologs
sharing more than 90% sequence identity with the proteins from PPDBv2, and 1 834 at the 70%
sequence identity level (Fig. [2lc, cells colored in orange). Newly detected interactions are particularly
abundant between antibodies and antigens and among antibodies (Fig. and Fig. S2a-c). Some
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of the homology-transferred partners are direct competitors of the cognate partners annotated in
PPDBv2 as they target the same region at the protein surface. Depending on the approximations
in the predicted RlIs, the former may be more favoured than the latter by CCD2PI. A few examples
of homology-transferred partners better ranked than the PPDBv2-annotated partners are shown in
Fig. S3. Overall, the probability of finding at least one "true” partner in the top 20% predictions
is almost systematically increased when extending the set of positives (Fig. ) For instance,
71% (27 out of 38) of the proteins from the EI subset have at least one partner inferred at more
than 70% sequence identity ranked in the top 7. Moreover, the homology-transferred interactions
tend to populate the regions of the matrices displaying high interaction strengths (Fig. and
Fig. S2d). For instance, CCD2PI predictions suggest that antigens tend to avoid each other much
more than antibodies, and indeed much more homology-transferred interactions are found among
antibodies, compared to antigens (AA and ABA). A similar trend is also observed for the enzyme-
regulator (ER) and enzyme-substrate (£S) and other-with-G-protein (OG) subsets (Fig. and
Fig. S2d). We observe more predicted and experimental regulator-regulator and substrate-substrate
interactions than enzyme-enzyme interactions, and more other-other interactions than interactions
among G proteins.

The ingredients of partner discrimination

CCD2PI comprises four main hyper-parameters potentially influencing the results (Table [I),
namely (a) the distance threshold used to detect the DIs, (b) the scoring strategy used to pre-
dict the Rls, (c¢) the docking energy function used to compute I/, and (d) the optional inclusion of
the pair potential in the I1 formula. The distance threshold modulates the size of the DIs while
the scoring strategy influences how close the Rls are from the experimentally known interfaces. The
choice of the energy function and that of using or not the pair potential directly impact the cal-
culation of the interaction index. In order to avoid the risk of overfitting, we strove to determine
global default parameter values (Table [I, see also Materials and Methods). In the following, we
report on a systematic analysis of the influence of the parameters on the discriminative power of the
approach, also by considering functional classes (Fig. . The total number of possible parameter
combinations is 72, and we focused on the top 15, for the whole dataset and for its eight subsets.
Given a parameter under study, the pool of 15 top combinations was divided by the set of possible
values for the parameter (see Materials and Methods).

Table I: Main hyper-parameters of CCD2PI

Docked interfaces Predicted interfaces | Docking energy® | Pair potential °
Distance threshold (in A) |  Scoring strategy (E) (PP)
4.5 SC-mix MAXDo CIPS
5 SC-monoSeed-mix iATTRACT None
6 SC-dockSeed-mix PISA
SC-juxt

a

The default parameter values are highlighted in bold. They were optimized on PPDBv2 (see Methods).
MAXDo was chosen for all functional classes but EI and ER, where it was replaced by PISA and
iATTRACT respectively. * CIPS was used for all functional classes but OR.

The estimation of the match between the DIs and the RIs depends on the way the former are
detected and on the strategy adopted to predict the latter. We observed that varying the distance
threshold used to detect the DIs between 4.5 and 6A does not significantly impact the discrimi-
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nation on the whole dataset, nor on most of the functional classes (Fig. ) Nevertheless, it is
clearly preferable to define smaller than bigger DIs for the identification of antibody-antigen cognate
pairs (Fig. [3h, sce A4 and ABA). Interestingly, this trend is not observed when using experimen-
tal interfaces as RIs (Fig. 5b). This suggests that as the DIs grow, residues not specific to the
cognate interactions but present in the predicted Rls are being considered. To predict interfaces,
we considered four main strategies, each one of them comprising between 3 and 4 scoring schemes
(Fig. S4 and see Materials and Methods). Our algorithm relies on four descriptors, evolutionary
conservation, physico-chemical properties, local geometry and docking-inferred binding propensities,
and the strategies differ in the way we combine these properties. The one leading to the best results
on the whole dataset and also on a couple of functional classes is SC-dockSeed-mix (Fig. , see
ABA and OX). In this scoring scheme, the seed of the predicted interface is defined based on the
propensities of protein surface residues to be targeted in the docking calculations. Then, the seed is
extended combining these docking propensities with evolutionary, geometrical and physico-chemical
properties (see Materials and Methods). The strategy leading to the worst results, SC-monoSeed-mix,
introduces the docking propensities only after seed detection. The seeds are detected because they
are highly conserved or protruding. SC-monoSeed-mix is not even found in the top 15 combinations
of parameters for the whole dataset, nor for the enzyme-substrate and other classes (Fig. ) This
emphasises the crucial role of the docking propensities to drive the interface predictions.

Regarding the docking energy, we considered MAXDo, iATTRACT and PISA. MAXDo and
iIATTRACT are very similar as they include the same contributions (see Materials and Methods).
They mainly differ in the treatment of the clashes, better tolerated in iATTRACT, and of the
electrostatic contribution, more persistent at long distances in iATTRACT. PISA is different as it
estimates the likelihood of a macromolecular assembly to be functionally relevant based on chemical
thermodynamics (see Materials and Methods). While all three energies perform almost equally well
on the whole dataset, with a little advantage for MAXDo, the results on the individual subsets are
more contrasted (Fig. ) In particular, PISA is the only energy function appearing in the top 15
combinations for the enzyme-inhibitor subset (E£I) while MAXDo is the only one for the other-with-
G-protein subset (OG). Finally, we investigated the influence of including or not the statistical pair
potential CIPS to compute the interaction index (Fig. ) While CIPS improves the discrimination
for the antibody-antigen subsets (AA and ABA), it is clearly detrimental for the other-with-receptor
class (OR). The extent of these impacts may vary depending on the energy function with which
CIPS is paired, but the trends are consistent from one energy function to another. The picture is
very different when we replace the predicted Rls by experimental interfaces (Fig. S5d). In this
context, CIPS is mostly contributing in a negative way to the identification of the cognate partners.
This suggests that CIPS may underrate some near-native conformations. Although this would not
affect much the results when the Rls are predicted, since the number of incorrect conformations
removed largely surpasses the number of near-native conformations wrongly removed, this could
prove detrimental when using the experimental interfaces, especially in a context where the number
of positives is very small compared to that of negatives.

Small approximations in the reference interfaces may significantly impact
partner identification

We further characterised the relationship between the ability of singling out cognate partners and
the resemblance between the predicted and the experimental interfaces. The average Fl-values of
the predicted interfaces range between 0.37 and 0.58 (Fig. ) The strategy leading to the best
AUC values for partner discrimination, namely SC-dockSeed-mix, gives the most accurate predicted
interfaces overall (Fig. -g, ALL). Tt is also significantly more precise than the other strategies
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Figure 3: Influence of the parameters for PPDBv2. (a-d) Variation of the AUC values upon
parameter changes. The four parameters considered are: (a) the distance threshold used to define
docked interfaces, (b) the scoring strategy used to predict interfaces, (c) the docking energy, and
(d) the presence or absence of the pair potential, depending on the docking energy. In each plot,
for each protein class, we considered the 15 combinations yielding the highest AUC values, among
all 72 possible combinations. For a given parameter, the different bars correspond to a partition of
this combination set according to the possible values of the parameter. If a parameter value was not
present in the 15 best combinations, then it does not appear on the plot. We report the average AUC
values (in opaque) and the maximum AUC values (in transparent). The black segments indicate the
intervals [y — 20, it + 20,], where p is the mean and o, is the standard error of the mean. (e-
g) Resemblance between predicted and experimental interfaces. (e) Fl-score. (f) Sensitivity. g)
Positive predictive value.

in the detection of the antibody-antigen interfaces (Fig. -g, AA and ABA). Looking across
the different classes, it is a priori not obvious to assess a direct correlation between the quality
of the predicted interfaces and the discriminative power of the approach. In particular, the three
subsets (FR, ES and OR) for which predicted Rls lead to AUCs as good as those obtained with
experimental RIs (Fig. [2h) do not stand out for the quality of their predicted interfaces (Fig. [3e-
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g). This confirms that when dealing with few proteins (<15), working with approximate interfaces
do not hamper the identification of the cognate partners. However, if we disregard these subsets,
then we find that the ability to detect the cognate pairs is highly correlated with the F1-score and the
precision of the predicted interfaces (Fig. S6). The Pearson correlation coefficient is of 0.86 (resp.
0.90) between the AUC values and the Fl-scores (resp. positive predictive values, PPV) computed
for SC-dockSeed-mix.

1.0 ALL (168) AA (20) ABA (24)

1.0 OG (24) OR (14) OX (30)

Discriminative power for partner identificationn (AUC)
¢ ¢ ¢ e o g ¢ = ¢ ¢
(e} ~

-
I
——
_CD_
—1
>
——
—
S

1.0 0.9 0.8 0.7 0.6 05 04 1.0 09 0.8 0.7 06 05 04 1.0 0.9 0.8 0.7 0.6 0.5 0.4
Overlap between experimental and shifted interfaces (F1-score)

Figure 4: Sensitivity of partner identification to approximations in the reference inter-
faces. The RIs were obtained by gradually shifting the experimental interfaces (see Materials and
Methods). On each plot, we show 10 boxes corresponding to 10 different shift magnitudes. Each
box comprises 10 AUC values obtained from 10 random generations of shifts in interfaces at a given
amplitude. The values in x-axis give the average F1-scores computed for these shifted interfaces. The
red dot and the blue triangle indicate the performance achieved using the experimental interfaces and
the interfaces predicted by SC-dockSeed-mix as Rls, respectively. To compute the AUCs, we used
the parameters identified as the best ones when using the experimental interfaces as Rls, namely a
distance threshold of 6A, the MAXDo docking energy, and without CIPS.

To investigate more precisely the sensitivity of partner discrimination with respect to approxi-
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mations in the Rls, we generated shifted decoys from the experimental interfaces. For each interface
in the dataset, we moved between 10 and 100% of its residues, by increments of 10% (see Materials
and Methods). This allowed us to control the deviation of our RIs with respect to the experimentally
known interfaces of the cognate interactions. We observed that the AUC computed for partner iden-
tification decreases as the shifted decoys share less and less residues in common with the experimental
interfaces (Fig. . The only notable exception is the smallest class, namely ER, which displays a
chaotic behaviour. The two other smallest classes, FS and OR also show some chaotic variations,
to a lesser extent. On the whole dataset, the AUC drops by 0.12 when the interfaces are shifted by
10%,corresponding to an Fl-score of 0.9. A similar or even bigger gap is observed for all subsets
comprising more than 15 proteins, except the enzyme-inhibitor subset (E£I). On the whole dataset,
the two antibody-antigen subsets (AA and ABA) and the other subset (OX), we identify cognate
partners with en AUC lower than 75% with shifted decoys that still match very well (F1-score >0.8)
the experimental interfaces. This shows that many competing proteins are able to bind favourably to
almost the same protein surface region as the cognate partner. Compared to the shifted interfaces,
our predicted interfaces allow reaching a similar or better partner discrimination for all classes but

ER.

Accounting for protein surface multiple usage

Next, we assessed CCD2PI on an independent set of 62 proteins for which we defined some in-
teracting regions accounting for the multiple usage of a protein surface by several partners and for
molecular flexibility [23]. More precisely, we obtained each interacting region by merging overlapping
interacting sites detected in the biological assemblies (from the PDB) involving the protein itself
or a close homolog (with >90% sequence identity, see Materials and Methods). These regions can
be seen as binding "platforms” for potentially very different partners. In this experiment, we used
predicted interfaces as Rls, and all of them match well the experimentally known interacting regions
(Fl-score>0.6). CCD2PI identifies at least one known partner in the top 3 for about a third of the
proteins (Fig. [Bla, inset). For instance, the Bcl-2-like protein 11 (2n19:B), known partner of the Mcl-1
protein (2nl9:A), is ranked second (Fig. [Ba). The top predicted partner for Mcl-1, a tropomyosin
construct (2z5h:B), shares the same a-helical shape. For trypsin-3 (2r9p:A), six proteins are pre-
dicted as better binders as its known inhibitor (2r9p:E). An extreme example is given by the heme
oxygenase, whose interaction with itself is very poorly ranked (Fig. ) This may be explained by
the fact that the homodimer is asymmetrical, with two different interaction sites for the two copies,
one of them not being taken into account by CCD2PI.

Comparison with a sequence-based deep learning approach

Finally, we compared CCD2PI with DPPI [59], a deep learning method predicting protein interac-
tions from sequence information only. DPPI takes as input two query proteins, each represented by
a sequence profile, and outputs a score reflecting the probability that they physically interact. The
parameters of the architecture are learnt from experimentally known interactions. We re-trained the
architecture to assess its performance on PPDBv2 (see Materials and Methods). DPPI is able to
single out the known partners (annotated in the database or inferred at >90% identity) with a very
high accuracy, reaching an AUC of 95% versus 79% for CCD2PI. Yet, for a subset of 20 proteins, we
obtained better ranks for the known partners (Fig. [5b). These proteins belong to different functional
classes. Two of them, namely 1i4d_r and lhel_r (according to the PPDBv2 nomenclature) are copies
of the human Rac GTPase (Uniprot id: P63000). In total, Rac GTPase appears in three complexes
from PPDBv2, 1i4d, lhel and 1e96, where it interacts with its three known partners. While the
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Figure 5: Assessment of CCD2PI on an independent dataset, and comparison with a
sequence-based deep learning method. (a) Partner discrimination on an independent set of
62 proteins where Rls can accommodate different partners. The main barplot gives the rank(s)
determined by CCD2PI for the known partner(s) of each protein and its close homologs (>90%
sequence identity). Each blue tone correspond to a known partner within the set. The 3D structures
of three proteins from the set are depicted as black cartoons with their RIs highlighted in grey surface.
Their known partners are shown in colors and their interacting regions are depicted as surfaces. For
the complex between two copies of 1iw0:A, the position and orientation of the copies was taken from
the PDB structure 1wzg. The barplot in inset gives the probability of retrieving at least one known
partner in the top x% predicted partners. (b) Comparison with DPPI. Best known partner ranks
obtained from CCD2PI (on top) and DPPI (at the bottom). We focus on the subset of proteins for
which the ranks provided by CC2PI are better.

three partners are identified in the top 5 by DPPI when using 1e96_1 as the query, they are ranked
between 95 and 101 when using 1i4d_r or lhel_r. The three query sequences display near-perfect
sequence identities, but they cover more or less extended portions of the protein. Hence, the discrep-
ancy between the results reveals a substantial sensitivity of DPPI with respect to different sequence
contexts. The lack of a detection may be explained by an altered balance between signal and noise
or between different signals coming from different interactions, or by some missing out-of-interface
signal relevant for the interaction. In that case, we observed that our docking-based approach is
more robust, as it finds at least one partner in the top 18 whatever the query.
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DISCUSSION

We have proposed a general approach to identify protein partners from large-scale docking ex-
periments. We found that cognate partners can be singled out with high accuracy within specific
functional classes. Beyond this parameter, we have identified a number of factors contributing to
improving the discriminative power of the approach. We have primarily placed ourselves in a con-
text where we seek to identify only one "true” partner for a given protein, while the other studied
proteins are considered as non-interactors. We have found that in such conditions, the definition of
the binding interface should be very precise to allow achieving high discriminative power. In reality,
most proteins interact with multiple partners, via overlapping or distinct regions at their surface.
Our current knowledge and understanding of the multiplicity of protein surface usage is still very lim-
ited. To move forward, we have collected experimentally characterised protein complexes among the
proteins in our benchmark set and also among their close homologs. The rationale was that protein
interactions tend to be conserved among close homologs, as evidenced by the success of homology-
based prediction of protein complex 3D structures. This analysis revealed many possible interactions
between the studied proteins, and showed that these interactions tend to populate regions in our
predicted matrices displaying high interaction strengths. Hence, the propensities of interaction in-
ferred from docking agree with the available structural data. As more complexes will be structurally
characterised, we expect that the "experimental” interaction matrix will resemble more and more the
predicted one, i.e. with many dark spots (high values). A limitation of both experimental structural
data and our computational framework is that they often cannot determine whether a protein-protein
interaction will be functional or not in the cell. For instance, many antibody-antigen interactions
can be inferred by homology transfer while the specificity of such interactions is very high and de-
termined by only a few residues. A previous cross-docking study also highlighted the importance of
the backbone conformation of the antibody to obtain a high-quality docked interface and thus be
able to discriminate binders from non-binders [60]. More generally, the role of short peptide motifs
for substrate selectivity and protein specific functions is being widely recognised [61], and there are
documented examples of enzymes sharing high sequence identity while targeting different substrates
[62]. Sequence-based learning approaches may overcome these limitations, but they do not provide
direct information about the role of each residue in the formation and/or stabilisation of the assembly
yet. From this perspective, sequence-based motif or specificity-determining site detection approaches
could help to guide the docking toward boosting the accuracy of complex configuration prediction
and to improve functional annotations of protein interactions. Such a combination of approaches
may be particularly useful to distinguish multiple (potentially overlapping) interfaces.

MATERIALS AND METHODS

Protein datasets

The first dataset is the Protein-Protein Docking Benchmark 2.0 (PPDBv2) [56] (https://zlab.
umassmed . edu/benchmark/), which comprises 168 proteins forming 84 binary complexes. Each pro-
tein may be comprised of one or several chains, and is designated as receptor (r) or ligand (1). For
most of the proteins, we used the unbound crystallographic structures for the docking calculations.
The 12 notable exceptions are antibodies for which the unbound structure is unavailable and the
bound structure was used instead. As there are also unbound antibodies present in the dataset,
we can evaluate the impact of conformational changes on the results. The complexes of PPDBv2
are grouped in eight classes (Fig. Sla) following [63]: antibody-antigen (AA, 20 proteins), bound
antibody-antigen (ABA, 24), enzyme-inhibitor (EI, 38), enzyme with regulatory or accessory chain
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(ER, 6), enzyme-substrate (ES, 12), other-with-G-protein (OG, 24), other-with-receptor (OR, 14)
and others (OX, 30). Note that for three cases, namely 11R9, 1KXQ and 2HMI, there was an inversion
in the original dataset between receptor and ligand, which we fixed here.

The second dataset is the P-262 benchmark introduced in [23]. It comprises 262 single protein
chains for which single and multiple partners interactions are known in the PDB. We used bound
conformations found in complex structures for the docking calculations. This dataset was extracted
from a larger set of 2246 protein chains defined in the scope of the HCMD2 project (see http:
//www.ihes.fr/~carbone/HCMDproject.htm). Based on the information recovered from the PDB,
the proteins were manually classified in eleven groups (Fig. S1b), following and extending the
classification proposed [63]. Hence, the set is comprised of 16 bound antibodies (AB), 25 complex
subunits (C), 60 enzymes (E), 10 enzyme regulators (ER), 9 G proteins (G), 6 antigens from the
immune system (I), 23 receptors (R), 24 structural proteins (S), 16 substrates/inhibitors (SI), 7
transcription factors (TF) and 66 proteins with other function (O).

Interacting pair identification by homology transfer

We extended the set of known partners by transferring knowledge from close homologs. Specifically,
we exploited the pre-computed PDB homology clusters with 90% and 70% sequence identities. For
each protein pair considered, we verified the existence of a physical contact between the proteins in
the pair, or some homologs at 90% (resp. 70%) sequence identity. Two proteins were considered to
be in a contact if their interface was larger than 5 residues, as detected by INTBuilder [58]. This
procedure was performed at the protein chain level. To deal with the multi-chain proteins from
PPDBv2, we considered that two proteins were in interaction whenever at least one pair of chains
from the two proteins was in interaction.

Cross-docking calculations

Given an ensemble of proteins, complete cross-docking consists in docking each protein against all the
proteins in the dataset, including itself. All calculations were performed by the MAXDo (Molecular
Association via Cross Docking) algorithm [54].

Reduced protein representation

The protein is represented using a coarse-grain protein model [42] where each amino acid is repre-
sented by one pseudoatom located at the Ca position and either one or two pseudoatoms representing
the side-chain (with the exception of Gly). Interactions between the pseudoatoms are treated using a
soft Lennard Jones (LJ) type potential with parameters adjusted for each type of side-chain (see Ta-
ble 1 in [42]). In the case of charged side-chains, electrostatic interactions between net point charges
located on the second side-chain pseudoatom were calculated by using a distance-dependent dielectric
constant € = 15r, leading to the following equation for the interaction energy of the pseudoatom pair
i,7 at distance 7;:
B Cy
8
ij

)+ 15 3)

Ei' -
( 1577

where B;; and C;; are the repulsive and attractive LJ-type parameters respectively, and ¢; and g; are
the charges of the pseudoatoms ¢ and j. More details about the representation can be found in [54].
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Systematic docking simulations

MAXDo implements a multiple energy minimization scheme similar to that of ATTRACT [42] where
proteins are considered as rigid bodies. For each protein pair, one protein (called the receptor) is
fixed in space, while the second (called the ligand) is placed at multiple positions on the surface
of the receptor. For each pair of receptor/ligand starting positions, different starting orientations
are generated by applying rotations of the gamma Euler angle defined with the axis connecting the
centers of mass of the 2 proteins. We used two different protocols to explore the docking space for
our two datasets. In the case of PPDBv2, the whole surface of the receptor was probed by the
ligand. This was guaranteed by generating starting positions that covered the whole surface and
restraining the ligand motions during the simulation so as to maintain its center of mass on a vector
passing through the center of mass of the receptor protein. As a result, the receptor and the ligand
are treated differently and given en protein pair P, P, docking P; against P, is not equivalent to
docking P, against P;. More details about this protocol can be found in [54, [63]. In the case of
P-262, the ensemble of starting positions was restricted using predictions from the JET method [13].
This reduced the docking search space by up to 50%. Moreover, the restrain was removed, so that
the ligand was free to migrate to a position completely different from its starting position. Thus,
for each couple of proteins P, P, considering P; as the receptor and P, as the ligand is essentially
equivalent to the reverse situation where P, is the receptor and P is the ligand. More details about
this protocol can be found in [64].

Computational implementation

For each pair, several hundreds of thousands of energy minimizations were performed. As each
minimization takes 5 to 15 s on a single 2 GHz processor, a CC-D of several hundreds of proteins would
require several thousand years of computation. However, the minimizations are independent from
each other and thus can be efficiently parallelized on grid-computing systems. Our calculations have
been carried out using the public World Community Grid (WCG, www.worldcommunitygrid.org),
with the help of thousands of internautes donating their computer time to the project. It took
approximately seven months to perform CC-D calculations on the PPDBv2, and three years on the
complete HCMD2 dataset (2246 proteins) from which P-262 is extracted. More technical details
regarding the execution of the program on WCG can be found in [65]. The data analysis was partly
realized on Grid’5000 (https://www.grid5000.fr).

Data Analysis
Detection and prediction of interface residues

The docked interfaces are defined by the sets of residues from the two partners closer than d A.
They were computed using INTBuilder [58], and we considered three values for d, 4.5, 5 and 6. The
experimental interfaces were detected in the X-ray structures of the cognate complexes using the
same tool and a distance d of 5 A.

The reference interfaces were predicted using a modified version of dynJET? [23], a software tool
predicting interacting patches based on four residue descriptors. Specifically, dynJET? relies on three
sequence- and structure-based properties of single proteins, i.e. evolutionary conservation, physico-
chemical properties and local geometry (measured by the circular variance), and on a systemic
property reflecting docking-inferred binding propensities (Fig S4, see also [23] for more detailed
definitions). dynJET? algorithm first detects the seed of the patch, then ertends it and finally add
an outer layer [12]. At each step, surface residues are selected using a combination of the four
descriptors. Four scoring strategies are implemented, to cover a wide range of interfaces. The first
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one, SC.,s detects highly conserved residues and then grows the patches with residues less and
less conserved and more and more protruding, and likely to be found at interfaces based on their
physico-chemical properties. The second one, SCt1ig is a variant of SCe,,s Where local geometry is
accounted for in the seed detection step to avoid buried ligand-binding pockets. The third one, SCycom
disregards evolutionary conservation and looks for protruding residues with good physico-chemical
properties. The fourth one, SCy,., defines patches exclusively comprised of residues frequently
targeted in docking calculations. We refer to this group of SC's as SC-juzt. We modified dynJET? to
create 9 additional scoring schemes grouped in 3 main strategies, namely SC-miz, SC-monoSeed-miz
and SC-dockSeed-miz (Fig S4). All 9 scoring schemes are variants of SC.ons, SChotrig and SCyeom
including the docking-inferred binding propensities in different ways. SC-miz combines them with
the other descriptors at each step. SC-monoSeed-miz detects the seeds using only the single-protein
based properties, and then combines the latter with the docking propensities to grow the patches.
SC-dockSeed-miz relies exclusively on the docking propensities to detect the seeds and then grows
them using a combination of all four descriptors. We implemented all scoring schemes in dynJET?.
For each protein, given a chosen main strategy, we detected a set of predicted patches using all its
scoring schemes. Each patch was defined as a consensus of at least 2 iterations over 10 of dynJET?.
We then retained the patch or combination of patches matching the best the experimentally known
interfaces.

We also used shifted decoys as reference interfaces. To generate them, we gradually shifted the
experimentally known interfaces from the PPDBv2. For each experimental interface, we randomly
generated 100 decoys, by moving between 10% and 100% of its residues. More precisely, the first 10
decoys were generated by moving 10% of the residues, the next 10 by moving 20%, etc... At each
step of the algorithm, we randomly pick up an interface residue r, located at the border, i.e. at less
than 5 A of a surface residue that is not part of the interface. Then, we identify the interface residue
located the farthest away from r,, and we randomly pick up one of its neighbours 7, (< 5 A). We
then switch the status of r4 and r,. In other words, r, is removed from the interface and r,, is added
to the interface. The residue r; cannot be picked again in the following iteration.

Re-scoring of the docking models

We considered three scoring functions, namely iATTRACT [66], PISA [67] and CIPS [57], in replace-
ment or complement of the one implemented in MAXDo.
iIATTRACT [66] is a docking software more recent than MAXDo and mixing a rigid-body docking
approach with flexibility. The energy function is similar to that of MAXDo, except that the repulsive
term in the Lennard-Jones potential decreases more rapidly with the interatomic distance while the
electrostatic contribution decreases less rapidly. Specifically, iATTRACT interaction energy of the
pseudoatom pair ¢, j at distance r;; is expressed as
By = (Z2)2 - (Z2)0 4 2 (4)
Tij Tij ETij
where o;; is the LJ-type parameter, ¢; and ¢; are the charges of the pseudoatoms ¢ and j, and the
dielectric constant € is set to 10. Each of the docking models obtained from the CC-D was subjected
to iIATTRACT’s minimisation process and we used the energy value coming from this minimization.
PISA [67] is a scoring method developed to discriminate between biological and non biological
complexes. It relies on the dissociation free energy to evaluate the stability of a complex. On top of
the dissociation free energy, PISA considers larger assemblies more probable than the smaller ones
and considers that single-assembly sets take preference over multi-assembly sets. We used PISA to
re-score the docking conformations produced by MAXDo.
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CIPS [57] is a statistical pair potential meant to be used as a high throughput technique able to
largely filter out most of the non-native conformations with a low error rate. It was trained using
230 bound structures from the Protein-Protein Docking Benchmark 5.0 [68]. We used it to obtain
complementary scores on the docking conformations.

The protein Interaction Index - II

We evaluate docking models using an interaction index I/ computed as a product between three
terms (see Eq. . For a given protein pair P, P, the first term, F'/Rp, p,, is the overall fraction of
the docked interfaces composed of residues belonging to the reference interfaces for the two proteins:
FIRp, p, = FIRp xFIRp,. It reflects the agreement between the docked interfaces and the reference
interfaces. The reference interfaces may be experimentally known or predicted. The second one,
Ep, p,, is the docking energy provided by MAXDo, PISA or iATTRACT. The third one, PPp, p, is
the value computed by CIPS and it may or may not be included in the formula. The product is
computed for every docking conformations and the minimum (best) value is kept.

The protein Normalized Interaction Index - NII

To account for the global social behavior of the proteins, we further normalize the interaction indices.
The normalized interaction index NII between P; and P, was determined as

min(Ilp, p,, ITp, p)*

NIIp p, = (5)

minp(IIp p) - minp(Ilp p,) - minp(Ilpp ) minp(IIp, p)

where I1p p, is a symetrized weighted version of the interaction index Ip, p, and it is defined as:

11 1
II/P:[,PQ = ST B SP. : Z ]Iphpj +I[Pj,P¢ (6)

\/ SP1'5P27 o 2|7)| PjGP

where P is the ensemble of proteins considered. The normalization can be applied to the whole
dataset or to subsets. In either case, NII values vary between 0 and 1. For each protein P;, we
defined its predicted partner as the protein P; leading to N1Ip, p, = 1.

Parameter setting

The four main parameters of our approach and the different values we considered are reported in Table
M They were optimized on the PPDBv2. For each subet, we computed 72 AUC values corresponding
to the 72 possible combinations of parameter values. Then, we ranked the combinations based on
their weighted average AUC values. Given a combination C;, the average was computed as

W(CZ) — ?zl(Nj : Ajgcj(oi))’ (7)

J=1

where V; is the number of proteins in the subset j and n is the number of subsets. We considered as
subsets the eight functional classes and also the entire dataset itself, leading to n = 9. The weighting
minimises the effect a subset with a low number of proteins could have on the global ranking, while
putting more importance on subsets with a large number of proteins. The combination maximizing
the value of AUC/(C;) was chosen as the default one (Table [T} in bold).

Then, for each class j, we ranked the 72 possible combinations according to their AUC values,
AUCY(C;), and we retained the top 20%, hence 15 combinations. This pool was separated by each
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one of the four parameters. Whenever we found a parameter value leading to a better AUC than
the default value, we further assessed this difference with a Mann Whitney U-test [69, [70]. For this
test, we went back to the whole ensemble of 72 combinations and compared the distributions of AUC
values obtained with the default value and the other value, respectively. If the p-value was lower
0.01, then we considered the other value to significantly improve our discrimination potency over the
default one. And we decided to use it for the given class.

We applied the same procedure when dealing with the experimental interfaces. Since the num-
ber of possible combinations (18) is much lower in that case, we retained the top 30%, hence 6
combinations.

Comparison with DPPI

We re-trained DPPI architecture [59] on the Profppikernel database [71] containing 44 000 interactions
(10% positive). The positive samples were taken from the HIPPIE database [72]. We removed from
the training set all sequences which share more than 70% identity with any sequence from PPDBv2.
We clustered the samples such that any two sequences do not share more than 40% identity. We
used MMseqs2 [73] to cluster and filter sequences.
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