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Abstract10

Proteins ensure their biological functions by interacting with each other. Hence, characterising11

protein interactions is fundamental for our understanding of the cellular machinery, and for improving12

medicine and bioengineering. Over the past years, a large body of experimental data has been13

accumulated on who interacts with whom and in what manner. However, these data are highly14

heterogeneous and sometimes contradictory, noisy, and biased. Ab initio methods provide a means15

to a ”blind” protein-protein interaction network reconstruction. Here, we report on a molecular cross-16

docking-based approach for the identification of protein partners. We applied it to a few hundred of17

proteins, and we systematically investigated the influence of several key ingredients, such as the size18

and quality of the interfaces and the scoring function. We achieved some significant improvement19

compared to previous works, and a very high discriminative power on some specific functional classes.20

In addition, we assessed the ability of the approach to account for protein surface multiple usages,21

and we compared it with a sequence-based deep learning method. This work may contribute to22

guiding the exploitation of the large amounts of protein structural models now available toward the23

discovery of unexpected partners and their complex structure characterisation.24
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INTRODUCTION25

The vast majority of biological processes are ensured and regulated by protein interactions. Hence,26

the question of who interacts with whom in the cell and in what manner is of paramount importance27

for our understanding of living organisms, drug development and protein design. While proteins con-28

stantly encounter each other in the densely packed cellular environment, they are able to selectively29

recognise some partners and associate with them to perform specific biological functions. Discrim-30

inating between functional and non-functional protein interactions is a very challenging problem.31

Many factors may reshape protein-protein interaction networks, such as point mutations, alternative32

splicing events and post-translational modifications [1, 2, 3, 4, 5]. Conformational rearrangements33

occurring upon binding, and the prevalence of intrinsically disordered regions in interfaces further34

increase the complexity of the problem [6, 7, 8, 9]. Ideally, one would like to fully account for this35

highly variable setting in an accurate and computationally tractable way.36

In the past years, a lot of effort has been dedicated to describe the way in which proteins interact37

and, in particular, to characterise their interfaces. Depending on the type and function of the38

interaction, these may be evolutionary conserved, display peculiar physico-chemical properties or39

adopt an archetypal geometry [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. For example, DNA-binding40

sites are systematically enriched in positively charged residues [10] and antigens are recognized by41

highly protruding loops [12]. Such properties can be efficiently exploited toward an accurate detection42

of protein interfaces [10, 11, 21, 22, 23, 24, 25, 26, 27, 12]. However, the large scale assessment of43

predicted interfaces is problematic as our knowledge of protein surface usage by multiple partners is44

still very limited [23].45

A related problem is the prediction of the 3D arrangement formed between two or more protein46

partners. This implies generating a set of candidate complex conformations and correctly ranking47

them to select those resembling the native structure. Properties reflecting the strength of the asso-48

ciation include shape complementarity, electrostatics, desolvation and conformational entropy [28].49

Experimental data and evolutionary information (conservation or coevolution signals) may help to50

improve the selection of candidate conformations [29, 30, 31]. To address this problem, molecular51

docking algorithms have been developed and improved over the past twenty years, stimulated by52

the CAPRI competition [32, 33, 34, 35, 36]. Nevertheless, a number of challenges remain, including53

the modelling of large conformational rearrangements associated to the binding [37, 32, 38]. More-54

over, homology-based modelling often leads to better results than free docking when high-quality55

experimental data is available.56

The development of ultra-fast docking engines exploiting the fast Fourier transform [39, 40, 41],57

deep learning [11] and/or coarse-grained protein models [42] has made large-scale docking compu-58

tational experiments feasible. Moreover, the availability of 3D structural models from AlphaFold59

for entire proteomes [43] has dramatically expanded the applicability of docking algorithms. This60

favourable context renders protein-protein interaction network reconstruction accessible at a very61

large scale by ab initio approaches that avoid biases coming from experimental conditions and allow62

for a blind search for partners that may lead to the discovery of new interactions.63

In a large-scale docking experiment, hundreds or thousands of proteins are either docked to64

each other (complete cross-docking, CC-D) or to some arbitrarily chosen proteins. The generated65

data can be straightforwardly exploited to predict protein interfaces [44, 23, 45, 46, 47]. Indeed,66

randomly chosen proteins tend to dock to localised preferred regions at protein surfaces [48]. In67

this respect, the information gathered in the docking experiment can complement sequence- and68

structure-based signals detected within monomeric protein surfaces [23]. Beyond interface and 3D69
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structure prediction, very few studies have addressed the question of partner identification. The latter70

has traditionally been regarded as beyond the scope of docking approaches. However, an early low-71

resolution docking experiment highlighted notable differences between interacting and non-interacting72

proteins [49], and we and others [50, 51, 52, 53] have shown that it is possible to discriminate cognate73

partners from non-interactors through large-scale CC-D experiments. An important finding of these74

studies, already stated in an earlier experiment involving 12 proteins [54], is that relying on the75

energy function of the docking algorithm is not sufficient to reach high accuracy. This holds true for76

shape complementarity-based energy functions [50], and also for those based on a physical account77

of interacting forces [53, 54]. Nevertheless, combining the docking energy with a score reflecting78

how well the docked interfaces match experimentally known interfaces allows reaching a very high79

discriminative power [53]. Moreover, the knowledge of the global social behaviour of a protein can80

help to single out its cognate partner [50, 53]. That is, by accounting for the fact that two proteins81

are more or less sociable, we can lower down or lift up their interaction strength, and this procedure82

tends to unveil the true interacting partners [50]. This notion of sociability also proved useful to83

reveal evolutionary constraints exerted on proteins coming from the same functional class, toward84

avoiding non-functional interactions [50].85

In principle, the estimation of systemic properties such as residue binding propensity and protein86

sociability shall be more accurate as more proteins are considered in the experiment. But the problem87

of discriminating them will also become harder. When dealing with several hundreds of proteins,88

the correct identification of the cognate partners requires an incredible accuracy as they represent89

only a small fraction of the possible solutions. For instance, a set of 200 proteins for which 10090

binary interaction pairs are known will lead to the evaluation of 40 000 possible pairs, and for each91

pair several hundreds of thousands candidate conformations (at least) will have to be generated and92

ranked.93

Here, we present a general approach for the identification of protein partners and their discrimi-94

nation from non-interactors based on molecular docking. Like our previous efforts [50, 53, 54], this95

work aims at handling large ensembles of proteins with very different functional activities and cellular96

localisations. Although these classes of proteins appear to have different behaviours, we approach97

the problem of partner identification from a global perspective. We report on the analysis of data98

generated by CC-D simulations of hundreds of proteins. We combine together physics-based energy,99

interface matching and protein sociability, three ingredients we previously showed to be relevant to100

partner identification and discrimination. We move forward by investigating what other types of101

information may be needed to improve the discrimination. To this end, we systematically explore102

the space of parameters contributing to partner identification. These include the scoring function(s)103

used to evaluate the docking conformations, the strategy used to predict interacting patches and the104

size of the docked interfaces. We show that our approach, CCD2PI (for ”CC-D to Partner Identifica-105

tion”), reaches a significantly higher discriminative power compared to a previous study addressing106

the same problem [53]. We demonstrate that this result holds true overall and also for individual107

protein functional classes. Our results emphasise the importance of the docking-inferred residue108

binding propensities to drive interface prediction, and the positive contribution of a statistical pair109

potential to filter docking conformations. We define a set of default parameter values, with minimal110

variations between the different classes, for practical application to any set of proteins. Importantly,111

we place ourselves in a context where we do not know the experimental interfaces and use predic-112

tions instead. To evaluate CCD2PI predictions, we consider structurally characterised interactions113

coming from the Protein Data Bank (PDB) [55] as our gold standard. They are defined based on114

docking benchmark annotations [56] or on homology transfer [23]. We show that the protein inter-115

action strengths computed by CCD2PI are in good agreement with available structural data. We116
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discuss the implications of these strengths for protein functions. This work paves the way to the au-117

tomated ab initio reconstruction of protein-protein interaction networks with structural information118

at the residue resolution. Since, the reconstruction is based on docking calculations, it not biased by119

specific targets nor by the limitations of experimental techniques.120

RESULTS121

Computational framework122
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Figure 1: Principle of the method. We start from an all-to-all docking experiment (top left
panel). Each protein is docked to all proteins in the set. By convention, in each docking calculation,
we define a receptor and a ligand. The red patches on the protein surfaces correspond to predicted
interfaces. For a given protein pair P1P2, we generate a pool of conformations associated with energies
(top middle panel). Here, both the predicted interfaces and the docked interfaces are highlighted by
patches, in red and purple respectively. One can readily see whether they overlap or not. The extent
of this overlap (Fraction of Interface Residue) is multiplied by the docking energy to evaluate each
docking conformation (bottom left panel). Optionally, we also consider a statistical pair potential in
the formula. The best score is computed over all docking conformations and assigned to the protein
pair. By doing the same operation for all pairs we compute a matrix of interaction indices (bottom
right panel, the darker the higher). If the receptor and the ligand play equivalent roles in the docking
calculations, then the matrix will be symmetrical. Otherwise, two different docking calculations are
performed for each protein pair P1P2 and the matrix will be asymmetrical, as shown here. These
indices are then normalised to account for proteins’ global social behaviour, hopefully allowing for
singling out the cognate partners (top right panel). In the example here, the cognate pairs are ordered
on the diagonal.
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The workflow of CCD2PI is depicted in Figure 1. We exploit data generated by CC-D exper-123

iments performed on hundreds of proteins. In the present work, the CC-D was performed using124

the rigid-body docking tool MAXDo [54]. The proteins are represented by a coarse-grained model125

and the interactions between pseudo-atoms are evaluated using Lennard-Jones and Coulombic terms126

[42]. For each protein pair, MAXDo generated several hundreds of thousands of candidate complex127

conformations (Fig. 1, top left panel). Each one of these conformations is evaluated by computing128

the product between the overlap between the docked interface (DI) and some reference interface (RI),129

a docking energy (either from MAXDo or another one, see Materials and Methods), and a statistical130

pair potential [57] (optional). The rationale is that a valid conformation should both be energetically131

favorable and represents a 3D arrangement compatible with the expected location of the interacting132

surfaces. The DIs are detected based on interatomic distances using our efficient algorithm INT-133

Builder [58]. The RIs are predicted using sequence- and structure-based properties of single proteins134

[12], as well as a systemic property, namely residue binding propensities inferred from the CC-D [23]135

(see Materials and Methods).136

Hence, given two proteins P1 and P2, we estimate the interaction index of P1 with respect to P2137

as138

IIP1,P2 = min(FIRP1,P2 × EP1,P2 [×PPP1,P2 ]), (1)

where FIRP1,P2 (Fraction of Interface Residues) is the fraction of the DIs composed of residues139

belonging to the (predicted) RIs for the two proteins, EP1,P2 is the docking energy (negative value)140

and PPP1,P2 is a pair potential score which may or may not be included in the formula. The latter141

evaluates the likelihood of the observed residue-residue interactions and might bring complementary142

information with respect to the docking energy. We use CIPS [57], a high-throughput software143

designed to swiftly reduce the search space of possible native conformations with a high precision.144

The minimum is computed over the whole set or a pre-filtered subset of docking conformations (see145

Materials and Methods). One should note that in the general case, IIP1,P2 and IIP2,P1 come from two146

different docking runs and are not necessarily equal. This is because the receptor and ligand surfaces147

are not explored in an equivalent manner by the docking algorithm (see Materials and Methods).148

The computed interaction indices (Fig. 1, matrix at the bottom right) are then normalised149

to account for the protein global social behaviour. Formally, the II values are weighted using the150

sociability index (S-index) [50], defined as151

SPi
:= 1

2|P|
∑
Pj∈P

IIPi,Pj
+ IIPj ,Pi

, (2)

where P is the ensemble of proteins, including Pi. The normalised interaction index NII between152

P1 and P2 is computed as a symmetrised ratio of interaction indices (see Materials and Methods).153

Finally, the NII values are scaled between 0 and 1 and NIIP1,P2 = 1 when P2 is the protein predicted154

as interacting the most strongly with P1 (Fig. 1, matrix on the top right).155

CCD2PI accurately singles out cognate partners within specific functional156

classes157
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Figure 2: Predictive performance on the PPDBv2. (a) AUC values computed for the whole dataset
and for the different functional classes. For each protein, we consider one ”true” cognate partner, defined
from the PPDBv2 annotations. The results obtained with CCD2PI are indicated by the blue curve. For
comparison, we also show the results reported in [53] in purple. The areas in grey tones give the discrimi-
native power reached when exploiting the knowledge of the experimental interfaces, using either our default
parameters (in light gray) or parameters optimized for such interfaces (in dark grey, see also Materials and
Methods). The number of proteins in each subset is indicated in parenthesis. (b) Probability of retrieving
at least one experimentally known partner in the top 20% of CCD2PI predictions, for each subset. The
partners are defined based on the PPDBv2 annotations (in blue) or are inferred from complex PDB struc-
tures involving homologs of the proteins from the PPDBv2, at the 90% (in dark red) or 70% (in orange)
sequence identity level (see Materials and Methods). The bars in grey tones give the probability expected
at random. (c) NII matrices computed by CCD2PI. The proteins are ordered on the x-axis such that the
receptors (e.g. antibodies) appear first, and then the ligands (e.g. antigens). They are ordered on the y-axis
such that the cognate pairs annotated in PPDBv2 are located on the diagonal. The orange tones highlight
the experimentally known interacting pairs (annotated in the PPDBv2 and transferred by homology). AA:
antibody-antigen, ABA: bound antibody-antigen. EI: enzyme-inhibitor. ER: enzyme with regulatory or
accessory chain. ES: enzyme-substrate. OG: other-with-G-proteins. OR: other-with-receptor. OX: others.
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We assessed the discriminative power of CCD2PI on a set of 168 proteins forming 84 experimentally158

determined binary complexes (Protein-Protein Docking Benchmark v2, PPDBv2, see Methods). Here,159

we place ourselves in a context where we seek to identify one ”true” partner, annotated in the160

PPDBv2, for each protein from the benchmark. Over all possible 28 224 interacting pairs, the161

cognate partners were singled out with an Area Under the Curve (AUC) of 0.67 (Fig. 2a). In the162

matrix of predicted NII values (Fig. 2c), one can appreciate the relatively small number of pairs163

displaying high interaction strengths compared to the enormous number of potential pairs. In this164

respect, the contribution of the normalisation stands out as instrumental (Fig. S1a-b, compare the165

number of dark spots between the II and NII matrices).166

We further assessed the ability of CCD2PI to identify the PPDBv2 cognate partners among pro-167

teins coming from the same functional class (Fig. 2a, blue curve). The partnerships between bound168

antibodies and their antigens (ABA), between enzymes and their inhibitors, substrates, or regulatory169

chains (EI, ES, ER) and between the other proteins and their receptors (OR) are particularly well170

detected (AUC>0.75). By contrast, the subset regrouping everything that could not be classified171

elsewhere (others, OX) is the most difficult to deal with. This subset likely contains proteins in-172

volved in signalling pathways and establishing transient interactions through modified sites, such173

as phosphorylated sites. As a consequence, correctly predicting their interfaces may be particularly174

challenging. Conformational changes occurring upon binding seem to play a role as the antibody-175

antigen cognate pairs are better detected when the antibodies are bound (Fig. 2a, compare AA and176

ABA).177

The AUC values achieved by CCD2PI are systematically and significantly better than those178

computed with our previous pipeline (Fig. 2a, compare the blue and purple curves), or similar179

in the case of the other-with-G-protein class (OG). Replacing the predicted RIs by the interfaces180

extracted from the PDB complex structures, which can be seen as perfect predictions, leads to181

increased AUC values for almost all classes (Fig. 2a, areas in grey tones, and Fig. S1c-d). This182

suggests that proteins competing for the same region at the protein surface do not target exactly the183

same set of residues. Knowing exactly which residues are involved in an interaction greatly helps in184

the identification of the partner. Of course, this perfect knowledge is generally inaccessible in a fully185

predictive context. In fact, the predicted interfaces might give a more realistic view on protein surface186

usage since they tend to better match interacting regions [23], defined from several experimental187

structures and representing the interface variability induced by molecular flexibility and multi-partner188

binding. Noticeably, the advantage of experimental over predicted RIs reduces or even cancels out189

for the small subsets (<15 proteins, ER, ES and OR). This suggests that approximations in the190

definition of the interfaces do not influence partner identification when few proteins are considered.191

The interaction strengths predicted by CCD2PI reveal the multiplicity192

of protein interactions193

To estimate the agreement between the interaction strengths predicted by CCD2PI and experimental194

data, we extended the set of ”true” partners by homology transfer. Specifically, we looked in the PDB195

for 3D structures of complexes involving homologs of the proteins from PPDBv2 (see Materials and196

Methods). We considered that a structurally characterized interaction found for P ′1 and P ′2, homologs197

of P1 and P2, respectively, was a strong indicator of the possibility for P1 and P2 to interact with each198

other. Nevertheless, we should stress that homology transfer does not guarantee that the interaction199

between P1 and P2 is functional in the cell. We identified 585 interacting pairs from homologs200

sharing more than 90% sequence identity with the proteins from PPDBv2, and 1 834 at the 70%201

sequence identity level (Fig. 2c, cells colored in orange). Newly detected interactions are particularly202

abundant between antibodies and antigens and among antibodies (Fig. 2c and Fig. S2a-c). Some203
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of the homology-transferred partners are direct competitors of the cognate partners annotated in204

PPDBv2 as they target the same region at the protein surface. Depending on the approximations205

in the predicted RIs, the former may be more favoured than the latter by CCD2PI. A few examples206

of homology-transferred partners better ranked than the PPDBv2-annotated partners are shown in207

Fig. S3. Overall, the probability of finding at least one ”true” partner in the top 20% predictions208

is almost systematically increased when extending the set of positives (Fig. 2b). For instance,209

71% (27 out of 38) of the proteins from the EI subset have at least one partner inferred at more210

than 70% sequence identity ranked in the top 7. Moreover, the homology-transferred interactions211

tend to populate the regions of the matrices displaying high interaction strengths (Fig. 2c and212

Fig. S2d). For instance, CCD2PI predictions suggest that antigens tend to avoid each other much213

more than antibodies, and indeed much more homology-transferred interactions are found among214

antibodies, compared to antigens (AA and ABA). A similar trend is also observed for the enzyme-215

regulator (ER) and enzyme-substrate (ES) and other-with-G-protein (OG) subsets (Fig. 2c and216

Fig. S2d). We observe more predicted and experimental regulator-regulator and substrate-substrate217

interactions than enzyme-enzyme interactions, and more other-other interactions than interactions218

among G proteins.219

The ingredients of partner discrimination220

CCD2PI comprises four main hyper-parameters potentially influencing the results (Table I),221

namely (a) the distance threshold used to detect the DIs, (b) the scoring strategy used to pre-222

dict the RIs, (c) the docking energy function used to compute II, and (d) the optional inclusion of223

the pair potential in the II formula. The distance threshold modulates the size of the DIs while224

the scoring strategy influences how close the RIs are from the experimentally known interfaces. The225

choice of the energy function and that of using or not the pair potential directly impact the cal-226

culation of the interaction index. In order to avoid the risk of overfitting, we strove to determine227

global default parameter values (Table I, see also Materials and Methods). In the following, we228

report on a systematic analysis of the influence of the parameters on the discriminative power of the229

approach, also by considering functional classes (Fig. 3). The total number of possible parameter230

combinations is 72, and we focused on the top 15, for the whole dataset and for its eight subsets.231

Given a parameter under study, the pool of 15 top combinations was divided by the set of possible232

values for the parameter (see Materials and Methods).233

Table I: Main hyper-parameters of CCD2PI
Docked interfaces Predicted interfaces Docking energya Pair potential b

Distance threshold (in Å) Scoring strategy (E) (PP )
4.5 SC-mix MAXDo CIPS
5 SC-monoSeed-mix iATTRACT None
6 SC-dockSeed-mix PISA

SC-juxt

The default parameter values are highlighted in bold. They were optimized on PPDBv2 (see Methods). a

MAXDo was chosen for all functional classes but EI and ER, where it was replaced by PISA and
iATTRACT respectively. b CIPS was used for all functional classes but OR.

The estimation of the match between the DIs and the RIs depends on the way the former are234

detected and on the strategy adopted to predict the latter. We observed that varying the distance235

threshold used to detect the DIs between 4.5 and 6Å does not significantly impact the discrimi-236
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nation on the whole dataset, nor on most of the functional classes (Fig. 3a). Nevertheless, it is237

clearly preferable to define smaller than bigger DIs for the identification of antibody-antigen cognate238

pairs (Fig. 3a, see AA and ABA). Interestingly, this trend is not observed when using experimen-239

tal interfaces as RIs (Fig. 5b). This suggests that as the DIs grow, residues not specific to the240

cognate interactions but present in the predicted RIs are being considered. To predict interfaces,241

we considered four main strategies, each one of them comprising between 3 and 4 scoring schemes242

(Fig. S4 and see Materials and Methods). Our algorithm relies on four descriptors, evolutionary243

conservation, physico-chemical properties, local geometry and docking-inferred binding propensities,244

and the strategies differ in the way we combine these properties. The one leading to the best results245

on the whole dataset and also on a couple of functional classes is SC-dockSeed-mix (Fig. 3b, see246

ABA and OX). In this scoring scheme, the seed of the predicted interface is defined based on the247

propensities of protein surface residues to be targeted in the docking calculations. Then, the seed is248

extended combining these docking propensities with evolutionary, geometrical and physico-chemical249

properties (see Materials and Methods). The strategy leading to the worst results, SC-monoSeed-mix,250

introduces the docking propensities only after seed detection. The seeds are detected because they251

are highly conserved or protruding. SC-monoSeed-mix is not even found in the top 15 combinations252

of parameters for the whole dataset, nor for the enzyme-substrate and other classes (Fig. 3b). This253

emphasises the crucial role of the docking propensities to drive the interface predictions.254

Regarding the docking energy, we considered MAXDo, iATTRACT and PISA. MAXDo and255

iATTRACT are very similar as they include the same contributions (see Materials and Methods).256

They mainly differ in the treatment of the clashes, better tolerated in iATTRACT, and of the257

electrostatic contribution, more persistent at long distances in iATTRACT. PISA is different as it258

estimates the likelihood of a macromolecular assembly to be functionally relevant based on chemical259

thermodynamics (see Materials and Methods). While all three energies perform almost equally well260

on the whole dataset, with a little advantage for MAXDo, the results on the individual subsets are261

more contrasted (Fig. 3c). In particular, PISA is the only energy function appearing in the top 15262

combinations for the enzyme-inhibitor subset (EI ) while MAXDo is the only one for the other-with-263

G-protein subset (OG). Finally, we investigated the influence of including or not the statistical pair264

potential CIPS to compute the interaction index (Fig. 3d). While CIPS improves the discrimination265

for the antibody-antigen subsets (AA and ABA), it is clearly detrimental for the other-with-receptor266

class (OR). The extent of these impacts may vary depending on the energy function with which267

CIPS is paired, but the trends are consistent from one energy function to another. The picture is268

very different when we replace the predicted RIs by experimental interfaces (Fig. S5d). In this269

context, CIPS is mostly contributing in a negative way to the identification of the cognate partners.270

This suggests that CIPS may underrate some near-native conformations. Although this would not271

affect much the results when the RIs are predicted, since the number of incorrect conformations272

removed largely surpasses the number of near-native conformations wrongly removed, this could273

prove detrimental when using the experimental interfaces, especially in a context where the number274

of positives is very small compared to that of negatives.275

Small approximations in the reference interfaces may significantly impact276

partner identification277

We further characterised the relationship between the ability of singling out cognate partners and278

the resemblance between the predicted and the experimental interfaces. The average F1-values of279

the predicted interfaces range between 0.37 and 0.58 (Fig. 3e). The strategy leading to the best280

AUC values for partner discrimination, namely SC-dockSeed-mix, gives the most accurate predicted281

interfaces overall (Fig. 3e-g, ALL). It is also significantly more precise than the other strategies282
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Figure 3: Influence of the parameters for PPDBv2. (a-d) Variation of the AUC values upon
parameter changes. The four parameters considered are: (a) the distance threshold used to define
docked interfaces, (b) the scoring strategy used to predict interfaces, (c) the docking energy, and
(d) the presence or absence of the pair potential, depending on the docking energy. In each plot,
for each protein class, we considered the 15 combinations yielding the highest AUC values, among
all 72 possible combinations. For a given parameter, the different bars correspond to a partition of
this combination set according to the possible values of the parameter. If a parameter value was not
present in the 15 best combinations, then it does not appear on the plot. We report the average AUC
values (in opaque) and the maximum AUC values (in transparent). The black segments indicate the
intervals [µ − 2σµ, µ + 2σµ], where µ is the mean and σµ is the standard error of the mean. (e-
g) Resemblance between predicted and experimental interfaces. (e) F1-score. (f) Sensitivity. g)
Positive predictive value.

in the detection of the antibody-antigen interfaces (Fig. 3e-g, AA and ABA). Looking across283

the different classes, it is a priori not obvious to assess a direct correlation between the quality284

of the predicted interfaces and the discriminative power of the approach. In particular, the three285

subsets (ER, ES and OR) for which predicted RIs lead to AUCs as good as those obtained with286

experimental RIs (Fig. 2a) do not stand out for the quality of their predicted interfaces (Fig. 3e-287
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Interactome prediction 12

g). This confirms that when dealing with few proteins (<15), working with approximate interfaces288

do not hamper the identification of the cognate partners. However, if we disregard these subsets,289

then we find that the ability to detect the cognate pairs is highly correlated with the F1-score and the290

precision of the predicted interfaces (Fig. S6). The Pearson correlation coefficient is of 0.86 (resp.291

0.90) between the AUC values and the F1-scores (resp. positive predictive values, PPV) computed292

for SC-dockSeed-mix.293
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Figure 4: Sensitivity of partner identification to approximations in the reference inter-
faces. The RIs were obtained by gradually shifting the experimental interfaces (see Materials and
Methods). On each plot, we show 10 boxes corresponding to 10 different shift magnitudes. Each
box comprises 10 AUC values obtained from 10 random generations of shifts in interfaces at a given
amplitude. The values in x-axis give the average F1-scores computed for these shifted interfaces. The
red dot and the blue triangle indicate the performance achieved using the experimental interfaces and
the interfaces predicted by SC-dockSeed-mix as RIs, respectively. To compute the AUCs, we used
the parameters identified as the best ones when using the experimental interfaces as RIs, namely a
distance threshold of 6Å, the MAXDo docking energy, and without CIPS.

To investigate more precisely the sensitivity of partner discrimination with respect to approxi-294
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mations in the RIs, we generated shifted decoys from the experimental interfaces. For each interface295

in the dataset, we moved between 10 and 100% of its residues, by increments of 10% (see Materials296

and Methods). This allowed us to control the deviation of our RIs with respect to the experimentally297

known interfaces of the cognate interactions. We observed that the AUC computed for partner iden-298

tification decreases as the shifted decoys share less and less residues in common with the experimental299

interfaces (Fig. 4). The only notable exception is the smallest class, namely ER, which displays a300

chaotic behaviour. The two other smallest classes, ES and OR also show some chaotic variations,301

to a lesser extent. On the whole dataset, the AUC drops by 0.12 when the interfaces are shifted by302

10%,corresponding to an F1-score of 0.9. A similar or even bigger gap is observed for all subsets303

comprising more than 15 proteins, except the enzyme-inhibitor subset (EI ). On the whole dataset,304

the two antibody-antigen subsets (AA and ABA) and the other subset (OX), we identify cognate305

partners with en AUC lower than 75% with shifted decoys that still match very well (F1-score >0.8)306

the experimental interfaces. This shows that many competing proteins are able to bind favourably to307

almost the same protein surface region as the cognate partner. Compared to the shifted interfaces,308

our predicted interfaces allow reaching a similar or better partner discrimination for all classes but309

ER.310

Accounting for protein surface multiple usage311

Next, we assessed CCD2PI on an independent set of 62 proteins for which we defined some in-312

teracting regions accounting for the multiple usage of a protein surface by several partners and for313

molecular flexibility [23]. More precisely, we obtained each interacting region by merging overlapping314

interacting sites detected in the biological assemblies (from the PDB) involving the protein itself315

or a close homolog (with >90% sequence identity, see Materials and Methods). These regions can316

be seen as binding ”platforms” for potentially very different partners. In this experiment, we used317

predicted interfaces as RIs, and all of them match well the experimentally known interacting regions318

(F1-score>0.6). CCD2PI identifies at least one known partner in the top 3 for about a third of the319

proteins (Fig. 5a, inset). For instance, the Bcl-2-like protein 11 (2nl9:B), known partner of the Mcl-1320

protein (2nl9:A), is ranked second (Fig. 5a). The top predicted partner for Mcl-1, a tropomyosin321

construct (2z5h:B), shares the same α-helical shape. For trypsin-3 (2r9p:A), six proteins are pre-322

dicted as better binders as its known inhibitor (2r9p:E). An extreme example is given by the heme323

oxygenase, whose interaction with itself is very poorly ranked (Fig. 5a). This may be explained by324

the fact that the homodimer is asymmetrical, with two different interaction sites for the two copies,325

one of them not being taken into account by CCD2PI.326

Comparison with a sequence-based deep learning approach327

Finally, we compared CCD2PI with DPPI [59], a deep learning method predicting protein interac-328

tions from sequence information only. DPPI takes as input two query proteins, each represented by329

a sequence profile, and outputs a score reflecting the probability that they physically interact. The330

parameters of the architecture are learnt from experimentally known interactions. We re-trained the331

architecture to assess its performance on PPDBv2 (see Materials and Methods). DPPI is able to332

single out the known partners (annotated in the database or inferred at >90% identity) with a very333

high accuracy, reaching an AUC of 95% versus 79% for CCD2PI. Yet, for a subset of 20 proteins, we334

obtained better ranks for the known partners (Fig. 5b). These proteins belong to different functional335

classes. Two of them, namely 1i4d r and 1he1 r (according to the PPDBv2 nomenclature) are copies336

of the human Rac GTPase (Uniprot id: P63000). In total, Rac GTPase appears in three complexes337

from PPDBv2, 1i4d, 1he1 and 1e96, where it interacts with its three known partners. While the338

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.22.457276doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.22.457276
http://creativecommons.org/licenses/by-nc/4.0/


Interactome prediction 14

3bt2_A
1iw0_A
1iw0_B
2d1x_C
1iw0_C
2d1x_A
2d1x_B
3bt2_L
2gez_B
1wsu_A
2r9p_E
1f9e_B
3d85_C
1apy_A
1wsu_D
2vp7_B
2z5h_I
2z5h_T
1nme_B
1pyo_B
1wsu_B
1pyo_A
1f9e_A
1ibc_B
1wsu_C
2rhk_C
2z5h_B
1aox_A
1nme_A
3d85_D
2djg_C
2gez_C
2ot3_B
2v8q_B
1apy_B
1ibc_A

2p1m_A
2p1m_B
3bt2_U
1aox_B
2rhk_A
2v8q_A
3d85_A
3d85_B
2djg_A
2nl9_B
3cwb_T
1jjo_A
2r9p_A
2v8q_E
2vp7_A
1jjo_E

1mhw_C
3cwb_F
2ot3_A

1mhw_A
2h0d_B
2h0d_A
2odb_A
2odb_B
2nl9_A
3cwb_H

0 10 20 30 40 50 60

2r9p(A)

2r9p(E)
6th

2odb(B)
1st

1jjo(E)
4th

3d85(C)
3rd

2djg(C)
2nd

2rhk(A)
5th

2nl9(A)

2z5h(B) 1st

2nl9(B) 2nd

1 5 10 25 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1 5 10 25 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1iw0(A)

1iw0(A)
59th

P
ro

b
a
b

ili
ty

Top x% predicted partners

Partner rank

from DB
90% seq. id.
70% seq. id.

1
g
rn
_
l

1
c
g
i_
l

1
m
1
0
_
l

1
e
6
e
_
r

1
h
e
1
_
r

1
rlb
_
r

1
h
e
1
_
l

1
i9
r_
r

1
b
u
h
_
r

1
k
x
q
_
r

1
i4
d
_
r

2
s
n
i_
l

1
i4
d
_
l

1
a
tn
_
l

7
c
e
i_
l

1
w
q
1
_
r

1
e
w
y
_
l

1
k
tz
_
l

1
e
w
y
_
r

1
b
j1
_
l

B
e
st

 k
n

o
w

n
 p

a
rt

n
e
r 

ra
n
k
 

B
e
st

 k
n

o
w

n
 p

a
rt

n
e
r 

ra
n
k
 

a) b)

40

0

20

60

80

100

0

20

40

60

80

100

DPPI

CCD2PI

Figure 5: Assessment of CCD2PI on an independent dataset, and comparison with a
sequence-based deep learning method. (a) Partner discrimination on an independent set of
62 proteins where RIs can accommodate different partners. The main barplot gives the rank(s)
determined by CCD2PI for the known partner(s) of each protein and its close homologs (>90%
sequence identity). Each blue tone correspond to a known partner within the set. The 3D structures
of three proteins from the set are depicted as black cartoons with their RIs highlighted in grey surface.
Their known partners are shown in colors and their interacting regions are depicted as surfaces. For
the complex between two copies of 1iw0:A, the position and orientation of the copies was taken from
the PDB structure 1wzg. The barplot in inset gives the probability of retrieving at least one known
partner in the top x% predicted partners. (b) Comparison with DPPI. Best known partner ranks
obtained from CCD2PI (on top) and DPPI (at the bottom). We focus on the subset of proteins for
which the ranks provided by CC2PI are better.

three partners are identified in the top 5 by DPPI when using 1e96 l as the query, they are ranked339

between 95 and 101 when using 1i4d r or 1he1 r. The three query sequences display near-perfect340

sequence identities, but they cover more or less extended portions of the protein. Hence, the discrep-341

ancy between the results reveals a substantial sensitivity of DPPI with respect to different sequence342

contexts. The lack of a detection may be explained by an altered balance between signal and noise343

or between different signals coming from different interactions, or by some missing out-of-interface344

signal relevant for the interaction. In that case, we observed that our docking-based approach is345

more robust, as it finds at least one partner in the top 18 whatever the query.346
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DISCUSSION347

We have proposed a general approach to identify protein partners from large-scale docking ex-348

periments. We found that cognate partners can be singled out with high accuracy within specific349

functional classes. Beyond this parameter, we have identified a number of factors contributing to350

improving the discriminative power of the approach. We have primarily placed ourselves in a con-351

text where we seek to identify only one ”true” partner for a given protein, while the other studied352

proteins are considered as non-interactors. We have found that in such conditions, the definition of353

the binding interface should be very precise to allow achieving high discriminative power. In reality,354

most proteins interact with multiple partners, via overlapping or distinct regions at their surface.355

Our current knowledge and understanding of the multiplicity of protein surface usage is still very lim-356

ited. To move forward, we have collected experimentally characterised protein complexes among the357

proteins in our benchmark set and also among their close homologs. The rationale was that protein358

interactions tend to be conserved among close homologs, as evidenced by the success of homology-359

based prediction of protein complex 3D structures. This analysis revealed many possible interactions360

between the studied proteins, and showed that these interactions tend to populate regions in our361

predicted matrices displaying high interaction strengths. Hence, the propensities of interaction in-362

ferred from docking agree with the available structural data. As more complexes will be structurally363

characterised, we expect that the ”experimental” interaction matrix will resemble more and more the364

predicted one, i.e. with many dark spots (high values). A limitation of both experimental structural365

data and our computational framework is that they often cannot determine whether a protein-protein366

interaction will be functional or not in the cell. For instance, many antibody-antigen interactions367

can be inferred by homology transfer while the specificity of such interactions is very high and de-368

termined by only a few residues. A previous cross-docking study also highlighted the importance of369

the backbone conformation of the antibody to obtain a high-quality docked interface and thus be370

able to discriminate binders from non-binders [60]. More generally, the role of short peptide motifs371

for substrate selectivity and protein specific functions is being widely recognised [61], and there are372

documented examples of enzymes sharing high sequence identity while targeting different substrates373

[62]. Sequence-based learning approaches may overcome these limitations, but they do not provide374

direct information about the role of each residue in the formation and/or stabilisation of the assembly375

yet. From this perspective, sequence-based motif or specificity-determining site detection approaches376

could help to guide the docking toward boosting the accuracy of complex configuration prediction377

and to improve functional annotations of protein interactions. Such a combination of approaches378

may be particularly useful to distinguish multiple (potentially overlapping) interfaces.379

MATERIALS AND METHODS380

Protein datasets381

The first dataset is the Protein-Protein Docking Benchmark 2.0 (PPDBv2) [56] (https://zlab.382

umassmed.edu/benchmark/), which comprises 168 proteins forming 84 binary complexes. Each pro-383

tein may be comprised of one or several chains, and is designated as receptor (r) or ligand (l). For384

most of the proteins, we used the unbound crystallographic structures for the docking calculations.385

The 12 notable exceptions are antibodies for which the unbound structure is unavailable and the386

bound structure was used instead. As there are also unbound antibodies present in the dataset,387

we can evaluate the impact of conformational changes on the results. The complexes of PPDBv2388

are grouped in eight classes (Fig. S1a) following [63]: antibody-antigen (AA, 20 proteins), bound389

antibody-antigen (ABA, 24), enzyme-inhibitor (EI, 38), enzyme with regulatory or accessory chain390
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(ER, 6), enzyme-substrate (ES, 12), other-with-G-protein (OG, 24), other-with-receptor (OR, 14)391

and others (OX, 30). Note that for three cases, namely 1IR9, 1KXQ and 2HMI, there was an inversion392

in the original dataset between receptor and ligand, which we fixed here.393

The second dataset is the P-262 benchmark introduced in [23]. It comprises 262 single protein394

chains for which single and multiple partners interactions are known in the PDB. We used bound395

conformations found in complex structures for the docking calculations. This dataset was extracted396

from a larger set of 2246 protein chains defined in the scope of the HCMD2 project (see http:397

//www.ihes.fr/˜carbone/HCMDproject.htm). Based on the information recovered from the PDB,398

the proteins were manually classified in eleven groups (Fig. S1b), following and extending the399

classification proposed [63]. Hence, the set is comprised of 16 bound antibodies (AB), 25 complex400

subunits (C), 60 enzymes (E), 10 enzyme regulators (ER), 9 G proteins (G), 6 antigens from the401

immune system (I), 23 receptors (R), 24 structural proteins (S), 16 substrates/inhibitors (SI), 7402

transcription factors (TF) and 66 proteins with other function (O).403

Interacting pair identification by homology transfer404

We extended the set of known partners by transferring knowledge from close homologs. Specifically,405

we exploited the pre-computed PDB homology clusters with 90% and 70% sequence identities. For406

each protein pair considered, we verified the existence of a physical contact between the proteins in407

the pair, or some homologs at 90% (resp. 70%) sequence identity. Two proteins were considered to408

be in a contact if their interface was larger than 5 residues, as detected by INTBuilder [58]. This409

procedure was performed at the protein chain level. To deal with the multi-chain proteins from410

PPDBv2, we considered that two proteins were in interaction whenever at least one pair of chains411

from the two proteins was in interaction.412

Cross-docking calculations413

Given an ensemble of proteins, complete cross-docking consists in docking each protein against all the414

proteins in the dataset, including itself. All calculations were performed by the MAXDo (Molecular415

Association via Cross Docking) algorithm [54].416

Reduced protein representation417

The protein is represented using a coarse-grain protein model [42] where each amino acid is repre-418

sented by one pseudoatom located at the Cα position and either one or two pseudoatoms representing419

the side-chain (with the exception of Gly). Interactions between the pseudoatoms are treated using a420

soft Lennard Jones (LJ) type potential with parameters adjusted for each type of side-chain (see Ta-421

ble 1 in [42]). In the case of charged side-chains, electrostatic interactions between net point charges422

located on the second side-chain pseudoatom were calculated by using a distance-dependent dielectric423

constant ε = 15r, leading to the following equation for the interaction energy of the pseudoatom pair424

i, j at distance rij:425

Eij = (Bij

r8
ij

− Cij
r6
ij

) + qiqj
15r2

ij

(3)

where Bij and Cij are the repulsive and attractive LJ-type parameters respectively, and qi and qj are426

the charges of the pseudoatoms i and j. More details about the representation can be found in [54].427
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Systematic docking simulations428

MAXDo implements a multiple energy minimization scheme similar to that of ATTRACT [42] where429

proteins are considered as rigid bodies. For each protein pair, one protein (called the receptor) is430

fixed in space, while the second (called the ligand) is placed at multiple positions on the surface431

of the receptor. For each pair of receptor/ligand starting positions, different starting orientations432

are generated by applying rotations of the gamma Euler angle defined with the axis connecting the433

centers of mass of the 2 proteins. We used two different protocols to explore the docking space for434

our two datasets. In the case of PPDBv2, the whole surface of the receptor was probed by the435

ligand. This was guaranteed by generating starting positions that covered the whole surface and436

restraining the ligand motions during the simulation so as to maintain its center of mass on a vector437

passing through the center of mass of the receptor protein. As a result, the receptor and the ligand438

are treated differently and given en protein pair P1P2, docking P1 against P2 is not equivalent to439

docking P2 against P1. More details about this protocol can be found in [54, 53]. In the case of440

P-262, the ensemble of starting positions was restricted using predictions from the JET method [13].441

This reduced the docking search space by up to 50%. Moreover, the restrain was removed, so that442

the ligand was free to migrate to a position completely different from its starting position. Thus,443

for each couple of proteins P1P2, considering P1 as the receptor and P2 as the ligand is essentially444

equivalent to the reverse situation where P2 is the receptor and P1 is the ligand. More details about445

this protocol can be found in [64].446

Computational implementation447

For each pair, several hundreds of thousands of energy minimizations were performed. As each448

minimization takes 5 to 15 s on a single 2 GHz processor, a CC-D of several hundreds of proteins would449

require several thousand years of computation. However, the minimizations are independent from450

each other and thus can be efficiently parallelized on grid-computing systems. Our calculations have451

been carried out using the public World Community Grid (WCG, www.worldcommunitygrid.org),452

with the help of thousands of internautes donating their computer time to the project. It took453

approximately seven months to perform CC-D calculations on the PPDBv2, and three years on the454

complete HCMD2 dataset (2246 proteins) from which P-262 is extracted. More technical details455

regarding the execution of the program on WCG can be found in [65]. The data analysis was partly456

realized on Grid’5000 (https://www.grid5000.fr).457

Data Analysis458

Detection and prediction of interface residues459

The docked interfaces are defined by the sets of residues from the two partners closer than d Å.460

They were computed using INTBuilder [58], and we considered three values for d, 4.5, 5 and 6. The461

experimental interfaces were detected in the X-ray structures of the cognate complexes using the462

same tool and a distance d of 5 Å.463

The reference interfaces were predicted using a modified version of dynJET2 [23], a software tool464

predicting interacting patches based on four residue descriptors. Specifically, dynJET2 relies on three465

sequence- and structure-based properties of single proteins, i.e. evolutionary conservation, physico-466

chemical properties and local geometry (measured by the circular variance), and on a systemic467

property reflecting docking-inferred binding propensities (Fig S4, see also [23] for more detailed468

definitions). dynJET2 algorithm first detects the seed of the patch, then extends it and finally add469

an outer layer [12]. At each step, surface residues are selected using a combination of the four470

descriptors. Four scoring strategies are implemented, to cover a wide range of interfaces. The first471
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one, SCcons detects highly conserved residues and then grows the patches with residues less and472

less conserved and more and more protruding, and likely to be found at interfaces based on their473

physico-chemical properties. The second one, SCnotLig is a variant of SCcons where local geometry is474

accounted for in the seed detection step to avoid buried ligand-binding pockets. The third one, SCgeom475

disregards evolutionary conservation and looks for protruding residues with good physico-chemical476

properties. The fourth one, SCdock, defines patches exclusively comprised of residues frequently477

targeted in docking calculations. We refer to this group of SCs as SC-juxt. We modified dynJET2 to478

create 9 additional scoring schemes grouped in 3 main strategies, namely SC-mix, SC-monoSeed-mix479

and SC-dockSeed-mix (Fig S4). All 9 scoring schemes are variants of SCcons, SCnotLig and SCgeom480

including the docking-inferred binding propensities in different ways. SC-mix combines them with481

the other descriptors at each step. SC-monoSeed-mix detects the seeds using only the single-protein482

based properties, and then combines the latter with the docking propensities to grow the patches.483

SC-dockSeed-mix relies exclusively on the docking propensities to detect the seeds and then grows484

them using a combination of all four descriptors. We implemented all scoring schemes in dynJET2.485

For each protein, given a chosen main strategy, we detected a set of predicted patches using all its486

scoring schemes. Each patch was defined as a consensus of at least 2 iterations over 10 of dynJET2.487

We then retained the patch or combination of patches matching the best the experimentally known488

interfaces.489

We also used shifted decoys as reference interfaces. To generate them, we gradually shifted the490

experimentally known interfaces from the PPDBv2. For each experimental interface, we randomly491

generated 100 decoys, by moving between 10% and 100% of its residues. More precisely, the first 10492

decoys were generated by moving 10% of the residues, the next 10 by moving 20%, etc... At each493

step of the algorithm, we randomly pick up an interface residue rs located at the border, i.e. at less494

than 5 Å of a surface residue that is not part of the interface. Then, we identify the interface residue495

located the farthest away from rs, and we randomly pick up one of its neighbours rn (< 5 Å). We496

then switch the status of rs and rn. In other words, rs is removed from the interface and rn is added497

to the interface. The residue rs cannot be picked again in the following iteration.498

Re-scoring of the docking models499

We considered three scoring functions, namely iATTRACT [66], PISA [67] and CIPS [57], in replace-500

ment or complement of the one implemented in MAXDo.501

iATTRACT [66] is a docking software more recent than MAXDo and mixing a rigid-body docking502

approach with flexibility. The energy function is similar to that of MAXDo, except that the repulsive503

term in the Lennard-Jones potential decreases more rapidly with the interatomic distance while the504

electrostatic contribution decreases less rapidly. Specifically, iATTRACT interaction energy of the505

pseudoatom pair i, j at distance rij is expressed as506

Eij = (σij
rij

)12 − (σij
rij

)6 + qiqj
εrij

(4)

where σij is the LJ-type parameter, qi and qj are the charges of the pseudoatoms i and j, and the507

dielectric constant ε is set to 10. Each of the docking models obtained from the CC-D was subjected508

to iATTRACT’s minimisation process and we used the energy value coming from this minimization.509

PISA [67] is a scoring method developed to discriminate between biological and non biological510

complexes. It relies on the dissociation free energy to evaluate the stability of a complex. On top of511

the dissociation free energy, PISA considers larger assemblies more probable than the smaller ones512

and considers that single-assembly sets take preference over multi-assembly sets. We used PISA to513

re-score the docking conformations produced by MAXDo.514
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CIPS [57] is a statistical pair potential meant to be used as a high throughput technique able to515

largely filter out most of the non-native conformations with a low error rate. It was trained using516

230 bound structures from the Protein-Protein Docking Benchmark 5.0 [68]. We used it to obtain517

complementary scores on the docking conformations.518

The protein Interaction Index - II519

We evaluate docking models using an interaction index II computed as a product between three520

terms (see Eq. 1). For a given protein pair P1P2, the first term, FIRP1,P2 , is the overall fraction of521

the docked interfaces composed of residues belonging to the reference interfaces for the two proteins:522

FIRP1,P2 = FIRP1 ∗FIRP2 . It reflects the agreement between the docked interfaces and the reference523

interfaces. The reference interfaces may be experimentally known or predicted. The second one,524

EP1,P2 , is the docking energy provided by MAXDo, PISA or iATTRACT. The third one, PPP1,P2 is525

the value computed by CIPS and it may or may not be included in the formula. The product is526

computed for every docking conformations and the minimum (best) value is kept.527

The protein Normalized Interaction Index - NII528

To account for the global social behavior of the proteins, we further normalize the interaction indices.529

The normalized interaction index NII between P1 and P2 was determined as530

NIIP1,P2 =
min(II ′P1,P2 , II

′
P2,P1)4

minP (II ′P1,P )·minP (II ′P,P2)·minP (II ′P,P1)·minP (II ′P2,P ) (5)

where II ′P1,P2 is a symetrized weighted version of the interaction index IIP1,P2 and it is defined as:531

II ′P1,P2 := IIP1,P2√
SP1·SP2

, SPi
:= 1

2|P|
∑
Pj∈P

IIPi,Pj
+ IIPj ,Pi

(6)

where P is the ensemble of proteins considered. The normalization can be applied to the whole532

dataset or to subsets. In either case, NII values vary between 0 and 1. For each protein Pi, we533

defined its predicted partner as the protein Pj leading to NIIPi,Pj
= 1.534

Parameter setting535

The four main parameters of our approach and the different values we considered are reported in Table536

I. They were optimized on the PPDBv2. For each subet, we computed 72 AUC values corresponding537

to the 72 possible combinations of parameter values. Then, we ranked the combinations based on538

their weighted average AUC values. Given a combination Ci, the average was computed as539

AUC(Ci) =
∑n
j=1(Nj × AUCj(Ci))∑n

j=1 Nj

, (7)

where Nj is the number of proteins in the subset j and n is the number of subsets. We considered as540

subsets the eight functional classes and also the entire dataset itself, leading to n = 9. The weighting541

minimises the effect a subset with a low number of proteins could have on the global ranking, while542

putting more importance on subsets with a large number of proteins. The combination maximizing543

the value of AUC(Ci) was chosen as the default one (Table I, in bold).544

Then, for each class j, we ranked the 72 possible combinations according to their AUC values,545

AUCj(Ci), and we retained the top 20%, hence 15 combinations. This pool was separated by each546
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one of the four parameters. Whenever we found a parameter value leading to a better AUC than547

the default value, we further assessed this difference with a Mann Whitney U-test [69, 70]. For this548

test, we went back to the whole ensemble of 72 combinations and compared the distributions of AUC549

values obtained with the default value and the other value, respectively. If the p-value was lower550

0.01, then we considered the other value to significantly improve our discrimination potency over the551

default one. And we decided to use it for the given class.552

We applied the same procedure when dealing with the experimental interfaces. Since the num-553

ber of possible combinations (18) is much lower in that case, we retained the top 30%, hence 6554

combinations.555

Comparison with DPPI556

We re-trained DPPI architecture [59] on the Profppikernel database [71] containing 44 000 interactions557

(10% positive). The positive samples were taken from the HIPPIE database [72]. We removed from558

the training set all sequences which share more than 70% identity with any sequence from PPDBv2.559

We clustered the samples such that any two sequences do not share more than 40% identity. We560

used MMseqs2 [73] to cluster and filter sequences.561
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